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Abstract

We examine the fundamental concept of Popper’s falsifiability within an
economic model in which a tester hires a potential expert to produce a theory.
Payments are made contingent on the performance of the theory vis-a-vis future
realizations of the data. We show that if experts are strategic, then falsifiability
has no power to distinguish legitimate scientific theories from worthless theories.
We also show that even if experts are strategic there are alternative criteria that
can distinguish legitimate from worthless theories.
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1. Introduction

The publication of “The Logic of Scientific Discovery” by Karl Popper (1968, first
published in 1935) was a transformative event because it expressed clearly the concept
of falsifiability. Popper was interested in demarcation criteria that differentiate scien-
tific ideas from nonscientific ideas (and hence give meaning to the term scientific). He
argued that science is not a collection of facts, but a collection of statements that can
be falsified (i.e., rejected by the data). His leading example of a scientific statement
was “All swans are white.” This example shows the asymmetry between verification
and refutation: no matter how many white swans are observed, one cannot be certain
that the next one will be white, but the observation of a single nonwhite swan shows
the statement to be false.
Some critics (most notably Kuhn (1962)) contend that the history of science con-

tains many instances that seem inconsistent with Popper’s criteria.1 However, fal-
sifiability remains a central concept for several reasons. First, it presents a guiding
principle on how science should be conducted: scientists should deliver falsifiable
theories that can be tested empirically. (An example of falsifiability as a guide to
research is the debate on whether general equilibrium theory is testable; see Carvajal
et al. (2004) for a review article.) Moreover, falsifiability delivers criteria for what
should be taught under the rubric of science. (See ruling by U.S. District Court Judge
William Overton, largely based on falsifiability, against the teaching of intelligent de-
sign as science in Arkansas public schools, “The Arkansas Balanced Treatment Act”
inMcLean v. Arkansas Board of Education, Act 590 of the Acts of Arkansas of 1981.)
Finally, falsifiability is an important requirement in the U.S. legal system’s Daubert
standard, which is designed to rule as inadmissible any testimony by expert witnesses
that this standard evaluates as “junk science”. (See the legal precedent set in 1993
by the Supreme Court, Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579.)
Although falsifiability has been employed as a guiding principle in legal proceed-

ings, economics, and science in general, it has not, to our knowledge, been formally
analyzed to determine whether it can distinguish useful ideas from worthless ones in
a fully-fledged economic model in which agents may misreport what they know. An
objective of this paper is to deliver such a model. Before continuing with a description
of the model, we stress that what Popper means by falsifiability is the feasibility of
conclusive empirical rejection. This is often regarded as too strong because it dis-
misses probabilistic statements that attach strictly positive probability to an event
and its complement. Falsifiable probabilistic statements must attach zero probability
to some event. Popper (1968) was aware of this objection. He wrote:

1See Lakatos’ article in Lakatos and Musgrave (1970) for an attempt to reconcile Popper’s view
on the logic of science with Kuhn’s view on its history.
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“For although probability statements play such a vitally important rôle in empir-
ical science, they turn out to be in principle impervious to strict falsification. Yet
this very stumbling block will become a touchstone upon which to test my theory, in
order to find out what it is worth.”
An adaptation of falsifiability designed to partially accommodate probabilities is

provided by Cournot’s (1843) principle, which states that unlikely events must be
treated as impossible.2 However, for reasons that will become clear at the end of this
introduction, we refer to falsifiability in the strict Popperian sense.
We study a contracting problem between an expert and a tester. The expert,

named Bob, announces a theory which is empirically tested by the tester named Alice.
Like Popper, we assume that the main purpose of a theory is to make predictions.
We define a theory as a mechanism that takes the available data as an input and
returns, as an output, the probabilities of future outcomes. Before data are observed,
Bob decides whether to announce a theory. If he does, he cannot revise his theory
later. As data unfold, Alice tests Bob’s theory according to the observed history.
Alice does not have a prior over the space of theories and is too ill-informed to

formulate probabilities over the relevant stochastic process (i.e., she faces Knightian
uncertainty). An expert could deliver these probabilities to her. If a theory is an
accurate description of the data-generating process, then she benefits from the theory
because it tells her the relevant odds (i.e., it replaces her uncertainty with common
risk).3 The difficulty is that Alice does not know if Bob is an informed expert who
can deliver the data-generating process, or if he is an uninformed agent who knows
nothing about the relevant process and who can only deliver theories unrelated to it.
We assume that Alice takes Popper’s methodology seriously and demands a falsi-

fiable theory, i.e., a theory such that it predicts that some finite continuation of any
finite history has zero probability. Alice pays Bob a small reward which gives utility
u > 0, if he announces a falsifiable theory. In order to discourage Bob from delivering
an arbitrary falsifiable theory, Alice proposes a contract that stipulates a penalty if
Bob’s theory is falsified in the future, i.e., if some history deemed impossible by the
theory is eventually observed. This penalty gives Bob disutility d > 0. Bob receives
no reward and no penalty if he does not announce any theory or if he announces a
nonfalsifiable theory (in which case his utility is zero).

2Cournot (1843) was perhaps the first to relate the idea that unlikely events will not occur to the
empirical meaning of probability. He wrote, “The physically impossible event is therefore the one
that has infinitely small probability, and only this remark gives substance - objective and phenomenal
value - to the theory of mathematical probability.”

3Risk refers to the case where perceived likelihoods can be represented by a probability. Un-
certainty refers to the case where the available information is too imprecise to be summarized by
a probability. This distinction is traditionally attributed to Knight (1921). However, LeRoy and
Singell (1987) argue that Knight did not have this distinction in mind.
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We now make a series of assumptions that are not meant to be realistic. Rather,
they should be interpreted as an extreme case in which our result holds, so that it
still holds under milder and more realistic conditions. These assumptions are: Alice
eventually has an unbounded data set at her disposal and never stops testing Bob’s
theory unless it is rejected. Bob does not discount the future and so his contingent
payoffs are u − d if his theory is eventually rejected and u if his theory is never
falsified. Bob’s liabilities are not limited and so the penalty d for having delivered a
rejected theory can be made arbitrarily large, whereas the payoff u for announcing a
falsifiable theory can be made arbitrarily small. Bob has no knowledge whatsoever of
the data-generating process and so Bob, like Alice, also faces uncertainty and cannot
determine the probability that any falsifiable theory will be rejected. Finally, Bob
is an extreme pessimist and computes his payoff under the worst-case scenario, i.e.,
under the future realization of data that gives him minimal payoff.
Our last assumption is so extreme that it seems to settle the matter trivially.

