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Abstract

We propose a new method of testing stochastic dominance which improves on

existing tests based on bootstrap or subsampling. Our test requires estimation of

the contact sets between the marginal distributions. Our tests have asymptotic

sizes that are exactly equal to the nominal level uniformly over the boundary

points of the null hypothesis and are therefore valid over the whole null hy-

pothesis. We also allow the prospects to be indexed by infinite as well as finite

dimensional unknown parameters, so that the variables may be residuals from

nonparametric and semiparametric models. Our simulation results show that

our tests are indeed more powerful than the existing subsampling and recentered

bootstrap.

Key words and Phrases: Set estimation; Size of test; Unbiasedness; Similarity;

Bootstrap; Subsampling.

JEL Classifications: C12, C14, C52.

1 Introduction

There has been a growth of interest in testing stochastic dominance relations among vari-

ables such as investment strategies and income distributions. The ordering by stochastic

dominance covers a large class of utility functions and hence is more useful in general than
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the notions of partial orderings that are specific to a certain class of utility functions. How-

ever, the main difficulty in testing stochastic dominance lies in the complexity that arises

in computing approximate critical values of the test. A stochastic dominance relation is a

weak inequality relation between distribution functions or integral transform of distribution

functions. Unlike nonparametric or semiparametric tests that are based on the equality

of functions, the convergence of test statistics of Kolmogorov-Smirnov type or Cramér-von

Mises type is not uniform over the probabilities under the null hypothesis. Discontinuity

of convergence arises precisely between the "interior points" of the null hypothesis and the

"boundary points" of the null hypothesis, where boundary points indicate those probabilities

under which all pairs of the distribution functions meet at least one point in the interior of

the support and interior points indicate probabilities under which at least one pair of the

distribution functions do not meet at any point in the interior of the support. In general, the

boundary points do not coincide with the least favorable subset of null hypothesis, i.e., the

set of probabilities under which all the pairs of competing distribution functions are equal.

As noted by Linton, Maasoumi, and Whang (2005), henceforth LMW, the usual approach

of recentered bootstrap or wild bootstrap does not provide tests with asymptotically valid

sizes uniformly over the probabilities under the null hypothesis; the asymptotic size of the

tests are exact only on the least favorable points and invalid for other points under the null

hypothesis. LMW proposed a subsampling method to obtain tests with exact asymptotic

sizes over the boundary points and asymptotically valid for each probability under the null

hypothesis.

This paper proposes a bootstrap-based test that has asymptotically valid size uniformly

under the null hypothesis and asymptotically exact size on the boundary points. The method

is based on bootstrap test statistics that are constructed to mimic the phenomenon of discon-

tinuous convergence by using the estimated boundary points. This requires the estimation of

a certain set, we call the "contact set"; set estimation is a topic of considerable recent interest

in microeconometrics, see for example Moon and Schorfheide (2006), Chernozhukov, Hong,

and Tamer (2007), and Fan and Park (2007). Our method of bootstrap has the following

remarkable properties. First, it is asymptotically similar on the boundary. Second, more

importantly, the bootstrap method provides asymptotically exact sizes. Furthermore, we

can make the rejection probability under the null hypothesis converge to the true rejection

probability only slightly less fast than the asymptotic approximation. This implies that the

convergence of rejection probability can be made faster than that of subsampling.

The proposed test of stochastic dominance admits variables that contain unknown finite-

dimensional and infinite-dimensional parameters as long as those parameters have consistent

estimators. Hence the proposed test can be used to test stochastic dominance relations
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among variables in the form of regression errors from the semiparametric regression models

such as single index restrictions or partially parametric regressions. For example, one can

detect the influence of a certain factor upon the stochastic dominance relation by comparing

test results with and without the factor of interest while controlling for other factors. In

some situations, it is desirable to control for publicly observed variables. It is a potential

concern for the researcher in such cases that the result of testing may rely sensitively on

the regression specification chosen to control certain factors stochastically. Semiparametric

specification of the regression can be useful in this situation.

We perform Monte Carlo simulations that compare three methods: recentered bootstrap,

subsampling method, and the bootstrap on the boundary domain proposed in this paper.

We verify the superior performance of our method.

Testing stochastic dominance has drawn attention in the literature over the last decade.

McFadden (1986), Anderson (1996) and Davidson and Duclos (2000) are among the early

works that considered testing stochastic dominance. Barrett and Donald (2003) proposed

a consistent bootstrap test that has an asymptotically exact size on the least favorable

points for the special case where the prospects are mutually independent. LMW suggested a

subsampling method that has asymptotically valid size on the boundary points and applies

to variables that contain unknown finite-dimensional parameters and allows the prospects

to be mutually dependent.

In Section 2, we define the null hypothesis of stochastic dominance and introduce nota-

tions. In Section 3, we suggest test statistics and develop asymptotic theory both under the

null hypothesis and local alternatives. Section 4 is devoted to the bootstrap procedure, ex-

plaining the method of obtaining bootstrap test statistics and establishing their asymptotic

properties. In Section 5, we describe Monte Carlo simulation studies and discuss results from

them. Section 6 concludes. All the technical proofs are relegated to the appendix.

