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Abstract

A strategy profile in a repeated game has bounded recall L if play
under the profile after two distinct histories that agree in the last L
periods is equal. Mailath and Morris (2002, 2006) proved that any
strict equilibrium in bounded-recall strategies of a game with full sup-
port public monitoring is robust to all perturbations of the monitoring
structure towards private monitoring (the case of almost-public moni-
toring), while strict equilibria in unbounded-recall strategies are typi-
cally not robust.

We prove that the perfect-monitoring folk theorem continues to
hold when attention is restricted to strategies with bounded recall and
the equilibrium is essentially required to be strict. The general result
uses calendar time in an integral way in the construction of the strategy
profile. If the players’ action spaces are sufficiently rich, then the
strategy profile can be chosen to be independent of calendar time.
Either result can then be used to prove a folk theorem for repeated
games with almost-perfect almost-public monitoring. Key Words:
Repeated games, bounded recall strategies, folk theorem, imperfect
monitoring. JEL codes: C72, C73.
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1 Introduction

The folk theorem is not positive economics. Like mechanism design, the
folk theorem delineates which payoffs are consistent with intertemporal in-
centives (equilibrium behavior). Little is known about what restrictions
on behavior are ”reasonable,” ”plausible,” or have any predictive power.
Nonetheless, our understanding of the restrictions implied by intertemporal
incentives till the mid 80’s was based on explicitly constructed strategy pro-
files, such as Fudenberg and Maskin’s (1986) folk theorem which used the
“simple penal codes” of Abreu (1988).

Beginning with Abreu, Pearce, and Stacchetti (1986, 1990) and Fuden-
berg, Levine, and Maskin (1994), research in repeated games shifted its focus
from the structure of repeated game strategies to that of the set of payoffs.
However, recent work in private monitoring has returned the focus to the
structure of behavior as well as payoffs.

Intertemporal incentives arise when public histories coordinate contin-
uation play. But what if histories are private, but only barely so (i.e., are
“almost” public)? Can we still provide intertemporal incentives through the
coordination of continuation play? Is behavior robust to the introduction
of private monitoring? This is a stronger question than whether the folk
theorem is robust to the introduction of private information, which focuses
on payoffs and not behavior. The weaker question allows the equilibria to
depend on the details of the perturbed monitoring structure.

A strategy profile in a repeated game has L-bounded recall if play under
the profile after two distinct histories that agree in the last L periods is
equal. Mailath and Morris (2002, 2006) proved that any strict equilibrium
in bounded-recall strategies of a game with full support public monitoring
is robust to all perturbations of the monitoring structure towards private
monitoring (the case of almost-public monitoring), while strict equilibria
in unbounded-recall strategies are typically not robust. For some parame-
terizations of the imperfect public monitoring repeated prisoners’ dilemma,
Cole and Kocherlakota (2005) show that the set of PPE payoffs achievable
by bounded recall strongly symmetric profiles is degenerate, while the set of
strongly symmetric PPE payoffs is strictly larger.

We prove that the perfect-monitoring folk theorem continues to hold
when attention is restricted to strategies with bounded recall and the equi-
librium is essentially required to be strict. As observed by Mailath and
Samuelson (2006), the proof of this result in Mailath and Morris (2002) is
fundamentally flawed. The general result uses calendar time in an integral
way in the construction of the strategy profile. If the players’ action spaces
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are sufficiently rich, then the strategy profile can be chosen to be indepen-
dent of calendar time. Either result can then be used to prove a folk theorem
for repeated games with almost-perfect almost-public privata monitoring.

Our interest in bounded-recall strategies arises primarily because of their
role in determining the robustness of equilibria of repeated games to private
monitoring. In contrast, the existing literature typically views bounded
recall as a way of modeling bounded rationality. For example, Aumann
(1981) mentions bounded recall and finite automata as two ways of modeling
bounded rationality in the context of repeated games. A number of papers
investigate the asymptotic behavior of the set of equilibrium payoff vectors
in repeated games with no discounting, allowing the recall of all players to
grow without bound. The characterization results typically resemble the
folk theorem (see, for example, Lehrer (1994)). However, if the recalls of
distinct players grow at distinct rates, the minimal payoffs depend on the
relative rates of divergence across players. Players with long recall (who are
sometimes called in this literature ”strong”) can correlate their own, or other
players’ actions in a manner that is concealed from some of their shorter-
recall opponents. As a result, the payoffs of those “weaker” opponents fall
below their minmax levels under independent actions (see, for example,
Lehrer (1994), Gilboa and Schmeidler (1994), or Bavly and Neyman (2003)).

Assuming discounting and perfect monitoring, Barlo, Carmona, and
Sabourian (forthcoming) establish the subgame-perfect folk theorem for
games with rich action spaces by using strategies with one-period memory.
The idea is that if the action spaces are sufficiently rich, players are able to
encode entire histories in single stage-game actions. Hörner and Olszewski
(2006b) establish the folk theorem in finite-recall strategies without the as-
sumption that the action spaces are rich, and even under imperfect public
monitoring.1 They divide time horizon into blocks in which players play
strategies similar to ones used by Fudenberg, Levine, and Maskin (1994),
and design after each block a “communication phase” in which players en-
code the continuation payoff vector to be achieved in the following block. It
is essential for the equilibria constructed by those authors to assume that
the length of recall increases with the discount factor, and that players are
indifferent between sending several distinct messages in the “communication
phases.” This indifference requires that the strategy profiles depend upon
the fine details of the monitoring structure.

1Note, however, that Hörner and Olszewski (2006b) assume the existence of a public
correlating device.
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2 Preliminaries

In the stage game, player i = 1, . . . , n chooses action ai from a finite set Ai.
A profile of actions is a vector a ∈ A =

∏n
i=1 Ai. Player i’s payoff from the

action profile a is denoted ui(a), and the profile of payoffs (u1(a), ..., un(a))
is denoted u(a). For each i, player i’s (pure action) minmax payoff vp

i is
given by

vp
i ≡ min

a−i

max
ai

ui(ai, a−i) ≡ max
ai

ui(ai, â
i
−i) ≡ ui(âi),

so that âi is an action profile that minmaxes player i.2 The payoff vp
i is the

lowest payoff that the other players can force on player i in the stage game
(using pure actions). The set of stage game payoffs generated by pure action
profiles is

F ≡ {v ∈ Rn : ∃a ∈ A s.t. g(a) = v},

while the set of feasible payoffs is

F† ≡ coF ,

where coF is the convex hull of F . Finally, the set of strictly (pure action)
individually rational and feasible payoffs is

F†p ≡ {v ∈ F† : vi > vp
i , ∀i}.

We assume throughout that the interior of the set F†p is non-empty.
Given an n-dimensional vector v and a number ε > 0 we denote by

Bε(v) the open ball of radius ε centered at v in Rn, i.e., Bε(v) = {v′ ∈ Rn :
‖v − v′‖ < ε}.

