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Abstract

This paper studies the identification of a simultaneous equation model where the variable of interest

is a duration measure. It proposes a game theoretic model in which durations are determined by

strategic agents. In the absence of strategic motives, the model delivers a version of the generalized

accelerated failure time model. In its most general form, the system resembles a classical simul-

taneous equation model in which endogenous variables interact with observable and unobservable

exogenous components to characterize a certain economic environment. In this paper, the endoge-

nous variables are the individually chosen equilibrium durations. Even though a unique solution to

the game is not always attainable in this context, the structural elements of the economic system

are shown to be semiparametrically point identified. We also present a brief discussion of estimation

ideas and a set of simulation studies on the model.
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1 Introduction

This paper investigates the identification of a simultaneous equation model where the

variables of interest are a duration measure. We present a game theoretic setting in

which spells are determined by multiple optimizing agents in a strategic way. As a

special case, our proposed structure delivers the familiar proportional hazard model.

In a more general setting nonetheless, the system resembles a classical simultaneous

equation model in which endogenous variables interact with observable and unobserv-

able exogenous components to characterize a certain economic environment. In our

case, the endogenous variables are the individually chosen equilibrium durations. In

this context, a unique solution to the game is not always attainable. In spite of that,

the structural elements of the economic system are shown to be semiparametrically

point identified. We also present a set of estimation ideas and apply them to a specific

application. The results presented here have connections to the literatures on simul-

taneous equations and statistical duration models as well as to the recent research on

incomplete econometric models that result from structural (game theoretic) economic

models. It also adds to the research on time-varying explanatory variables in dura-

tion models. In that literature the time varying explanatory variable is considered

to be exogenous. One can think of the contribution of this paper as providing one

framework that allows it to be endogenous.

One frequently observes situations in which two or more durations interact

with each other. Park and Smith (2006), for instance, cite circumstances in which

late rushes in market entry occur as some pioneer firm creates a market for a new

service or good. In our model, the decision by the pioneer is understood as having

an impact in the attractiveness of the market as seen by other potential entrants. In

another related example, Fudenberg and Tirole (1985) examine technology adoption

by a certain set of players. The adoption time by one agent affects the preferred timing

chosen by the other player in possibly many ways. Under certain circumstances, a

“diffusion” equilibrium arises, in which players adopt the new technology sequentially.

For other parametric configurations, concomitant adoption occurs and there are many

equilibrium times at which this occurs. Our model allows for similar results where

sequential timing choices arise under some realizations of our game and concurrent

spells occur as multiple equilibria for other realizations.

Many other illustrations involve some manifestation of peer effects. In de Paula

(2006), for example, soldiers in the Union Army during the American Civil War

tended to desert in groups. Mass desertion could be thought as lowering the costs of
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desertion, direct and indirect, as well as reducing the military efficiency of a company.

Another example involves the decision by adolescents to first consume alcohol, drugs

or cigarettes or to drop out of high school. In this case, the timing chosen by one

individual would have, for potentially many reasons, an effect on the decisions of

others in a given reference group.

As pointed out before, these illustrations typically display concurrent timing

decisions with positive probability. From a statistical viewpoint and considering only

two individuals, one might specify a reduced form model for the conditional distribu-

tions as

P(Ti ≤ t|Tj = tj) =

{
Fi(t)(1− πi(tj)) if t < tj

Fi(t)(1− πi(tj)) + πi(tj) otherwise.

where i 6= j, Fi(·) is a continuous cdf and πi(·) is between 0 and 1. In other words,

conditional on Tj, Ti has a continuous distribution, except that there is a point mass

at Tj. In biology, one can motivate such a distribution by a model in which tree

types of events occur. The first two “fatal events” lead to terminations of the spells

for individuals 1 and 2, respectively, and the third will lead both spells to terminate.

These “shock” models, for which an early reference is Marshall and OlkinMarshall

and Olkin (1967), have been used in industrial reliability and biomedical statistical

applications (see for example Klein, Keiding, and Kamby (1989)). In these models

the relationship between the durations is driven by the unobservables, but no direct

relationship exists between them. This brings them closer to a “seemingly unrelated

regressions” framework. In economics, it is interesting to consider models in which

durations depend on each other in a structural way, allowing for an interpretation of

estimated parameters closer to economic theory. This is the aim of our paper and,

as such, the difference between Marshall and Olkin’s model and ours is similar to

the difference between seemingly unrelated regressions and structural simultaneous

equations models.

To achieve this we set up a very simple game theoretic model with complete

information where players make decisions about the timing at which to switch from

one state to another. Our analysis bears some resemblance to previous studies in the

empirical games literature, such as Bresnahan and Reiss (1991) and, more recently,

Tamer (2003). Bresnahan and Reiss (1991), building on pioneering work such as

Heckman (1978), analyze a simultaneous game with a discrete number of possible

actions for each agent. A major pitfall in such circumstances is that “when a game

has multiple equilibria, there is no longer a unique relation between players’ observed

strategies and those predicted by the theory.” Given large enough supports for the
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unobservable components in the economic model, this situation is pervasive for the

class of games they analyze. Tamer (2003) characterizes this particular issue as an

“incompleteness” in the model and shows that this nuisance does not necessarily pre-

clude point identification of the deep parameters in the model under some conditions.