Assume that Bob announces any falsifiable theory f deterministically. There are
many histories that falsify f . The worst-case scenario is the observation of one of
them. Hence, the payoff for delivering any theory f deterministically is u − d. As
long as the penalty for delivering a theory rejected by the data exceeds the reward for
announcing a falsifiable theory, i.e., as long as d > u, Bob is better off not announcing
any theory deterministically. So, it seems as if Alice can avoid the error of receiving
a theory produced by an uninformed expert. However, Bob still has one remaining
recourse. He can randomize (only once) at period zero and select his falsifiable theory
according to this randomization. This suffices. We show that no matter how large
the penalty d, and no matter how low the reward u, there exists a way to strategically
select falsifiable theories at random (i.e., according to specific odds that we describe
explicitly) such that for all possible future realizations of the data, the expected
utility of the random announcement of a theory exceeds the utility of not announcing
any theory at all. At the heart of argument is the demonstration that it is possible
to produce falsifiable theories (at random) that are unlikely to be falsified, no matter
how the data unfold in the future. Thus, even Popper’s strict falsification criterion
(which requires a theory to assert that some events are impossible) cannot deter even
the most ignorant expert because the feasibility of conclusive empirical rejection can
be removed by strategic randomization.
Our result shows a contrast between the case in which theories are exogenously

given and the case in which theories may have been strategically produced. For
a given theory, falsifiability makes a fundamental conceptual distinction: falsifiable
theories can be conclusively rejected and nonfalsifiable theories cannot. In contrast,
when theories are produced by a potentially strategic expert, falsifiability does not
impose significant constraints on uninformed experts and, hence, cannot determine
whether the expert is informed about the data-generating process.
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The failure of falsifiability in delivering useful criteria (when experts are strategic)
motivates an analysis of the merits of verification and refutation as guiding principles
for empirical research. We now consider general contracts between Alice and Bob. In
a verification contract, Alice pays Bob when the observed data is deemed consistent
with Bob’s theory (but Bob may pay Alice when he announces his theory). We make
no restrictions on which data the contract can define as consistent with each theory.
In a refutation contract, Bob pays Alice if the observed data is deemed inconsistent
with the Bob’s theory (but Alice may pay Bob when he announces his theory). So,
the falsification contract is a special refutation contract in which Alice pays nothing
for nonfalsifiable theories, pays positive amounts for falsifiable theories, and Bob pays
Alice if his theory is conclusively rejected. In other refutation contracts, Bob may
pay contingent on data that does not conclusively reject his theory.
We are interested in a screening contract that Bob, if informed, accepts and Bob,

if uninformed, does not accept. If informed, Bob faces risk and evaluates his prospects
by standard expected utility. If uninformed, Bob faces uncertainty and evaluates his
prospects based on his expected utility computed at the worst possible future real-
ization of the data. A contract is accepted by the informed expert if Bob gets positive
expected utility if he announces the actual data-generating process. A contract is
accepted by the uninformed expert if Bob can select theories at random so that no
matter which data is eventually observed, his expected utility is positive.
We show that if the informed expert accepts any verification contract then the

uninformed expert also accepts this contract. This result implies that it is possible
to produce theories (at random) that are likely to prove, in the future, to be sup-
ported the data, no matter how the data unfold. Hence, when experts are potentially
strategic, both Popper’s falsifiability and verification do not provide useful criteria for
the same reason: they cannot screen informed and uninformed experts. In contrast,
we show a refutation contract that can screen informed and uninformed experts (i.e.,
informed experts accept the contract and uninformed experts do not accept it). This
contract is based on an empirical test and a penalty for Bob if his theory is rejected
by the test. The method determining how to refute theories is novel and is not based
on falsification nor on any standard statistical test.
As argued by Popper, there is an asymmetry between verification and refutation.

However, the criteria showing this asymmetry is not Popper’s falsifiability. It is
the existence of a screening refutation contract and the inexistence of a screening
verification contract. These results deliver an original argument supporting the idea
that refutation is a better maxim, for empirical research, than verification.

5



1.1. Related literature

The idea that an ignorant agent can strategically avoid rejection of an empirical test
is not novel and can be found in a number of papers (see Foster and Vohra (1998),
Fudenberg and Levine (1999), Lehrer (2001), Sandroni (2003), Sandroni, Smorodin-
sky and Vohra (2003), Vovk and Shafer (2005), and Olszewski and Sandroni (2006,
2007b)). Some of these results are reviewed in Cesa-Bianchi and Lugosi (2006).4

However, the idea that the concept of falsification can be analyzed as an empirical
test, and that this test can be manipulated by ignorant experts is novel. The classes
of tests considered in the literature exclude the main test of interest, i.e., the empirical
test defined by falsification.

1.2. Motivating Idea: Strategic Randomization

Consider a simple two period model. In period one, a ball is drawn from an urn. The
balls are of n possible colors. Alice does not know the composition of the urn. If
informed, Bob has seen the composition of the urn. If uninformed, he has not.
Alice is willing to pay to become informed (i.e., to learn the composition of the

urn), but she is concerned that Bob may be uninformed and would just give her an
arbitrary distribution. Alice wants to discourage such a fraud. A difficulty is that if
Bob tells Alice that any color is possible, then she cannot reject Bob’s claim. So, Alice
takes Popper’s advice and proposes a contract to Bob. If he accepts he must deliver
to Alice, at period zero, a falsifiable distribution (i.e., a probability measure over
the n colors that assigns zero probability to at least one color). So, Bob must claim
that at least one color is impossible. If none of the (allegedly) impossible colors are
observed, then Bob’s payoffs are u > 0. If an (allegedly) impossible color is observed,
then Bob’s payoffs are u − d < 0. If Bob does not accept Alice’s contract, then his
payoff is zero.
By requiring a falsifiable distribution, Alice may induce Bob to misrepresent what

he knows (when all colors are possible). However, at least one color must have
probability smaller or equal to 1/n. So, as long as

u ≥ d

n
, (1.1)

Bob, whenever informed, is better off accepting Alice’s contract and asserting that
a color, among those least likely to occur, is impossible (rather than not accepting
Alice’s contract). In addition, Bob has no incentive to misrepresent the relative odds
of any colors other than the one he must claim to be impossible.