2 Stochastic Dominance

2.1 The Null Hypothesis

Let {Xk}Kk=1 be a set of continuous outcome variables which may, for example, represent
different points in time or different regions. Let Fk(x) be the distribution function of the

k-th random variable Xk. Let D
(1)
k (x) = Fk(x) and

D
(s)
k (x) =

Z x

−∞
D
(s−1)
k (t)dt.
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Then we say that X1 stochastically dominates X2 at order s if D(s)
1 (x) ≤ D

(s)
2 (x) for all x

with strict inequality for some x. This is equivalent to an ordering of expected utility over a

certain class of utility functions Us, see LMW.
Let D(s)

kl (x) = D
(s)
k (x)−D

(s)
l (x) and define

d∗s = min
k 6=l

sup
x∈X

D
(s)
kl (x) and c∗s = min

k 6=l

Z
X
max

n
D
(s)
kl (x), 0

o2
dx,

where X denotes a set contained in the union of the supports of Xk, k = 1, 2, . . . ,K.We do

not assume that the set X is bounded. The null hypothesis that this paper focuses on takes

the following form:

H0,A : d
∗
s ≤ 0 vs. H1,A : d

∗
s > 0. (1)

The null hypothesis represents the presence of a stochastic dominance relationship between

a pair of variables in {Xk}Kk=1. The alternative hypothesis corresponds to no such incidence.
Alternatively, we might also consider the following form of the null and alternative hypotheses

H0,B : c
∗
s = 0 vs. H1,B : c

∗
s > 0. (2)

Obviously the null hypothesis d∗s ≤ 0 implies the null hypothesis c∗s = 0. On the contrary,
when c∗s = 0, D

(s)
kl (x) ≤ 0, μ-a.e., for some pair (k, l), where μ denotes the Lebesgue measure

on X . Therefore, if the D(s)
k ’s are continuous functions, both the null hypotheses in (1) and

(2) are equivalent, but in general, the null hypothesis in (1) is stronger than that in (2).

Of crucial importance in the sequel are the "contact" sets, these are denoted by B(s)
kl the

subset of X such that D(s)
k (x) and D

(s)
l (x) are equal, i.e.,

B
(s)
kl = {x ∈ X : D

(s)
kl (x) = 0}. (3)

These sets can be empty, can contain a countable number of isolated points, or can be a

countable union of disjoint intervals. The limiting distributions of our test statistics depend

only these subsets of X .

2.2 Test Statistics and Asymptotic Theory

In many cases of practical interest the outcome variable maybe the residual from some model.

This arises in particular when data is limited and one may want to use a model to adjust

for systematic differences. Common practice is to cut the data into subsets, say of families

with two children, and then make comparisons across homogenous populations. When data

are limited this can be difficult and a modelling approach can overcome this difficulty. We
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suppose that the variables Xk depend on an unknown finite dimensional parameter θ0 ∈ RdΘ

and on an infinite dimensional parameter τ 0 ∈ T (here, T is a totally bounded class of

functions with respect to a certain metric), so that we write Xk = Xk(θ0, τ 0). For example,

the variable Xk may be the residual from the partially parametric regression Xk(θ0, τ 0) =

Yk−Z>1kθ0−τ 0(Z2k) or the single index frameworkXk(θ0, τ 0) = Yk−τ 0(Z>1kθ0).Generically we
let Xk(θ, τ) be specified as Xk(θ, τ) = ϕk(W ; θ, τ) where ϕk(·; θ, τ) is a real-valued function
known up to the parameter (θ, τ) ∈ Θ× T . In the example of Xk(θ0, τ 0) = Yk − τ 0(Z

>
1kθ0),

W denotes the vector of Yk and Z1k, k = 1, . . . ,K. This set up is more general than in LMW

who allowed only linear regression.

We next specify further the precise properties that we require of the data generating

process. Let BΘ×T (δ) = {(θ, τ) ∈ Θ× T : ||θ − θ0|| < δ, supP∈P ||τ − τ 0||P,2 < δ}, where the
norm || · ||P,2 denotes the usual L2(P )-norm. We introduce a bounded weight function q(x)

(see Assumption 3(ii)) and define h(s)x (ϕ) = (x − ϕ)s−11{ϕ ≤ x}q(x). Let N[](ε,T , || · ||P,r)
denote the bracketing number of T with respect to the Lr(P )-norm, i.e. the smallest number

of ε- brackets that are needed to cover the space T (e.g. van der Vaart and Wellner (1996)).
The conditions in Assumptions 1 and 2 below are concerned with the data generating process

of W and the map ϕk. Let P be the collection of all the potential distributions of W that

satisfy the conditions Assumptions 1-3 below.

Assumption 1 : (i) {Wi}Ni=1 is a random sample.

(ii) supP∈P logN[](ε,T , || · ||P,2) ≤ Cε−d for some d ∈ (0, 1].
(iii) For some δ > 0 and s > 0, supP∈PEP [sup(θ,τ)∈BΘ×T (δ)|ϕk(W ; θ, τ)|2((s−1)∨1)+δ] <∞.

(iv) For some δ > 0, there exists a functional Γk,P (x)[θ − θ0, τ − τ 0] of (θ − θ0, τ − τ 0),

(θ, τ) ∈ BΘ×T (δ), such that¯̄
EP

£
h(s)x (ϕk(W ; θ, τ))

¤
−EP

£
h(s)x (ϕk(W ; θ0, τ 0))

¤
− Γk,P (x)[θ − θ0, τ − τ 0]

¯̄
≤ C1||θ − θ0||2 + C2||τ − τ 0||2P,2

with constants C1 and C2 that do not depend on P , and for each ε > 0

limsupN≥1supP∈PP

(
supx∈X

¯̄̄̄
¯√NΓk,P (x)[θ̂ − θ0, τ̂ − τ 0]−

1√
N

NX
i=1

ψx,k,P (Wi)

¯̄̄̄
¯ > ε

)
= 0,

(4)

where ψx,P (·) satisfies that there exist η,C > 0 and s1 ∈ (0, 1] such that for all x ∈
X , EP

£
ψx,k,P (Wi)

¤
= 0, supP∈P ||supx∈X ||ψx,k,P ||||P,2+η <∞, and

supP∈PEP

h
supx2∈X :|x−x2|≤ε

¯̄
ψx,k,P (Wi)− ψx2,k,P (Wi)

¯̄2i ≤ Cε2s1 , for all ε > 0.
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The bracketing entropy condition for T in (ii) is satisfied by many classes of functions.