Our model also possesses multiple equilibria and, like Tamer, we also obtain point

identification of the main structural features. This is possible because certain real-

izations of the stochastic game we analyze deliver unique equilibrium outcomes with

sequential timing choices while multiplicity occurs if and only if spells are concomi-

tant. We are then able to obtain point identification using arguments not unfamiliar

to the identification of duration models (see for example Elbers and Ridder (1982))

on the events for which one attains uniqueness of the equilibrium solution.

Since the econometrician observes outcomes for two agents, our model is a

multiple duration model. If multiple durations for a given individual were recorded,

such as unemployment spells for workers or time intervals between transactions for

assets, panel duration observations would provide leverage both in terms of identifi-

cation and subsequent estimation (see Honoré (1993), Horowitz and Lee (2004) and

Lee (2003)). Whereas there subsequent spells are observed for a given individual,

here parallel individual spells1 are recorded for a given game, and some elements in

our analysis can be made game-specific (such as the function Z(·) to be defined later)

mirroring the appearance of individual specific effects in the panel duration literature.

Our setting is a continuous-time one. This corresponds to the traditional

approach in econometric duration studies and statistical survival analysis. Many

game theoretic models of timing are also set in continuous time. The framework can

be understood as the limit of a discrete time game. As the frequency of interactions

increases, the setting converges to our continuous time framework, which can in turn

be seen as an approximation to the discrete time model. The exercise is thus in line

with the early theoretical analysis by Simon and Stinchcombe (1989), Bergin and

MacLeod (1993) and others and with most of the econometric analysis of duration

models (e.g. Elbers and Ridder (1982), Heckman and Singer (1984), Honoré (1990),

Hahn (1994), Ridder and Woutersen (2003), Abbring and van den Berg (2003)). See

also Van den Berg (2001).

The remainder of the paper proceeds as follows. In the next section we present

the economic model. Section 3 presents a few simulation exercises to illustrate the

consequences of ignoring the endogeneity problem introduced by the interaction or

mistaken choices for the equilibrium selection mechanism. The fourth section inves-

1SeeHougaard (2000) and Frederiksen, Honoré, and Hu (2007).
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tigates the identification of the many structural components in the model. Section 5

briefly discusses estimation strategies and the subsequent section deals with the case

of discrete (grouped) observations. We conclude in the last section.

2 The Economic Model

The economic model consists of a system of two individuals who interact in continuous

time. Information is complete for the individuals. Each individual i chooses how long

to take part in a certain activity by selecting a termination time Ti, i = 1, 2. Agents

start at an activity that provides an utility flow given by the positive random variable

Ki ∈ R+. At any point in time, an individual can choose to switch to an alternative

activity which provides him or her a flow utility U(t,xi) where the vector xi denotes

a set of covariates. This utility flow is incremented by a factor eδ when the other

agent switches to the alternative activity. We assume that δ ≥ 0. Since only the

difference in utilities will ultimately matter for the decision, the utility flow in the

initial activity is normalized to be a random variable independent of xi.

In order to facilitate the link of our study to the analysis of duration models

it will be convenient to adopt a multiplicative specification for U(t,xi) as Z(t)ϕ(xi)

where Z : R+ → R+ is a strictly increasing, absolutely continuous function such that

Z(0) = 0. Assuming an exponential discount rate ρ, individual i’s utility for taking

part in the initial activity until time ti given the other agent’s timing choice Tj is:

∫ ti

0

Kie
−ρsds+

∫ ∞
ti

Z(s).ϕ(xi)e
I(s≥Tj)δ.e−ρsds

The first order condition for maximizing this with respect to ti is:

Ki.e
−ρti − Z(ti).ϕ(xi).e

I(ti≥Tj).δ.e−ρti

This may not be equal to zero for any ti since it is discontinuous at ti = Tj. Given the

opponent’s strategy, the optimal behavior of an agent in this game consists of moni-

toring the (un-discounted) marginal utility Ki − Z(t).ϕ(xi).e
I(t≥Tj).δ at each moment

of time t. As long as this quantity is positive the individual participates at the initial

activity, and he or she switches as soon as the marginal utility becomes less than or

equal to zero.

Formally, the appropriate concept for optimality is that of mutual best re-

sponses. We start by considering the best response function of individual i given that
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individual j has chosen Tj:

b1(T2) = inf{t1 : K1 − Z(t1).ϕ(x1).e
I(t1≥T2).δ < 0}

b2(T1) = inf{t2 : K2 − Z(t2).ϕ(x2).e
I(t2≥T1).δ < 0}

A Nash Equilibrium for this game is given by a fixed point to the profile of best

response functions: b(T1, T2) = (b1(T2), b2(T2)). Existence of an equilibrium can be

established using the usual Debreu-Glicksberg-Fan results for games with continuous

action spaces.2

In the absence of external influence (δ = 0), the individual switches at Ti =

Z−1(Ki/ϕ(xi)) or

lnZ(Ti) = − lnϕ(xi) + εi︸︷︷︸
≡ln ki

which is a semi-parametric Generalized Accelerated Failure Time (GAFT) model like

the ones discussed in RidderRidder (1990). For example, if Z(t) = λsαi , ϕ(xi) =

exp(x′iβ) and Ki ∼ exp(1), the cumulative distribution function is given by

FTi(t) = P[(Kie
−x′iβ/λ)1/αi ≤ t]

= P(Ki ≥ tαiλe−x′iβ)

= 1− exp(−tαiλ exp(x′iβ))

and the model corresponds to a proportional hazard duration model with a Weibull

baseline hazard.

