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1. INTRODUCTION

This appendix applies the model in �Non-Bayesian Updating: A Theoretical Frame-
work�to address the question: What do non-Bayesian updaters learn?
A central focus of the literature on Bayesian learning is on what is learned

asymptotically and how an agent forecasts as more and more observations are
available. Bayesian forecasts are eventually correct with probability 1 under the
truth given suitable conditions, the key condition being absolute continuity of the
true measure with respect to initial beliefs (see Kalai and Lehrer [3]). Hence, mul-
tiple repetitions of Bayes�Rule transforms the historical record into a near perfect
guide for the future. We investigate the corresponding question for non-Bayesian
updaters who face a statistical inference problem and conform to one of the above
noted biases. We show that, like Bayesian updating, multiple repetitions of non-
Bayesian updating rules that underreact to observations uncover the true data
generating process with probability one. So, non-Bayesian updaters who underre-
act to the data eventually forecast correctly. Multiple repetitions of non-Bayesian
updating rules that overreact to observations uncover the true data generating
process with positive probability. However, in some cases, with strictly positive
probability, these non-Bayesian updaters become certain that a false parameter is
true and thus converge to incorrect forecasts.
Our results cast doubt on the idea that non-Bayesian learning is a transient

phenomenon without long-run implications. The agent in our model is self-aware
of her updating rules but, regardless of how much data is observed, persistently



updates beliefs in a non-Bayesian way. These updating rules do not necessarily
lead to a contradiction between forecasts and the data. In the case of under-
reaction to observations, the non-Bayesian forecasts are eventually correct and,
hence, consistent with the data generating process. This suggests, but does not
prove, that in a multi-agent dynamic general equilibrium model, some of our non-
Bayesian updaters will not be driven out of the market by Bayesian agents (see
Sandroni [5, 6] and Blume and Easley [1] for related results on market selection).
The case in which the agent overreacts to data is quite di¤erent. Here our

richer hypothesis about updating behavior permits a broader ranger of possible
forecasts in the long-run. In particular, with positive probability, these non-
Bayesian updaters may permanently forecast incorrectly. Whether these agents
can survive in the market is also an open question.
The next section presents our results. De�nitions and speci�cations in Section

3 of the paper are reproduced in this Appendix for the convenience of the reader.

2. LEARNING ABOUT PARAMETERS

This section specializes our model so as to capture the case where the data gen-
erating process is unknown up to a parameter � 2 �. In the benchmark Bayesian
model, time t beliefs have the form

Pt (�) =
Z
�


T
t+1` (� j �) d�t, (2.1)

where: ` (� j �) is a likelihood function (measure on S), �0 represents prior beliefs
on �, and �t denotes Bayesian posterior beliefs about the parameter at time t and
after observations st1. The de Finetti Theorem shows that beliefs admit such a
representation if and only if P0 is exchangeable. We describe (without axiomatic
foundations) a generalization of (2.1) that accommodates non-Bayesian updating.
To accommodate parameters, adopt a suitable speci�cation for (pt; qt), taking

(�t), � and u as given. We �x (�; `; �0) and suppose for now that we are also
given a process (�t), where each �t is a probability measure on �. (The �-algebra
associated with � is suppressed.) The prior �0 on � induces time 0 beliefs about
S1 given by

p0 (�) = m0 (�) =
Z
�

` (� j �) d�0.