For example, when T is a Hölder class of smoothness α with the common domain of τ(·) ∈
T that is convex, and bounded in the dT -dim Euclidean space with dT /α ∈ (0, 1] (e.g.
Corollary 2.7.2 in van der Vaart and Wellner (1996)), the bracketing entropy condition

holds. The condition is also satisfied when T is contained in a class of uniformly bounded

functions of bounded variation. Condition (iii) is a moment condition with local uniform

boundedness. The moment condition is widely used in the literature of semiparametric

inferences. In the example of single-index restrictions where Yk = τ 0(Z
>
1kθ0) + εk, we can

write ϕ(w; θ, τ) = τ 0(z
>
1kθ0)− τ(z>1kθ)+ εk. If τ is uniformly bounded in the neighborhood of

τ 0 in L2(P ), the moment condition is immediately satisfied whenE[|εi|2((s−1)∨1)+δ] <∞.Or if

τ is Lipschitz continuous with a uniformly bounded Lipschitz coefficient and |τ 0(v)−τ(v)| ≤
C|v|p, p ≥ 1, and E[||Z1k||p∨(2((s−1)∨1)+δ)] <∞, then the moment condition holds. We may

check this condition for other semiparametric specifications in a similar manner. Condition

(iv) is concerned with the pathwise differentiability of the functional
R
h
(s)
x (ϕk(W ; θ, τ))dP

in (θ, τ) ∈ BΘ×T (δ). Let ϕ1 = ϕ(W ; θ, τ) and ϕ2 = ϕ(W ; θ0, τ 0). Then we can write

h(s)x (ϕ1)− h(s)x (ϕ2) = {(x− ϕ1)
s−1 − (x− ϕ2)

s−1}1{ϕ2 ≤ x}
+(x− ϕ2)

s−1{1{ϕ1 ≤ x}− 1{ϕ2 ≤ x}}.

Hence the pathwise differentiability is immediate when ϕ(w; θ, τ) is continuously differen-

tiable in (θ, τ) andW is continuous and has a bounded density. The condition in (4) indicates

that the functional Γk,P at the estimators has an asymptotic linear representation. This con-

dition can be established using the standard method of expanding the functional in terms of

the estimators, θ̂ and τ̂ , and using the asymptotic linear representation of these estimators.

This asymptotic linear representation for these estimators is available in many semiparamet-

ric models. Since our procedure does not make use of its particular characteristic beyond

the condition in (4), we keep this condition at a high level for the sake of brevity.

Assumption 2 : (i) ϕ(W ; θ0, τ 0) is absolutely continuous with bounded density.
(ii) Condition (A) below holds when s = 1, and Condition (B), when s > 1.

(A) There exist δ, C > 0 and a subvector W1 of W such that (a) the conditional density

of ϕ(W ; θ, τ) given W1 is bounded uniformly over (θ, τ) ∈ BΘ×T (δ), (b) for each (θ, τ) and

(θ0, τ 0) ∈ BΘ×T (δ), ϕk(W ; θ, τ) − ϕk(W ; θ
0, τ 0) is measurable with respect to the σ-field of

W1, and (c) for each (θ1, τ 1) ∈ BΘ×T (δ) and for each ε > 0,

supP∈Psupw1EP

h
sup(d2,τ2)∈BΘ×T (ε) |ϕk(W ; θ1, τ 1)− ϕk(W ; θ2, τ 2)|2 |W1 = w1

i
≤ Cε2s2 (5)
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for some s2 ∈ (d, 1] with d in Assumption 1(ii), where the supremum over w1 runs in the

support of W1.

(B) There exist δ, C > 0 such that Condition (c) above is satisfied.

Assumption 2(ii) contains two different conditions that are suited to each case of s = 1 or

s > 1. This different treatment is due to the nature of the function hx(ϕ) = (x−ϕ)s−11{ϕ ≤
x}q(x) that is discontinuous in ϕ when s = 1 and smooth in ϕ when s > 1. Condition

(A) can be viewed as a generalization of the set up of LMW. Condition (A)(a) is analogous

to Assumption 1(iii) of LMW. Condition (ii)(A)(b) is satisfied by many semiparametric

models. For example, in the case of a partially parametric specification: Xk(θ0, τ 0) = Yk −
Z>1kθ0 − τ 0(Z2k), we take W = (Y,Z1, Z2) and W1 = (Z1, Z2). In the case of single index

restrictions: Xk(θ0, τ 0) = Yk − τ 0(Z
>
k θ0), W = (Y,Z) and W1 = Z. The condition in (5)

requires the function ϕ(W ; θ, τ) to be (conditionally) locally uniformly L2(P )-continuous in

(θ, τ) ∈ BΘ×T (δ) uniformly over P ∈ P. Sufficient conditions and discussions can be found in
Chen, Linton, and van Keilegom (2003). We can weaken this condition to the unconditional

version when we consider only the case s > 1.