For the remaining of this section, we characterize the equilibrium behavior in

the game. Depending on the realization of K1 and K2, the model may be consistent

with multiple equilibria. Indeed, we can identify five distinct regions on the K1×K2

space:

2Formally these results would require that the strategy space be compact. It can be seen though
that the agents in our game will switch states in finite time regardless of the action taken by the
other agent. So, for a given realization of the game (Ki, i = 1, 2), we can always bound the action
space.
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The regions are characterized and obtained as follows.

Region 1: T1 < T2 and the equilibrium is unique. This region is such that K1/ϕ(x1) <

K2e
−δ/ϕ(x2) and hence Z−1(K1/ϕ(x1)) < Z−1(K2e

−δ/ϕ(x2)). Here, for any t less

than Z−1(K1/ϕ(x1)), K2 − Z(t)ϕ(x2)e
δ is greater than zero and agent 2 has no in-

centive to switch even if agent 1 has already switched. Also both K1 − Z(t)ϕ(x1)

and K1 − Z(t)ϕ(x1)e
δ are greater than zero, and agent 1 would therefore not switch

regardless of whether the other agent has switched or not. Once t > Z−1(K1/ϕ(x1)),

then K1−Z(t)ϕ(x1) is strictly less than 0 and agent one will prefer to have switched

earlier no matter what action second agent might take. It is therefore optimal for

agent 1 to switch at T1 = Z−1(K1/ϕ(x1)). This in turn induces agent 2 to switch at

T2 = Z−1(K2e
−δ/ϕ(x2)) > T1.

Region 2: T1 = T2 and there are multiple equilibria. This region is given by Z−1(K1/ϕ(x1)) >

Z−1(K2e
−δ/ϕ(x2)) and Z−1(K2/ϕ(x2)) > Z−1(K1e

−δ/ϕ(x1)).

To see that individuals will stop simultaneously and there are many equilibria, let

T = max
(
Z−1(K1e

−δ/ϕ(x1)), Z
−1(K2e

−δ/ϕ(x2))
)

and

T = min
(
Z−1(K1/ϕ(x1)), Z

−1(K2/ϕ(x2))
)

Because Z−1(K1/ϕ(x1)) > Z−1(K2e
−δ/ϕ(x2)) and Z−1(K2/ϕ(x2)) > Z−1(K1e

−δ/ϕ(x1)),

we have that T ≤ T . We now consider three cases depending on t’s location relative

to T and T .
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For t < T , let j be the agent such that T = Z−1(Kje
−δ/ϕ(xj)). Since

t < T = Z−1(Kje
−δ/ϕ(xj)), Kj − Z(t)ϕ(xj) > 0 and he would not be willing

to switch regardless of the action of the other agent, whom we denote by i. Also

Ki − Z(t)ϕ(xi) > 0 and this individual will not switch either given that individual j

does not switch. Hence no agent switches in this region.

For T ≤ t ≤ T , Z(t)ϕ(xi)e
δ −Ki ≥ 0 and Z(t)ϕ(xi)−Ki ≤ 0 for each agent.

At each point in time in the interval, an agent can therefore do no better than the

alternative activity if the other agent has already switched. Hence, any profile such

that T ≤ T1 = T2 ≤ T will be an equilibrium.

Finally, for T < t, Z(t)ϕ(xi) − Ki > 0 for both individuals and each has an

incentive to decrease his or her switching time towards T regardless of what the other

agent does.

Hence, simultaneous switching at any t in the interval [T , T ] is an equilibrium.

Region 3: T2 < T1 and the equilibrium is unique. This region is such that Z−1(K1e
−δ/ϕ(x1)) >

Z−1(K2/ϕ(x2)). The reasoning is similar to that of Region 1.

Region 4: T1 = T2 and the equilibrium is unique. This region is given by Z−1(K1e
−δ/ϕ(x1)) =

Z−1(K2/ϕ(x2)). Here Z−1(K1/ϕ(x1)) ≥ Z−1(K1e
−δ/ϕ(x1)) = Z−1(K2/ϕ(x2)) ≥

Z−1(K2e
−δ/ϕ(x2)). For t < Z−1(K2e

−δ/ϕ(x2)) no one would be willing to switch

regardless of the opponent’s action. For Z−1(K2e
−δ/ϕ(x2)) ≤ t ≤ Z−1(K2/ϕ(x2)),

agent 2 would like to switch if agent 1 did. If t < Z−1(K1e
−δ/ϕ(x1)), agent 1 does not

want to switch even if agent 2 does. When t = Z−1(K2/ϕ(x2)) = Z−1(K1e
−δ/ϕ(x1)),

agent 2 switches and agent 1 follows. For t > Z−1(K2/ϕ(x2)) agent 2 would have

already switched.

Region 5: T1 = T2 and the equilibrium is unique This region is given by Z−1(K1/ϕ(x1)) =

Z−1(K2e
−δ/ϕ(x2)). Here the reasoning is analogous to that of Region 4.

Regions 1,3,4 and 5 all result in an unique equilibrium. In Region 2, a simultaneous

switch at any t in [T , T ] would be an equilibrium. This interval will be degenerate if

δ is equal to zero.

