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Abstract

The difficulties in properly anticipating key economic variables may en-
courage decision makers to rely on experts’ forecasts. Professional forecast-
ers, however, may not be reliable and so their forecasts must be empirically
tested. This may induce experts to forecast strategically in order to pass
the test.
A test can be ignorantly passed if a false expert, with no knowledge of

the data generating process, can pass the test. Many tests that are unlikely
to reject correct forecasts can be ignorantly passed. Tests that cannot be
ignorantly passed do exist, but these tests must make use of predictions
contingent on data not yet observed at the time the forecasts are rejected.
Such tests cannot be run if forecasters report only the probability of the
next period’s events on the basis of the actually observed data. This result
shows that it is difficult to dismiss false, but strategic, experts who know
how theories are tested. This result also shows an important role that can
be played by predictions contingent on data not yet observed.
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1. Introduction

Expectations of future events have long been recognized as a significant factor
in economic activity (see Pigou (1927)). It is, however, difficult to accurately
anticipate key economic variables. This difficulty may produce a demand for
experts’ forecasts. If informed, an expert knows the relevant odds and can reveal
them to decision makers (i.e., the decision makers’ uncertainty is replaced with
common risk). If uninformed, the expert does not know the relevant odds and
may mislead decision makers. Hence, experts’ forecasts must be tested.
A test determines observable histories that are (jointly) unlikely under the

null hypothesis that the forecasts are correct. These data sequences are deemed
inconsistent with the forecasts and, if observed, lead to their rejection. This
method is unproblematic if the forecasts are reported honestly. However, assume
that the expert (henceforth called Bob) may strategically misrepresent what he
knows. A tester (named Alice) tests Bob’s forecasts. She anticipates that Bob, if
uninformed, may try to manipulate her test (i.e., to produce forecasts that will
not be rejected, regardless of how the data turn out in the future).
The purpose of running a manipulable test is limited if Bob knows how he will

be tested. Even in the extreme case that Bob is completely uninformed about the
data-generating process, the test will support the hypothesis that he is informed,
no matter what data are observed.
A standard calibration test requires the empirical frequencies of an outcome

(say, 1) to be close to p in the periods that 1 was forecasted with probability near
p. Foster and Vohra (1998) show that the calibration test can be manipulated. So
it is possible to produce forecasts that in the future will prove to be calibrated.
In contrast, Dekel and Feinberg (2006) and Olszewski and Sandroni (2007b) show
nonmanipulable tests that are unlikely to reject the data-generating process.1

Unlike the calibration test, the tests proposed by Dekel and Feinberg (2006)
and Olszewski and Sandroni (2007b) require Bob to deliver, at period zero, an
entire theory of the stochastic process. By definition, a theory must tell Alice, from
the outset, all forecasts contingent on any possible data set. Typically, a forecaster
does not announce an entire theory but instead publicizes only a forecast in each
period, according to the observed data. So a natural issue is whether there exist
nonmanipulable tests that do not require an entire theory, but rather use only the

1The existence of such a test was first demonstrated by Dekel and Feinberg (2006) under the
continuum hypothesis. Subsequently, Olszewski and Sandroni (2007b) constructed a test with
the required properties (dispensing with the continuum hypothesis).
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data and the forecasts made along the observed histories.
Assume that, before any data are observed, Bob delivers to Alice an entire

theory of the stochastic process. A test is future-independent if whenever a theory
f is rejected at some history st (observed at period t), then another theory f 0,
which makes identical predictions as f until period t, must also be rejected at
history st. So, if instead of delivering an entire theory, Bob announces each period
a forecast on the basis of the actually observed data, then Alice is limited to future-
independent tests because she cannot use as an input any forecasts contingent on
data not yet realized.
A future-independent test must reject a theory based only on the available data

and predictions up to the current period. A future-dependent test may reject a
theory depending on these factors and on predictions contingent on data not yet
realized. Consider a prediction such as “If it rains tomorrow, then it will also
rain the day after tomorrow.” Today no data is available on the qualifier of this
prediction (whether it rains tomorrow) nor on the prediction itself (whether it
rains after tomorrow). Yet, a future-dependent test may use such a prediction to
reject a theory today (as opposed to the day after tomorrow when there will be
data on this forecast).
A statistical test is regular if it is future-independent and unlikely to reject

the actual data-generating process. A statistical test can be ignorantly passed if
it is possible to strategically produce theories that are unlikely to be rejected on
any future realization of the data.2

We show that any regular statistical test can be ignorantly passed. Thus,
regular tests cannot reject a potentially strategic expert who knows how he will
be tested. This holds even if the tester has arbitrarily long data sets at her
disposal. Unless future-dependent tests can be employed, the data cannot reveal
that the expert is completely uninformed.
Although future-independent tests cannot determine whether a potentially

strategic expert is informed, some future-dependent tests can. Thus, whether
the expert reports an entire theory or a sequence of forecasts make a fundamental
difference. If Alice knows Bob’s theory, then she can use the data she has observed
to evaluate predictions contingent on data she does not have. These evaluations
are necessary to prevent Alice’s test from being ignorantly passed because future-
dependent tests make use of predictions contingent on data not yet realized.
This paper is organized as follows: In section 2, we discuss some related ideas.

2We allow the uninformed expert to produce theories at random at period zero. So, the term
unlikely refers to the expert’s randomization and not to the possible realizations of the data.
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In sections 3 and 4, we define our basic concepts. Section 5 shows our main result.
In section 6, we show examples of regular tests. Section 7 presents the conclusions.

2. Related literature

2.1. Risk and uncertainty

An important distinction in economics is that between risk and uncertainty.3 Risk
is present in cases in which the available evidence can be properly summarized by
a probability. Uncertainty is present in cases in which the available evidence is too
imprecise to be properly summarized by a probability. The canonical example,
used by Ellsberg (1961) to show the empirical content of this distinction, involves
a draw from an urn containing winning and losing balls. If the composition of
the urn is known, then the odds of drawing a winning ball are known. If the
composition of the urn is not known, then the odds that a winning ball will be
drawn are unknown. Ellsberg’s experiment shows that some subjects prefer to
know the odds, e.g., they prefer a ball drawn from the urn in which half the balls
are winning to a ball drawn from the urn whose composition is not known.
In our model, Bob, if informed, faces risk. Alice and Bob, if uninformed, face

uncertainty.4 If Alice knows that Bob’s theory is an accurate description of the
data-generating process, then Alice benefits from his theory, no matter what the
actual data-generating process is, because the theory tells her the relevant odds
(i.e., it would replace her uncertainty with common risk).
The difficulty is that Alice does not know whether Bob is an informed ex-

pert who can deliver the data-generating process, or an uninformed agent who
knows nothing about the relevant process. Thus, Alice does not know Bob’s type
(whether Bob faces risk or uncertainty), whereas Bob knows his type. A test can
alleviate Alice’s adverse selection problem (by revealing Bob’s type) only if Bob
finds it easier to pass the test when informed than when uninformed. However,
we show strategies that Bob can use to pass the test even if he faces complete
uncertainty, i.e., even if he knows nothing about the data-generating process.

3The distinction is traditionally attributed to Knight (1921). However, LeRoy and Singell
(1987) argue that Knight did not have this distinction in mind.

4This is fundamentally different from the case in which both tester and forecaster face only
risk. See Morgan and Stocken (2003) and Ottaviani and Sørensen (2006) (among others) for
cheap-talk games between forecasters and decision-makers. See also Dow and Gorton (1997),
Laster, Bennett and Geoum (1999), and Trueman (1988) for models in which professional fore-
casters have incentives to report their forecasts strategically.
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2.2. Empirical tests of rational expectations

The rational expectations hypothesis has been extensively tested. The careful
analysis by Keane and Runkle ((1990), (1998)) did not reject the hypothesis that
professional forecasters’ expectations are rational.5 This literature contrasts with
our work in that the forecasts are assumed to be reported nonstrategically and
honestly. These differences in assumptions are partially due to differences in
objectives. The purpose of this paper is to study the properties of nonmanipulable
tests.