4See Dekel and Feinberg (2006), Kalai, Lehrer, and Smorodinsky (1999), Rustichini (1999), Lehrer
and Solan (2003), Hart and Mas-Colell (2000), Olszewski and Sandroni (2007a), Al-Najjar and
Weinstein (2006), Feinberg and Stuart (2006), and Fortnow and Vohra (2006) for related results.
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Now assume that Bob is uninformed. Then, he cannot determine the relevant
odds. Let us say that Bob determines the value of Alice’s contract by the expected
utility obtained under the worst possible outcome. This is the most pessimistic be-
havioral rule among those axiomatized by Gilboa and Schmedler (1989).
Assume that Bob announces any falsifiable distribution deterministically. In the

worse-case scenario, Bob is rejected. So, in the worse-case scenario, his expected
utility is negative. Hence, Bob cannot accept Alice’s contract and deliver a falsifi-
able distribution deterministically. This suggests that Alice can screen informed and
uninformed experts at least when Bob is extremely averse to uncertainty. However,
this is not true. It is easy to see that Bob can produce a falsifiable distribution, at
random, and obtain expected positive payoff, no matter what is the true composition
of the urn.
Let pi be a probability distribution that is falsified if and only if color i is realized

(i.e., pi assigns zero probability to i and positive probability to j = 1, ..., n, j 6= i).
Assume that Bob selects each pi, i = 1, .., n, with probability 1/n. For any given color,
Bob’s realized probability measure is falsified with probability 1/n. Hence, conditional
on any composition of the urn, Bob’s expected utility is nonnegative when (1.1) is
satisfied. If Bob, when informed, accepts Alice’s contract then Bob, even if completely
uniformed and extremely averse to uncertainty, also accepts Alice’s contract.
The argument above is simple, but it suggests an important implication. As

pointed out in the introduction, falsifiability is a criterion proposed by Popper to
differentiate scientific ideas from nonscientific ideas. Indeed, a falsifiable distribution
can be conclusively rejected by the data and a nonfalsifiable one cannot. However,
when theories are produced by experts who can misrepresent what they know, it is
unclear whether falsifiability delivers useful criteria.
The argument in the example above can be made very simple because Alice has

only one data point at her disposal. In the relevant case, Alice has many data points
available to her. Then, the puzzle of which criteria can be used to distiguish useful
from worthless theories (when experts are strategic) is more interesting. However,
before addressing the large data set case, let us still consider the one data point
example, but now assume that Bob must assert that more than one color is impossible.
This stronger requirement goes beyond the concept of falsifiability and is still not able
to screen informed and uninformed experts. Let us say that Bob must assert that j
colors are impossible. Then, an informed expert always accepts Alice contract if (1.1)
is satisfied when 1/n is replaced with j/n . Under this assumption, an uninformed
expert can randomize and obtain a positive expected payoff no matter what is the
composition of the urn (a direct proof is available upon request, but this is a corollary
of a general result, proposition 2, presented in section 4). Hence, requiring that Bob
must assert that multiple colors are impossible does not make the test able to screen
informed and uninformed experts.
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2. Basic Definitions

We now consider a model with many periods so that Alice will eventually have a
large data set available to her. Each period, one outcome, out of a finite set S with
n elements, is observed. Let ∆ (S) denote the set of probability measures on S. An
element of ∆ (S) is called a distribution over outcomes. Let St denote the Cartesian

product of t copies of S, let S =
[
t≥0

St be the set of all finite histories.5 We also define

Ω = S∞ as the set of paths, i.e., infinite histories, and the set ∆(Ω) of probability
measures over Ω.6

Any function
f : S −→ ∆ (S)

that maps finite histories into distributions over outcomes can be interpreted as fol-
lows: f takes data (outcomes up to a given period) as an input and returns a proba-
bilistic forecast for the following period as an output. To simplify the language, any
such function f is called a theory. Thus, a theory is defined by its predictions.
Any theory f defines a probability measure Pf . The probability of each finite

history (s1, ..., sm) ∈ Sm can be computed as follows: Given a finite history s and an
outcome s ∈ S, let the probability of s conditional on s be denoted by f(s)[s]. Then,
the probability Pf of (s

1, ..., sm) is equal to a product of probabilities

Pf(s
1, ..., sm) = f (∅) [s1] ·

mY
k=2

f
¡
s1, ..., sk−1

¢
[sk].

Definition 1. A theory f is falsifiable if every finite history (s1, ..., st) ∈ St has an
extension (s1, ..., st, st+1, ..., sm) such that

Pf(s
1, ..., sm) = 0.

A theory is falsifiable if, after any finite history, there is a finite continuation his-
tory that the theory deems impossible. Let z be the set of falsifiable theories. Given
f ∈ z, let Rf be the union of all finite histories to which Pf assigns zero probability.
So, Rf is the set of all finite histories that bluntly contradict (or, equivalently, falsify)
the theory f ∈ z.
Assume that Alice demands a falsifiable theory. Alice pays for the theory, but if it

is rejected (i.e., if Bob announces theory f ∈ z and data in Rf is observed), then Bob

5By convention, S0 = {∅}.
6We need a σ−algebra on which probability measures are defined. Let a cylinder with base on

(s1, ..., sm) be the set of all paths such that the first m elements are (s1, ..., sm). We endow Ω with
the smallest σ−algebra that contains all such cylinders. We also endow Ω with the product topology
(the topology that comprises unions of cylinders).
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receives a large penalty that gives disutility greater than the utility of the payment.
The question is whether the falsifiability requirement dissuades an uninformed expert
(who does not know the data-generating process) from announcing a theory.
We show next that an uninformed expert can strategically produce falsifiable

theories, at random, with odds designed so that, with arbitrarily high probability, the
realized falsifiable theory will not be falsified, regardless of which data is eventually
observed. Hence, the feasibility of falsification is virtually eliminated by strategic
randomization.

3. Falsification and Strategic Randomization

In this section, we maintain the basic infinite horizon model in which Alice adopts
Popper’s method and demands a falsifiable theory f ∈ z. As an incentive, Alice pays
Bob a (small) amount of money (which gives Bob utility u > 0) if Bob delivers a
falsifiable theory. However, if a finite history in Rf is observed, then Bob’s theory is
falsified and he pays a penalty which gives him disutility d > 0. Liabilities are not
limited and so d can be arbitrarily large.
Bob does not have to deliver a theory, but if he accepts Alice’s conditions, he

must deliver a falsifiable theory before any data are observed. We assume that Bob
does not discount the future (although our result still holds if he does). So Bob’s
contingent payoffs are u > 0 if his theory is never falsified and u− d if his theory is
contradicted at some time t. Formally, consider the contract in which only falsifiable
theories can be delivered and delivering a theory which is (later) contradicted by data
is punished. If Bob accepts the contract, he announces a theory f ∈ z. If a path
s = (s1, s2, ...) ∈ Ω is observed, Bob’s contingent net payoff is

U(f, s) =
u− d if, for some period t, (s1, ..., st) ∈ Rf ;
u otherwise.