We begin with infinitely repeated games with perfect monitoring. In
each period t = 0, 1, . . . , the stage game is played, with the action profile
chosen in period t publicly observed at the end of that period. The period
t history is ht = (a0, ..., at−1) ∈ At, where as denotes the profile of actions
taken in period s, and the set of histories is given by

H = ∪∞t=0A
t,

where we define the initial history to the null set A0 = {∅}. A strategy σi

for player i is a function σi : H → Ai.
2If the minmaxing profile is not unique, choose one arbitrarily.
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Every pure strategy profile has an automaton representation (W, w0, f, τ),
where W is the set of states, w0 is the initial state, f : W → A is the out-
put function, and τ : W × A → W is the transition function (Mailath and
Samuelson, 2006, Section 2.3). For a fixed automaton (W, w0, f, τ), we say
a state w is accessible from w0 if there exists a history ht = (a0, a1, . . . , at−1)
such that w = τ(w0, ht) ≡ τ(· · · τ(τ(w0, a0), a1), . . . , at−1). Finally, we say
that two states w and w̃ are reachable in the same period if there exists t
and two histories ht and h̃t such that w = τ(w0, ht) and w̃ = τ(w0, h̃t).

Definition 1 A strategy profile σ has bounded recall of length L (more
simply, L-bounded recall) if for all t ≥ 0, all ht, ĥt ∈ H, and all hL ∈ H,

σ(hthL) = σ(ĥthL). (1)

We then have:3

Lemma 1 (Mailath and Morris (2006, Lemma 3)) The strategy pro-
file represented by the automaton (W, w0, f, τ) has L-bounded recall if and
only if for all w, w′ ∈ W reachable in the same period and for all histories
hL ∈ H,

τ(w, hL) = τ(w′, hL). (2)

Bounded recall strategies are potentially calendar time dependent. For
example, a profile that plays a in even periods and a′ 6= a in odd periods
irrespective of history has bounded recall (of zero length). Our constructions
take advantage of the calendar time dependence allowed for in bounded recall
strategies. A stronger condition (bounded memory) also requires calendar
time independence, so that the histories ht and ĥt in (1) can be of different
length (or equivalently, w and w′ need not be reachable in the same period
in (2)). The profile yielding alternating a and a′ does not have bounded
memory of any length.

Players share a common discount factor δ < 1, and payoffs in the re-
peated game are evaluated as the average discounted value. Given a dis-
count factor δ, we denote by E(δ) the set of subgame-perfect equilibrium
payoffs. The set of payoffs obtained in some subgame-perfect equilibrium in
L-bounded recall strategies is denoted EL(δ). Given an automaton repre-
sentation (W, w0, f, τ), denote player i’s average discounted value from play
that begins in state w by Vi(w).

3See Mailath and Samuelson (2006, Lemma 13.3.1) for a proof.
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Definition 2 The strategy profile σ represented by the automaton (W, w0, f, τ)
is a strict subgame perfect equilibrium if for all states w accessible from w0,
the action profile f(w) is a strict Nash equilibrium of the normal form game
described by the payoff function gw : A → Rn, where

gw(a) = (1− δ)u(a) + δV (τ(w, a)). (3)

The profile is patiently strict if there exists ε > 0 and δ̄ < 1 such that for
all w, i, and ai 6= fi(w), and all δ ∈ (δ̄, 1),

gw
i (f(w))− gw

i (ai, f−i(w))
1− δ

> ε.

Equivalently, σ is a strict subgame perfect equilibrium if every one-shot
deviation is strictly suboptimal. If f(w) were simply required to be a (pos-
sibly non-strict) Nash equilibrium of the game gw for all accessible w, then
we would have subgame perfection (Mailath and Samuelson, 2006, Proposi-
tion 2.4.1). We caution the reader that this use of strict is a slight abuse
of language, since player i is indifferent between σi and any deviation from
σi that leaves the outcome path unchanged. This use is motivated by its
use in public monitoring games (see footnote 14 and Mailath and Samuelson
(2006, Definition 7.1.3)).

Definition 3 The strategy profile σ represented by the automaton (W, w0, f, τ)
is a pseudo-strict subgame perfect equilibrium if for all states w accessible
from w0, the action profile f(w) is a Nash equilibrium of the normal form
game described by the payoff function gw : A → Rn given in (3), and if for
all ai 6= fi(w) for some w accessible from w0 satisfying

gw
i (f(w)) = gw

i (ai, f−i(w)), (4)

we have
τ(w, f(w)) = τ(w, (ai, f−i(w))). (5)

The profile is patiently pseudo-strict if there exists ε > 0 and δ̄ < 1 such
that for all w, i, and ai 6= fi(w) for which (4) fails, and all δ ∈ (δ̄, 1),

gw
i (f(w))− gw

i (ai, f−i(w))
1− δ

> ε.

The set of payoffs obtained in some patiently pseudo-strict subgame perfect
equilibrium in L-bounded recall strategies is denoted EL,s(δ).
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If ai 6= fi(w) satisfies (4), then from (5), player i’s stage game payoffs
from f(w) and (ai, f−i(w)) are equal. That is, one-shot deviations that are
not strictly suboptimal yield the same stage-game payoffs and imply the
same continuation play.

We are interested in bounded recall strategies because pseudo-strict
perfect public equilibrium of a repeated game with public monitoring in
bounded recall strategies is robust to private monitoring, and essentially only
such strict PPE are robust (Mailath and Morris, 2002, 2006). Once we have
a perfect monitoring folk theorem in bounded recall strategies (and pseudo-
strict equilibria), this immediately yields a folk theorem for almost-perfect
highly correlated private monitoring games. Patient pseudo-strictness guar-
antees that the degree of approximation of the pubic and private monitoring
games is independent of the degree of patience (see Section 6).

3 Two Players and an Easy First Theorem

We first discuss the two player case. The proof of Mailath and Samuel-
son (2006, Proposition 13.6.1) immediately implies the following two-player
bounded-recall pure-action folk theorem:

Theorem 1 Suppose n = 2. For all strictly individually rational a ∈ A
(i.e., u(a) ∈ F†p), there exists δ̄ ∈ (0, 1) and L < ∞ such that for all
δ ∈ (δ̄, 1), there is a patiently strict subgame perfect equilibrium in L-bounded
recall (in fact, bounded memory) strategies with outcome a in every period.

From the proof of Theorem 1 in Fudenberg and Maskin (1986), for any
strictly individually rational a, there exists δ̄ ∈ (0, 1) and L such that, for
all δ ∈ (δ̄, 1), mutual minmax (â1

1, â
2
2) for L periods followed by a return

to a is sufficient to deter any unilateral deviation from both a and mutual
minmax. A bounded memory profile with the identical unilateral incentives
specifies a if in the last L periods, either a was played in every period, or
mutual minmax was played in every period, and mutual minmax otherwise.

The critical observation is that because a is strictly individually ratio-
nal, every unilateral deviation from a and from mutual minmax results in
a profile distinct from both a and mutual minmax (i.e., is “immediately
detected”). Hence, such a deviation can be met with L periods of mutual
minmax without recourse to information from earlier periods.