2.3. Testing strategic experts

The idea that an ignorant expert can strategically avoid being rejected by some
empirical tests is not novel and can be found in a number of papers (see Fos-
ter and Vohra (1998), Fudenberg and Levine (1999), Lehrer (2001), Sandroni
(2003), Sandroni, Smorodinsky and Vohra (2003), Vovk and Shafer (2005), and
Olszewski and Sandroni (2007b) and (2007c)). Some of these results are reviewed
in Cesa-Bianchi and Lugosi (2006). However, what is novel is the idea that non-
manipulability requires testers to use a theory’s predictions which are contingent
on data not yet realized. We are not aware of any result that shows or implies
that the class of tests of interest here (i.e., regular tests) can be manipulated.6

3. Basic Set-Up

In each period one outcome, 0 or 1, is observed.7 Before any data are observed,
an expert, named Bob, announces a theory that must be tested. Conditional on
any t−history st ∈ {0, 1}t, st = (s0, ...., st−1), of outcomes in periods 0, ..., t − 1,
Bob’s theory claims that the probability of 1 in period t is f(st).
To simplify the language, we identify a theory with its predictions. That

is, theories that produce identical predictions are not differentiated. Hence, we
define a theory as an arbitrary function that takes as an input any finite history
and returns as an output a probability of 1.
Formally, a theory is a function

f : {s0}
[

S∞ −→ [0, 1]

5See Lowell (1986) for other results on empirical testing of forecasts.
6In fact, our result subsumes most of the literature on manipulable tests.
7It is simple to extend the results to finitely many possible outcomes in each period.
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where S∞ =
∞[
t=1

{0, 1}t is the set of of all finite histories and s0 is the null history.

A tester named Alice tests Bob’s theory empirically. So, given a string of data,
Alice must either reject or not reject Bob’s theory. A test T is an arbitrary function
that takes as an input a theory f and returns as an output a set T (f) ⊆ S∞ of
finite histories considered to be inconsistent with the theory f . Alice therefore
rejects Bob’s theory f if she observes data that belongs to T (f).
Formally, a test is a function

T : F → S̄,

where F is the set of all theories and S̄ is the set of all subsets of S∞.
8,9

The timing of the model is as follows: At period zero, Alice selects her test T .
Bob observes the test and announces his theory f (also at period zero). In period
1 and onwards, the data are revealed and Bob’s theory is either rejected or not
rejected by Alice’s test at some point in the future.
Bob can be an informed expert who honestly reports to Alice the data-generating

process. Bob may also be an uninformed expert who knows nothing about the
data-generating process. If so, Bob tries to strategically produce theories with the
objective of not being rejected by the data. Anticipating this, Alice wants a test
that cannot be manipulated by Bob, if he is uniformed.
Although Alice tests Bob’s theory using a string of outcomes, we do not make

any assumptions about the data-generating process (such as whether it is a Markov
process, a stationary process, or satisfies some mixing condition). It is very diffi-
cult to demonstrate that any key economic variable (such as inflation or the GDP)
follows any of these well-known processes. At best, such assumptions about the
data-generating process can be tested and rejected. More importantly, if Alice
knew that the actual process belonged to a parametrizable set of processes (such

8We assume that st ∈ T (f) implies that sm ∈ T (f) whenever m ≥ t and st = sm | t (i.e., st
are the first t outcomes of sm). That is, if a finite history st is considered inconsistent with the
theory f , then any longer history sm whose first t outcomes coincide with st is also considered
inconsistent with the theory f .
For simplicity, we also assume that st ∈ T (f) whenever sm ∈ T (f) for some m > t and every

sm with st = sm | t. That is, if any m−history that is an extension of a finite history st is
considered inconsistent with the theory f , then the history st is itself considered inconsistent
with the theory f .

9Alternatively, a test can be defined as a mapping from theories to stopping times. A stopping
time can take finite or infinite values; a finite value is interpreted as a rejection of the theory,
and if the stopping time takes an infinite value, the theory is not rejected.
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as independent, identically distributed sequences of random variables), then she
could almost perfectly infer the actual process from the data. Alice could accom-
plish this without any help from Bob.
Given that Bob must deliver an entire theory, Alice knows, at period zero,

Bob’s forecast contingent on any finite history. So in principle, Alice can make
use of forecasts contingent on future data.
Let st = sm | t be the first t outcomes of sm. Let fsm = {f(st), st = sm | t,

t = 0, ..,m} be a sequence of the actual forecasts made up to period m (including
the forecast made for the outcomes at period m) if sm is observed at period m.
(Recall that sm comprises outcomes from period 0 to m− 1). Let the pair (fsm ,
sm) be the observed record at period m. If Bob is required to produce a forecast
each period, then Alice observes the record up to the current period, but not
the forecasts contingent on unrealized data nor the forecasts contingent on future
data.

3.1. Example

We now consider a simple empirical test:

eR(f, sm) = 1

m

m−1X
t=0

[f(st)− st],

where sm = (s
0, ..., sm−1), marks the difference between the average forecast of 1

and the empirical frequency of 1.
Alice rejects the theory f on sufficiently long histories such that the average

forecast of 1 is not sufficiently close to the empirical frequency of 1. That is, fix
η > 0 and a period m̄. Bob’s theory f is rejected on any history sm (and longer
histories sk with sm = sk | m) such that¯̄̄ eR(f, sm)¯̄̄ ≥ η and m ≥ m̄. (3.1)

The tests defined above (henceforth called eR−tests) are notationally unde-
manding and can exemplify general properties of empirical tests. Given ε > 0, a
pair (η, m̄) can be picked such that if the theory f is the data-generating process,
then f will not be rejected with probability 1 − ε (i.e., (3.1) occurs with prob-

ability less than ε). In addition, an eR−test rejects a theory based only on the
observed record (i.e., whether (3.1) holds depends only on the data available and
the sequence of actual forecasts).
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Now assume that Bob is an uninformed expert who knows nothing about the
data-generating process. Still, at period zero, he could announce a theory f that
satisfies:

f(st) = 1 if eR(f, st) < 0;
f(st) = 0.5 if eR(f, st) = 0;
f(st) = 0 if eR(f, st) > 0.

If eR is negative at period t − 1, then no matter whether 0 or 1 is realized at
period t, eR increases. If eR is positive at period t−1, then no matter whether 0 or
1 is realized at period t, eR decreases. So eR approaches zero as the data unfolds.
If m̄ is sufficiently large, Bob can pass eR−tests without any knowledge of the
data-generating process.
Intuitively, the eR−tests seem weak. This intuition is seemingly confirmed by

the proof that some of them can be passed without any relevant knowledge. The
natural question is thus how to construct a better empirical test such that Bob,
if uninformed, cannot be assured of passing. Candidates for such a test abound.
However, as our main result shows, if the test has two basic properties (namely,
that it does not reject the data-generating process and that it rejects theories
based on the observed record), then Bob, even if completely uninformed, can also
pass this test. Therefore no matter which test is used (with the stated qualifiers),
Bob can be near certain he will not be rejected.

4. Properties of Empirical Tests

Any theory f uniquely defines the probability of any set A ⊆ S∞ of finite histories
(denoted by P f(A)). The probability of each finite history sm = (s

0, ..., sm−1) is
the product

m−1Y
t=0

f(st)
st(1− f(st))

1−st, (4.1)

where st = sm | t for t ≤ m.

Definition 1. Fix ε ∈ [0, 1]. A test T does not reject the data-generating process
with probability 1− ε if for any f ∈ F ,

P f(T (f)) ≤ ε.
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If Bob is an informed expert and announces the data-generating process, then
with high probability he will not be rejected. As argued in Section 2.1, if Al-
ice is averse to uncertainty, then she benefits from learning the data-generating
process, no matter what the data-generating process might be. However, some
standard tests reject some theories up front (before any data are observed). So
the assumption that a test does not reject any data-generating process may seem
strong. The central idea behind this assumption is that Alice will not reject a
theory without testing it, and therefore tests any theory that Bob may announce.
In section 5.2.1, we slightly restrict the set of permissible theories.
Two theories f and f 0 are equivalent until period m if f(st) = f 0(st) for any

t−history st, t ≤ m. Two theories are therefore equivalent until period m if they
make the same predictions up to period m.