If Bob does not accept the contract, then no theory is announced and his payoff
is zero.
We assume that Bob is utterly ignorant about the relevant probabilities. So, like

Alice, Bob cannot determine the odds according to which any given theory will be
falsified. Bob can select his theory randomly according to a probability measure
ζ ∈ ∆(z). Given that Bob randomizes only once (at period zero), Alice cannot tell
whether the theory she receives was produced deterministically or selected randomly.
Finally, we assume that Bob evaluates his prospects based on the worse-case scenario,
i.e., based on the path s ∈ Ω that gives him minimal expected utility. Formally, Bob’s
payoff is

V (ζ) = inf
s ∈ Ω

EζU(f, s),
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where Eζ is the expectation operator associated with ζ ∈ ∆(z). We purposely
consider this most pessimistic decision rule because it will show that our result holds
for all other, more optimistic decision rules.
If Bob announces any theory f ∈ z deterministically, then his payoff is u − d

because for every theory f ∈ z there are many paths (i.e., those in Rf) at which
f will be falsified. Hence, as long as the punishment d is greater than the reward
u, Bob finds that announcing any falsifiable theory deterministically is strictly worse
than not announcing any theory at all. Formally, as long as d > u,

inf
s ∈ Ω

U(f, s) < 0 for every f ∈ z.

However, Bob can randomize and, as Proposition 1 shows, randomization alters Bob’s
prospects completely.

Proposition 1. For any payoffs u > 0 and d > 0, there exists ζ̄ ∈ ∆(z) such that

V (ζ̄) > 0.

Proposition 1 shows that no matter how small the rewards for delivering a fal-
sifiable theory, no matter how large the penalties for having a theory falsified, and
no matter how much data Alice might have at her disposal, Bob is strictly better off
by accepting her contract and producing theories at random. Even if Alice demands
a falsifiable theory, she will not dissuade the most ignorant expert from delivering
a fraudulent theory to her. This holds even in the extreme case that this ignorant
expert evaluates his prospects based on the worst possible data that may be collected
in the future.
The striking contrast between the case of a given theory and strategically pro-

duced theories conveys the first part of our argument. Falsifiability can be, and often
is, used as a relevant criterion. In some cases, this criterion may seem intuitively
weak (e.g., when there are too many possible outcomes and a single one is required
to be ruled out). In other cases, this criteria may seem stronger (e.g., when a fu-
ture outcome must be ruled out in every period). Still, whether intuitively weak or
strong, falsifiability makes a fundamental conceptual distinction for given theories: if
an expert is honest and wants his theory rejected (when false), then falsifiability is an
useful criterion because only falsifiable theories can be conclusively rejected. In direct
contrast, when theories are produced by a potentially strategic expert, then falsifi-
ability cannot determine whether the expert is informed about the data-generating
process. This result cast doubt on the idea that falsifiability can demarcate legitimate
theories from worthless theories. As long as theories are produced by experts capable
of strategic randomization, the falsification criteria cannot screen informed experts
from uninformed ones.
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3.1. Intuition that underlies Proposition 1

Given a random generator of falsifiable theories ζ ∈ ∆(z) and a path (s1, s2, ...) ∈ Ω,
the odds that the selected theory f is contradicted at some point in the future are

pζ(s) = ζ
©
f ∈ z | there exists t such that (s1, ..., st) ∈ Rf

ª
.

The key argument is that for every ε > 0 there exists a random generator of
falsifiable theories ζ̄ ∈ ∆(z) such that the odds of selecting a theory that will be
falsified is smaller than ε, for every path s ∈ Ω. That is,

pζ̄(s) ≤ ε for every path s ∈ Ω.

No matter which data are realized in the future, a falsifiable theory selected by ζ̄
will not be falsified, with arbitrarily high probability. Hence, by randomizing accord-
ing to specific probabilities, Bob is near certain that his theory will not be falsified.
To construct ζ̄, we first consider an increasing sequence of natural numbers Zt,

t = 1, 2.... Let Xt = S(Zt+1−Zt) be the set of (Zt+1 − Zt) outcomes. Given any
sequence x = (xt)

∞
t=1, where each xt ∈ Xt consists of (Zt+1 − Zt) outcomes, we define

a falsifiable theory fx that is falsified if and only if xt occurs between periods Zt and
Zt+1. The random generator of theories ζ̄ is then defined as follows: an xt, t = 1, 2, ...,
is chosen from a uniform probability distribution overXt, and the sequence x = (xt)

∞
t=1

(thus chosen) determines the theory fx that is announced.
If Zt grows sufficiently fast (and if z1 is sufficiently large), the chances that xt

will be realized at least once is small. Any path s can be written in the form s =
(y1, ..., yt, ...), where yt consists of (Zt+1 − Zt) outcomes. So the announced theory fx
is contradicted along s if and only if xt = yt for some period t. By construction, this
is an unlikely event.

4. Verification and Refutation Contracts

In this section, we consider general contracts. Bob decides whether to accept a con-
tract at period zero. If Bob does not accept a contract then he does not deliver a
theory and his payoff is zero. If Bob accepts a contract then he delivers a (not neces-
sarily falsifiable) theory f ∈ F to Alice at period zero (before any data is observed).
An initial transfer may occur at period zero (after the theory is announced). This
transfer gives utility u(f,∅) to Bob. At period t, if data st ∈ S, st = (s1, ..., st),
is observed, then a new transfer may occur. Bob’s payoff, evaluated at period zero,
for this contingent transfer is u(f, st). So, given a path s ∈ Ω, Bob’s contingent net
payoff at period zero is

11



U(f, s) = u(f,∅) +
∞X
t=1

u(f, st), where s = (st, ...).

Given a theory f ∈ F and a probability measure P ∈ ∆(Ω), we define

ŪP (f) = EPU(f, s),

where EP is the expectation operator associated with P . So, if Bob is informed at
period zero and announces a theory f then his expected payoff is ŪPf (f). We say
that an informed expert accepts the contract if for all f ∈ F

ŪPf (f) ≥ 0. (4.1)

So, Bob, whenever informed about the odds of future events, prefers to announce
what he knows rather than to refuse the contract.
Now assume that Bob faces uncertainty and does not know the probabilities of

the future realizations of the data. As in the case of the falsification contract, Bob
can select his theory by randomizing once (at period zero) according to a random
generator of theories ζ ∈ ∆(F ) and Bob evaluates his prospects based on the worse-
case scenario, i.e., based on the path s ∈ Ω that gives him minimal expected utility.
Formally, Bob’s payoff is

V (ζ) = inf
s ∈ Ω

EζU(f, s),

where Eζ is the expectation operator associated with ζ ∈ ∆(F ). We say that the
uninformed expert accepts the contract if there exists a random generator of theories
ζ̄ ∈ ∆(F ) such that