Proceed by induction: suppose that �t has been constructed and de�ne �t+1 by

�t+1 = �t+1BU (�t; st+1) + (1� �t+1)�t+1; (2.2)
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where BU (�t; st+1) (�) is the Bayesian update of �t. This equation constitutes the
law of motion for beliefs about parameters. Finally, de�ne (pt+1; qt+1) by

pt+1 (�) =
Z
�

` (� j �) d (BU (�t; st+1)) and (2.3)

qt+1 (�) =
Z
�

` (� j �) d�t+1. (2.4)

This completes the speci�cation of the model for any given process (�t).
Notice that

mt+1 (�) = �t+1pt+1 + (1� �t+1)qt+1 =

Z
�

` (� j �) d�t+1. (2.5)

In light of the discussion in the paper, preferences at t + 1 are based on the
beliefs about parameters represented by �t+1. If �t+1 � 0, then (�t) is the process
of Bayesian posteriors and the above collapses to the exchangeable model (2.1).
More generally, di¤erences from the Bayesian model depend on (�t), examples of
which are given next.1

2.1. Prior-Bias with Parameters

Consider �rst the case where

�t+1 = (1� �t+1)BU (�t; st+1) + �t+1�t, (2.6)

where �t+1 � 1. This is readily seen to imply prior-bias (see Section 3.1 in the
paper); the bias is positive or negative according to the sign of the ��s. Posterior
beliefs about parameters satisfy the law of motion

�t+1 = (1� �t+1(1� �t+1)) BU (�t; st+1) + �t+1(1� �t+1) �t: (2.7)

The latter equation reveals something of how the inferences of an agent with
prior-bias di¤er from those of a Bayesian updater. Compute that (assuming
�t+1 6= 1)

�t+1(�)

�t+1(�
0) <

`(st+1j�)
`(st+1j�0)

�t(�)
�t(�

0) i¤ �t+1` (st+1 j �0) < �t+1` (st+1 j �) . (2.8)

1One general point is that, in contrast to the exchangeable Bayesian model, �t+1 depends
not only on the set of past observations, but also on the order in which they were realized.
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For a concrete example, consider coin tossing, with S = fH;Tg, � � (0; 1) and
` (H j �) = � and consider beliefs after a string of H�s. If there is positive prior-
bias (positive ��s), then repeated application of (2.8) establishes that the agent
underinfers in the sense that

�t+1(�)

�t+1(�
0) <

�Bt+1(�)

�Bt+1(�
0)
, � > �0,

where �Bt+1 is the posterior of a Bayesian who has the same prior at time 0.
Similarly, negative prior-bias leads to overinference.
Turn to the question of what is learned in the long run. Learning may either

signify learning the true parameter or learning to forecast future outcomes.2 The
latter kind of learning is more relevant to choice behavior and thus is our focus.
Suppose that �� 2 � is the true parameter and thus that the i.i.d. measure
P � = 
1t=1` (� j ��) is the probability law describing the process (st). Say that
forecasts are eventually correct on a path s11 if, along that path,

mt (�) �! ` (� j ��) as t �!1.

Rewrite the law of motion for posteriors (2.7) in the form

�t+1 =
�
1� 
t+1

�
BU (�t; st+1) + 
t+1�t, (2.9)

where 
t+1 = �t+1(1 � �t+1) � 1. In general, 
t+1 is St+1-measurable (
t+1 may
depend on the entire history st+11 , including st+1), but we will be interested also in
the special case where 
t+1 is St-measurable. In that case, (2.9) can be interpreted
not only in terms of positive and negative prior-bias as above, but also in terms of
underreaction and overreaction to data. For example, let 
t+1 � 0 (corresponding
to �t+1 � 0). Then �t+1 is a mixture, with weights that are independent of st+1, of
two terms: (i) the Bayesian update BU (�t; st+1), which incorporates the �correct�
response to st+1, and (ii) the prior �t, which does not respond to st+1 at all. In a
natural sense, therefore, an agent with 
t+1 � 0 underreacts to data. Similarly, if

t+1 � 0, then BU (�t; st+1) is a mixture of �t+1 and �t, which suggests that �t+1
re�ects overreaction. Clearly, if 
t+1 = 0 then the model reduces to the Bayesian
updating rule.

Theorem 2.1. Assume (2.9) and let � be �nite and �0 (�
�) > 0.