Definition 2. A test T is future-independent if, given any pair of theories f and
f 0 that are equivalent until period m, st ∈ T (f), t ≤ m+ 1, implies st ∈ T (f 0).

A test is future-independent if, whenever a theory f is rejected at an (m +
1)−history sm+1, another theory f 0, which makes exactly the same predictions as
f until period m, must also be rejected at sm+1. So a future-independent test
rejects a theory at period m based only on the observed data and the predictions
made until period m. If Bob is required to produce a forecast only from period
to period, then Alice cannot run a test that is not future-independent.

Definition 3. A test T is called a regular ε−test if T is future-independent and
does not reject the data-generating process with probability 1− ε.

In section 6, we review well-known empirical tests (including calibration tests)
that do not reject theories up front and are regular. These tests use only realized
forecasts and available data and, by definition, no data are available for predictions
contingent on information not yet realized.
Bob is not restricted to selecting a theory deterministically. He may randomize

when selecting his theory at period 0. (Hence, he randomizes at most once.) Let
a random generator of theories ζ be a probability distribution over the set F of
all theories. Given any finite history st ∈ {0, 1}t and a test T , let

ζT (st) := ζ({f ∈ F : st ∈ T (f)})

be the probability that ζ selects a theory that will be rejected if st is observed.
10

10This definition requires the set F to be equipped with a σ−algebra, as well as the sets
{f ∈ F : st ∈ T (f)} to be measurable with respect to that σ−algebra.
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Definition 4. A test T can be ignorantly passed with probability 1 − ε if there
exists a random generator of theories ζ such that, for all finite histories st ∈ S∞,

ζT (st) ≤ ε.

The random generator ζ may depend on the test T , but not on any knowl-
edge of the data-generating process. If a test can be ignorantly passed, Bob can
randomly select theories that, with probability 1− ε (according to Bob’s random-
ization device), will not be rejected, no matter what data are observed in the
future. Thus, Alice has no reason to run a test that can be ignorantly passed if
the forecaster is potentially strategic and knows how he will be tested. Even if
Bob completely ignores the data-generating process, the test is unlikely to reject
his theory, no matter how the data unfolds.

5. Main Result

Proposition 1. Fix ε ∈ [0, 1] and δ ∈ (0, 1 − ε]. Any future-independent test
T that does not reject the data-generating process with probability 1− ε can be
ignorantly passed with probability 1− ε− δ.11

Proposition 1 shows a fundamental limitation of regular tests, namely, that any
regular test can be ignorantly passed. In particular, if Alice cannot run future-
dependent tests (e.g., the expert is required to announce forecasts only from period
to period), then she essentially has no reason to run a test when confronted with a
potentially strategic expert who knows how his theory will be tested. This result
holds even if Alice has unboundedly large data sets at her disposal.
There is an important contrast between Proposition 1 and the results of Dekel

and Feinberg (2006) and Olszewski and Sandroni (2007b), both of which exhibit
tests that do not reject the data-generating process and cannot be ignorantly
passed. These tests enable Alice to determine whether the expert is informed,
even though she has no prior knowledge about the data-generating process. The
critical factor for the contrast is whether Bob announces a theory or a forecast
each period. In the former papers, Alice can run a future-dependent test and use
data to discredit an uninformed expert who is aware of her test. In the present
paper, she cannot.

We equip F with the pointwise (forecast-by-forecast) convergence topology and the σ−algebra
of all Borel sets generated by this topology. (See section 8 for the details.) All tests considered
in this paper are assumed to satisfy the measurability provision.
11Note that ε in proposition 1 need not be “small.”
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5.1. An alternative perspective on proposition 1

Consider the following contract: it specifies that Bob must deliver a theory to
Alice; Alice must pay Bob for the theory at period zero; but if, in the future,
Bob’s theory is rejected (by a test T defined in advance), then Bob is punished.12

Bob’s disutility for having his theory rejected is M > 0 (called the rejection
disutility). Bob’s utility u (called the reward) of the payment for the theory is a
draw from a random ũ that has a density and support on [ul, uu], uu > ul, where
the upper-bound uu can be arbitrarily close to the lower bound ul. Bob does not
discount the future. Without a contract, Bob’s utility is zero.
Bob considers the contract and, before observing any data, must decide whether

to accept it and, if he does, which theory to announce. Alice does not know
whether Bob is informed. She wants a screening contract such that Bob, if in-
formed, accepts but, if uninformed, does not.
For simplicity, we assume that Bob, if informed, reveals the data-generating

process truthfully. (This assumption can be relaxed, as argued in Section 5.2 be-
low.) The following condition ensures that Bob, if informed, accepts the contract:
For every theory f ∈ F

ul ≥M P f(T (f)). (5.1)

The right-hand side of (5.1) is Bob’s expected rejection disutility when Bob
announces f , where f is the data-generating process. Alice does not know the
data-generating process. (It is what she hopes to learn from Bob.). But she does
know that if Bob’s reward ul satisfies (5.1) and Bob is informed, then he will
accept the contract. We say that the informed expert accepts test T whenever
condition (5.1) is satisfied.
Now assume that Bob is uninformed. Then, by definition, Bob faces uncer-

tainty. So Bob may not know the odds that any theory will be rejected. We
assume under uncertainty Bob values a contract based on a worst-case scenario.
We say that the uninformed expert accepts test T if the following condition holds:
for every reward u > ul, there exists a random generator of theories ζ such that

u ≥ sup
st∈S∞

Mζ(st). (5.2)

That is, Bob’s reward is greater than Bob’s expected rejection disutility eval-
uated for the case of having the worse possible data that may be collected in the

12Note that the idea of interpreting an empirical test as a contract appears in Olszewski and
Sandroni (2007a), although the assumptions made there differ from those imposed here.
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future.13

Proposition 10 Fix any future-independent test T. If the informed expert accepts
test T , then the uninformed expert accepts test T .

Proposition 10 is an immediate corollary of Proposition 1. Indeed, since P f(T (f)) ≤
ε := ul/M for every theory f ∈ F , there exists a random generator of theories
ζ such that ζ(st) ≤ ul/M + δ = u/M , where δ := (u − ul)/M , for every history
st ∈ S∞.
Proposition 10 expresses the idea that no matter how severe the punishment

for having a theory rejected, no matter how small the reward for delivering a
theory, no matter how large the data set the tester eventually has at her disposal
- despite all of this, the completely uninformed expert will choose to announce a
theory, provided that the test is future-independent, that the test is known, and
that the informed expert also chooses to announce a theory.
On the other hand, as shown by Dekel and Feinberg (2006) and Olszewski and

Sandroni (2007b), there are (future-dependent) tests that the informed expert
accepts and the uninformed expert does not accept. (For these tests the right-
hand side of (5.1) is close to zero for every theory, and the right-hand side of (5.2)
is close to M for every random generator of theories.)
Proposition 10 holds under the assumption that the uninformed expert eval-

uates his prospects based on a worse-case scenario. This is the most pessimistic
behavioral rule for decision under uncertainty among those axiomatized by Gilboa
and Schmeidler (1989). Like other assumptions in proposition 10, this assumption
is not meant to be realistic. Rather, it should be interpreted as an extreme case in
which our result holds, thus demonstrating that it still holds under less extreme
(but perhaps more realistic) conditions.
We conclude this section with a comment on the assumption that agents do

not discount future payoffs. Our result still holds if Bob discounts the future, but
the undiscounted scenario is more interesting. In the discounted case, Alice might
be discouraged from using large data sets because Bob may not fear rejection in
the distant future. The undiscounted case is more interesting because it shows
that even if Alice has unbounded data sets, she still cannot determine whether
Bob is informed. Hence, no exogenous constraints encourage Alice to stop testing
Bob’s theory.
It also worth pointing out that the focus of the model is not on distant future

behavior. The significant choice (i.e., which theory to announce, if any) occurs at

13Given that ũ has a density, the reward u is strictly greater than ul with probability one.
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period zero. The future matters only because the fear of future rejection is the
main deterrent for uninformed experts.

5.2. Remarks on the assumptions of proposition 1

There are three main assumptions in proposition 1: the test is unlikely to reject
the data-generating process, the test is future-independent, and Bob knows Alice’s
test. We discuss each assumption separately.