V (ζ̄) ≥ 0.
So, an uninformed expert accepts the contract if he can randomly select theories

such that contingent on any possible realization of the data, the expected payoff is
nonnegative. A contract screens informed and uninformed experts if the informed
expert accepts the contract, but the uninformed expert does not accept it. Consider
the following restrictions of Bob’s payoffs:
Restriction A. For all ζ ∈ ∆(F ) and P ∈ ∆(Ω), EζEPU(f, s) is finite. Moreover,

for every st ∈ S̄, u(f, st) is a bounded function of f .
Restriction B. The function U(f, s) is bounded. Moreover, for every f , U(f, s) is

a continuous of s, and for every s, U(f, s) is a continuous function of f . That is, for
every s ∈ Ω,

U(fn, s) −→ U(f, s) as fn converges pointwise to f ,
7

12



and for every f ∈ F

U(f, s(n)) −→ U(f, s) as s(n) converges to s.8

Restriction A is a mild assumption, made for technical reasons. Restriction B is
more demanding because it requires net payoffs in the remote future to be small.
We now consider two fundamentally different types of contracts. If u(f, st) ≥ 0

for every st ∈ S̄, st 6= ∅, then the contract is said to be a verification contract. If
u(f, st) ≤ 0 for every st ∈ S̄, st 6= ∅, then the contract is said to be a refutation
contract. So, Bob may receive a (positive, negative or zero) payoff at period zero
when the theory is delivered, but the distinction between verification and refutation
contracts depends only on the payoffs after the data is observed. Verification contracts
are those in which after the data is revealed Bob receives either no payoff or positive
payoff, contingent on the performance of the theory vis-a-vis the data. Refutation
contracts are those in which after the data is revealed Bob receives either no payoff
or negative payoffs contingent on how his theory performs vis-a-vis the data. The
terminology reflects the idea that in a verification contract Bob is paid when his
theory performs well and in a refutation contract Bob pays when his theory performs
poorly.

Proposition 2. Assume restriction B. If an informed expert accepts a verification
contract, then an uninformed expert also accepts this verification contract.

Proposition 2 shows that verification contracts cannot screen informed and unin-
formed experts. This result show a fundamental limitation of verification as a guiding
principle for empirical analysis. No verification contract can mitigate Alice’s adverse
selection problem.
Now consider the following moral hazard problem: Bob is uninformed, but can

become informed, before any data are revealed, if he acquires sufficient information
that allows him to formulate probabilities (i.e., to transform his uncertainty into
risk). The cost (i.e., his disutility) of acquiring this information is c > 0. When Bob
decides whether to become informed, he does not know the data-generating process
and he does not have a prior over the space of data-generating processes (otherwise
he would use this prior to access the odds of the data). Hence, Bob makes a decision
under uncertainty. We assume, as before, that Bob evaluates his prospects under a
worst-case scenario. Therefore, at period one, Bob’s net value of becoming informed
is

V (I, c) = inf
f∈F

ŪPf (f)− c.

That is, V (I, c) is Bob’s smallest expected utility, when informed, minus the cost
c of becoming informed. On the other hand, if Bob remains uninformed and produces
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a theory according to ζ, then his payoff, also computed in a worse-case scenario, is
V (ζ).
We say that the expert prefers not to become informed if there exists a random

generator of theories ζ̄ ∈ ∆(F ) such that V (ζ̄) > V (I, c). Then, Bob prefers to
announce theories at random (selected by ζ̄) than to become informed at cost c.

Proposition 3. Assume restriction A. Consider any verification contract and a pos-
itive (possibly arbitrarily small) cost c > 0 of acquiring information. Then, the expert
prefers not to become informed.

Proposition 3 shows that no matter how cheap is the cost of acquiring information,
the expert prefers to not acquire it. Instead, the expert chooses to present a randomly
selected theory.
To underscore proposition 3, assume that for every theory f , a set of finite histories

Af (called the acceptance set) is defined as consistent with f . That is, histories in Af

are deemed consistent with f. Also assume that the acceptance Af has probability
1 − ε, ε > 0, under theory f (i.e., Pf(Af) = 1 − ε). So, the acceptance set Af is
likely under theory f .9 Hence, if the announced theory is indeed the data-generating
process, then the data is likely to be deemed consistent with the theory, but no other
restrictions are placed on which histories are deemed consistent with each theory.
Now consider the contract in which Bob receives zero payoff in period zero, when

the theory is announced, but Bob receives payoff 1 whenever the observed history is
deemed consistent with Bob’s theory. (Formally, u(f,∅) = 0, u(f, st) = 1 if st ∈ Af

and u(f, st) = 0 if st /∈ Af .) At period zero, Bob’s net value of becoming informed,
V (I, c), is 1− ε− c because, if informed, Bob gets payoff 1 with probability 1− ε. By
proposition 3, V (ζ̄) is arbitrarily close to 1− ε for some ζ̄ ∈ ∆(F ). This is a strong
result. It implies that no matter how the data unfolds a theory selected by ζ̄ will
be deemed consistent with data, with probability arbitrarily close to 1− ε. Formally,
there exists ζ̄ ∈ ∆(F ) such that for all s ∈ Ω,

ζ̄{f ∈ F | st ∈ Af for some t} > 1− ε− c.

Hence, Bob prefers not to become informed because even if he remains completely
uninformed he can still ensure that his theory is likely to be deemed consistent with the
data, no matter how the data unfolds. Thus, no knowledge over the data-generating
process is necessary to produce theories that will, in the future, prove to be supported
by the data.

9For example, if Bob’s theory asserts that 1 has probability p ∈ [0, 1] in all periods, then an
acceptance set could comprise all histories in which the relative frequency of 1 is between p− δ and
p+ δ, after sufficiently many periods.
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4.1. Intuition that underlies Propositions 2 and 3

The proofs of propositions 2 and 3 are similar and so we focus on the (slightly more
subtle) intuition of Proposition 3. Consider the zero-sum game between Nature and
the expert such that Nature’s pure strategy is a path s ∈ Ω and the expert’s pure
strategy is a theory f ∈ z. The expert’s payoff is U(s, f). For every mixed strategy
of Nature P , there exists a strategy for the expert (to announce a theory f such that
Pf = P ) that gives the expert an expected payoff of at least V (I, c) + c. So, if the
conditions of Fan’s Minmax theorem are satisfied, there is a mixed strategy for the
expert, ζ̄, that gives him an expected payoff higher than V (I, c), no matter which
path s ∈ Ω Nature selects.
A key condition in Fan’s Minmax theorem is the lower semi-continuity of Nature’s

payoff. We show that the positive payoffs in verification contracts suffice to deliver
this condition. In the falsification contract (like other refutation contracts), Nature’s
payoff is not necessarily lower semi-continuous.