We end this section with a brief discussion on the multiple equilibria encoun-

tered in Region 2. In our approach, we are agnostic as to which of these equilibria is

selected. Some of the solutions in that region may be singled out by different selec-

tion criteria nevertheless. The Nash solution concept we use is equivalent to that of
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an open-loop equilibrium (as discussed for example in Fudenberg and Tirole (1991),

Section 4.7): one in which individuals condition their strategies on calendar time only

and hence commit to this plan of action at the beginning of the game. If individuals

can react to events as time unfolds, a closed-loop solution concept which here would

be equivalent to subgame perfection would single out the earliest of the Nash equi-

libria, in which individuals switch at T . Intuitively, an optimal strategy in Region 2

contingent on the game history would prescribe switching simultaneously at any time

between T and T . Faced with an opponent carrying such (closed-loop) strategy, an

individual might as well switch as soon as possible to maximize his or her own utility

flow. This outcome also corresponds to the Pareto-dominant equilibrium. Under this

information structure, the equilibria displayed in our analysis would still be Nash,

but not necessarily subgame-perfect. In selecting one of the multiple equilibria that

may arise, the early equilibrium is nevertheless a compelling equilibrium and we give

it special consideration in the simulation exercises performed later in the paper.

Other selection mechanisms may nonetheless point to later equilibria among

the many Nash solutions available. Since the switching decision is irreversible, risk

dominance-type considerations could for example lead to a later switching time.3 For

this reason, we remain agnostic as to which Nash equilibrium is selected.

3 The Effect of Misspecifications

In this section we examine the effect of misspecifications in the economic model or

equilibrium selection process on the estimation of the parameters of interest through

a few simulation exercises. In the following experiments, we assume that time is

observed at a high frequency so no interval censoring occurs.

3.1 Ignoring Endogeneity

This subsection investigates the consequences of treating an opponent’s decision as

exogenous in a parametric version of our model. The first data generating process is

3 This is illustrated by the following quote:

It is usually the essence of mob formation that the potential members have to know
not only where and when to meet but just when to act so that they act in concert.
(. . . ) In this case the mob’s problem is to act in unison without overt leadership, to
find some common signal that makes everyone confident that, if he acts on it, he’ll not
be acting alone. Schelling (1960))
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defined by

Z (t) = tα

ϕ(xi) = exp (β0 + β1xi)

(α, β0, β1, δ) = (1.0,−3.0, 0.3, 0.3)

and (
x1

x2

)
∼ N

([
0

0

]
,

[
2 1

1 2

])
When the model gives rise to multiple equilibria (and hence simultaneous exit) a

specific duration is drawn from a uniform distribution over the possible duration

times.4 Tables 1, 2, and 3 present the results based on 1000 replications of datasets

of size 1000. Table 1 is based on a correctly specified likelihood that groups all ties

occurring in realizations of Region 2 in the previous discussion of the model. Table

2 presents results from maximum likelihood estimation for agent 1 taking agent 2’s

action as exogenous.

TABLE 1: Incorporating Endogeneity

True Bias RMSE Median Median

Value Bias Abs.Err.

α 1.000 0.001 0.019 0.000 0.013

β0 −3.000 0.000 0.067 −0.001 0.045

β1 0.300 0.000 0.018 0.000 0.012

δ 0.300 −0.001 0.023 −0.001 0.016

TABLE 2: Weibull. Dependent variable T1

True Bias RMSE Median Median

Value Bias Abs.Err.

α 1.000 −0.079 0.084 −0.080 0.080

β0 −3.000 0.076 0.116 0.078 0.087

β1 0.300 −0.005 0.027 −0.005 0.019

δ 0.300 0.523 0.530 0.524 0.524

4We experimented with different selection rules and these made no appreciable difference to the
results we present here.
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As expected, the maximum-likelihood estimator that incorporates endogeneity

performs well, whereas the Weibull estimator that assumes that the other agent’s

action is exogenous performs poorly. Specifically, the effect of the opponent’s decision

is grossly over-estimated. Treating the other agent’s action as exogenous also bias

estimates toward negative duration dependence. Both of these are expected. In the

first case, δ is biased because the estimation does not take into account the multiplier

effect caused by the feedback between T1 and T2. The assumption of exogeneity

also leads to a downward bias on duration dependence as duration lengths reinforce

themselves: a shock leading to a longer duration by one agent will tend to lengthen

the opponent’s duration and hence further reduce the hazard for the original agent.

The results in Tables 1 and 2 assume symmetry between the two agents in the

model. The next design changes this by changing the joint distribution of (x1,x2) to(
x1

x2

)
∼ N

([
1

0

]
,

[
2 1

1 2

])
This makes the first agent likely to move first. When multiple equilibria were possible,

an equilibrium was selected as in the previous exercise. The overestimation bias on δ

is of a similar magnitude as before. The effect on the estimation of α is different for

each individual given the asymmetry in the distribution of the xs.

TABLE 3: Incorporating Endogeneity

True Bias RMSE median median

Value bias abs.err.

α 1.000 0.000 0.019 0.000 0.012

β0 −3.000 0.000 0.067 0.000 0.045

β1 0.300 0.000 0.017 0.000 0.011

δ 0.300 0.000 0.024 0.000 0.017

TABLE 4: Weibull. Dependent variable T1

True Bias RMSE median median

Value bias abs.err.

α 1.000 −0.065 0.071 −0.066 0.066

β0 −3.000 0.049 0.107 0.052 0.075

β1 0.300 −0.002 0.026 −0.002 0.018

δ 0.300 0.523 0.530 0.524 0.524

11



TABLE 5: Weibull. Dependent variable T2

True Bias RMSE median median

Value bias abs.err.