We now turn to the definition of the test statistics. Let F̄kN(x, θ, τ) =
1
N

PN
i=1 1 {Xki(θ, τ) ≤ x}

and

D̄
(s)
kl (x, θ, τ) = D̄

(s)
k (x, θ, τ)− D̄

(s)
l (x, θ, τ) for s ≥ 1,

where D̄(1)
k (x, θ, τ) = F̄kN(x, θ, τ) and D̄

(s)
k (x, θ, τ) is defined through the following recursive

relation:

D̄
(s)
kl (x, θ, τ) =

Z x

−∞
D̄
(s−1)
kl (t, θ, τ)dt for s ≥ 2. (6)

The test statistics we consider are based on the weighted empirical analogues of d∗s and c∗s,

namely,

D
(s)
N = min

k 6=l
sup
x∈X

q(x)
√
ND̄

(s)
kl (x, θ̂, τ̂) and

C
(s)
N = min

k 6=l

Z
X
max

n
q(x)
√
ND̄

(s)
kl (x, θ̂, τ̂), 0

o2
dx.

Horváth, Kokoszka, and Zitikis (2006) showed that in the case of the Kolmogorov-Smirnov

functional with s ≥ 3, it is necessary to employ a weight function q(x) such that q(x) → 0

as x → ∞ in order to obtain nondegenerate asymptotics. The numerical integration in (6)

can be cumbersome in practice. Integrating by parts, we have an alternative form

D̄
(s)
k (x, θ, τ) =

1

N(s− 1)!

NX
i=1

(x−Xki(θ, τ))
s−1 1{Xki(θ, τ) ≤ x}.
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Since D̄(s)
k and D(s)

k are obtained by applying a linear operator to F̄kN and Fk, the estimated

function D̄
(s)
k is an unbiased estimator for D(s)

k . Regarding the estimators θ̂ and τ̂ and the

choice of the weight function q, we assume the following.

Assumption 3 : (i) ||θ̂ − θ0|| = oP (N
−1/4), ||τ̂ − τ 0||P,2 = oP (N

−1/4) uniformly in P ∈ P,
and supP∈P P {τ̂ ∈ T }→ 1 as N →∞.

(ii) supx∈X
¡
1 + |x|(s−1)∨(1+δ)

¢
q(x) < ∞, for some δ > 0 and for q, nonnegative, first order

continuously differentiable function on X with a bounded derivative.

When θ̂ is a solution from the M- estimation problem, its rate of convergence can be

obtained by following the procedure of Theorem 3.2.5 of van der Vaart and Wellner (1996).

The uniformity in P in this case can be ensured by combining the uniform (in P ) oscillation

behavior of the population objective function and the associated empirical processes. For

instance, one may employ a uniform oscillation exponential bound for empirical processes

established by Giné (1997), Theorem 6.1. The rate of convergence for the nonparametric

component τ̂ can also be established by controlling the bias and variance part uniformly in

P. In order to control the variance part, one may employ the framework of Giné and Zinn

(1991) and establish the central limit theorem that is uniform in P . The sufficient conditions

for the last condition in (i) can be checked, for example, from the results of Andrews (1994).

Condition (ii) is very convenient and is fulfilled by an appropriate choice of the weight

function. The use of the weight function is convenient as X is allowed to be unbounded.

Condition (ii) is stronger than that of Horváth, Kokoszka, and Zikitis (2006) who under a

set-up simpler than this paper, imposed that supx∈X
¡
1 + (max(x, 0)(s−2)∨1

¢
q(x) <∞. Note

that the condition in (ii) implies that when X is a bounded set, we may simply take q(x) = 1.
When s = 1 so that our focus is on the first order stochastic dominance relation, we may

transform the variable Xki(θ, τ) into one that has a bounded support by taking a smooth

strictly monotone transform. After this transformation, we can simply take q(x) = 1.

The first result below is concerned with the convergence in distribution of D(s)
N and C

(s)
N

under the null hypothesis uniformly in a subset of P. As for h(s)x defined prior to Assumption

1, we define h∆kl,i(x) = h
(s)
x (Xki)−h

(s)
x (Xli) and ψ

∆
kl,i(x) = ψx,k,P (Wi)−ψx,l,P (Wi). Let ν

(s)
kl (·)

be a Gaussian process on X with covariance kernel given by

CP (x1, x2) = CovP (h
∆
kl,i(x1) + ψ∆

kl,i(x1), h
∆
kl,i(x2) + ψ∆

kl,i(x2)),

where CovP denotes the covariance under P. The asymptotic critical values are based on

this Gaussian process. By convention, we assume that the supremum over an empty set is

equal to −∞.
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Let P0 be the set of probabilities under the null hypothesis and let PKS
00 be the set of

probabilities in P0 such that the contact set B(s)
kl is nonempty for all pairs k 6= l.4 The set

of probabilities PKS
00 represents the "boundary" of the null hypothesis. In other words, the

boundary points are the probabilities under which the contact set B(s)
kl is nonempty for all

k 6= l.We define the set of boundary points differently for Cramér-von Mises tests, C(s)
N . Let

PCM
00 be the set of probabilities in P0 such that for each k 6= l, the contact set B(s)

kl has a

positive Lebesgue measure. Hence, in general PCM
00 ⊂ PKS

00 .

Theorem 1 : Suppose that Assumptions 1-3 hold. Then under the null hypothesis, as
N →∞,

D
(s)
N →

D

(
mink 6=l supx∈B(s)kl

(ν
(s)
kl (x)), if P ∈ PKS

00

−∞, if P ∈ P0\PKS
00

and

C
(s)
N →

D

(
mink 6=l

R
B
(s)
kl
max{ν(s)kl (x), 0}2dx, if P ∈ PCM

00

0, if P ∈ P0\PCM
00

.