4.2. Refutation Contracts

Verification, like falsification, does not deliver an effective way to determine whether
Bob’s theory is based on any relevant knowledge of the data-generating process. So,
in this section, we consider refutation contracts.

Proposition 4. There exists a refutation contract that screens informed and unin-
formed experts.

Proposition 4 shows an asymmetry between verification and refutation contracts.
No verification contract can screen informed and uninformed experts, but some refu-
tation contracts can. Popper’s falsification delivers a refutation contract that cannot
screen informed and uninformed experts. In this section, a screening refutation con-
tract is constructed. We show it in the context of Popper’s main example.
Assume that every period a swan is observed. This swan can be white (1) or of

another color (0). Let 1t be the (t+ 1)−history of 1 in all periods until period t and
0 at period t+ 1. Let 1̄m consists of 1t, t ≥ m. So, 1̄m are the histories in which only
white swans are seen for at least m periods and then a nonwhite swan is observed.
As Popper’s pointed out, the event 1̄m is not impossible. Thus, a long sequence of
white swans does not prove that all swans are white. However, 1̄m ↓ ∅ as m goes to
infinity because 1̄m+1 is contained in 1̄m and the interception of all 1̄m is empty. So,
for every probability measure P, P (1̄m) ↓ 0 as m goes to infinity. That is, for any
data-generating process, the event 1̄m is unlikely if m is large enough.
Fix ε > 0.Given a theory f, letm(f) be a period such that Pf(1̄m(f)) ≤ ε. Consider

the following contract: At period 0, Bob receives δ ∈ (ε, 0.5) for announcing any
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theory f. Bob also receives disutility 1 contingent on 1̄m(f) and no disutility otherwise.
Formally, u(f,∅) = δ; u(f, st) = −1 if st ∈ 1̄m(f) and u(f, st) = 0 if st /∈ 1̄m(f). We
will call this contract a simple refutation contract.
This contract is an example of a test-based contract, in which a set of histories Rf

(called the rejection set) is defined as inconsistent with theory f , and Bob incurs a
disutility of 1 if the observed history is inconsistent with his theory. The parallel to
testing is obvious: 1 is a disutility of test rejection. In the simple refutation contract,
Rf is defined as 1̄m(f). The Cournot principle is relevant here because 1̄m(f) may not
conclusively refute f . That is, 1̄m(f) is perhaps possible, but unlikely under f .
An informed expert accepts the simple refutation contract because it delivers

positive expected payoff, whenever he is informed about the odds of future events
(ŪPf (f) = δ − Pf(1̄m(f)) ≥ δ − ε > 0). We now show that an uninformed expert
refuses this contract. Let Fm ⊆ F be the set of all theories that are inconsistent
with all finite histories in 1̄m (i.e., 1̄m ⊂ Rf or m(f) ≤ m). Given that, 1̄m+1 ⊆
1̄m it follows that Fm ⊆ Fm+1. Moreover, any theory f ∈ F belongs to Fm for some
m, and so, Fm ↑ F as m goes to infinity. Hence, for every random generator of
theories ζ ∈ ∆(F ), there exists m∗ such that ζ(Fm∗) ≥ 1−δ. So, if s = (1m∗, ...), then
EζU(f, s) = δ − ζ(Fm∗) < 0. Hence, V (ζ) < 0 for all random generator of theories
ζ ∈ ∆(F ).
The simple refutation contract screens informed and uninformed experts. This,

in conjunction with inability of verification contracts to do the same, delivers an
original argument supporting the idea that refutation is a better guiding principle for
empirical research than verification.
We wish to emphasize some properties of the simple refutation contract. In Ol-

szewski and Sandroni (2006), we consider a very large class of empirical tests ordinar-
ily used in statistics (such as calibration and likelihood tests). The contracts based
on these tests, like verification contracts, cannot screen experts. Hence, the simple
refutation contract is a based on an original way of testing theories. Moreover, given
that ε (and, hence, δ) can be made arbitrarily small, it follows that Alice need only to
make a small payments to induce an informed expert to accept the simple contract.
Finally, if ε is very small then it is near-optimal for Bob, if informed, to reveal his
theory truthfully. This follows because the odds that Bob will incur in any disutility
can be made arbitrarily small (if he is informed and truthfully reveals his theory).
In a recent contribution, Dekel and Feinberg (2006) also show that if the continuum

hypothesis holds, then there exists a test-based refutation contract that can screen
informed and uninformed experts (an uninformed expert fails this test on uncountably
many infinite histories). The drawback of this test is that it relies on the continuum
hypothesis which cannot be shown to be true or false within standard mathematical
analysis. If the contract is based on this test and Bob presents a theory (e.g., the
probability of 1 is 0.5 in all periods) then, after some data is observed, it is not
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possible (by means of any mathematical calculation) to determine whether Bob must
incur some disutility.
A weakness of the simple test is that an uninformed expert fails it only on the

histories 1̄m. However, Olszewski and Sandroni (2007a) show a complex test-based
refutation contract (that can screen informed and uninformed experts) such that an
uninformed expert fails the test, no matter how he randomizes, on a topologically
large set of histories.

5. Conclusion

Falsifiability is a widely used guide in research and legal proceedings because it is per-
ceived as a requirement that could disqualify nonscientific theories. Indeed, falsifiable
theories can be conclusively rejected, whereas nonfalsifiable cannot. In contrast, we
show that falsifiability imposes essentially no constraints when theories are produced
by strategic experts. Without any knowledge, it is possible to construct falsifiable
theories that are unlikely to be falsified, no matter how the data unfold in the future.
Verification suffers from the same difficulty as falsification. Strategic experts,

with no knowledge of the data-generating process, can produce theories that, in the
future, are likely to be consistent with the data. However, there are special ways of
constructing refutation contracts (by defining which data are inconsistent with each
theory) that can distinguish legitimate from worthless theories, even if experts are
strategic.

6. Proofs

We use the following terminology: Let Ω = {0, 1}∞ be the set of all paths, i.e., infinite
histories. A cylinder with base on st ∈ {0, 1}t is the set C(st) ⊂ {0, 1}∞ of all infinite
extensions of st. We endow Ω with the topology that comprises unions of cylinders
with finite base.
Let =t be the algebra that consists of all finite unions of cylinders with base on

{0, 1}t. Denote by N the set of natural numbers. Let = is the σ−algebra generated
by the algebra =0 :=

S
t∈N

=t, i.e., = is the smallest σ−algebra which contains =0. Let

∆(Ω) the set of all probability measures on (Ω,=). It is well-known that every theory
f determines uniquely a probability measure Pf ∈ ∆(Ω).
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6.1. Proof of Proposition 1

A cylinder with base on history st = (s
1, ..., st) is denoted by C(s1, ..., st). Take any

positive

ε < min

½
1

n
,
u

d

¾
.