(a) Suppose that 
t+1 is St-measurable and that 
t+1 � 0. Then forecasts are
eventually correct P � � a:s:

2See [4] for the distinction between these two kinds of learning.
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(b) Suppose that 
t+1 is St-measurable and that 
t+1 � 1� � for some � > 0.
Then forecasts are eventually correct with P �-strictly positive probability.
(c) If one drops either of the assumptions in (a), then there exist (S;�; `; �0)

and � 6= �� such that

mt (�) �! ` (� j �) as t �!1,

with P �-strictly positive probability.

Assume that before any data are observed the prior belief puts positive weight
on the true parameter, that is, assume that �0 (�

�) > 0: Then multiple repetition of
Bayes�Rule leads to near correct forecasts. This result is central in the Bayesian
literature because it shows that the mere repetition of Bayes�Rule eventually
transforms the historical record into a near perfect guide for the future. Part (a)
of the theorem generalizes the Bayesian result to the case of underreaction. This
result shows that, if repeated su¢ ciently many times, all non-Bayesian updating
rules in (2.9) with the additional proviso of positive prior-bias and the indicated
added measurability assumption, eventually produce good forecasting. Hence,
in the case of underreaction, agent�s forecasts converge to rational expectations
although the available information is not processed according to Bayesian laws of
probability.
Part (b) shows that, with positive probability, forecasts are eventually cor-

rect provided that the Bayesian term on the right side of (2.9) receives weight
that is bounded away from zero. This applies in the case of negative prior-bias,
corresponding to overreaction. In fact, the results holds even if the forecaster
sometimes overreacts and sometimes underreacts to new information. However,
part (c) shows that convergence to wrong forecasts may occur in the absence of ei-
ther of the assumptions in (a). This is demonstrated by two examples. In the �rst
example the weight 
t+1 is constant, but su¢ ciently negative, corresponding to a
forecaster that su¢ ciently overreacts to new information. In the second example,
the weight 
t+1 is positive corresponding to underreaction, but 
t+1 depends on
the current signal and, therefore, 
t+1 is only St+1-measurable. In both examples,
forecasts may eventually converge to an incorrect limit. Moreover, wrong forecasts
in the limit are at least as likely to occur as are correct forecasts.
The proof of Theorem 2.1 builds on classic arguments of the Bayesian liter-

ature. Consider the probability measure �t on the parameter space and let the
random variable ��t be the probability that �t assigns to the true parameter. It fol-
lows that the expected value (according to the true data generating process) of the
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Bayesian update of ��t (given new information) is greater than �
�
t itself. Hence,

in the Bayesian case, the weight given to the true parameter tends to grow as
new information is observed. This submartingale property ensures that Bayesian
forecasts must converge to some value and cannot remain in endless random�uctu-
ations. The submartingale property follows because under the Bayesian paradigm
future changes in beliefs that can be predicted are incorporated in current beliefs.
It is immediate from the linear structure in (2.9) that this basic submartingale
property still holds in our model as long as the weight 
t+1 depends upon the
history only up to period t. Hence, with this measurability assumption, forecasts
in our model must also converge and, as in the Bayesian case, cannot remain in
endless random �uctuations.3 In addition, convergence to the truth holds in both
the Bayesian paradigm and in the case of underreaction. However, given su¢ -
ciently strong overreaction, it is possible that forecasts will settle on an incorrect
limit. This follows because the positive drift of the above mentioned submartin-
gale property on ��t may be compensated by su¢ ciently strong volatility which
permits that, with positive probability, ��t converges to zero.