Under a fixed probability P ∈ PKS
00 on the boundary, the test statistic is asymptoti-

cally tight uniformly over P ∈ PKS
00 . But under a fixed probability P ∈ P0\PKS

00 , we have

supx∈X D
(s)
kl (x) < 0 for some k, l, and hence the test statistics diverge to −∞. The limit-

ing distribution of the test statistic D(s)
N exhibits discontinuity; they are not asymptotically

tight at each P ∈ P0\PKS
00 , while they are so at each P ∈ PKS

0 . This phenomenon of dis-

continuity arises often in moment inequality models. (e.g. Moon and Schorfheide (2006),

Chernozhukov, Hong, and Tamer (2007), and Andrews and Guggenberger (2006)).

As for C(s)
N , similar discontinuity arises in the limiting distribution. When P ∈ PCM

00 ,

C
(s)
N has a nondegenerate limiting distribution. However, when P ∈ P0\PCM

00 , the limiting

distribution becomes degenerate at zero. We introduce the following definition of a test

having an asymptotically exact size.

Definition 1 : (i) A test ϕα with a nominal level α is said to have an asymptotically exact

size if there exists a nonempty subset P 00 ⊂ P0 such that:

limsupN→∞supP∈P0EPϕα ≤ α.

limsupN→∞supP∈P00EPϕα = α. (7)

(ii) When a test ϕα satisfies (7), we say that the test is asymptotically similar on P 00.
4Hence, that P ∈ PKS

00 implies d∗s = 0 because PKS
00 ⊂ P0. However, the converse is not true, in particular

when X is unbounded.

9



The Gaussian process ν(s)kl in Theorem 1 depends on the unknown elements of the null

hypothesis, precluding the use of first order asymptotic critical values in practice. Barrett

and Donald (2003) suggested a bootstrap procedure and LMW, a subsampling approach.

Both studies have not paid attention to the issue of uniformity in the convergence of tests.

In order to deal with uniformity, we separate P0 into the boundary points and the interior
points and deal with asymptotic theory of the test statistic separately. The proof of Theorem

1 establishes the weak convergence of q(·)
√
N{D̄(s)

kl (·, θ̂, τ̂)−Dkl(·, θ0, τ 0)} to ν(s)kl (·) uniformly
over P ∈ P. This result is obtained by showing that the class of functions indexing the
empirical process is a uniform Donsker class (Giné and Zinn (1991)). The remaining step is

to deal with the limiting behavior of the test statistic uniformly over the interior points.

One might consider a typical bootstrap procedure for this situation. The difficulty for

the bootstrap method tests of stochastic dominance lies mainly in the fact that it is hard to

impose the null hypothesis upon the test. There have been approaches that consider only

least favorable subset of the models of the null hypothesis as in the following.

F1(x) = · · · = FK(x) for all x ∈ X . (8)

This leads to the problem of asymptotic nonsimilarity in the sense that when the true data

generating process lies away from the least favorable subset of the models of the null hypoth-

esis, and yet still lie at the boundary points, the bootstrap sizes become misleading even

in large samples. LMW calls this phenomenon asymptotic nonsimilarity on the boundary.

Bootstrap procedures that employ the usual recentering implicitly impose restrictions that

do not hold outside the least favorable set and hence asymptotically biased against such

probabilities outside the set.

To illustrate heuristically why a test that uses critical values from the least favorable case

of a composite null hypothesis can be asymptotically biased, let us consider a simple example

in the finite dimensional case. Suppose that the observations {Xi = (X1i,X2i) : i = 1, . . . , N}
are mutually independently and identically distributed with unknown mean μ = (μ1, μ2) and

known variance Σ = diag(1, 1). Let the hypotheses of interest be given by:

H0 : μ1 ≤ 0 and μ2 ≤ 0 vs. H1 : μ1 > 0 or μ2 > 0.

These hypotheses are equivalent to:

H0 : d
∗ ≤ 0 vs. H1 : d

∗ > 0, (9)

where d∗ = max{μ1, μ2}. The "boundary" of the null hypothesis is given by BBD = {(μ1, μ2) :

10



μ1 ≤ 0 and μ2 ≤ 0} ∩ {(μ1, μ2) : μ1 = 0 or μ2 = 0}, while the "least favorable case (LFC)"
is given by BLF = {(μ1, μ2) : μ1 = 0 and μ2 = 0} ⊂ BBD. To test (9), one may consider the
following the t-statistic:

TN = max{N1/2X1, N
1/2X2},

where Xk =
PN

i=1Xki/N. Then, the asymptotic null distribution of TN is non-degenerate

provided the true μ lies on the boundary BBD, but the distribution depends on the location
of μ. That is, we have

TN
d→

⎧⎪⎨⎪⎩
max{Z1, Z2} if μ = (0, 0)

Z1 if μ1 = 0, μ2 < 0

Z2 if μ1 < 0, μ2 = 0

,

where Z1 and Z2 are mutually independent standard normal random variables. On the other

hand, TN diverges to −∞ under the "interior" of the null hypothesis. Suppose that z∗α
satisfies P (max{Z1, Z2} > z∗α) = α for α ∈ (0, 1). Then, the test based on the least favorable
case is asymptotically non-similar on the boundary because, for example, limN→∞P (TN >

z∗α|μ = (0, 0)) 6=limN→∞P (TN > z∗α|μ = (0,−1)). Now consider the following sequence of
local alternatives: for δ > 0,

HN : μ1 =
δ√
N
and μ2 < 0.

Then, under HN , it is easy to see that TN
d→ N(δ, 1). However, the test based on the LFC

critical value may be biased against this local alternatives, because limN→∞ P (TN > z∗α) =

P (N(δ, 1) > z∗α) < α for some values of δ. To see this, in Figure 1, we draw a c.d.f.’s of

max{Z1, Z2} and N(δ, 1) for δ = 0.0, 0.2, and 1.5. Clearly, the distribution of max{Z1, Z2}
first-order stochastic dominates that of N(0.2, 1), i.e., TN is asymptotically biased against

HN for δ = 0.2.