In order to cover all strictly individually rational payoffs, it is natural
to consider replacing a in the strategy profile with a cycle of action profiles
whose average payoff approximates the target payoff. Since we need no
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longer have the property of “immediate detection” of unilateral deviations,
however, such a replacement need not yield an equilibrium. Consequently,
there is no simple extension of Theorem 1 to cover all strictly individually
rational payoffs. Consider the repeated prisoners’ dilemma (with actions C
and D, and mutual minmax DD), and a payoff obtained from the convex
combination 1

2 ◦ CD + 1
2 ◦DC. Suppose L = 2 is sufficient to strictly deter

a deviation. The cycle CD,DC,CD, . . . achieves the desired payoff, and
requires only a two period memory to implement. On the cycle, a deviation
by player 1 to D in some period gives a history ending in DC, DD, which
should be followed by two periods of DD, with the cycle only resuming once
three periods of DD have occurred.4

Consider a profile with 3-bounded recall and a history ending in DC,
DD, CD. While the profile specifies DD (since the last 3 periods are incon-
sistent with the cycle, and so mutual minmax should sill be played), player
2 will optimally unilaterally deviate to C, giving a history whose last 3 pe-
riods are DD, CD,DC, and so the cycle resumes. This failure of the profile
at histories ending in DC, DD, CD causes the profile to unravel, since such
a history is obtained by player 1 unilaterally deviating after a history end-
ing in CD,DC,DD to C, rather than playing D, which in turn is obtained
by a unilateral deviation by player 1 on the cycle (at a history ending in
DC, CD,DC).

The problem identified in the previous paragraph is a familiar one. It
underlies, for example, the anti-folk theorem in the overlapping generations
model of Bhaskar (1998). However, bounded recall gives us some flexibility
in the design of the profile. In particular, we can specify a priori certain peri-
ods as announcement periods which the players use to “announce” whether
play should follow the cycle, or punish. Such a “trick” allows us to easily
obtain a partial folk theorem, and for arbitrary number of players. Specif-
ically, any feasible payoff that Pareto dominates a static Nash equilibrium
can be supported in bounded recall strategies. (Recall that mutual minmax
is a Nash equilibrium in the prisoners’ dilemma.)

Theorem 2 Suppose aN is a strict Nash equilibrium of the stage game.
For all v ∈ F† with vi > ui(aN ) and for all ε > 0 , there exists δ̄ ∈ (0, 1)
and L < ∞ such that for all δ ∈ (δ̄, 1), there is a patiently strict subgame
perfect equilibrium in L-bounded recall strategies with discounted average
payoff within ε of v.

4The “three” comes from the deviation (one period) and two periods of mutual minmax
punishment. If the cycle resumes after two periods of DD, then the punishment is only
of length 1.
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Proof. Let ã ∈ A be an action profile satisfying ãi 6= aN
i for at least

two players. For T sufficiently large, there is a cycle of actions hT ≡
(a1, . . . , aT−1, ã) ∈ AT whose average payoff is within ε/2 of v. As a matter
of notation, aT = ã.

Consider the automaton with states {w(k, `) : k ∈ {0, 1}, ` ∈ {1, . . . , T}},
initial period w0 = w(0, 1), output function f(w(0, `)) = a` and f(w(1, `)) =
aN for all `, and transition function,

τ(w(0, `), a) =


w(0, ` + 1), if ` ≤ T − 1 and a = a`,
w(1, ` + 1), if ` ≤ T − 1 and a 6= a`,
w(0, 1), if ` = T and a = ã,
w(1, 1), if ` = T and a 6= ã,

and

τ(w(1, `), a) =


w(1, ` + 1), if ` ≤ T − 1,
w(0, 1), if ` = T and a = ã, and
w(1, 1), if ` = T and a 6= ã.

Under the automaton, the cycle hT is played every T periods. The
automaton has T -bounded recall, because in any period t = kT for any
integer k, the automaton is in either state w(0, T ) or in state w(1, T ), and
the transition in both cases are the same. Period t = kT is an announcement
period: The cycle is played if, and only if, both players choose their part of
ã; the profile specifies that ã is played in that period only if the cycle had
been played in the previous T periods (beginning in period kT − 1).

Note that a player i cannot unilaterally prevent Nash reversion, since the
other players will choose aN

−i in the announcement period. Finally, patient
strictness is immediate from Nash reversion for δ sufficiently high.

Remark 1 The approximation in Theorem 2 is due to the announcement
period, and not to the use of a cycle per se. Fix ε > 0 sufficiently small
that vi > vN

i + 2ε for all i. From Fudenberg and Maskin (1991) (or see
Mailath and Samuelson (2006, Lemma 3.7.2)), there is an infinite outcome
path h ∈ A∞ with value v and whose discounted average payoff at any
time t is within ε of v. Suppose that in every period in h, both players
choose an action distinct from their Nash action aN

i . Then, specifying the
period t action profile in h if the period t− 1 action profile was played and
aN otherwise trivially yields a patiently strict subgame equilibrium in 1-
bounded recall strategies. However, in general, the outcome path will not
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satisfy such a condition, nor need the action profiles at any regular dates
t = kT satisfy such a condition.

Remark 2 At a slight cost of complexity, Nash reversion can be replaced by,
after a deviation, play Nash till the second announcement period, followed
by a resumption of the cycle hT . Not only does the formal description of
the automaton become a little complicated, but care must now be taken in
the specification of the cycle that the continuation value never drop too low
(which can be handled similarly to Fudenberg and Maskin (1991)). Mutual
minmax cannot be used in place of the Nash equilibrium to obtain a full
folk theorem for two players, since incentives must then be provided to the
players to carry out the mutual minmax, and this appears impossible when
we restrict the punishment triggers to occur every T periods.

Interestingly, it appears to be easier to provide such incentives when
there is more flexibility in the specification of the end date of the punishment.
Using that freedom, Barlo, Carmona, and Sabourian (2008) prove a folk
theorem for two player games.5 While the profile has bounded memory (and
not just bounded recall), the construction is considerably more complicated
than that of our proof of Theorem 2.

4 Player-Specific Punishments

With more than two players, some notion of player-specific punishments is
needed to obtain a folk theorem.

Definition 4 A payoff v allows player-specific punishments if there exists
a collection {vi}n

i=1 of payoff vectors vi ∈ F†p, such that

vi > vi
i and vj

i > vi
i, ∀j 6= i.

A payoff v allows pure-action player-specific punishments if v = u(a(0)) for
some a(0) ∈ A, and vj = u(a(j)) for some a(j) ∈ A and all j = 1, . . . , n.