5.2.1. The test is unlikely to reject the data-generating process

We see both a conceptual and a practical way of establishing the validity of this
assumption. In Section 2.1, we emphasize the conceptual distinction between risk
and uncertainty (or between knowing and not knowing the odds). People often
prefer to know the odds, no matter what these odds might be, rather than not
know the odds.
In practice, people seem to have additional reasons for caring about learning

the odds (of processes that matter to them), even if they could learn that all finite-
histories of the same length have equal probability. In that case, they would know
that the past data are irrelevant and would not waste time and effort looking for
patterns. Take, for example, Paul Samuelson’s claim that “properly anticipated
prices fluctuate randomly.” The fact that the claim that asset prices follow a
random walk (which is, of course, not the same as a claim of equal probability)
was extensively tested empirically strongly suggests that there is practical interest
in this claim.
The assumption that the test does not reject the data-generating process can

be relaxed. In particular, the informed expert need not be truthful. It suffices
that for every theory f ∈ F , there is a theory ef ∈ F such that P f(T ( ef)) ≤ ε,
i.e., the informed expert can pass the test. This result requires a slightly more
complicated proof, which can be found in the working paper version of this paper.
Proposition 1 generalizes to the case where the permissible theories are re-

stricted to some (but not any) class. For example, it is straightforward to extend
Proposition 1 to the case where the probability of 1 (given the available data) is in
an interval [a, b], where 0 ≤ a < b ≤ 1. Assume that before any data are observed,
Bob claims to know the exact process in this class that will generate the data.
Also assume that Alice’s test is future-independent and is unlikely to reject any
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process in this class if it actually does generate the data.14 If Bob knows Alice’s
test, he can pass it even though he does not know which process generates the
data. More precisely, Bob can produce theories that are likely to pass Alice’s test,
no matter which process in this class generates the data.
It should, however, be mentioned that proposition 1 does not generalize to

the class of processes such that the probability of 1 is always bounded away from
0.5 (or any other given value in (0, 1)). So our results do not generalize to the
case where the probability of 1 is restricted to be outside an interval [a, b], where
0 < a < b < 1 This case is analyzed in Olszewski and Sandroni (2007d).

5.2.2. The test is future-independent

Future-independence is a restriction on Alice’s test which often must be imposed.
For example, this would be the case if Bob claims that he will know no earlier
than at period t the probability that 1 occurs at period t+ 1.
It follows immediately from the proof of proposition 1 that the assumption of

future-independence can be partially relaxed. It suffices that for every period m,
there is a period m0 > m such that if theory f is rejected at an m−history sm,
another theory f 0, which is equivalent to f until period m0, must also be rejected
at sm. Consider the special case that m

0 = m+ T , for some T > 0. Assume that
Bob delivers to Alice the part of his theory that allows her to calculate the odds of
outcomes up to T periods ahead. That is, contingent on the data at period r, Bob
claims that with his partial theory, Alice can accurately compute the probabilities
of future events until period r + T . Perhaps due to computational constraints
(the cause is irrelevant for our purposes), Bob claims that his partial theory does
not deliver accurate probabilities for distant future events. Then, in order to test
Bob’s claim, Alice must use a (distant) future-independent test.
If Bob claims that he has a complete understanding of the stochastic process

(including the odds of distant future events), then future-dependent tests can be
used. In this case, we do not assert that they should not.

14The definition of a future-independent test can be extended in a natural way to the case
where theories are restricted to a class. It requires that whenever a theory f (in this class) is
rejected at an (m+ 1)−history sm+1, then another theory f 0 (in this class) that makes exactly
the same predictions as f until period m must also be rejected at sm+1.
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5.2.3. Bob knows Alice’s test

The assumption that Bob observes Alice’s test before announcing his theory can
be replaced with the assumption that Bob correctly anticipates the test that
Alice will use after his theory is announced. It is also straightforward to extend
proposition 1 to the case in which Alice selects her theory at random, provided
that Bob knows (or correctly anticipates) the probabilities Alice will use to select
each test.
The assumption that Bob knows the odds Alice uses to select her test cannot

be completely discarded. Let ∓0.5 be the set of all future-independent tests that
do not reject the data-generating process with probability 0.5. In section 8, we
show that for any ζ ∈ ∆(F ),

sup
st∈S∞, T ∈ ∓0.5

ζT (st) = 1. (5.3)

So, if Bob is uninformed, he cannot simultaneously pass all future-independent
tests in ∓0.5 with strictly positive probability.15

5.3. Intuition of proposition 1

Consider the following zero-sum game between Nature and Bob: Nature’s pure
strategy is an infinite sequence of outcomes. Bob’s pure strategy is a theory. Bob’s
payoff is one if his theory is never rejected and zero otherwise. Both Nature and
Bob are allowed to randomize.
Assume that the test T does not reject the data-generating process with prob-

ability 1−ε. Then for every mixed strategy of Nature, there is a pure strategy for
Bob (to announce the theory f that coincides with Nature’s strategy) that gives
him a payoff of 1− ε or higher. So, if the conditions of Fan’s (1954) MinMax are
satisfied, there is a (mixed) strategy ζ for Bob that ensures him a payoff arbitrar-
ily close to 1− ε, no matter what strategy Nature chooses. In particular, for any
path s ∈ S∞ that Nature can select, Bob’s payoff is arbitrarily close to 1− ε.

15In Olszewski and Sandroni (2007d), Section 3.4, a zero-sum game between Alice and Bob is
considered. Bob announces a theory (perhaps at random) and Alice announces a test. Alice and
Bob properly anticipate each other’s strategy. (Alice knows that Bob is an uninformed expert.)
Bob’s payoff is one if his chosen strategy ignorantly passes Alice’s chosen test. An idea related
to the one used to demonstrate (5.3) is used to show that this game has no equilibrium.

15



The conditions of Fan’s (1954) MinMax are satisfied if Bob’s strategy space
is compact and Nature’s payoff function is lower semi-continuous with respect to
Bob’s strategy. In the existing literature, Bob’s (mixed) strategy space is typically
equipped in the weak−* topology. Although this topology makes Bob’s strategy
space compact, Nature’s payoff function now need not be lower semi-continuous
with respect to Bob’s strategy, unless we impose additional requirements (other
than future-independence) on the test T . Other topologies make Nature’s payoff
function lower semi-continuous with respect to Bob’s strategy, but Bob’s strategy
space is then not compact.
We overcome this difficulty by restricting the set of Bob’s pure strategies to

theories that make, in each period t, a forecast from a finite set of forecasts
Rt ⊂ [0, 1]. This pure strategy space is compact, if endowed in the product
of discrete topologies. As a result, Bob’s mixed strategy space (the set of all
probability distributions over pure strategies) is compact as well, if endowed with
the weak−* topology. The assumption that the test T is future-independent
guarantees that for every pure strategy of Nature, the set of Bob’s pure strategies
rejected by T is open. By a standard argument, this implies that Nature’s payoff
function is lower semi-continuous with respect to Bob’s strategy.
If the set of Bob’s pure strategies is restricted arbitrarily, then we may no longer

have the property that for every mixed strategy of Nature, there is a strategy for
Bob that gives him a payoff of 1 − ε or higher. However, our key lemma, i.e.,
lemma 2 from section 8, shows that this property is preserved for properly chosen
finite sets of forecasts Rt ⊂ [0, 1] which Bob is allowed to make in period t.

5.4. Future Research

Proposition 1 is an impossibility result, which provides motivation for investigat-
ing ways to get around it. One route is to consider future-dependent tests. As
mentioned in section 5.1, there are limits to their use, but a deeper analysis of
future-dependent tests may yield important insights.
The results obtained so far show that in testing theories, it is important to

know more than the data and the theory’s predictions along the actual history.
It is also important to know the theory’s distant-future predictions and to re-
ject theories partly based on distant-future predictions at a time when no data
are available for those predictions. We hope that additional research will reveal
the proper way in which distant-future predictions should be used. This could
be achieved by observing how future-dependent tests that cannot be ignorantly
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passed classify theories according to their distant-future predictions.
A second route around proposition 1 would be to restrict theories to a class

C. This comes with a cost because potentially correct theories are now rejected
by definition. However, a result showing that a test that cannot be manipulated
when theories are restricted - and simultaneously showing that the test can be
manipulated when the theories are unrestricted - might deliver a better under-
standing of how the imposition of some structure of permissible theories may help
in testing them empirically.
A third route would be to impose computational bounds on the expert’s ability

to either randomize or produce theories. We refer the reader to Fortnow and Vohra
(2006) for results in this direction. Finally, one might consider the case in which
there are multiple experts. Here, we refer the reader to Al-Najjar and Weinstein
(2007) and to Feinberg and Stewart (2007). We also refer the reader to a recent
paper by Shmaya (2008) that provides a result related to proposition 1 in the
single expert setting, for the case in which the tester has infinitely large data sets
at her disposal.