We will construct a ζ̄ ∈ ∆(z) such that for every path (s1, s2, ...) ∈ Ω,

ζ̄
©
f ∈ z | ∃t (s1, ..., st) ∈ Rf

ª
< ε.

This will complete the proof as

V (ζ̄) ≥ (1− ε)u+ ε(u− d) > 0.

Take a number r > 0 so small that

∞X
t=1

rt < ε,

and next take a sequence of natural numbers {Mt, t = 1, 2...} such that

1

nMt
< rt.

Let P̂ ∈ ∆(Ω) be the probability measure such that all outcomes s ∈ S have
equal odds in all periods. It will be convenient to denote by Xt the set S

Mt and by

X the Cartesian product
∞Y
t=1

Xt of sets Xt; although X = Ω, it will be convenient

to distinguish the two spaces. Consider a sequence of independent random variables
X̃t, t = 1, 2, ..., uniformly distributed on the set Xt. Let X̃ be the random variable
∞Y
t=1

X̃t, distributed on X, such that X̃ = (x1, ..., xt, ...), xt ∈ Xt, if and only if X̃t = xt

for all t = 1, 2, ....
Let

Zt ≡
tX

j=1

Mj.

Given an x = (x1, ...., xt, ...), xt ∈ Xt, let

Cx ≡ C(x1) ∪
∞[
t=1

[
zt∈SZt

C(zt, xt+1)
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be the union of the cylinder C(x1) with base on x1, and the cylinders with base on
histories of the form (zt, xt+1), where zt is an arbitrary element of S

Zt .
Given that x1 a sequence ofM1 outcomes and xt+1 is a sequence ofMt+1 outcomes,

it follows that

P̂ (
[

zt∈SZt
C(zt, xt+1)) =

1

nMt+1
and P̂ (C(x1)) =

1

nM1
;

hence,

P̂ (Cx) ≤
∞X
t=1

1

nMt
< ε < 1. (6.1)

Let (Cx)
c be the complement of Cx, x ∈ X, and let P̂ x be the conditional proba-

bility of P̂ on (Cx)
c , x ∈ X. That is,

P̂ x(A) =
P̂ (A ∩ (Cx)

c)

P̂ ((Cx)
c)

for all A ∈ =.

Step 1: Observe that any history (s1, ..., st) ∈ St has an extension

(s1, ..., st, st+1, ..., sm)

such that P̂ x(s1, ..., sm) = 0.
Indeed, take a Zm ≥ t and any extension zm ∈ SZm of (s1, ..., sm). Then (zm, xm+1)

is also an extension of (s1, ..., st), and by definition, C(zm, xm+1) ⊂ Cx, and so
P̂ x(C(zm, xm+1)) = 0.

Step 2: Let C = C(s1, ..., sk) be any cylinder not contained in Cx. We will show
that

P̂ (C ∩ (Cx)
c) > 0.

Let P̂C denote P̂ conditional on C. By Bayes’ rule,

P̂ (C ∩ (Cx)
c) = P̂C((Cx)

c)P̂ ((Cx)
c),

and by (6.1),
P̂ ((Cx)

c) > 0,

so it suffices to show that P̂C(Cx) < 1.
Let Ĉx be the union of all cylinders with base on x1 or with base (zt, xt+1), where

zt is an arbitrary element of S
Zt, whose length is no greater than k. So, Ĉx is a
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finite union of cylinders C(r1, ..., rl) ⊂ Cx, where l ≤ k. The history (s1, ..., sk)
cannot coincide on its first outcomes with any history from the set {x1}∪{(zt, xt+1) |
zt ∈ {0, 1}Zt, t = 1, 2, ...}, because C(s1, ..., sk) would be contained in Cx. Thus,
C(r1, ..., rl) ∩ C = ∅ if C(r1, ..., rl) ⊂ Cx, where l ≤ k, and so

P̂C
³
Ĉx

´
= 0.

Let C̄x be the union of all cylinders with base on x1 or with base (zt, xt+1), where
zt is an arbitrary element of S

Zt, whose length is strictly greater than k. So, if
m = 0, 1, ... is the smallest number such that k < Zm+1, then C̄x is the union of the
cylinders C(zt, xt+1), t ≥ m and zt ∈ {0, 1}Zt (and the set C(x1) if m = 0). Suppose
first that m = 0. Then, P̂C(C(x1)) = nk−Z1 if x1 coincides on its first outcomes with
s1, ..., sk or P̂C(C(x1)) = 0 if x1 does not coincide on its first outcomes with s

1, ..., sk,
and

P̂C

⎛⎝ [
zt∈{0,1}Zt

C(zt, xt+1)

⎞⎠ =
1

nMt+1
.

Hence,

P̂C(C̄x) ≤
1

n
+
X
t>1

1

nMt
<
1

n
+ ε < 1. (6.2)

By analogous argument, (6.2) holds with
X
t>k

replacing
X
t>1

for k > 0. Obviously,

Cx = Ĉx ∪ C̄x, and so

P̂C(Cx) ≤ P̂C(Ĉx) + P̂C(C̄x) < 1.

Step 3: We will show that Cx is the union of all cylinders C ∈ =0 such that
P̂ x(C) = 0.
Let C ∈ =0 be an arbitrary cylinder. If P̂ x(C) = 0 then P̂ (C ∩ (Cx)

c) = 0.
By Step 2, C is contained in Cx. On the other hand, if C is contained in Cx, then
C ∩ (Cx)

c = ∅. Hence, P̂ x(C) = 0.