5That paper also proves a folk theorem for more than two players, under some
“confusion-proof” conditions that are related to the immediate detection property we
discussed above. We only learned of Barlo, Carmona, and Sabourian (2008) when the
final draft of this paper was being prepared.
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Suppose payoffs v0 = u(a(0)) allow pure-action player-specific punish-
ments. The standard construction of a subgame perfect profile with payoffs
v0 is to use a simple strategy profile. In this profile, any unilateral devia-
tion (by player i say) results in the deviator being minmaxed by âi for a
finite number of periods, after which ai is played (unless there is a further
unilateral deviation), and multilateral deviations are ignored.6 The profile’s
automaton description has the set of states

W̃ = {w(d) : 0 ≤ d ≤ n} ∪ {w(i, t) : 1 ≤ i ≤ n, 0 ≤ t ≤ L− 1},

initial state w0 = w(0), output function f̃(w(d)) = a(d), and f̃(w(i, t)) = âi

for 0 ≤ t ≤ L− 1, and transition function

τ̃(w(d), a) =

{
w(j, 0), if aj 6= aj(d), a−j = a−j(d),
w(d), otherwise,

and

τ̃(w(i, t), a) =

{
w(j, 0), if aj 6= âi

j , a−j = âi
−j for j 6= i,

w(i, t + 1), otherwise,

where w(i, L) ≡ w(i). We denote this automaton by Ã.

Lemma 2 For L sufficiently large and δ sufficiently close to 1, the profile
induced by Ã is a patiently pseudo-strict subgame perfect equilibrium.

Proof. The proof of Mailath and Samuelson (2006, Proposition 3.4.1, state-
ment 1) shows that Ã describes a pseudo-strict subgame perfect equilibrium
for sufficiently large L and δ close to 1. If either i has a unique best reply
to âi

−i or the profile restarts the punishment of i after i deviates in the state
w(i, t), then the induced equilibrium is strict.

It remains to verify patient pseudo-strictness. We denote player i’s av-
erage discounted value from play beginning in state w under Ã by Ṽi(w).
Consider first the normal form game with payoffs g̃w from (3), i.e.,

g̃w(a) = (1− δ)u(a) + δṼ (τ̃(w, a)),
6Since player i has no myopic incentive to deviate from a fixed âi, it is obviously not

necessary to restart i’s minmaxing cycle after a further unilateral deviation by i. On the
other hand, in most settings it does no harm, and many presentations (such as Mailath
and Samuelson (2006)) restart the punishment in this case as well. However, as explained
in footnote 8, it is easier to ignore i’s deviations from âi in the subsequent development,
and so we do so here.
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for w = w(i, t), and a deviation by player j 6= i. We have, for aj 6= f̃j(w),

g̃w
j (âi)− g̃w

j (aj , â
i
−j) = (1− δ)(uj(âi)− uj(aj , â

i
−j)

+ δ(Ṽj(w(i, t + 1))− Ṽj(w(j, 0))).

But

Ṽj(w(i, t + 1))− Ṽj(w(j, 0)) = (1− δL−t)(uj(âi)−
¯
vp
j )

+ (δL−t − δL)(vi
j − ¯

vp
j ) + δL(vi

j − vj
j ),

which is strictly positive for large δ, and bounded away from zero as δ → 1
(since uj(a(i)) > uj(a(j))). Suppose ε > 0 is sufficiently small that 2ε <

vi
j − vj

j . Then, for δ sufficiently large, for all aj 6= fj(w),

g̃w
j (f̃(w))− g̃w

j (aj , f̃−j(w)) > ε (6)

for w = w(i, t) and j 6= i. Since Ṽ (w(d)) = vd, this incentive constraint
reflects the loss of long-run value of at least vi

j − vj
j .

A similar calculation shows that (6) also holds for w = w(d) and d 6= j.
We do not need to check player j’s incentives at w(j, t), since j is my-

opically optimizing and the transition is independent of j’s action.
Finally, for w = w(j), for player j we have

Ṽj(w(j))− Ṽj(w(j, 0))
(1− δ)

=
(1− δL)(vj

j − vp
j )

(1− δ)

→L(vj
j − vp

j ) as δ → 1.

If L satisfies
max

a
ui(a)− vi

i + 2ε < L(vi
i − vp

i ) (7)

for all i, then for δ sufficiently large, for all aj 6= fj(w(j)),

g̃w
j (f̃(w))− g̃w

j (aj , f̃−j(w))
1− δ

> ε.

Note that this last constraint only reflects a change of behavior in a finite
number of periods, since long-run value of vi

i is unchanged by the deviation.

Because multilateral deviations are ignored, Ã typically does not have
bounded recall: For example, a unilateral deviation by i in w(0) eventually
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leads to w(i), and so a(i), while a multilateral deviation from a(0) to a(i) in
every period keeps the automaton in w(0). Potentially more of a problem
is that a unilateral deviation by i in state w(0) may yield the same action
profile as a unilateral deviation by j in w(k).

For a fixed automaton (W, w0, f, τ), we can view the set of action profiles
{f(w) : w ∈ W} as the set of intended profiles. Say that a unilateral
deviation by i at w is immediately detectable if a−i uniquely identifies the
action profile f(w), independent of ai. In such a case, when ai 6= fi(w), we
should be able to treat a as the result of a unilateral deviation by i. If the
action space is sufficiently rich that all unilateral deviations at every state
are immediately detectable, then we can modify the profile in its treatment
of multilateral deviations to obtain bounded recall. Note that this is a little
delicate, since for example the action profile (ai, a−i(j)) 6= a(j) is both a
unilateral deviation from a(j), as well as a potentially multilateral deviation
from a(k), and so must be treated differently than some other multilateral
deviation.

Lemma 3 Suppose n ≥ 3, v0 = u(a(0)) for some a(0) ∈ A, and that v0

allows pure action player specific punishments (so that vj = u(a(j)) for some
a(j) and for all j = 1, . . . , n). Suppose moreover, that the action profiles
{a(d) : d = 0, . . . , n} with {âi : i = 1, . . . , n} are all distinct, player by
player, that is, for all j = 1, . . . , n,∣∣{aj(d) : d = 0, . . . , n} ∪ {âi

j : i = 1, ..., n}
∣∣ = 2n + 1. (8)

Then there exists δ̄ < 1, L < ∞, and an L-bounded-memory strategy profile
with outcome path a(0) in every period, such that for δ ∈ (δ̄, 1), the L-
bounded-memory strategy profile is a patiently pseudo-strict subgame perfect
equilibrium.

Proof. Since there are three or more players, (8) implies that every uni-
lateral deviation from an action profile in {a(d) : d = 0, . . . , n} ∪ {âi : i =
1, . . . , n} is immediately detectable (in the sense described just before the
statement of the lemma). This allows us to define the transitions so that
apart from action profiles that minmax a player, the automaton has one-
period recall.

As for Ã, choose L sufficiently large that (7) is satisfied. The new au-
tomaton has set of states

W = W̃ ∪ {w(i, L) : 1 ≤ i ≤ n},
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initial state w0 = w(0), an output function that agrees with f̃ on W̃ and
specifies f(w(i, L)) = a(i), and finally, transition function

τ(w(d), a) =



w(j, 0), if aj 6= aj(d), a−j = a−j(d)
or aj 6= âk

j , a−j = âk
−j some j 6= k,

w(j, 1), if a−j = âj
−j ,

w(d), if a = a(d),
w(0), otherwise,

τ(w(i, L), a) =



w(j, 0), if aj 6= aj(d), a−j = a−j(d)
or aj 6= âk

j , a−j = âk
−j some j 6= k,

w(j, 1), if a−j = âj
−j , j 6= i

w(i, L), if a−i = âi
−i,

w(d), if a = a(d),
w(0), otherwise,

and, finally, for t ≤ L− 1,

τ(w(i, t), a) =



w(j, 0), if aj 6= aj(d), a−j = a−j(d)
or if aj 6= âk

j , a−j = âk
−j some j 6= k,

w(j, 1), if a−j = âj
−j , j 6= i

w(i, t + 1), if a−i = âi
−i,

w(d), if a = a(d),
w(0), otherwise.