2.2. Sample-Bias with Parameters

Learning about parameters is consistent also with sample-bias. Take as primitive
a process ( t+1) of probability measures on � that provides a representation for
empirical frequency measures 	t+1 of the form

	t+1 =

Z
` (� j �) d t+1 (�) . (2.10)

Let �0 be given and de�ne �t+1 and �t+1 inductively for t � 0 by (2.2) and

�t+1 = (1� �t+1) BU(�t; st+1) + �t+1 t+1, (2.11)

for �t+1 � 1. Then one obtains a special case of sample-bias; the bias is positive or
negative according to the sign of the ��s. The implied law of motion for posteriors
is

�t+1 = (1� �t+1(1� �t+1))BU (�t; st+1) + �t+1(1� �t+1)  t+1: (2.12)

To illustrate, suppose that S = fs1; :::; sKg and that `
�
sk j �

�
= �k for each

� = (�1; :::; �K) in �, the interior of the K-simplex. Then one can ensure (2.10) by

3We conjecture that beliefs �t may not converge in some examples when the weight 
t+1 is
St+1-measurable. In our example, it does converge, but to an incorrect limit.
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taking  0 to be a suitable noninformative prior; subsequently, Bayesian updating
leads to the desired process ( t+1). For example, the improper Dirichlet prior
density

d 0 (�)

�Kk=1d�k
/ �Kk=1�

�1
k

yields the Dirichlet posterior with parameter vector
�
nt (s

1) ; :::; nt
�
sK
��
, where

nt
�
sk
�
equals the number of realizations of sk in the �rst t periods; that is,

d t (�)

�Kk=1d�k
/ �Kk=1�

nt(sk)�1
k . (2.13)

By the property of the Dirichlet distribution,Z
`
�
sk j �

�
d t (�) =

Z
�k d t (�) =

nk(t)
t
,

the empirical frequency of sk, as required by (2.10).
Finally, compute from (2.12) and (2.13) that (assuming �t+1 6= 0)

�t+1(�)

�t+1(�
0) >

`(st+1j�)
`(st+1j�0)

�t(�)
�t(�

0) i¤ �t+1
 t(�)
 t(�

0) > �t+1
�t(�)
�t(�

0) . (2.14)

Suppose that all �t+1�s are negative (negative sample-bias) and consider the coin-
tossing example. As above, we denote by

�
�Bt
�
the Bayesian process of posteriors

with initial prior �B0 = �0. Then it follows from repeated application of (2.13)
and (2.14) that

�t+1(�)

�t+1(�
0) >

�Bt+1(�)

�Bt+1(�
0)
;

if st+11 = (H; :::; H), j � � 1
2
j> j �0 � 1

2
j and if the common initial prior �0

is uniform.4 After seeing a string of H�s the agent described herein exaggerates
(relative to a Bayesian) the relative likelihoods of extremely biased coins. If instead
we consider a point at which the history st+11 has an equal number of realizations
of T and H, then

�t+1(�)

�t+1(1��)
> �

1��
�t(�)
�t(1��)

= BU(�t;H)(�)
BU(�t;H)(1��)

;

for any � such that �t (�) > �t (1� �). If there have been more realizations of H,
then the preceding displayed inequality holds if�

�
1��
�nt+1(H)�nt+1(T )

< �t(�)
�t(1��)

,

4More generally, the latter two conditions can be replaced by
�0(1��0)
�(1��) > �0(�)

�0(�
0) .
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for example, if � < 1
2
and �t (�) � �t (1� �). Note that the bias in this case is

towards coins that are less biased (� < 1
2
). The opposite biases occur in the case

of positive sample-bias.
We conclude with a result regarding learning in the long run. In order to avoid

technical issues arising from � being a continuum as in the Dirichlet-based model,
we consider the following variation: as before S = fs1; :::; sKg and `

�
sk j �

�
= �k

for each k and �. But now take � to be the set of points � = (�1; :::; �K) in the
interior of the K-simplex having rational co-ordinates. De�ne

 t+1 (�) =

�
1 if the empirical frequency of sk is �k, 1 � k � K,
0 otherwise.

Then (2.10) is evident.5 The law of motion can be written in the form

�t+1 =
�
1� 
t+1

�
BU (�t; st+1) + 
t+1 t+1; (2.15)

where 
t+1 = �t+1(1� �t+1) � 1.
We have the following partial counterpart of Theorem 2.1.