Let ζ̄ ∈ ∆(z) be defined as follows: First a realization of the random variable X̃ is
observed. The probability measure P̂ x is selected whenever X̃ = x. The probability
measure determines a theory fx that is announced. The theory fx is determined by
conditional probabilities of P̂ x, i.e. for any s ∈ S and s ∈ S,

fx(s)[s] =
P̂ x(C(s, s))

P̂ x(C(s))
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when P̂ x(C(s)) > 0, and it is irrelevant how fx(s)[s] is defined when P̂ x(C(s)) = 0.
It follows from Steps 1 that the theories fx, x ∈ X, are falsifiable.
Fix a path (s1, s2, ...) ∈ Ω; every such path can also be represented as (s1, ...., st, ...)

where st ∈ Xt; so, s1 are the first M1 outcomes of (s
1, s2, ...) and st+1 are the Mt+1

outcomes that follow the first Zt outcomes. By definition, (s1, ...., st, ...) ∈ Cx if and
only if st = xt for some t ∈ 1, 2, ... Notice that Pfx(s

1, ..., sm) = 0 if and only if

P̂ x(C(s1, ..., sm)) = 0 for every finite history (s1, ..., sm). Hence, by Step 3,©
x ∈ X | ∃m (s1, ..., sm) ∈ Rfx

ª
= {x ∈ X | xt = s̄t for some t = 1, 2, ...} . (6.3)

Since

P̂
n
X̃t = s̄t for some t = 1, 2, ...

o
≤

∞X
t=1

P̂
n
X̃t = s̄t

o
=
X
t∈N

1

2Mt
≤
X
t∈N

rt < ε,

it follows from (6.3) that

ζ̄
©
f ∈ z | ∃m (s1, ..., sm) ∈ Rf

ª
= P̂

©
x ∈ X | ∃m (s1, ..., sm) ∈ Rfx

ª
< ε.

¥

6.2. Proof of Propositions 2 and 3

Let X be a metric space. Recall that a function g : X → R is lower semi-continuous
at an x ∈ X if for every sequence (xn)

∞
n=1 converging to x:

∀ε>0 ∃n ∀n≥n g(xn) > g(x)− ε.

The function g is lower semi-continuous if it is lower semi-continuous at every x ∈ X.
We endow ∆(Ω) with the weak−* topology and with the σ−algebra of Borel

sets, (i.e., the smallest σ−algebra which contains all open sets in weak−* topology).
We endow the set of all theories F with the pointwise convergence topology; in this
topology, a sequence of theories (fn)

∞
n=1 converges to a theory f if fn(st)→n f(st) for

every history st ∈ {∅}∪ S∞. Let ∆(F ) be the set of probability measures on F . We
also endow ∆(F ) with the weak−* topology. It is well-known that Ω, ∆(Ω), F , and
∆(F ) are compact metrizable spaces.
Recall that if ∆(X) is endowed with the the weak−* topology, then if h : X → R

is a continuous function, then H : ∆(X)→ R defined by H(x̃) = Ex̃(h), where Ex̃ is
the expectation operator associated with x̃ ∈ ∆(X), is also a continuous function.
Consider an arbitrary verification contract. Let H : ∆(F ) × ∆(S) −→ < be a

function defined by
H(ζ, P ) = EζEPU(f, s).
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Step 1: Assume that H(ζ, P ) < ∞ for every ζ ∈ ∆(F ) and P ∈ ∆(S) and that
for every st ∈ S̄, u(f, st) is a bounded function of f . Then, for every ζ ∈ ∆(F ),
H(ζ, P ) is a lower semi-continuous function of P .
Proof: Let Xt(f, s) = u(f, st) where s = (st, ...), t ≥ 1, and X0(f, s) = u(f,∅).

Then,

U(f, s) =
∞X
t=0

Xt(f, s).

By the monotone convergence theorem,

EPU(f, s) =
∞X
t=0

EP{Xt(f, s)} and H(ζ, P ) =
∞X
t=0

EζEPXt(f, s).

Fix ε > 0 and assume that Pn converges to P (in the weak−* topology) as n
goes to infinity. Then, by the definition of convergence in the weak−* topology,
EPnXt(f, s) −→

n→∞
EPXt(f, s) for every t. By the dominated convergence theorem,

EζEPnXt(f, s) −→
n→∞

EζEPXt(f, s) for every t.

Now if H(ζ, P ) <∞ then there exists m∗ such that

∞X
t=m∗+1

EζEPXt(f, s) <
ε

2
.

If n is sufficiently large,

m∗X
t=0

EζEPnXt(f, s) ≥
m∗X
t=0

EζEPXt(f, s)−
ε

2

and, therefore,

H(ζ, Pn) ≥
m∗X
t=0

EζEPnXt(f, s) ≥ H(ζ, P )− ε.

Step 2: Assume that for every f , U(f, s) is a continuous of s, and for every s,
U(f, s) is a continuous function of f . Assume, in addition, that U(f, s) is a bounded
function of s and f . Then, for every ζ, H(ζ, P ) is a continuous of P , and for every
P , H(ζ, P ) is a continuous of ζ.
Proof: If fn −→

n→∞
f then, by assumption, U(fn, s) −→

n→∞
U(f, s). By the dominated

convergence theorem, EPU(fn, s) −→
n→∞

EPU(f, s). Hence, H(ζ, P ) is continuous on ζ

for every P .
If sn −→

n→∞
s, then, by assumption, U(f, sn) −→

n→∞
U(f, s). Hence, if Pn −→

n→∞
P , then

EPnU(f, s) −→
n→∞

EPU(f, s) by the definition of convergence in the weak−* topology.
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By the dominated convergence theorem, H(ζ, Pn) −→
n→∞

H(ζ, P ). Hence, for every ζ,

H(ζ, P ) is continuous on P.
Step 3: The sets ∆(F ) and ∆(S) are compact sets in the weak−* topology and

H(ζ, P ) is a linear function on ζ and P . Hence, it follows from Fan’s (1953) minmax
theorem that if H(ζ, P ) is lower semi-continuous in P , then

inf
P

sup
ζ
H(ζ, P ) = sup

ζ
inf
P
H(ζ, P ) (6.4)

and if H(ζ, P ) is continuous in both ζ and P , then

min
P
max
ζ
H(ζ, P ) = max

ζ
min
P
H(ζ, P ) (6.5)

Proof of proposition 2: For a given P take a ζ such that ζ({f}) = 1 for some f
with Pf = P . Then, by (4.1), the left-hand side of (6.5) exceeds 0. So, the right-hand
side of (6.5) exceeds 0. This yields ζ̄ ∈ ∆(∆(Ω)) such that H(ζ̄, P ) ≥ 0 for every P .
Now, for any given s ∈ Ω, take the probability measure Ps such that Ps({s}) = 1.
So, H(ζ̄, Ps) ≥ 0 for every s. Hence, V (ζ̄) ≥ 0.¥
Proof of proposition 3: For a given P take a ζ such that ζ({f}) = 1 for

some f with Pf = P . Then, the left-hand side of (6.4) exceeds V (I, c) + c. So,
the right-hand side of (6.4) exceeds V (I, c) + c. This yields ζ̄ ∈ ∆(∆(Ω)) such that
H(ζ̄, Ps) > V (I, c) + 0.5c for every s ∈ Ω. Hence, V (ζ̄) ≥ V (I, c) + 0.5c > V (I, c).¥
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