α 1.000 −0.095 0.099 −0.095 0.095

β0 −3.000 0.083 0.121 0.083 0.087

β1 0.300 −0.007 0.027 −0.008 0.018

δ 0.300 0.530 0.537 0.531 0.531

3.2 Equilibrium Selection

In this subsection we examine the effect of equilibrium selection assumptions in the

estimation of a parametric version of the model. The data generating process for all

the results below are based on:

Z (t) = tα

ϕ(xi) = exp (β0 + β1x1i + β2x2)

(α, β0, β1, β2, δ) = (1.35,−4.00, 1.00, 0.50, 1.00)

where xi1, i = 1, 2 represents an individual specific covariate and x2, a common co-

variate. These three variables are independent standard normal random variables. A

total of 1000 replications with sample sizes of 2000 observations (games) were gener-

ated.

Tables 6 through 10 differ in the way equilibrium is selected when there are

multiple equilibria. Aside from the column indicating the value of each of the pa-

rameters, each of the tables presents Median Bias and Median Absolute Error for

three alternative estimators: the maximum likelihood estimator that pools equilibria

without selecting the equilibrium; a maximum likelihood estimator that assumes the

earliest equilibrium (T ) is played when there are multiple equilibria; and a maximum

likelihood estimator that takes the latest equilibrium (T ) as the selected equilibrium

in case there are many equilibria.

In Table 6, the latest equilibrium (T ) is selected. As expected, the estimator

corresponding to the results in the last two columns performs the best, as it assumes

the correct selection rule generating the data. Pooling equilibria in the estimation

seems to do an appreciably better job than the estimator that incorrectly assumes

the equilibrium selection criterion as the earliest possible equilibrium: although the

estimates for β1 and δ present similar median bias and absolute error, the other pa-

rameters appear to present much less bias in the estimator that pools the equilibria.
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The estimator for the constant term β0 seems to be particularly biased down when T

is assumed to be selected. This makes sense: by assuming an earlier selection scheme

the constant is below the true parameter, lowering the hazard and thus increasing

the durations to match the data.

TABLE 6: T Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.018 0.053 -0.025 0.046 0.011 0.041

Constant -4.000 -0.036 0.160 -0.168 0.189 -0.028 0.129

δ 1.000 -0.003 0.060 -0.001 0.059 0.001 0.054

β1 1.000 0.014 0.059 -0.015 0.052 0.005 0.046

β2 0.500 0.006 0.043 -0.033 0.043 0.006 0.038

Table 7 displays a design where the earliest equilibrium (T ) is picked. Here the

middle estimator, which correctly assumes the selection scheme generating the data,

is as expected the best of the three. The improvement of the pooling estimator over

the one that wrongfully assumes the selection mechanism seems even more compelling

than in the previous case. The effect of mistaken equilibrium selection on the constant

term is again fairly large: in order to accommodate an equilibrium selection rule that

chooses later equilibria than the ones actually played is to increase the hazard so that

durations are lowered and the estimation matches the data.

TABLE 7: T Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.007 0.049 0.008 0.040 -0.014 0.042

Constant -4.000 -0.017 0.158 -0.012 0.125 0.321 0.321

δ 1.000 0.005 0.062 0.005 0.062 -0.137 0.137

β1 1.000 0.006 0.058 0.007 0.046 -0.013 0.046

β2 0.500 0.003 0.042 0.002 0.038 0.006 0.039

In Table 8, an equilibrium is randomly selected according to a uniform dis-

tribution on [T , T ] as was the case in the previous subsection. The performance of
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the pooling estimator is noticeably better in comparison to the two other estimators

except for the estimation on α, the Weibull parameter.

TABLE 8: U [T , T ] Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.010 0.048 -0.001 0.041 0.006 0.040

Constant -4.000 -0.025 0.152 -0.125 0.154 0.116 0.150

δ 1.000 0.005 0.062 0.008 0.060 -0.065 0.071

β1 1.000 0.011 0.060 0.003 0.046 0.007 0.045

β2 0.500 -0.002 0.044 -0.020 0.041 0.002 0.038

Table 9 shows the case in which the earliest equilibrium is selected when the

common variable x2 is greater than zero whereas the latest equilibrium is picked when

x2 is less then zero — this amplifies the effect of this variable on the hazard beyond

the impact already present in the multiplicative ϕ(·) term. In this case, the pooling

estimator fares better across all the parameters.

TABLE 9: T1(x2 > 0) + T1(x2 ≤ 0) Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.009 0.051 -0.015 0.043 -0.007 0.042

Constant -4.000 -0.032 0.154 -0.095 0.146 0.161 0.177

δ 1.000 0.002 0.057 0.005 0.058 -0.069 0.075

β1 1.000 0.008 0.059 0.085 0.086 0.065 0.070

β2 0.500 0.007 0.042 -0.016 0.040 0.006 0.037

Finally, Table 10 displays results for a selection mechanism that picks T when

this quantity is greater than 10 and selects T when T is less than 10. Again the

pooling estimator seems to be the superior one when comparing median bias and

median absolute error for the parameters of interest.
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TABLE 10: T1(T > 10) + T1(T ≤ 0) Selected

Pools Ties Assumes T Assumes T

True Median Median Median Median Median Median

Value Bias Absolute Bias Absolute Bias Absolute

α 1.350 0.014 0.048 0.057 0.059 0.051 0.056

Constant -4.000 -0.030 0.143 -0.253 0.254 0.020 0.129

δ 1.000 0.009 0.067 -0.006 0.061 -0.091 0.095

β1 1.000 0.012 0.061 -0.039 0.056 -0.024 0.048

β2 0.500 0.001 0.042 -0.023 0.041 0.002 0.038

Since either ignoring the strategic interaction in the model by assuming exo-

geneity or misspecifying the equilibrium selection mechanism may lead to erroneous

inference, our next section studies the identifiability of the structural components of

this model without assuming a particular equilibrium selection procedure.