Theorem 2.2. Let S, (�; `) and ( t) be as just de�ned and suppose that pos-
teriors (�t) evolve according to (2.15), where 
t+1 is St-measurable and 0 < 
 �

t+1 � 1. Then forecasts are eventually correct P � � a:s:

The positive lower bound 
 excludes the Bayesian case. The result does hold in
the Bayesian case 
t+1 = 0: However, unlike the proof of Theorem 2.1, the proof of
Theorem 2.2 is in some ways signi�cantly di¤erent from the proof in the Bayesian
case. We suspect that the di¤erences in the approach make the lower bound
assumption technically convenient but ultimately disposable. We also conjecture
(but cannot yet prove) that just as in part (c) of Theorem 2.1, convergence to the
truth fails in general if 
t+1 is only St+1-measurable. The other case treated in
the earlier theorem - 
t+1 is St-measurable but possibly negative - (which in the
context of that model corresponded to overreaction) is not relevant here because
these conditions violate the requirement that each �t+1 in (2.11) be a probability
measure and hence non-negatively valued.

5If � were taken to be �nite, then one could not assure (2.10) without admitting signed
measures for  t+1 and hence also for �t+1. Bayesian updating is not well-de�ned for signed
measures and even if that problem were overcome, the interpretation of such a model is not
clear.
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3. PROOFS

Proof of Theorem 2.1: (a) First we show that log �t (�
�) is a submartingale under

P �. Because

log �t+1 (�
�)� log �t (��) = log

��
1� 
t+1

�
`(st+1j��)
mt(st+1)

+ 
t+1

�
, (3.1)

it su¢ ces to show that

E�
h
log
��
1� 
t+1

� `(st+1j��)
mt(st+1)

+ 
t+1

�
j St
i
� 0, (3.2)

where E� denotes expectation with respect to P �. By assumption, 
t+1 is constant
given St. Thus the expectation equalsX

st+1

` (st+1 j ��) log
��
1� 
t+1

� `(st+1j��)
mt(st+1)

+ 
t+1

�
�

X
st+1

` (st+1 j ��)
�
1� 
t+1

�
log
�
`(st+1j��)
mt(st+1)

�
=

�
1� 
t+1

�X
st+1

` (st+1 j ��) log
�
`(st+1j��)
mt(st+1)

�
� 0

as claimed, where both inequalities are due to concavity of log (�). (The second is
the well-known entropy inequality.)
Clearly log �t (�

�) is bounded above by zero. Therefore, by the martingale
convergence theorem, it converges P � � a:s: From (3.1),

log �t+1 (�
�)� log �t (��) = log

��
1� 
t+1

�
`(st+1j��)
mt(st+1)

+ 
t+1

�
�! 0

and hence `(st+1j��)
mt(st+1)

�! 1 P � � a:s:

(b) E�
h��

1� 
t+1
�
`(st+1j��)
mt(st+1)

+ 
t+1

�
j St
i
=
�
1� 
t+1

�
E�
h
`(st+1j��)
mt(st+1)

j St
i
+
t+1 ��

1� 
t+1
�
+ 
t+1 = 1. (The last inequality is implied by the fact that

minX

n
E�
h

1
X(st+1)

j St
i
: E� [X (st+1) j St] = 1

o
= 1.

The minimization is over random variable X�s, X : St+1 �! R1++, and it is
achieved at X (�) = 1 because 1

x
is a convex function on (0;1).) Deduce that
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E�
h
�t+1(�

�)

�t(�
�) j St

i
� 1 and hence that �t (��) is a submartingale. By the martingale

convergence theorem,

�1 (�
�) � lim�t (�

�) exists P � � a:s:

Claim: �1 (�
�) > 0 on a set with positive P �-probability: By the bounded con-

vergence theorem,
E��t (�

�) �! E��1 (�
�) ;

and E��t (�
�) % because �t (�

�) is a submartingale. Thus �0 (�
�) > 0 implies

that E��1 (�
�) > 0, which proves the claim.