The verification that the automaton has bounded recall is straightfor-
ward. As we indicated before describing the automaton, except for action
profiles satisfying a−i = âi

−i for some i, the automaton has one-period recall:
Irrespective of the current state, after the action profile a(d), the automa-
ton immediately transits to the state w(d); after a unilateral deviation by
j from a(d) or from âk, k 6= j, the automaton immediately transits to the
state w(j, 0); and after any other profile satisfying a−i 6= âi

−i for all i,the
automaton immediately transits to the state w(0). Finally, after an action
profile satisfying a−i = âi

−i for some i, the automaton transits to a state
w(i, t), with the value of t determined by the previous state. Subsequent
a−i = âi

−i increment the counter t, till t = L.
Consider now a T -length history, with aT being the last period action

profile. If aT
−i 6= âi

−i for all i, then the current state is determined from the

13



previous paragraph. Suppose now that there is some i for which aL
−i 6= âi

−i,
and let ` = max{t : at

−i 6= âi
−i}; note that ` < T . Then, the current state

of the automaton is given by w(i, t′), where t′ = min{`, L}. Thus, action
profiles in the history more than L periods in the past are irrelevant, and
the automaton has L bounded recall.

Finally, since the new automaton induces the same initial outcome path
as Ã, as well as inducing the same outcome path after any unilateral devi-
ation as Ã, it is patiently pseudo-strict.

Remark 3 The richness condition (8) is stronger than necessary. It is of
course enough that every unilateral deviation from an action profile in {a(d) :
d = 0, . . . , n} ∪ {âi : i = 1, . . . , n} be immediately detectable (in the sense
described just before the statement of the lemma).

A natural conjecture is that immediate detection condition is in fact
unnecessary. Consider the repeated “epoch” game, where an epoch is a
block of T periods. Since, by choosing T sufficiently large, we can guarantee
that the immediate detection condition holds for appropriately specified T
length cycles, we can apply the construction in Lemma 3 to the repeated
“epoch”game. The flaw in this argument is that the resulting profile may not
be an equilibrium. In particular, consider the following possibility: A player
unilaterally deviates in the first period of an epoch, followed by another
unilateral deviation (by either the same or a different player). From the
epoch viewpoint, this is akin to a multilateral deviation and so is effectively
ignored by the profile. Consequently, the construction in Lemma 3 does not
imply that such deviations are suboptimal.

Similarly, while it is possible to relax the assumption that v0 and the
associated player-specific punishments can be implemented in single pure
action profiles, the immediate detection condition becomes more demanding,
since all unilateral deviations must be detected immediately (as before).

5 Perfect Monitoring Folk Theorem under Bounded
Recall

In this section, we prove a general perfect monitoring folk theorem under
bounded recall.
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Theorem 3 Suppose n ≥ 3 and F†p has nonempty interior. For all v ∈
F†p, for all ε > 0, there exists δ̄ < 1 and L < ∞, such that for all δ ∈ (δ̄, 1),

Bε(v) ∩ EL,s(δ) 6= ∅.

We prove the pure action version first, which requires a slightly stronger
form of player-specific punishments:

Definition 5 A payoff v allows strong player-specific punishments if there
exists a collection {vi}n

i=1 of payoff vectors vi ∈ F†p, such that

vj
i > vi > vi

i, ∀j 6= i. (9)

A payoff v allows pure-action strong player-specific punishments if v =
u(a(0)) for some a(0) ∈ A, and vj = u(a(j)) for some a(j) ∈ A and all
j = 1, . . . , n.

Since F†p has nonempty interior, as usual, any v0 ∈ intF†p allows strong
player-specific punishments, though typically not in pure actions.

Lemma 4 Suppose n ≥ 3 and v allows strong pure-action player-specific
punishments. Then the conclusion of Theorem 3 holds.

Proof. In order to deal with the issues raised in remark 3, and similar
to the proof of Theorem 2, we modify Ã by introducing an announcement
phase of length 2n + 1 that occurs every T > 2n + 1 + L periods.7 In the
announcement phase, the players effectively announce the new initial state
for the automaton fromW∗ ≡ {w(d) : d = 0, . . . , n}∪{w(i, 0) : i = 1, . . . , n},
and then in the following normal phase, play according to the automaton
with that announced initial state. (This use of state will be justified in
the next paragraph.) At the end of the normal phase, a new state has
been determined (according to the above transition function), which is then
announced in the next announcement phase (with w(i, 0) announced if the
state reached is w(i, t) for any t = 0, . . . , L − 1).8 We will show that this
profile has bounded recall of length T + (2n + 1).

The set of states in the modified automaton Â ≡ (Ŵ, ŵ0, f̂ , τ̂) are Ŵ ≡
W × {1, . . . , T}, with initial state ŵ0 = (w(0), 1). For states (w, r) with

7While the idea of using an announcement phase to announce states was inspired by
Hörner and Olszewski (2006b), the details of the announcement phase are very different,
reflecting our need to obtain pseudo-strict incentives everywhere.

8Since the announcement phase does not distinguish between w(i, 0) and w(i, t) for
t > 0, the underlying profile needs to ignore deviations by i from âi; see footnote 6.
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r = 1, . . . , T − 2n − 1, the specified behavior agrees with that under our
earlier automaton, so that f̂(w, r) = f̃(w). The transitions are given by

τ̂((w, r), a) =


(τ̃(w, a), r + 1), if r ≤ T − 2n− 2, or if r = T − 2n− 1

and τ̃(w, a) 6= w(i, t) for any i and t,
(w(i, 0), T − 2n), if r = T − 2n− 1 and τ̃(w, a) = w(i, t)

for some i and t.

That is, within the normal phase, the modified automaton behaves as the
original and counts down the periods. We will often refer to w as a state or
as the current state, with the index r implicit. In particular, w ∈ W∗ is a
potential initial state, and (w, 1) is an initial state for the normal phase.

Behavior under Â will have the property that if (w, T − 2n) is the state
at the beginning of the announcement phase, then (w, 1) is the state at the
beginning of the next normal phase.

Due to the introduction of the announcement phase, a larger value of L
is needed: For fixed ε > 0, choose L sufficiently large that, for all i,

(2n + 2)(max
a

ui(a)−min
a

ui(a)) + 3ε < L(vi
i − vp

i ). (10)

Claim 1 (Incentives in the normal phase) Suppose T sat-
isfies,

2n + 1
T

[
max

a
ui(a)−min

a
ui(a)

]
< ε/4, ∀i. (11)

Let ĝ
(w,r)
i denote the payoffs of the normal form game (3), i.e.,

ĝ(w,r)(a) = (1− δ)u(a) + δV̂ (τ̂((w, r), a)),

where V̂i(w, r) is player i’s payoff from state (w, r) under Â.
There exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1), w ∈ W,
r ∈ {1, 2, . . . , T − 2n − 1}, j, and aj 6= f̂j(w, r), if w 6= w(j, t)
for any t, then,

ĝ
(w,r)
j (f̂(w, r))− ĝ

(w,r)
j (aj , f̂−j(w, r))

1− δ
≥ 2ε.