6. Empirical tests

The purpose of this section is to show that the assumptions of proposition 1 are
satisfied by many statistical models that do not reject theories up front. We do
not analyze every statistical model, but provide a number of simple examples.
Asymptotic tests work as if Alice could decide whether to reject Bob’s theory

at infinity. Asymptotic tests can be approximated by tests that reject theories in
finite time (as required in Section 3). We now show an example of an asymptotic
test that can be approximated by regular tests.
Fix δ ∈ (0, 0.5). Given a theory f, let fδ be an alternative theory defined by

fδ(st) =

⎧⎨⎩ f(st) + δ if f(st) ≤ 0/5;

fδ(st)− δ if f(st) > 0/5.

A straightforward martingale argument shows that

P fδ(st)

P f(st)
−→
t→∞

0 P f − almost surely.

So, under the null hypothesis (that P f is the data-generating process), the
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likelihood of P fδ becomes much smaller than the likelihood of P f .16 The likelihood
test rejects a theory f on the set R(f) of infinite histories such that the likelihood
ratio

P fδ(st)

P f(st)

does not approach zero.
Say that a test T is harder than the likelihood test if R(f) ⊆ T (f).17 Rejection

by the likelihood test thus implies rejection by the test T .

Proposition 2. Given ε > 0, there exists a regular ε−test T that is harder than
the likelihood test.

By proposition 1, any regular test T can be ignorantly passed with probability
near 1− ε. So, by proposition 2, the likelihood test can be ignorantly passed with
arbitrarily high probability. It is not obvious whether the theory f or the alter-
native theory fδ eventually produces a higher likelihood. However, a false expert
can select a theory at random such that, no matter which data are realized, it
will in the future (with arbitrarily high chance) generate a much higher likelihood
than the alternative theory.
The unexpected result is proposition 1. Proposition 2 is a natural finding. An

intuition for proposition 2 is as follows: P f−almost surely, the likelihood ratio
approaches zero. Hence, with arbitrarily high probability, the likelihood ratio
must remain small if the string of data is long enough. Let T be the test that
rejects the theory f whenever the likelihood ratio is not small and the string of
data is long. By construction, the test T is harder than the likelihood test and
with high probability does not reject the truth. Moreover, the test T is future-
independent because the likelihood ratio depends only on the forecasts made along
the observed history.
The basic idea in proposition 2 is not limited to the likelihood test. Other

tests can also be associated with harder regular tests. Consider calibration tests.
Let It be an indicator function that depends on the data up to period t− 1 (i.e.,
it depends on st) and on the predictions made up to period t − 1 including the
prediction made at period t− 1 for the outcome at period t (i.e., f(sk), sk = st

16The alternative hypothesis need not be a single theory. This assumption is made for sim-
plicity only.
17Formally, T (f) comprises finite histories, so in the inclusion R(f) ⊂ T (f), as well as in

several other places, we identify T (f) with the set of all infinite extensions of histories from
T (f).
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| k, k ≤ t). For example, It can be equal to 1 if f(st) ∈ [ jn ,
j+1
n
] for some j < n

and zero otherwise. Alternatively, It can be equal to 1 if t is even and 0 if t is
odd. Consider an arbitrary countable collection Ii = (Ii0, ..., Iit , ...), i = 1, 2, ..., of
indicator functions. The calibration test (determined by this collection) requires
that for all i,

m−1X
t=0

[f(st)− st]Iit

m−1X
t=0

Iit

−→ 0 whenever
m−1X
t=0

Iit −→
m→∞

∞; (6.1)

where sm = (s
0, ..., sm−1).

These calibration tests require a match between average forecasts and empirical
frequencies on specific subsequences. These subsequences could be, as in Foster
and Vohra (1998), periods in which the forecasts are near p ∈ [0, 1] . Then the
test requires that the empirical frequencies of 1 be close to p in the periods that
follow a forecast of 1 that was close to p. Alternatively, these subsequences could
also be, as in Lehrer (2001), periods in which a certain outcome was observed. In
general, the calibration test rejects a theory f if (6.1) does not hold.

Proposition 3. Given ε > 0, there exists a regular ε−test T 0 that is harder than
the calibration test.

The intuition of proposition 3 is the same as that of proposition 2. A sophis-
ticated law of large numbers shows that, P f−almost surely, the calibration scores
in (6.1) eventually approach zero. Hence, with arbitrarily high probability, these
calibration scores must remain small if the string of data is long enough. Let T 0

be the test that rejects the theory f whenever the calibration scores are not small
and the string of data is long. By construction, the test T 0 is harder than the
calibration test and with high probability does not reject the truth. Moreover,
the test T 0 is future-independent because the calibration scores depend only on
the forecasts made along the observed history.
By propositions 1 and 3, the calibration tests can be ignorantly passed with

arbitrarily high probability. Hence, a false expert can produce forecasts that, when
the data is eventually revealed, will prove to be calibrated. This result combines
Foster and Vohra’s (1998) result, where the indicator function depends only on
the forecasts, and Lehrer’s (2001) result, where the indicator function depends
only on the data.
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7. Conclusion

Consider the following three basic properties of empirical tests. 1) The test is
unlikely to reject the data-generating process. 2) The test is future-independent.
3) The test cannot be ignorantly passed with arbitrarily high probability.
Several statistical tests, such as the likelihood and calibration tests, are future-

independent and unlikely to reject the data-generating process. The tests devel-
oped by Dekel and Feinberg (2006) and Olszewski and Sandroni (2007b) are un-
likely to reject the data-generating process and cannot be ignorantly passed. The
trivial test that rejects all theories on all data sets is future-independent and can-
not be ignorantly passed. Consequently, a test can satisfy any pair of properties
1, 2, and 3. However, no test satisfies properties 1, 2, and 3 simultaneously. It
follows that whether a tester can effectively use data to discredit a potentially
strategic expert depends crucially on whether the expert announces an entire the-
ory of the stochastic process or a forecast each period. In the former case, the
tester can use data to discredit a potentially uninformed expert. In the latter
case, however, she cannot as long as the expert knows how he will be tested.

8. Proofs

We use the following terminology: Let Ω = {0, 1}∞ be the set of all paths, i.e.,
infinite histories. Given a path s, let s | t be the first t coordinates of s. A cylinder
with base on st ∈ {0, 1}t is the set C(st) ⊂ {0, 1}∞ of all infinite extensions of
st. We endow Ω with the topology that comprises unions of cylinders with finite
base (or, equivalently, the product of discrete topologies on {0, 1}). Let =t be
the algebra that consists of all finite unions of cylinders with base on {0, 1}t. It
is convenient to define =0 as the trivial σ−algebra consisting of Ω and the empty
set. Denote by N the set of natural numbers. Let = be the σ−algebra generated
by the algebra =0 :=

S
t∈N

=t, i.e., = is the smallest σ−algebra which contains =0.
More generally, equip every compact metric space X with the σ−algebra of

Borel sets (i.e., the smallest σ−algebra which contains all open sets). Note that =
is the σ−algebra of Borel subsets of Ω equipped with the topology that comprises
unions of cylinders with finite base. Let∆(X) be the set of all probability measures
on X. Equip ∆(X) with the weak−* topology.
We endow the set of all theories F with the product of discrete topologies.

More precisely, in this topology, an open set that contains a theory f must also
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contain all theories g such that g(st) = f(st) for some finite set of histories st ∈
{s0} ∪ S∞.
We will use the following two lemmas. Let X be a metric space. Recall that

a function u : X → R is lower semi-continuous at an x ∈ X if for every sequence
(xn)

∞
n=1 converging to x:

∀ε>0 ∃n ∀n≥n u(xn) > u(x)− ε.