4 Identification

The previous section illustrates how misspecifications disregarding the strategic na-

ture of decisions or imposing an erroneous selection rule for the solution may generate

misguided inferences. In this section we ask what aspects of the model can be identi-

fied by the data once one recognizes the endogeneity of choices and abstains from an

equilibrium selection rule. The proof strategy is similar to that in for example Elbers

and Ridder (1982) and Heckman and Honoré (1989).

The subsequent analysis relies on the following assumptions:

Assumption 1 Ki is independent across i and identically distributed according to

G(·), where G(·) is a continuous distribution with full support on R+. Furthermore,

the probability density function g(·) = G′(·) is bounded away from zero and infinity

in a neighborhood of zero.

Assumption 2 The function Z(·) is differentiable with positive derivative.

Assumption 3 At least one component of xi, xik, is such that supp(xik) contains

an open subset of R.

Assumption 4 The range of ϕ(·) is R+ and it is continuously differentiable with

nonzero derivative.
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The following results establish that these assumptions are sufficient (though

not necessary in many cases) for the identification of the different components in the

model. We begin by analyzing ϕ(·).

Theorem 1 (Identification of ϕ(·)) Under Assumptions 1 and 2, the function ϕ(·)
is identified up to scale if supp(x1,x2) = supp(x1)× supp(x2).

Proof. Consider the absolutely continuous component of the conditional distribution

of (T1, T2), the switching times for the agents, given the covariates x1,x2. Using

the fact that T1 = Z−1(K1/ϕ(x1)) and T2 = Z−1(K2e
−δ/ϕ(x2)) when T1 < T2 and

the Jacobian method we can obtain that the probability density function for this

component on the set {(t1, t2) ∈ R2
+ : t1 < t2} is given by:

fT1,T2|x1,x2(t1, t2|x1,x2) = λ(t1)ϕ(x1)g(Z(t1)ϕ(x1))

×λ(t2)ϕ(x2)e
δg(Z(t2)ϕ(x2)e

δ)

where

Z(t) =

∫ t

0

λ(s)ds, i = 1, 2.

Given two sets of covariates (x1,x2) and (x′1,x2) we obtain that

lim
(t1,t2)→(0,0)

t1<t2

fT1,T2|x1,x2(t1, t2|x′1,x2)

fT1,T2|x1,x2(t1, t2|x1,x2)
= lim

(t1,t2)→(0,0)

t1<t2

ϕ(x′1)g(Z(t1)ϕ(x1))

ϕ(x1)g(Z(t1)ϕ(x′1))

=
ϕ(x′1)

ϕ(x1)

where the last equality uses the fact that limt→0 Z(t) = 0. So, ϕ(·) is identified up to

a scale transformation. �

The assumption that Ki is independent across i is stronger than necessary for

the identification of ϕ(·) and can be relaxed. This is also the case with the condition

that supp(x1,x2) = supp(x1)×supp(x2). In order to identify ϕ(x1)/ϕ(x′1) all we need

is to be able to find x2 such that (x1,x2) and (x′1,x2) are in the support. The proof

strategy also allows ϕ(·) to depend on i. Finally, the identification of ϕ(·) would still

hold even if the players shared the same covariates x1 = x2 = x as long as ϕ(·) is the

same for both.

Theorem 2 (Identification of Z(·)) The function Z(·) is identified up to scale un-

der Assumptions 1-4.
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Proof. On the set {s < t2}, consider the function

h(s, t2,x1,x2) =

∫ s

0

fT1,T2|x1,x2(t1, t2|x1,x2)dt1

= G(Z(s)ϕ(x1))× λ(t2)ϕ(x2)e
δg(Z(t2)ϕ(x2)e

δ)︸ ︷︷ ︸
≡c(t2,x2)

Then notice that
d lnh/ds

∂ lnh/∂x1k

=
λ(s)ϕ(x1)

Z(s)∂kϕ(x1)

and we have that

CZ(s)ϕ(x1)/∂kϕ(x1)

is identified where C is a constant. Given the identification of ϕ(·) up to scale, one

obtains that Z(·) is also identified up to scale (the constant C). �

The mechanics of the proof suggests that we can also allow Z(·) to depend on

i as is the case with ϕ(·), but both the characterization of the equilibrium in section 2

and the identification argument for the δs below assume Z(·) to be the same for both

individuals. Also in contrast to ϕ(·), we make use of the independence assumption on

Ki to show that Z(·) is identified. As in the previous result, the identification would

still hold were the covariates for the two agents identical for a given draw of the game

(x1 = x2 = x). We finalize by establishing the identification of δ.

Theorem 3 (Identification of δ) δ is identified under Assumptions 1-4 .

Proof. Consider the probability

P(T1 < T2|x) = P(lnK1 − lnK2 + δ < lnϕ(x1)/ϕ(x2)).

Since ϕ(·) is identified up to scale, as one varies x1 and x2, the probability above traces

the cumulative distribution function for the random variable W = lnK1 − lnK2 + δ.