It su¢ ces now to show that if �1 (�
�) > 0 along a sample path s11 , then

forecasts are eventually correct along s11 . But along such a path,
�t+1(�

�)

�t(�
�) �! 1

and hence �
1� 
t+1

� � `(st+1j��)
mt(st+1)

� 1
�
�! 0.

By assumption,
�
1� 
t+1

�
is bounded away from zero. Therefore,�
`(st+1j��)
mt(st+1)

� 1
�
�! 0.

Part (c) calls for two examples.

Example 1 : Convergence to wrong forecasts may occur with P �-positive proba-
bility when 
t+1 < 0, even where 
t+1 is St-measurable (overreaction); in fact, we
take (�t+1; �t+1) = (�; �) and hence also 
t+1 = 
 to be constant over time and
states.
Think of repeatedly tossing an unbiased coin that is viewed at time 0 as being

either unbiased or having probability of Heads equal to b, 0 < b < 1
2
. Thus take

S = fH;Tg and ` (H j �) = � for � 2 � = fb; 1
2
g. Assume also that

1 < �
 < b
1
2
� b

. (3.3)

The inequality 
 < �1 indicates a su¢ cient degree of overreaction.
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To explain the reason for the other inequality, note that the model requires
that (�t) solving (2.6) be a probability measure (hence non-negative valued). This
is trivially true if �t+1 � 0 but otherwise requires added restrictions: �t+1 � 0 if

` (st+1 j �)
mt (st+1)

=
dBU (�t; st+1) (�)

d�t
� � �t+1

1 + �t+1
.

In the present example mins;�
`(sj�)
mt(s)

� 2b, and thus it su¢ ces to have

� �

1 + �
� 2b. (3.4)

Because only values for � in (0; 1] are admissible, 
 = �(1� �) is consistent with
(3.4) if and only if �
 < b=

�
1
2
� b
�
.

We show that if (3.3), then

mt (�) �! ` (� j b) as t �!1,

with probability under P � at least 1
2
.

Abbreviate �t
�
1
2

�
by ��t .

Claim 1: ��1 � lim��t exists P �� a:s: and if ��1 > 0 for some sample realization
s11 , then mt (H) �! 1

2
and ��t �! 1 along s11 . (The proof is analogous to that

of part (b).) Deduce that

��1 2 f0; 1g P � � a:s:

Claim 2: f (z) �
h
(1� 
)

1
2

z
+ 

i h
(1� 
)

1� 1
2

(1�z) + 

i
� 1, for all z 2 [b; 1

2
]. Argue

that f (z) � 1() g (z) � [(1� 
) + 2
z] [(1� 
) + 2
(1� z)]� 4z (1� z) � 0.
Compute that g

�
1
2

�
= 0, g0

�
1
2

�
= 0 and g is concave because 
 < �1. Thus

g (z) � g (0) = 0.

Claim 3: E�
�
log

�
(1� 
)

`(st+1j 12)
mt(st+1)

+ 


�
j St
�

= 1
2
log

�
(1� 
)

1
2

b+( 12�b)��t
+ 


�
+ 1

2
log

�
(1� 
)

1� 1
2

(1�b�( 12�b)��t )
+ 


�
= 1

2
log

�
f
�
b+

�
1
2
� b
�
�t
�
1
2

���
� 0, by Claim 2.

By Claim 1, it su¢ ces to prove that ��1 = 1 P ��a:s: is impossible. Compute
that

��t = ��0

"
�t�1k=0

 
(1� 
)

`
�
sk+1 j 12

�
mk (sk+1)

+ 


!#
,
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log��t = log��0 + �
t�1
k=0 log

 
(1� 
)

`
�
sk+1 j 12

�
mk (sk+1)

+ 


!
= log��0 + �

t�1
k=0 (logzk+1 � E [logzk+1 j Sk]) + �t�1k=0E [logzk+1 j Sk] ,

where zk+1 = (1� 
)
`(sk+1j 12)
mk(sk+1)

+ 
. Therefore, log��t � 1
2
log��0 i¤

�t�1k=0 (logzk+1 � E [logzk+1 j Sk]) � �1
2
log��0 � �t�1k=0E [logzk+1 j Sk] � ak.