The function u is lower semi-continuous if it is lower semi-continuous at every
x ∈ X.
As in the main text, we sometimes identify T (f) with the set of all infinite

extensions of histories from T (f).

Lemma 1. Let U ⊂ X be an open subset of a compact metric space X. The
function H : ∆(X)→ [0, 1] defined by

H(P ) = P (U)

is lower semi-continuous.

Proof: See Dudley (1989), Theorem 11.1.1(b).¥

It is well-known that for every theory f ∈ F , (4.1) determines uniquely a
measure P f ∈ ∆(Ω). We refer to P f as the probability measure associated with
the theory f ∈ F .

Definition 5. A set F 0 ⊆ F is δ−supdense in F, δ > 0, if for every theory g ∈ F
there exists a theory f ∈ F 0 such that

sup
A∈=

¯̄
P f(A)− P g(A)

¯̄
< δ.

Let γ be a sequence of positive numbers (γt)
∞
t=0. Given γ, let R be a sequence

of finite sets (Rt)
∞
t=0 such that Rt ⊂ (0, 1), t ∈ N, and

∀x∈[0,1] ∃r∈Rt |x− r| < γt.

Given R, let F be a subset of F defined by

F =
©
f ∈ F : ∀t∈N ∀st∈{0,1}t (or st=s0 if t=0) f(st) ∈ Rt

ª
.
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Lemma 2. For every δ > 0 there exists a sequence of positive numbers γ such
that F is δ−subdense in F .

Proof: For now, consider an arbitrary γ. Given g ∈ F , take f ∈ F such that

∀t∈N ∀st∈{0,1}t (or st=s0 if t=0) |f(st)− g(st)| < γt.

We shall show that there exists a sequence (γt)
∞
t=1 such that¯̄

P f(C(sr))− P g(C(sr))
¯̄
<

δ

2
(8.1)

for every cylinder C(sr). Later, we generalize this statement to all open sets U .
It will, however, be easier to follow the general argument when one sees it first in
the simpler case in which U is a cylinder.
Let

hf(st) = f(st)
st(1− f(st))

1−st

and
hg(st) = g(st)

st(1− g(st))
1−st.

Then¯̄
P f(C(sr))− P g(C(sr))

¯̄
=
¯̄
hf(s0) · ... · hf(sr−1)− hg(s0) · ... · hg(sr−1)

¯̄
,

and ¯̄
hf(s0) · ... · hf(sr−1)− hg(s0) · ... · hg(sr−1)

¯̄
≤

≤ (hg(s0) + γ1) · ... ·
¡
hg(sr−1) + γr−1

¢
− hg(s0) · ... · hg(sr−1) ≤

≤
"
r−1Y
t=0

(1 + γt)− 1
#
≤
" ∞Y
t=0

(1 + γt)− 1
#
,

where sk = sr | k for k < r. The first inequality follows from the fact that

|(a0 + b0) · ... · (ar−1 + br−1)− a0 · ... · ar−1| ≤ (a0+|b0|)·...·(ar+|br−1|)−a0·...·ar−1
(8.2)

for any sets of numbers a0, ..., ar−1 > 0 and b0, ..., br−1. Apply (8.2) to ak = hg(sk)
and bk = hf(sk)− hg(sk), k = 0, ..., r − 1. The second inequality follows from the
fact that the function

(a0 + b0) · ... · (ar−1 + br−1)− a0 · ... · ar−1
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is increasing in a0, ..., ar−1 for any sets of positive numbers a0, ..., ar−1 and b0, ..., br−1.
So, (8.1) follows if we take a sequence (γt)

∞
t=0 such that

∞Y
t=0

(1 + γt) < 1 +
δ

2
.

We shall now show that a slightly stronger condition,

∞Y
t=0

(1 + 2γt) < 1 +
δ

4
,

guarantees that
¯̄
P f(U)− P g(U)

¯̄
< δ/2 for every open set (or union of cylinders)

U , and not only for every single cylinder.
Indeed, suppose first that there is an n such that U is a union of cylinders with

base on st with t ≤ n. Since every cylinder with base on st can be represented
as the union of two cylinders with base on s0t+1 = (st, 0) and s00t+1 = (st, 1),
respectively, the set U is the union of a family of cylinders C with base on histories
of length n. Thus,¯̄

P f(U)− P g(U)
¯̄
≤

X
C(sn)∈C

¯̄
P f(C(sm))− P g(C(sm))

¯̄

≤
X

C(sn)∈C

£
(hg(s0) + γ0) · ... ·

¡
hg(sn−1) + γn−1

¢
− hg(s0) · ... · hg(sn−1)

¤
≤

≤
X

sn∈{0,1}n

£
(hg(s0) + γ0) · ... ·

¡
hg(sn−1) + γn−1

¢
− hg(s0) · ... · hg(sn−1)

¤
=

=
X

sn∈{0,1}n
(hg(s0) + γ0) · ... ·

¡
hg(sn−1) + γn−1

¢
− 1 =

=
X

sn−1∈{0,1}n−1
(hg(0) + γ0) · (hg(0, s0) + γ1) · ... ·

¡
hg(0, sn−2) + γn−1

¢
+

+
X

sn−1∈{0,1}n−1
(hg(1) + γ0) · (hg(1, s0) + γ1) · ... ·

¡
hg(1, sn−2) + γn−1

¢
− 1 ≤

≤ [hg(0) + γ0 + hg(1) + γ0] ·

23



·max
½ P

sn−1∈{0,1}n−1 (h
g(0, s0) + γ1) · ... ·

¡
hg(0, sn−2) + γn−1

¢
,P

sn−1∈{0,1}n−1 (h
g(1, s0) + γ1) · ... ·

¡
hg(1, sn−2) + γn−1

¢ ¾− 1 =
= [1 + 2γ0]·

·max
½ P

sn−1∈{0,1}n−1 (h
g(0, s0) + γ1) · ... ·

¡
hg(0, sn−2) + γn−1

¢
,P

sn−1∈{0,1}n−1 (h
g(1, s0) + γ1) · ... ·

¡
hg(1, sn−2) + γn−1

¢ ¾− 1.
We can estimate each sum in this last display in a manner similar to the one we
have used to estimate

P
sn∈{0,1}n (h

g(s0) + γ0) · ... ·
¡
hg(sn−1) + γn−1

¢
; we continue

this way to conclude that¯̄
P f(U)− P g(U)

¯̄
≤
"
n−1Y
t=0

(1 + 2γt)− 1
#
<

δ

4
.

Now, suppose that U is the union of an arbitrary family of cylinders C. Rep-
resent U as

U =
∞[
n=1

Un

where Un is the union of cylinders C ∈ C with base on st such that t ≤ n.
Since the sequence {Un : n = 1, 2, ...} is ascending,

¯̄
P f(U)− P f(Un)

¯̄
< δ/8 and

|P g(Un)− P g(U)| < δ/8 for large enough n. Thus,¯̄
P f(U)− P g(U)

¯̄
≤
¯̄
P f(U)− P f(Un)

¯̄
+

+
¯̄
P f(Un)− P g(Un)

¯̄
+ |P g(Un)− P g(U)| < δ/2.

Finally, observe that
¯̄
P f(A)− P g(A)

¯̄
< δ for every A ∈ =. Indeed, take a set

U ⊃ A, which is a union of cylinders, such that
¯̄
P f(U)− P f(A)

¯̄
, |P g(U)− P g(A)|

< δ/4. Since
¯̄
P f(U)− P g(U)

¯̄
< δ/2,¯̄

P f(A)− P g(A)
¯̄
≤
¯̄
P f(U)− P f(A)

¯̄
+

+
¯̄
P f(U)− P g(U)

¯̄
+ |P g(U)− P g(A)| < δ.