If w = w(j, t) for some t, then

τ̂((w, r), f̂(w, r)) = τ̂((w, r), (aj , f̂−j(w, r)).
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Proof. Observe first that for a sufficiently patient player i,
V̂i(w, r), is within ε/2 of Ṽi(w) for all w ∈ W∗ (recall that Ṽi(w)
denotes player i’s average discounted value from play beginning
in state w under Ã). Then, it is immediate from (6) that for
large δ,9 for all aj 6= f̂j(w, r),

ĝ
(w,r)
j (f̂(w, r))− ĝ

(w,r)
j (aj , f̂−j(w, r)) > ε

for w = w(i, t) and j 6= i, and for w = w(d) and d 6= j.

Finally, for w = w(j), for player j, the incentive to deviate can be
bounded by noting that deviating can contribute at most 2n+2
periods of benefit (the current period, plus the impact on the
announcement phase), and so

ĝ
(w,r)
j (a(j))− ĝ

(w,r)
j (aj , a−j(j)) ≥

(1− δ2n+2)(min
a

uj(a)−max
a

uj(a))

+ δ2n+2(1− δL)(vj
j − ¯

vp
j )),

and so

lim
δ→1

ĝ
(w,r)
j (a(j))− ĝ

(w,r)
j (aj , a−j(j))

1− δ
≥

(2n + 2)(min
a

uj(a)−max
a

uj(a)) + L(vj
j − ¯

vp
j )),

which exceeds 3ε from (10).

Each period r = T−2n, T−2n+1, . . . , T of the announcement phase cor-
responds to one of the potential initial states, w ∈ W∗ in order w(0), w(1), . . . ,
w(n), w(1, 0), . . . , w(n, 0).10 For the first n+1 periods and for each player i,
we arbitrarily identify one action in Ai as YES (or Y ), and another action
as NO (N), with the remaining actions having no meaning. For each i, in
the period corresponding to the state w(i, 0), and for each player j 6= i, we
again arbitrarily identify one action aY

j in Aj as YES, and another action

9The bound on δ is tighter than that yielding (6) since, in states w(i, t), players may
minmax i for 2L − 1 periods. This occurs if the L periods of minmaxing i do not end
before the end of the normal phase.

10Once 2n of the states have been rejected, the remaining state is effectively announced
by default, and so announcing all 2n+1 states is redundant, but simplifies the description.
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aN
j as NO; for player i we identify every stage-game best reply for i to the

profile aY
−i as YES, and some other action as NO.

At the beginning of the announcement phase, there is a new current state
w corresponding to the state (w, T − 2n − 1) (resulting from the previous
T − 2n− 1 periods). The 2n + 1 periods of the announcement phase encode
w as players use the actions identified as YES and NO to announce w,
with deviations triggering appropriate continuations. There is a subtlety
however, since when w = w(i, 0), player i cannot be disciplined in the current
announcement phase and so will myopically best reply to the behavior of the
other players. Consequently, we cannot rely on unanimous announcements
to announce the state and we sometimes use a plurality of n−1 YES’s or n−1
NO’s to indicate the status of a state. The strengthening of player-specific
punishments allow us to deter any deviation leading to only n− 2 YES’s or
n− 2 NO’s by using v0 as a continuation value after such a deviation.

In each period of the announcement phase, given a current state players
are prescribed to answer truthfully whether the current state is the state
corresponding to that period. If the current state is w(i, 0), then in the
period corresponding to that state, player i may have multiple myopic best
replies and so more than one action identified as YES. We will not resolve
this ambiguity; this does not affect any incentives since continuation play is
independent of the player i’s action in that period.

It remains to describe how the current state is determined, and verify
the bounded recall nature of its determination. We begin with the easy
case of more than 3 players. We first classify all action profiles into the six
(possibly non-exclusive) classes listed in Figure 1.

Starting with the initial period of the announcement phase, call the
initial state the current state. Given a current state, and an action profile
for that period, we identify a new state. For example, if in a period, all
players announce YES, the new state is the state corresponding to that
period, independent of the current state. Similarly, if only one player does
not announce YES in that period, the new state is the punishment state
for that player. If the action profile is in class 5, then the new state is the
current state, unless this is the last period of the announcement phase and
class 5 profiles have been observed in every period of the announcement
phase, in which case the new state is w(0). At the end of the announcement
phase, the state is the announced state.

Note that every 2n + 1 sequence of action profiles in the announcement
phases leads to an announced state independent of the initial state.

Claim 2 (Incentives in the announcement phase) Suppose
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class profile ending state if
current state
independent

1 |{ai = Y }| = n announcement
period

2 |{ai = Y }| = n− 1, aj 6= Y w(j, 0)

3 |{ai = N}| = n− 2 w(0)

4 |{ai = N}| = n− 1, aj 6= N w(j, 0)

5 not in the above classes

Figure 1: The classes of action profiles when n ≥ 4. In class 1, the new state
is the state corresponding to the current period. If the action profile is in
class 5, then the new state is the current state, unless this is the last period
of the announcement phase and class 5 profiles have been observed in every
period of the announcement phase, in which case the new state is w(0).

n ≥ 4 and T satisfies (11). There exists δ̄ ∈ (0, 1) such that for
all δ ∈ (δ̄, 1), for all w ∈ W∗, r ∈ {T − 2n, T − 2n + 1, . . . , T},
j, and aj 6= f̂j(w, r), if w 6= w(j, 0), then,

ĝ
(w,r)
j (f̂(w, r))− ĝ

(w,r)
j (aj , f̂−j(w, r))

1− δ
≥ 2ε.

If w = w(j, 0), then

τ̂((w, r), f̂(w, r)) = τ̂((w, r), (aj , f̂−j(w, r)).

Proof. Suppose the current state is w(d) for some d. Under Â,
in any period not corresponding to w(d), all players are supposed
to choose ai = N . A unilateral deviation, by j say, yields an
action profile a with |{ai = N}| = n− 1, and so the new current
state is w(j, 0). For player j, the potential benefit of such a
deviation is largest when w = w(j) (since there is no loss of
long-run value in this case; otherwise such a deviation results in
a loss of long-run value of at least vj − vj

j ). The benefit can be
bounded by noting that deviating can contribute at most 2n+1
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periods of benefit (the maximum impact in the announcement
phase), and so the benefit is no more than

(1− δ2n+1)(max
a

uj(a)−min
a

uj(a)) + δ2n+1(1− δL)(
¯
vp
j − vj

j )),

and the normalized (by (1− δ)−1) benefit is then no more than

(2n + 1)(max
a

uj(a)−min
a

uj(a)) + L(
¯
vp
j − vj

j )) < −3ε

(from (10)).