By Claim 3, ak > 0. The random variable logzk+1 �E [logzk+1 j Sk] takes on two
possible values, corresponding to sk+1 = H or T , and under the truth they are
equally likely and average to zero. Thus

P � (logzk+1 � E [logzk+1 j Sk] � ak) � 1
2
.

Deduce that
P �
�
log��t � 1

2
log��0

�
� 1

2

and hence that
P � (log��t �! 0) � 1

2
.

Example 2 : Convergence to wrong forecasts may occur with P �-positive proba-
bility when 
t+1 > 0 (Positive Prior-Bias), if 
t+1 is only St+1-measurable.
The coin is as before - it is unbiased, but the agent does not know that and

is modeled via S = fH;Tg and ` (H j �) = � for � 2 � = fb; 1
2
g. Assume further

that �t+1 and �t+1 are such that


t+1 � �t+1(1� �t+1) =

�
w if st+1 = H
0 if st+1 = T ,

where 0 < w < 1. Thus, from (2.9), the agent updates by Bayes�Rule when
observing T but attaches only the weight (1� w) to last period�s prior when
observing H. Assume that

w > 1� 2b.
Then

mt (�) �! ` (� j b) as t �!1,

12



with probability under P � at least 1
2
.

The proof is similar to that of Example 1. The key is to observe that

E�
�
log

�
(1� 
)

`(st+1j 12)
mt(st+1)

+ 


�
j St
�
� 0 under the stated assumptions.

The proof of Theorem 2.2 requires the following lemmas:

Lemma 3.1. (Freedman (1975)) Let fztg be a sequence of uniformly bounded
St-measurable random variables such that for every t > 1; E� (zt+1jSt) = 0: Let
V �
t � V AR (zt+1jSt) where V AR is the variance operator associated with P �.
Then,

nX
t=1

zt converges to a �nite limit as n!1, P �-a:s: on
( 1X

t=1

V �
t <1

)
and

sup
n

nX
t=1

zt =1 and inf
n

nX
t=1

zt = �1, P �-a:s: on
( 1X

t=1

V �
t =1

)
:

De�nition 3.2. A sequence of fxtg of St-measurable random variables is even-
tually a submartingale if, P � � a:s:; E� (xt+1jSt)� xt is strictly negative at most
�nitely many times.

Lemma 3.3. Let fxtg be uniformly bounded and eventually a submartingale.
Then, P � � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof. Write

xt =

tX
j=1

(rj � E� (rjjSj�1)) +
tX

j=1

E� (rjjSj�1) + x0; where rj � xj � xj�1:

By assumption, P � � a:s:; E� (rjjSj�1) is strictly negative at most �nitely many
times. Hence, P � � a:s:;

inf
t

tX
j=1

E� (rjjSj�1) > �1:

13



Given that xt is uniformly bounded, P � � a:s:;

sup
t

tX
j=1

zj <1; where zj � rj � E� (rjjSj�1) :

It follows from Freedman�s result that P � � a:s:,

tX
j=1

zj converges to a �nite limit as t!1.

It now follows from xt uniformly bounded that sup
t

tX
j=1

E� (rjjSj�1) <1. Because

E� (rjjSj�1) is strictly negative at most �nitely many times,

tX
j=1

E� (rjjSj�1) converges to a �nite limit as t!1.

Therefore, P � � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof of Theorem 2.2:

Claim 1: De�ne f (�;m) =
P

k �
�
k
�k
mk

on the interior of the 2K-simplex. There
exists �0 2 RK++ such that

j �k � ��k j< �0k for all k =) f (�;m)� 1 � �
K�1
X
k

j mk � �k j .