11



Figure 1. Shows that TN is asymptocally biased against HN for δ = 0.2.

3 Bootstrap Procedure

In this section we discuss our method for obtaining asymptotically valid critical values. We

propose the wild bootstrap procedure as follows. Let

Xki(θ, τ) = Yki − g(Zki; θ, τ),

for some function g. Among the necessary identification conditions for θ0 and τ 0 is the

condition that E [Yki − g(Zki; θ, τ)|Zki] = 0. Let Xi(θ, τ) be a K- dimensional vector whose

k-th entry is given by Xki(θ, τ). Let (X̂i)
N
i=1 = (Xi(θ̂, τ̂))

N
i=1. Following the wild bootstrap

procedure (Härdle and Mammen (1993)), we draw {(ε∗i,b)Ni=1}Bb=1 such that E∗[ε∗ki,b|Zki] = 0

and E∗[ε∗2ki,b|Zki] = X̂2
ki, where E

∗[·|Zki] denotes the bootstrap conditional distribution given

Zki and ε∗ki,b is the k-th element of ε
∗
i,b. Let Y

∗
ki,b = g(Zki; θ̂, τ̂) + ε∗ki,b, k = 1, . . . ,K and take

W ∗
i,b = (Y

∗
ki,b, Zki)

K
k=1. Using this bootstrap sample, construct estimators θ̂

∗
b and τ̂ ∗b , for each

b = 1, . . . , B. Then, we define X∗
ki,b = Y ∗ki,b − g(Zki; θ̂

∗
b , τ̂

∗
b).

Now, we introduce the following bootstrap empirical process

D̄
(s)∗
kl,b (x) =

1

N(s− 1)!

NX
i=1

n
hx(X

∗
ki,b)− hx(X

∗
li,b)−EN

h
hx(X̂ki)− hx(X̂li)

io
, b = 1, 2, . . . , B,

12



where EN denotes the expectation with respect to the empirical measure of {X̂i}Ni=1. The
quantity D̄

(s)∗
kl,b (x) denotes the bootstrap counterpart of D̄

(s)
kl (x). Given a sequence cN → 0

and cN
√
N →∞, we construct the estimated contact set:

B̂
(s)
kl =

n
x ∈ X : q(x)|D̄(s)

kl (x)| < cN
o
. (10)

As for the weight function q(x), we may consider the following type of function. For z1 < z2

and for a constant a > 0, we set

q(x) =

⎧⎪⎨⎪⎩
1 if x ∈ [z1, z2]

a/(a+ |x− z2|(s−1)∨1) if x > z2

a/(a+ |x− z1|(s−1)∨1) if x < z1.

This is a modification of the weighting function considered by Horváth, Kokoszka, and Zikitis

(2006).

We propose the Kolmogorov-Smirnov type bootstrap test statistic as

D
(s)∗
N,b =

⎧⎪⎪⎨⎪⎪⎩
mink 6=l supx∈B̂(s)kl

√
Nq(x)D̄

(s)∗
kl,b (x), if B̂

(s)
kl 6= ∅ for all k 6= l

πN if B̂
(s)
kl = ∅ for some k 6= l,

(11)

where πN is a positive sequence such that πN → ∞. From this, we obtain the bootstrap

critical values, c∗KS
α,N,B = inf{t : B−1ΣB

b=11{D
(s)∗
N,b ≤ t} ≥ 1− α}, yielding an α-level bootstrap

test: ϕKS
α , 1{D(s)

N > c∗α,N,B}. The sequence πN governs the asymptotic behavior of the size
of the test. When πN increases faster, the size of the test converges to zero faster in the

interior points P ∈ P0\PKS
00 .

Likewise, we can define the Cramér-von Mises type bootstrap test statistic as

C
(s)∗
N,b =

⎧⎪⎪⎨⎪⎪⎩
N mink 6=l

R
B̂
(s)
kl
max

n
q(x)D̄

(s)∗
kl,b (x), 0

o2
dx, if B̂(s)

kl 6= ∅ for all k 6= l

πN if B̂
(s)
kl = ∅ for some k 6= l,

(12)

where πN is a positive sequence such that πN → ∞. The bootstrap critical values are
obtained by c∗CMα,N,B = inf{t : B−1ΣB

b=11{C
(s)∗
N,b ≤ t} ≥ 1 − α}, yielding an α-level bootstrap

test: ϕCM
α , 1{C(s)

N > c∗CMα,N,B}.
The main step we need to justify the bootstrap procedure uniformly in P ∈ P under this

general semiparametric environment is to establish the bootstrap uniform central limit theo-

rem for the empirical processes in the test statistic, where uniformity holds over probability
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measures in P. The uniform central limit theorem for empirical processes has been devel-

oped by Giné and Zinn (1991) and Sheehy and Wellner (1992) through the characterization

of uniform Donsker classes.

The bootstrap central limit theorem for empirical processes was established by Giné and

Zinn (1990) who considered a nonparametric bootstrap procedure. See also a nice lecture

note on the bootstrap by Giné (1997). We cannot directly use these results because the

bootstrap distribution for each sample {W ∗
i,b}Ni=1 is non-identically distributed both in the

case of wild-bootstrap or residual-based bootstrap. In the Appendix, we show how we can

make the bootstrap CLT result of Giné (1997) accommodate this case by slightly modifying

his result.5

This paper’s bootstrap procedure does not depend on a specific estimation method for

θ0 and τ 0. Due to this generality of our framework, we introduce the following additional

assumptions about the bootstrap sample W ∗
ib, the bootstrap estimators (θ̂

∗
, τ̂ ∗), and the

function g(z; θ, τ) introduced at the beginning of this section. Let GN be the σ-field generated
by {Wi}Ni=1.