Likewise, the probability

P(T1 > T2|x) = P(lnK1 − lnK2 − δ > lnϕ(x1)/ϕ(x2))

traces the survivor function (and consequently the cumulative distribution function)

for the random variable lnK1− lnK2−δ = W −2δ. Since this is basically the random

variable W displaced by 2δ, this difference is identified as the (horizontal) distance

between the two cumulative distribution functions which are identified from the data

(the events T1 > T2 and T1 < T2 conditioned on x). The figure below illustrates this

idea:
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From this argument, the parameter δ is identified. �

Again, the assumption of independence is unnecessary for the identification of

δ. Assumption 1 is invoked to guarantee the identification of ϕ(·). If this function is

identified we can dispense with this assumption.

In the remainder of this section, we discuss results for some variations on the

model depicted on Section 2.

Under certain circumstances, such as in interactions between husband and

wife, the players in the games sampled may be easily labelled, say i = 1, 2. In this case,

one may consider different δs for different players: δi, i = 1, 2. The previous result

would render identification for δ1 + δ2. The following establishes the identification of

δ1 − δ2 and hence of δi, i = 1, 2.

Theorem 4 (Identification of δi, i = 1, 2) δi, i = 1, 2 are identified under As-

sumptions 1-4.

Proof. The sum δ1 + δ2 is identified according to the arguments in the previous

theorem. Define

c1 ≡
lims→0

k>1
fT1,T2|x1,x2(s, ks|x1,x2)

lims→0
k>1

fT1,T2|x1,x2(ks, s|x1,x2)

=
lims→0

k>1
λ(s)λ(ks)ϕ(x1)ϕ(x2)e

δ2

lims→0
k>1

λ(ks)λ(s)ϕ(x1)ϕ(x2)eδ1

=
ϕ(x1)ϕ(x2)e

δ2

ϕ(x1)ϕ(x2)eδ1
× lim

s→0
k>1

λ(s)λ(ks)

λ(ks)λ(s)

= eδ2−δ1

which identifies δ2 − δ1. This and the previous result identify δi, i = 1, 2. �

As remarked, independence between Ki, i = 1, 2 is not a necessary condition

for the identification of many aspects of the model. This allows for some dependence
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in the latent utility flow obtained in the initial activity. Another source of correlation

though may be represented by the arrival of a common shock that drives both indi-

viduals to the outside activity concurrently. Even under such extreme circumstances,

some aspects of the structure remain identified.

A natural way to introduce this non-strategic shock in the model would follow

the one delineated by Cox and Oakes (1984) and assume that the common shock

which drives both spells to termination concomitantly happens at a random time

V ≥ 0 characterized by a probability density function given by h(·). Individuals

switch for two possible reasons: either they deem the decision to be optimal as in

the original model; or they are driven out of the initial activity by the common

shock. If both individuals are still in the initial activity when the shock arrives,

they both switch simultaneously. If one of them switches before the shock arrives,

the second one is driven out of the initial activity earlier than he or she would have

voluntarily chosen.5 In keeping with the notation used so far, let Ti be the switching

time chosen by individual i and T̃i = min{Ti, V }, the switching time observed by the

econometrician. The following result holds:

Theorem 5 (Identification of ϕ(·) with Common Shocks) Suppose Assumptions

1 and 2 hold and supp(x1,x2) = supp(x1)× supp(x2). Furthermore assume that the

common shock V , is independent of xi, Ki, i = 1, 2. Then the function ϕ(·) is iden-

tified up to scale.

Proof. The proof is similar to that of Theorem 1. Consider the absolutely continuous

component of the conditional distribution of (T̃1, T̃2), the observed switching times

for the individuals, given the covariates x1,x2. Like in the proof for Theorem 1 and

using the definition of T̃i = min{Ti, V }, we can obtain that the probability density

function for this pair on the set {(t̃1, t̃2) ∈ R2
+ : t̃1 < t̃2} is given by:

fT̃1,T̃2|x1,x2
(t̃1, t̃2|x1,x2) = λ(t̃1)ϕ(x1)g(Z(t̃1)ϕ(x1))λ(t̃2)ϕ(x2)e

δg(Z(t̃2)ϕ(x2)e
δ)×

×P(V > t̃2) + λ(t̃1)ϕ(x1)g(Z(t̃1)ϕ(x1))h(t̃2)P(T2 > t̃2)

where

Z(t) =

∫ t

0

λ(s)ds, i = 1, 2.

5The optimal switching times derived in Section 2 would still hold. Should the realizations of V

happen after that chosen time, the individual would have no incentives to wait. If v arrives earlier
than the optimal time, there would be no incentive to anticipate the switch nor would there be
anything to be done about it after the shock.
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Given two sets of covariates (x1,x2) and (x′1,x2) we can again obtain that

lim
(t̃1,t̃2)→(0,0)

t̃1<t̃2

fT̃1,T̃2|x1,x2
(t̃1, t̃2|x′1,x2)

fT̃1,T̃2|x1,x2
(t̃1, t̃2|x1,x2)

=
ϕ(x′1)

ϕ(x1)

using the assumption that limt→0 Z(t) = 0. So, ϕ(·) is identified up to a scale trans-

formation. �

The assumption that Ki is independent across i is again stronger than necessary,

as is the case with the condition that supp(x1,x2) = supp(x1)× supp(x2). The proof

strategy also allows ϕ(·) to depend on i.