¥

8.1. Proof of Proposition 1

Theorem 8.1. (Fan (1953)) Let X be a compact Hausdorff space, which is a
convex subset of a linear space; and let Y be a convex subset of linear space (not
necessarily topologized).18 Let G be a real-valued function on X × Y such that for

18Fan allows for the case in which X and Y may not be subsets of linear spaces. We, however,
apply his theorem only to subsets of linear spaces.
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every y ∈ Y , G(x, y) is lower semi-continuous with respect to x. If G is also
convex with respect to x and concave with respect to y (for every y ∈ Y and for
every x ∈ X, respectively), then

min
x∈X

sup
y∈Y

G(x, y) = sup
y∈Y

min
x∈X

G(x, y).

Let X = ∆(F ) be the space of all random generators of theories f from the
set F . Let Y be the subset of ∆(Ω) of all probability distributions over Ω with
finite support. An element P of Y can be described by a finite sequence of paths
{ω1, ..., ωn} and positive weights {π1, ..., πn} that add up to one (i.e., P selects ωi

with probability πi, i = 1, ..., n). Let the function G : X × Y → R be defined by

G(ζ, P ) :=
nX
i=1

πiζ
¡©
f ∈ F : ∃t∈N ωi

t ∈ T (f)
ª¢
. (8.3)

That is, G(ζ, P ) is the probability that the theory announced by Bob will ulti-
mately be rejected, assuming that Bob uses the random generator of theories ζ,
and Nature selects data sets according to P .

Lemma 3. G is a lower semi-continuous function of ζ.

Proof: Observe first that sets {f ∈ F : ωi
t ∈ T (f)} are open. Indeed, since

the test T is future-independent, predictions made by a theory f up to period t
determine whether a history ωi

t belongs to T (f). In addition, if any set U has the
property that predictions made by a theory f up to a period t determine whether
f ∈ U , then the set U is a open in F , treated as a subspace of F (i.e., endowed
with the product of discrete topologies).19 Therefore, the set©

f ∈ F : ∃t∈N ωi
t ∈ T (f)

ª
=
[
t∈N
{f ∈ F : ωi

t ∈ T (f)}

is also open, as a union of open sets, and by lemma 1,

H(ζ, ω) := ζ
¡©
f ∈ F : ∃t∈N ωi

t ∈ T (f)
ª¢

19This is the only place in the proof where we refer to the assumption that the test T is future-
independent. However, this assumption is essential here. If a test T is not future-independent,
then the set {f ∈ F : ωit ∈ T (f)} may not be open.
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is a lower semi-continuous function of ζ. Thus, G(ζ, P ) is a lower semi-continuous
function of ζ as a weighted average of lower semi-continuous functions.¥

Proof of Proposition 1: We first check that the conditions of Fan’s theorem
are satisfied for the function G. By lemma 3, G(ζ, P ) is a lower semi-continuous
function of ζ. By definition, G is linear on X and Y , and so it is convex on X
and concave on Y . By the Riesz and Banach-Alaoglu theorems, X is a compact
space in weak−* topology; it is a metric space, and therefore a Hausdorff space
(see, for example, Rudin (1973), theorem 3.17).
Thus, by Fan’s theorem,

min
ζ∈∆(F )

sup
P∈Y

G(ζ, P ) = sup
P∈Y

min
ζ∈∆(F )

G(ζ, P ).

Notice that the right-hand side of this equality falls below ε+ δ, as the test T is
assumed not to reject the data-generating process with probability 1− ε. Indeed,
for a given P ∈ Y , there exists a theory g ∈ F such that |P (A)− P g(A)| < δ for
every set A ∈ =. This follows from lemma 2. Let ξ be a random generator of
theories such that ξ({g}) = 1. Then

G(ξ, P ) = P (T (g)) ≤ P g(T (g)) + |P (T (g))− P g(T (g))| < ε+ δ.

Therefore, the left-hand side does not exceed ε+ δ, which yields the existence
of a random generator of theories ζ ∈ ∆(F ) such that

G(ζ, P ) ≤ ε+ δ

for every P ∈ Y . Taking, for any ω ∈ Ω, the measure P such that P ({ω}) = 1,
we obtain:

ζ({f : ∃t∈N ωt ∈ T (f)}) ≤ ε+ δ.

¥

8.2. Proof of (5.3)

Take any random generator of theories ζ. Given a path s ∈ Ω, let Ts be the test
such that the rejection set Ts(f) of any theory f is equal to the largest cylinder
C(st) such that st = s | t and P (C(st)) < 0.5. (Assume that Ts(f) = ∅ if
P (C(st)) ≥ 0.5 for every t.)
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By construction, Ts does not reject the data-generating process with probabil-
ity 0.5, and Ts is future-independent for every s ∈ Ω.
Given a pair of different paths (s, s0), let D(s,s0) be the set of all theories such

that P f assigns probability 0.5 to s and to s0. There are at most countably many
sets D(s,s0) such that ζ

¡
D(s,s0)

¢
> 0. Let Ω̄ be the (uncountable) set of paths such

that if s ∈ Ω̄, s0 ∈ Ω̄, s 6= s0, then ζ
¡
D(s,s0)

¢
= 0. Given a path s ∈ Ω̄, let Ds ⊆ F

be the set of theories f such that P f assigns to {s} a probability greater than
or equal to 0.5. By definition, ζ (Ds ∪Ds0) = ζ (Ds) + ζ(Ds0) whenever s 6= s0.
So, ζ (Ds) > 0 for at most countably many paths. Let s∗ ∈ Ω be a path such
that ζ (Ds∗) = 0. Let Dt,s∗ be the set of theories f such that P (C(s

∗
t )) ≥ 0.5,

s∗t = s∗ | t.
Given that P (C(s∗t )) ↓ P ({s∗}), as t goes to infinity, it follows that Dt,s∗ ↓ Ds∗

as t goes to infinity. Hence, ζ(Dt,s∗) ↓ ζ(Ds∗) = 0 as t goes to infinity. By
definition, ζTs∗ (s

∗
t ) = ζ(F −Dt,s∗). So, ζTs∗ (s

∗
t ) goes to 1 as t goes to infinity.¥

8.3. Proof of propositions 2 and 3

The proofs of propositions 2 and 3 use the following three lemmas.

Lemma 4. Let ak, bk, k = 1, ..., L, L ∈ N , be nonnegative numbers such that
LP

k=1

bk 6
LP

k=1

ak = 1.
20 Then:

1.
LP

k=1

ak log
³
bk
ak

´
6 0.

2.
LP

k=1

ak log
³
bk
ak

´
= 0 if and only if ak = bk, k = 1, ..., L.

3. For every ε > 0, there exists γ > 0 such that if
LP

k=1

ak log
³
bk
ak

´
> −γ, then

max
k=1,...,L

|ak − bk| 6 ε.

20We apply this lemma only to positive numbers bk; some of the numbers ak may be equal to
zero, and then we assume that

ak log

µ
bk
ak

¶
= lim

a
0
k→0

a
0

k log

µ
bk
a
0
k

¶
= 0.

.
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Proof: See Smorodinsky (1971), lemma 4.5, page 20; and Lehrer and Smorodin-
sky (1996), lemma 2.¥

Let EP and V ARP be the expectation and variance operator associated with
some P ∈ ∆(Ω). Let (Xi)

∞
i=1 be a sequence of random variables such that Xi is

=i−measurable and its expectation conditional on=i−1 is zero (i.e., E
P {Xi | =i−1} =

0). Moreover, let the sequence of conditional variances V ARP {Xi | =i−1} be uni-
formly bounded (i.e., V ARP {Xi | =i−1} < M for some M > 0). Let Ii be a
=i−1−measurable function that takes values 0 or 1. We define

Sm :=
mX
i=0

XiIi and Tm :=
mX
i=0

Ii. (8.4)

Lemma 5. For every k ∈ N and δ > 0,

P

µ½
s ∈ Ω : max

m s.t. 1 ≤ Tm(s) ≤ k
|Sm(s)| > δ

¾¶
≤ kM

δ2
.

Proof: For every l ∈ {1, .., k}, let yl : Ω −→ N
[
{∞} be the random variable

such that Tyl(s)(s) = l and Ty(s) < l for every y < yl(s), y ∈ N. That is, consider
the series of zeroes and ones given by {I0(s), I1(s), ...}. Then yl(s) indicates the
stage i in which Ii(s) = 1 for the l−th time. If the series {I0(s),I1(s), ...} contains
strictly less than l ones, then yl(s) is arbitrarily defined as ∞.