Assumption 4: (i) For arbitrary ε > 0,

P
n
||θ̂∗ − θ̂||+ ||τ̂ ∗ − τ̂ ||P,2 > N−1/4ε|GN

o
→P 0, uniformly in P ∈ P.

(ii) For ψx,k,P (·) in Assumption 1(iv), E[ψx,k,P (Wi)|Zki] = 0, and for some rN → 0 with

limsupN→∞rN/cN <∞,

P

(
supx∈X

¯̄̄̄
¯√N Γ̂k,P (x)−

1√
N

NX
i=1

ψx,k,P (W
∗
i,b)

¯̄̄̄
¯ > rNε|GN

)
→P 0

uniformly in P ∈ P for any ε > 0,where Γ̂k,P (x) = EN [h
(s)
x (ϕk(W

∗
i ; θ̂

∗
, τ̂ ∗))]−EN [h

(s)
x (ϕk(W

∗
i ; θ̂, τ̂))]

and E∗[ψx,k,P (W
∗
i,b)|Zki] = 0.

(iii) There exists C such that for each (θ1, τ 1) ∈ BΘ×T (δ) and for each ε > 0,

supz∈Zksup(d2,τ2)∈BΘ×T (ε) |g(z; θ1, τ 1)− g(z; θ2, τ 2)| ≤ Cε2s2, (13)

for some s2 ∈ (d, 1], where Zk is the support of Zki.

(iv) For each k 6= l, there exists δ > 0 and constants ckl > 0 and pkl ≥ 1 such that for each
5For a weak convergence of residual-based bootstrap process in a regression model, see Koul and Lahiri

(1994). For a parametric bootstrap procedure for goodness-of-fit tests, see, among others, Andrews (1997).
See also Härdle and Mammen (1993) and Whang (2000) for a wild-bootstrap procedure that contains finite-
dimensional estimators.
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x, x0 ∈ X ,¯̄̄
q(x)|D(s)

kl (x)|− q(x0)|D(s)
kl (x

0)|
¯̄̄
≥ ckl{E[h(s)x (Xki)−h(s)x (Xli)−{h(s)x0 (Xki)−h(s)x0 (Xli)}]2∧δ}pkl/2.

Condition (i) requires that the bootstrap estimators should be consistent at a rate faster

than N−1/4 uniformly over P ∈ P. The bootstrap validity of M-estimators is established by
Arcones and Giné (1992). Infinite dimensional Z-estimators are dealt with by Wellner and

Zhan (1996). See also Abrevaya and Huang (2005) for a bootstrap inconsistency result for a

case where the estimators are not asymptotically linear. Condition (iii) implies the condition

in (5) by choosing W1i = Zki and can be weakened to the locally uniform L2-continuity (e.g.

Chen, Linton, and van Keilegom (2003)) when we confine our attention to the case s > 1.

Condition (iv) is similar to Condition C.2 in Chernozhukov, Hong, and Tamer (2007) and is

used to control the convergence rate of the estimated set with respect an appropriate norm.

This condition is needed only for the convergence rate of the rejection probability.

The wild bootstrap procedure is introduced to ensure Condition (ii) which assumes the

bootstrap analogue of the asymptotic linearity of
√
NΓk,P (x)[θ̂

∗ − θ̂, τ̂ ∗ − τ̂ ] with the same

influence function ψx,P . In the case of parametric regression specification: Xki(θ0) = Yki −
g(Zki; θ0) without the nonparametric function τ 0, the parameter θ0 is typically identified by

the condition E[Xki(θ0)] = 0 and in this case, we may use the residual-based bootstrap proce-

dure by replacing ε∗ki,b by those resampled from {X̂i− X̄N}Ni=1 where X̄N =
1
N

PN
i=1Xi(θ̂, τ̂).

Then we need Condition (ii) with the centered influence function 1√
N

PN
i=1{ψx,k,P (W

∗
i,b) −

ENψx,k,P (Ŵi)} where Ŵi = (Ŷi, Zi) and Ŷki = g(Zki; θ̂)+Xki(θ0). (See. e.g. Koul and Lahiri

(1994)).

One of the important conditions that are needed in this case is the uniform oscillation

behavior of the bootstrap empirical process, as established in the proof of Theorem 2.2 of

Giné (1997). We slightly modify his result so that empirical processes constructed from the

residual-based bootstrap procedure are accommodated. This latter result of Giné is also

crucial for our establishing the bootstrap central limit theorem that is uniform in P.

Theorem 2 : Suppose that the conditions of Theorem 1 and Assumption 4 hold and that

cN → 0 and cN
√
N →∞. Then the following holds.

(i) Uniformly over P ∈ P0,

P
n
D
(s)
N > c∗KS

α,∞

o
≤ α+OP (cN

p
− log cN), and

P
n
C
(s)
N > c∗CMα,∞

o
≤ α+OP (cN

p
− log cN).