Similarly, in the period corresponding to w(d), all players are
supposed to choose ai = Y . A unilateral deviation by j yields a
profile in class 2, and new current state w(j, 0). As above, such
a deviation is not profitable.

Suppose now the current state is w = w(k, 0) for some k. Under
Â, in any period not corresponding to w(k, 0), all players other
than k (who is myopically optimizing) are supposed to choose
ai = N . A unilateral deviation, by j 6= k say, yields an action
profile a with |{ai = N}| ≥ n− 2. From Figure 1, the resulting
new current state is either w(0), when ak 6= N , or w(j, 0), when
ak = N . Note that such a deviation by j must result in a loss of
long-run value, since vk

j > v0
j , v

j
j .

Finally, in the period corresponding to w(k, 0), all players (in-
cluding k, for whom every myopic best reply to a−k = Y is
categorized as Y ) are supposed to choose ai = Y . A unilateral
deviation by j 6= k is clearly strictly suboptimal, since it leads
to the current state w(j, 0), while a unilateral deviation by k to
an action ak 6= Y does not alter the current state and is strictly
suboptimal.

Matters are more delicate for three players, since classes 2 and 3 in Figure
1 overlap. For more than three players, profiles in class 2 and in class 3 lead
to distinct current states. Consider the action profile Y NY in the period
corresponding to the state w(1). This may be the result of a unilateral
deviation by player 2 from the current state w(1), for which the appropriate
new state is w(2, 0). On the other hand, if the current state is w(i, 0) for
i = 1 or 3 , then player i will myopically optimize, and we cannot rule out
the possibility that player i’s action Y is a myopic best reply to the action
profile NN of the other two players. Consequently, Y NY may be the result
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class profile current state ending state

1 |{ai = Y }| = 3 w w(d)

2A |{ai = Y }| = 2, aj = N, j 6= d w(k, 0), k 6= j w(0)

otherwise w(j, 0)

2B |{ai = Y }| = 2, aj 6= Y , not in class 2A w w(j, 0)

3 |{ai = Y }| ≤ 1, |{ai = N}| = 1 w w(0)

4 |{ai = N}| = 2, aj 6= N w w(j, 0)

5 not in the above classes w w

Figure 2: State determination in the period corresponding to state w(d)
when n = 3.

of a unilateral deviation by player j ∈ {1, 3}, j 6= i, in the current state
w(i, 0), for which the appropriate new state is w(j, 0).

The idea is to treat separately state transitions in the periods corre-
sponding to states w(d) from those corresponding to states w(k, 0), and
(since we have strong player-specific punishments) use w(0) in potentially
ambiguous situations. The state transitions in the periods corresponding to
states w(d) are given in Figure 2.

Turning to the state transitions in periods corresponding to states w(k, 0),
for profiles in classes 2 and 4, the state is updated as follows: If the cur-
rent state is w(d) and player i unilaterally deviates, the new state is w(i, 0).
If the current state is w(i, 0) and player j 6= i unilaterally deviates,11 the
new state is w(0), and deviations by player i are ignored. This specification
yields for periods corresponding to w(i, 0) and profiles in classes 2 and 4, an
ending state independent of the current state (see Figure 3).

It remains to describe the ending state when the action profile is in class
5 in a period corresponding to a state w(k, 0). Fix an initial state w at the
beginning of the announcement phase, and a history of four action profiles
in the periods corresponding to w(0), w(1), w(2), and w(3). Recall that
states are announced in the order w(0), w(1), w(2), w(3), w(1, 0), w(2, 0), and
finally w(3, 0). We say the ending state in the period corresponding to w(3)

11For this specification to be consistent with incentives, it is necessary that the choice
of YES actions for player i in this period is not arbitrary, being every myopic best reply.
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class profile ending state

1 |{ai = Y }| = 3 w(k, 0)

2a |{ai = Y }| = 2 and ak 6= Y w(k, 0)

2b |{ai = Y }| = 2 and ak = Y w(0)

3 |{ai = Y }| ≤ 1, |{ai = N}| = 1 w(0)

4 |{ai = N}| = 2, aj 6= N w(j, 0)

5 not in the above classes

Figure 3: State determination in the period corresponding to state w(k, 0)
when n = 3. See the text for ending state description when the action profile
is in class 5.

is not fixed by the history if, under the transitions in Figure 2, it depends
on w. (Any history not fixing the ending state consists of profiles in classes
2A and 5 only). If the action profile is in class 5, then the new state is the
current state, unless this is the last period of the announcement phase, class 5
profiles have been observed in the previous two periods (i.e., corresponding
to w(1, 0) and w(2, 0)), and the ending state in the period corresponding
to w(3) is not fixed, in which case the new state is w(0).12 With this
specification, the current state at the end of the announcement phase is a
function only of the 2n + 1 action profiles chosen during the announcement
phase.

Claim 3 (Incentives in the announcement phase) Claim 2
also holds for n = 3.

Proof. Suppose the current state is w(d) for some d. Under
Â, in any period not corresponding to w(d), all players are sup-
posed to choose ai = N . A unilateral deviation, by j say, yields
an action profile a with |{ai = N}| = 2, and so the new current
state is w(j, 0), and the deviation is not profitable (as before).
Similarly, in the period corresponding to w(d), a unilateral devi-
ation by j yields an action profile a with |{ai = Y }| = 2, a new
current state of w(j, 0) (from class 2A or 2B), and the deviation

12This specification “works” because, under the profile Â, an announcement period
corresponding to w(j, 0) follows any history that does not fix the ending state.
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is not profitable.

Suppose the current state is w(k, 0) for some k. In the periods
corresponding to w(d), note first that if there is no unilateral
deviation, then since ak = N may not be myopically optimal,
the action profile under Â may be in class 4, leading to a “new”
current state of w(k, 0). A unilateral deviation by j 6= k leads to
either the state w(0) (when ak 6= N , through either class 2A or
class 3) or w(j, 0) (when ak = N), a suboptimal change.

In the periods corresponding to w(i, 0), i 6= k, a unilateral de-
viation by j 6= k leads to either the state w(0) (when ak 6= N ,
through either class 2b or class 3)13 or w(j, 0) (when ak = N), a
suboptimal change. As before, we need not consider deviations
by k. Finally, in the period corresponding to w(k, 0), a unilateral
deviation by j 6= k leads to the state w(0) (through class 2b), a
suboptimal change.

The proof of the lemma is completed by noting that the payoffs under Â,
V̂ (w(0), 1), is within ε of Ṽ (w(0)) = v0 = v.

Proof of Theorem 3. Since F†p has nonempty interior, every v ∈ F†p

allows strong player specific punishments {vi}n
i=1. Choose η > 0 sufficiently

small that (9) holds for all payoffs in η-neighborhoods of v and {vi}n
i=1. For

T ′ sufficiently large, there exist T ′-length histories h and hi for i = 1, . . . , n
whose average payoffs are within η of v and vi for i = 1, . . . , n, respectively.
We modify the automaton Ã from Section 4 so that each state w(d) is
replaced by T ′ states that cycle through the appropriate finite history as
long as no deviation has occurred. As there, any unilateral deviation by i
results in a transition to w(i, 0). The proof of Lemma 4 now completes the
argument with obvious minor modifications.