Let ϑi = XiIi; ξl = ϑyl ; X∞ := 0 and S∗n :=
nX
l=1

ξl.

For all realizations (ẏ1, ...., ẏl) of (y1, ...., yl), ẏl > ẏi whenever i < l and ẏi 6=∞.
Thus,

EP
©
ξl | ξ1, ..., ξl−1, (y1, ...., yl) = (ẏ1, ...., ẏl)

ª
=

EP {ϑẏl | ϑẏi , i = 1, ..., l − 1, ẏi 6=∞, (y1, ...., yl) = (ẏ1, ...., ẏl)} = 0,
where the last equality holds becauseEP {ϑẏl | =ẏl−1} = 0 (Iẏl−1 is=ẏl−1−measurable
and EP {Xẏl | =ẏl−1} = 0). In addition, ϑẏi is =ẏl−1−measurable for i = 1, ..., l−1,
and (yi, ...., yl) = (ẏ1, ...., ẏl) is also in =ẏl−1. Thus,

EP
©
ξl | ξ1, ..., ξl−1

ª
= 0. (8.5)
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By Kolmogorov’s inequality (see Shiryaev (1996), Chapter IV, §2),

P

µ½
s ∈ Ω : max

n s.t. 1 ≤ n ≤ k
|S∗n(s)| > δ

¾¶
≤ V ar(S∗k)

δ2
. (8.6)

(Shiryaev (1996) states (8.6) for independent random variables, but the proof
requires only (8.5). Now, V ar(ξl | yl = ẏl, ẏl 6= ∞) ≤ V ar(Xẏl | yl = ẏl,
ẏl 6= ∞) ≤ M , where the last inequality holds because yl = ẏl belongs to =ẏl−1.
So, V ar(ξl) ≤ M. This and (8.5) give

V ar(S∗k) ≤ kM . (8.7)

Finally,

½
s ∈ Ω : max

m s.t. 1 ≤ Tm(s) ≤ k
|Sm(s)| > δ

¾
⊆
½
s ∈ Ω : max

n s.t. 1 ≤ n ≤ k
|S∗n(s)| > δ

¾
.

This inclusion holds because if Tm(s) ≤ k, then Sm(s) = S∗n(s) for some n ≤
k. The conclusion now follows from (8.6) and (8.7).¥

Given the definitions in (8.4), we define Ym := Sm
Tm if Tm 6= 0 (and Ym := 0

whenever Tm = 0).

Lemma 6. For every ε0 > 0 and j ∈ N , there exists m̄(j, ε0) ∈ N such that

P

µ½
s ∈ Ω : ∀m such that Tm(s) ≥ m̄(j,ε0) |Ym(s)| ≤

1

j

¾¶
> 1− ε0.

Proof: Let Mn := max
m such that 2n<Tm≤2n+1

Ym.We assume that Mn = 0 whenever

no m satisfies 2n < Tm ≤ 2n+1. Then,

P

µ½
s ∈ Ω :Mn(s) >

1

j

¾¶
≤ P

µ½
s ∈ Ω : max

m such that 2n<Tm≤2n+1
|Sm(s)| >

1

j
2n
¾¶

≤ P

µ½
s ∈ Ω : max

m such that 1≤Tm≤2n+1
|Sm(s)| >

1

j
2n
¾¶
≤ 2Mj2

2n

4n
= 2Mj2

1

2n
.

(The last inequality follows from lemma 5.) Therefore,

∞X
n=m∗

P

µ½
s ∈ Ω :Mn(s) >

1

j

¾¶
≤ 2Mj2

∞X
n=m∗

1

2n
< ε0
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(for a sufficiently large m∗).
Let m̄(j, ε0) = 2m

∗
for this sufficiently large m∗. By definition,

Ω−
½
s ∈ Ω : ∀m such that Tm≥m̄(j,ε0) |Ym(s)| ≤

1

j

¾
⊆

∞[
n=m∗

½
s ∈ Ω :Mn(s) >

1

j

¾
.

Hence,

P

µ½
s ∈ Ω : ∀m such that Tm≥m̄(j,ε0) |Ym(s)| ≤

1

j

¾¶
> 1− ε0.

¥

Remark 1. The quantity m̄(j, ε0) obtained in Lemma 6 depends on M but is
independent of the theory P . This feature of Lemma 6 is used to ensure that the
tests constructed below are future-independent.

Proof of Proposition 2: Let

Zt(s) = log

µ
hfδ(st)

hf(st)

¶
, st = s | t,

where
hf(st) = f(st)

st(1− f(st))
1−st

and
hfδ(st) = fδ(st)

st(1− fδ(st))
1−st.

Then, for some η > 0 and for some M > 0,

EP f {Zt | =t−1} < −η and V ARP f {Zt | =t−1} < M.

The first inequality (on conditional expectation) follows directly from assertion 3
in lemma 4. The second inequality (on conditional variance) follows directly from
the fact that hfδ(st) ∈ [δ, 1−δ] and from the fact that the functions −plog(p) and
p (log(p))2 are bounded on [0, 1].
Let Xi = Zi − EP f {Zi | =i−1}. Let j ∈ N be a natural number such that

1
j
< η

4
. Let m̄(j, ε) be defined as in lemma 6 (in the special case that Ii ≡ 1 for

i = 1, ...,m and, hence, Tm = m). The test T is defined by

C(sm) ⊆ T (f) if
mX
k=0

Zk(s) > −(m+ 1)
η

2
whenever m ≥ m̄(j, ε) and sm = s | m.
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Note that(
s ∈ Ω : ∀m≥m̄(j,ε)

¯̄̄̄
¯ 1

m+ 1

mX
k=0

³
Zk(s)− EP f {Zk | =k−1} (s)

´¯̄̄̄¯ ≤ 1j
)
⊆ Ω−T (f)

because
1

m+ 1

mX
k=0

Zk(s) ≤
1

j
− η < −η

2

implies
mX
k=0

Zk(s) < −(m+ 1)
η

2
.

By lemma 6,
P f ((T (f))c) > 1− ε.

Hence, the test T does not reject the truth with probability 1−ε. By construc-
tion, the test T is future-independent. (See remark 1; note that whether the test
T rejects a theory at st depends only on the forecasts f(sk), sk = st | k, k < t.)
Finally, observe that

tX
k=0

Zk(s) = log

µ
P fδ(st)

P f(st)

¶
, st = s | t.

Hence, if s /∈ T (f), then

log

µ
P fδ(st)

P f(st)

¶
−→
t→∞
−∞,

which implies that s /∈ R(f).¥

Proof of Proposition 3: Let

X i
t(s) = [f(st)− st)]Iit , st = s | t,

and

Si
m :=

mX
t=0

Xi
t ; T i

m =
mX
t=0

Iit and Y i
m :=

Si
m

T i
m

.
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Now, let εj,i, (j, i) ∈ N2 be such that εj,i > 0 and

∞X
i=1

∞X
j=1

εj,i < ε.

Given that EPf {X i
t | =t−1} = 0 and V ARP {X i

t | =i−1} are uniformly bounded,
let m̄(j, εj,k) be defined as in lemma 6. The test T

0 is defined by

C(sm) ⊆ T 0(f) if
¯̄
Y i
m(s)

¯̄
>
1

j
and T i

m(s) ≥ m̄(j, εj,i).

By lemma 6,

∞X
i=1

∞X
j=1

P f

µ½
s ∈ Ω :

¯̄
Y i
m(s)

¯̄
>
1

j
for some m s.t. T i

m(s) ≥ m̄(j, εj,i)

¾¶
< ε.

As a result,
P f
¡
(T 0(f))

c¢ ≥ 1− ε.

Hence, T 0 does not reject the truth with probability 1− ε. Moreover, notice that
s /∈ T 0(f) implies that¯̄

Y i
m(s)

¯̄
≤ 1

j
for all m such that T i

m(s) ≥ m̄(j, εj,i) and (j, i) ∈ N2.

So, for all i ∈ N, |Y i
m(s)| −→ 0 whenever T i

m(s) −→
m→∞

∞. By construction, the test

T 0 is future-independent (see remark 1).¥
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