Proof: f (�; �) = 1, f (�; �) is convex and hence

f (�;m)� 1 �
X
k 6=K

�
@f (�;m)

@mk

� @f (�;m)

@mK

�
jm=� (mk � �k)

=
X
k 6=K

�
� ��k
�k
+

��K
�K

�
(mk � �k) .

But the latter sum vanishes at � = ��. Thus argue by continuity.

Given any � 2 RK++, � << �0, de�ne�� = (�� � �; �� + �) � �Kk=1 (��k � �k; �
�
k + �k)

and ��t = ��2���t (�).

14



Claim 2: De�ne m�
t

�
sk
�
= ��2���k�t (�) = �

�
t (�). Then

j mt

�
sk
�
�m�

t

�
sk
�
j � 1� ��t .

Proof: mt

�
sk
�
� m�

t

�
sk
�
=

��2���k�t(�)
��t

(��t � 1) + ��=2���k�t (�) . Therefore,
(��t � 1) �
m�
t

�
sk
�
(��t � 1) =

��2���k�t(�)
��t

(��t � 1) � mt

�
sk
�
� m�

t

�
sk
�
� ��=2���k�t (�) �

1� ��t .

Claim 3: For any � << �0 as above,X
k

��k
m�
t (sk)

mt(sk)
� 1 � �
 (1� ��t ) .

Proof: Because j m�
t

�
sk
�
� ��k j< �k < �

0

k, we have thatX
k

��k
m�
t (sk)

mt(sk)
� 1 � �
K�1

X
k

j mt

�
sk
�
�m�

t

�
sk
�
j .

Now Claim 3 follows from Claim 2.

Compute that

E�
�
�t+1 (�) j St

�
=
�
1� 
t+1

� "X
k

��k
�k

mt(sk)

#
�t (�) + 
t+1E

� � t+1 (�) j St� ,
(3.5)

where use has been made of the assumption that 
t+1 is St-measurable. Therefore,

E�
�
��t+1 (�) j St

�
���t =

�
1� 
t+1

�X
k

�
��k

m�
t (sk)

mt(sk)

�
��t+
t+1��2��E

� � t+1 (�) j St����t
=
�
1� 
t+1

� "X
k

�
��k

m�
t (sk)

mt(sk)

�
� 1
#
��t + 
t+1��2��E

� � t+1 (�) j St�� 
t+1�
�
t .

By the LLN, P �� a:s: for large enough t the frequency of sk will eventually be ��k
and

��2��E
� � t+1 (�) j St� = 1:
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Eventually along any such path,

E�
�
��t+1 (�) j St

�
� ��t =

�
1� 
t+1

� "X
k

�
��k

m�
t (sk)

mt(sk)

�
� 1
#
��t + 
t+1 (1� ��t )

�
�
�

�
1� 
t+1

�
��t + 
t+1

�
(1� ��t ) � 0,

where the last two inequalities follow from Claim 3 and the hypothesis 
� 
t+1.
Hence (��t ) is eventually a P

�-submartingale. By Lemma 3.3, ��1 � lim��t
exists P � � a:s: Consequently, E�

�
��t+1 (�) j St

�
� ��t �! 0 P � � a:s: and from

the last displayed equation,
�
�

�
1� 
t+1

�
��t + 
t+1

�
(1� ��t ) �! 0 P � � a:s:

It follows that ��1 = 1. Finally, mt (�) =
R
` (� j �) d�t eventually remains in

�� = (�� � �; �� + �).
Above � is arbitrary. Apply the preceding to � = 1

n
to derive a set 
n such

that P �(
n) = 1 and such that for all paths in 
n; mt eventually remains in�
�� � 1

n
; �� + 1

n

�
: Let 
 � \1n=1
n: Then, P �(
) = 1 and for all paths in 
; mt

converges to ��.
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