5 Estimation Strategies

Consider first the case where G(·) is known. In the absence of interaction effects (δ)

and when G(·) is a unit exponential, this would correspond to a classical proportional

hazard model. The following characterization can then be obtained for the event

{T1 < T2}:

P(T1 < T2|x1,x2) = P(K1ϕ(x2)e
δ/ϕ(x1) < K2|x1,x2)

=

∫ +∞

0

[1−G(kϕ(x2)e
δ2/ϕ(x1))]dG(k)

and a similar characterization would hold for {T2 < T1}. Assume that ϕ(·) and

Z(·) are modelled up to the (finite-dimensional) parameters β and λ, respectively

(ϕ(·) ≡ ϕ(·; β) and Z(·) ≡ Z(·;λ)). Given data on the realization of the game

analyzed in this paper and the previous results, we then obtain the likelihood function
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for this problem as

L(β, λ, δ) ≡ Πt1<t2

{
∂tZ(t1;λ)ϕ(x1; β)∂tZ(t2;λ)ϕ(x2; β)eδ×

×g(Z(t1;λ)ϕ(x1; β))g(Z(t2;λ)ϕ(x2; β)eδ)
}
×

×Πt1>t2

{
∂tZ(t1;λ)ϕ(x1; β)∂tZ(t2;λ)ϕ(x2; β)eδ×

g(Z(t1;λ)ϕ(x1; β)eδ)× g(Z(t2;λ)ϕ(x2; β))
}
×

×Πt1=t2

{
1−

∫ +∞
0

[1−G(kϕ(x2)e
δ/ϕ(x1))]dG(k)

−
∫ +∞

0
[1−G(kϕ(x1)e

δ/ϕ(x2))]dG(k)
}

where Πt1<t2 ,Πt1>t2 and Πt1=t2 denote the product over the observations for which

t1 < t2, t1 > t2 and t1 = t2. We use the fact that, for sequential switching (t1 <

t2 or t1 > t2), it is possible to date the termination time, but not for the event

in which termination times coincide. Under standard assumptions, this likelihood

function provides us with an estimator for the parameters of interest in this model.

We conjecture that a sieves approach or the ideas contained in Ai (1997), for instance,

may be adapted to obtain a more general estimation procedure.

The characterization above can also be used to obtain an estimator for ϕ(·; β)

and δ without the assumption that Z(·) is the same across games as long as it is the

same for players within the same game. Assume initially that G(·) is the cdf for a

unit exponential distribution: G(t) = (1 − e−t)It≥0. In particular, we can focus on

the event {T1 < T2} (or {T1 > T2}) and use the probability

P(T1 < T2|x1,x2) = P(Z−1(K1/ϕ(x1)) < Z−1(K2e
−δ/ϕ(x2))|x1,x2)

= P(K1ϕ(x2)e
δ/ϕ(x1) < K2|x1,x2)

=

∫ ∞
0

e−k1
∫ ∞
k1ϕ(x2)eδ/ϕ(x1)

e−k2dk2dk1

=

∫ ∞
0

e−k1−k1ϕ(x2)eδ/ϕ(x1)dk1

=
1

1 + ϕ(x2)eδ/ϕ(x1)

=
1

1 + eδ+logϕ(x2)−logϕ(x1)
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Taking ϕ(x; β) = exp(β′x), for example, the above becomes

1

1 + eδ+β′(x2−x1)
=

eβ
′(x1−x2)−δ

1 + eβ′(x1−x2)−δ .

An analogous expression can be obtained for {T2 < T1}. Define then the variable Y

by

Y = 1 if T1 < T2

Y = 2 if T1 = T2

Y = 3 if T1 > T2

It can be seen that

P(Y ≤ 1|x1,x2) = Λ((x1 − x2)β − δ)
P(Y ≤ 2|x1,x2) = Λ((x1 − x2)β + δ)

where Λ(·) is the cdf for the logistic distribution. This corresponds to an ordered

logit on Y with explanatory variables x1 − x2 and cutoff points at −δ and δ. If we

take G(·) to be the cdf for a log-normal distribution, an ordered probit is obtained.

When G(·) is unknown this becomes

P(Y ≤ 1|x1,x2) = H((x1 − x2)β − δ)
P(Y ≤ 2|x1,x2) = H((x1 − x2)β + δ)

where H(w) = P(lnK1 − lnK2 ≤ w). Various authors have proposed alternative

estimation procedures for the estimation of this semiparametric ordered choice model

(for instance, Chen and Khan (2003), Coppejans (2007), Klein and Sherman (2002),

Lee (1992), Lewbel (2003) and Honoré and de Paula (2007)).

Finally we note that, if G(·), and hence H(·), is known, δ is identified even if

x1 = x2 since

δ = −H−1(P(T1 < T2|x)).

6 Conclusion

In this article we have provided a novel motivation for simultaneous duration models

that relies on strategic interactions between agents. The paper thus relates to previous

literature on empirical games. We presented an analysis of the possible Nash equilibria

in the game and noticed that it displays multiple equilibria, but in a way that still

permits point identification of structural objects.
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The maintained assumption in the paper is that agents can exactly control

their duration. Heckman and Borjas (1980), Honoré (1993) and Frijters (2002) con-

sider statistical models in which the hazard for one duration depends on the outcome

of a previous duration and Rosholm and Svarer (2001) consider a model in which

the hazard for one duration depends on the simultaneous hazard for a different du-

ration. It would be interesting to investigate whether a strategic economic model

in which agents can control their hazard subject to costs, will generate incomplete

econometric models and what the effect of this would be on the identifiability of the

key parameters of the model.
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