Remark 4 Except a non-generic set of stage games, every player has a
single myopic best reply to any action profile of his opponents. Thus, the
equilibria described in the proof of Theorem 3 are patiently strict for all but
a non-generic collection of stage games.

13In period w(2, 0), NYY can’t lead to w(1, 0), because player 2 may be better off in
w(1, 0) than in w(3, 0), and Y may be a myopic best reply for 3 to NN in that period.
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If we allow for the possibility of public randomization, i.e. players observe
public i.i.d. draws from the uniform distribution on [0, 1], then a straight-
forward modification of our construction yields patiently strict equilibria for
all games. At histories at which a player i has several best replies, let the
strategy prescribe one of them, arbitrarily chosen. Recall that player i may
have several best replies only in those periods in which he is minmaxed.
It suffices to replace the profile âi in the very last period of a minmaxing
block with a lottery between âi and the action profile that yields player i
the highest possible stage-game payoff. The probability of the latter action
profile is set to strictly decrease with the number of deviations of player i
(within the current block) from the prescribed action to another best reply
to âi

−i.

6 Private Monitoring Games

In this section we show that the perfect monitoring folk theorem is robust to
the introduction of a private monitoring, as long as it is highly correlated. In
contrast to Hörner and Olszewski (2006a,b) and other recent work on private
monitoring games, the strategy profiles are independent of the details of the
private monitoring. In other words, behavior in the folk theorem is robust
to the introduction of private monitoring.

We model the correlated nature of the private monitoring as follows.
We first perturb the game with perfect monitoring into a game with public
monitoring, and then perturb towards private monitoring. In order to get
such a strong robustness, it is important that the private monitoring not be
conditionally independent.

A game with public monitoring has a public signal y drawn from a finite
set Y , with probability ρ(y | a). Ex ante payoffs are given by ui :

∏
j Aj → R.

(Player i’s ex post payoffs are a function of the public signal and i’s action
only, so that the payoffs do not contain additional information beyond that of
the public signal.) A public pure strategy has an automaton representation
(W, w0, f, τ), with f : W → A and τ : W × Y → W. Note that a game
with perfect monitoring is a game with public monitoring, where we take
Y = A and ρ(y | a) = 1 if and only if y = a. The definition of bounded
recall (Definition 1) applies to public strategies once histories are taken to
be public, i.e., ht ∈ Y t.

Given an automaton (W, w0, f, τ), denote i’s average discounted value
from play that begins in state w by Vi(w). An automaton induces a pub-
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lic perfect equilibrium (or PPE ) if for all states w ∈ W, f(w) is a Nash
equilibrium of the normal form game with payoffs gw : A → Rn, where

gw(a) = (1− δ)u(a) + δ
∑

y

V (τ(w, y))ρ(y | a).

The PPE is strict if f(w) is a strict equilibrium of gw for all w.14

A game with private monitoring has a private signal zi ∈ Zi for each
player, with the vector z ≡ (z1, . . . , zn) ∈ Z ≡ Z1×· · ·×Zn drawn according
to a joint probability distribution π(z | a). Ex ante payoffs are given as
before by ui :

∏
j Aj → R. (Player i’s ex post payoffs are now a function of

the private signal and i’s action only.)

Definition 6 A private monitoring distribution (Z, π) is ε-close to a full
support public monitoring distribution (Y, ρ) if

1. Zi = Y for all i, and

2. for all y ∈ Y and all a ∈ A

|π(zi = y,∀i | a)− ρ(y | a)| > 1− ε.

Observe that any strategy for player i in a repeated game with public
monitoring trivially also describes a strategy in the repeated game with pri-
vate monitoring satisfying Zi = Y . It is thus meaningful to ask if a PPE
of a repeated game with public monitoring induces a Nash (or sequential)
equilibrium of close-by games with private monitoring. Not only is it mean-
ingful, but a weak notion of robustness surely requires that a PPE induce a
Nash equilibrium in sufficiently close-by games with private monitoring.

Mailath and Morris (2006) introduce a more general notion of what it
means for a private monitoring distribution to be close to a public moni-
toring distribution. This notion allows for more private signals than public,
but preserves the critical features of Definition 6. In particular, any strat-
egy from the public monitoring game induces a well-defined strategy in the
private monitoring game, and it is still meaningful to ask if a PPE of a
public monitoring game induces an equilibrium in the private monitoring
game. The central result in Mailath and Morris (2006) is the following: Fix
essentially any strict PPE that does not have bounded recall. Then, for any

14If ρ has full support (i.e., ρ(y | a) > 0 ∀y ∈ Y, a ∈ A), then a PPE is strict if and only
if each player strictly prefers his public strategy to every other public strategy (Mailath
and Samuelson, 2006, Corollary 7.1.1).
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private monitoring sufficiently close to public monitoring that also satisfies
a richness condition,15 the strategy profile in the private monitoring game
is not a Nash equilibrium.

In contrast, any strict PPE that does have bounded recall induces a Nash
equilibrium in all close-by games with private monitoring.16

This then raises the question of whether bounded recall is a substantive
restriction. For some parameterizations of the imperfect public monitoring
repeated prisoners’ dilemma, Cole and Kocherlakota (2005) show that the
set of PPE payoffs achievable by bounded recall strongly symmetric profiles
is degenerate, while the set of strongly symmetric PPE payoffs is strictly
larger.

However, at least for games with almost-perfect almost public monitor-
ing, Theorem 3 implies that bounded recall is not a substantive restriction.

A game with full support public monitoring is η-perfect if Y = A and

ρ(a | a) > 1− η.

Clearly, any patiently pseudo-strict subgame perfect equilibrium of the per-
fect monitoring game induces a patiently pseudo-strict PPE of η-perfect
public monitoring games, for η sufficiently small. We then have as an impli-
cation of Theorem 3 and Mailath and Samuelson (2006, Lemma 13.5.6):

Theorem 4 Suppose n ≥ 3 and v is a strictly individually rational payoff.
For all β > 0, there exists δ̄ < 1, and η > 0 such that such that for all η-
perfect full support public monitoring distributions (Y, ρ), there exists ε > 0
such that for all private monitoring distributions ε-close to (Y, ρ), for all
δ ∈ (δ̄, 1), there is a sequential equilibrium of the private monitoring repeated
game with payoffs within β of v.

In the absence of patient pseudo-strictness, the order of quantifiers would
need to be reversed, so that the bound on the closeness of the private moni-
toring distributions, ε, would depend on δ, and become increasingly severe as
δ → 1 (Mailath and Samuelson, 2006, Section 13.5). This is an undesirable
confounding of time preferences with accuracy in the monitoring.

15The condition is weaker than, but of the spirit of, a requirement that for all public
signals, there are private signals with different ordinal rankings of the odds ratios over
actions.

16While Mailath and Morris (2002, 2006) discuss only strict equilibria, the extension to
pseudo-strict equilibria is immediate.
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