(ii) Furthermore, suppose that for all P ∈ PKS
00 , the distribution of mink 6=l supx∈B(s)kl

(ν
(s)
kl (x))
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is continuous, and for all P ∈ PCM
00 , the distribution of mink 6=l

R
B
(s)
kl
max{ν(s)kl (x), 0}2dx is

continuous. Then

P
n
D
(s)
N > c∗KS

α,∞

o
= α+OP (cN

p
− log cN) uniformly over P ∈ PKS

00 and

P
n
C
(s)
N > c∗CMα,∞

o
= α+OP (cN

p
− log cN) uniformly over P ∈ PCM

00 ,

The first result says that the bootstrap tests have asymptotically correct sizes. The

second result tells us that the bootstrap test is asymptotically similar on the boundary. The

second result combined with the first result establishes that the bootstrap test has exact

asymptotic size equal to α. The result is uniform over P ∈ P0. The caveats of the absolute
continuity of the limiting distributions are necessary because in certain cases the distribution

can be discrete or even degenerate at one point. For example, consider the case where we

have K = 2, s = 1, and X = [0, 1] which is the common support for X1 and X2 whose

distribution functions meet only at 0 and 1 within X . Then, the Gaussian process ν(s)kl (·) is
a variant of a Brownian bridge process taking values 0 at end points of 0 and 1 and hence

mink 6=l supx∈B(s)kl
(ν
(s)
kl (x)) is a discrete random variable degenerate at zero. In this case, the

asymptotic size is zero, violating the equality in (ii).

The limit behavior of the bootstrap test statistic mimics the discontinuity in Theorem 1.

Both the original and bootstrap test statistics diverge when the data generating process is

away from the boundary points. However, the direction of divergence is opposite. When the

bootstrap distribution is away from "the boundary points," i.e., if B̂(s)
kl = ∅ for some k 6= l,

the bootstrap test statistic diverges to∞. However, outside the boundary points, the original

test statistic diverges to −∞. This opposite direction is imposed to keep the asymptotic size

of the bootstrap test below α uniformly over all the probabilities P ∈ P0\PKS
00 .

Our requirement for the sequence πN to increase to infinity is necessary for our results

that are uniform in P. To see this, consider the following:

√
Nq(x)D̄

(s)
kl (x, θ̂, τ̂) =

√
Nq(x)

n
D̄
(s)
kl (x, θ̂, τ̂)−D

(s)
kl (x)

o
+
√
Nq(x)D

(s)
kl (x). (14)

The first component on the right-hand side is uniformly asymptotically tight and its tail

probability goes to zero only when we increase the cut-off value to infinity. The behavior of

the last term depends on the sequence of probabilities PN ∈ P0\PKS
00 . The worst case arises

when PN converges to a boundary point so fast that for some k 6= l, supx∈X
√
Nq(x)D

(s)
kl (x)

also converges to zero. Considering uniformity in P, we should take this case into account.

Therefore, πN should increase to infinity in order to control the tail probability of the supre-

mum of the combined quantities in (14) appropriately. On the other hand, for only pointwise
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results for each P ∈ P0\PKS
00 , it suffices to set πN to be any nonnegative number.

It is worth noting that the convergence of the rejection probability on the boundary

points is slightly slower than cN . Since we can take cN converge to zero faster than N−1/3,

the convergence of the rejection probability can be made to be faster than the subsampling-

based test.6

Suppose that the null hypotheses in (1) and (2) are equivalent. Let us compare the

asymptotic similarity property of two tests D(s)
N and C

(s)
N that use bootstrap critical values

as proposed above. In general PCM
00 ⊂ PKS

00 . Hence the Kolmogorov-Smirnov tests are

asymptotically similar over a wider set of probabilities than the Cramér-von Mises type

tests. Such a comparison is relevant when for all k 6= l, the contact sets B(s)
kl are not empty

and for some k 6= l, B
(s)
kl is a finite set, as would happen, for example, with D

(s)
k and D

(s)
l

contact on a finite set of points andD(s)
k (x) ≤ D

(s)
l (x). In that case, the Kolmogorov-Smirnov

test has an exact asymptotic size of α while the asymptotic size of Cramér-von Mises test is

zero.

The result of Theorem 2 allows for a wide range of choice for the sequence πN in (11)

and (12) in the bootstrap test statistic. In practice, we may consider two extreme cases

πN = log(N) and πN = ∞, and see the robustness of the results. The latter case with

πN =∞ is tantamount to the rule of setting the test ϕ = 0 (i.e. do not reject the null) when

the contact set B̂ is empty.

4 Asymptotic Power Properties

In this section, we establish asymptotic power properties of the bootstrap test. First, we

consider consistency of the test.

Theorem 3 : Suppose that the conditions of Theorem 2 hold and that we are under a fixed
alternative P ∈ P\P0. Then,

limN→∞P
n
D
(s)
N > c∗KS

α,∞

o
→ 1 and limN→∞P

n
C
(s)
N > c∗CMα,∞

o
→ 1.

Therefore, the bootstrap test is consistent against all types of alternatives. This property is

shared by other tests of LMW and Barrett and Donald (2003) for example.

Let us turn to asymptotic local power properties. We consider a sequence of prob-

abilities PN ∈ P\P0 and denote D
(s)
k,N(x) to be D

(s)
k (x) under PN . That is, D

(s)
k,N(x) =

EPNh
(s)
x (ϕk(W ; θ0, τ 0)) using the notation of h

(s)
x and the specification of Xk in a previous

6The slower convergence rate for the bootstrap test than the asymptotic approximation is due to the
presence of the estimation error in the contact set B̂(s)

kl .
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section, where EPN denotes the expectation under PN . We confine our attention to {PN}
such that for each k ∈ {1, . . . ,K}, there exists functions H(s)

k (·) and δ
KS(s)
k (·) such that

D
KS(s)
k,N (x) = H

(s)
k (x) + δ

KS(s)
k (x)/

√
N (15)

as N →∞.

In the case of Cramér-von Mises type tests, we consider the following local alternatives:

for the functions H(s)
k (·) in (15), we assume that

D
CM(s)
k,N (x) = H

(s)
k (x) + δ

CM(s)
k (x)/

√
N. (16)

We assume the following for the functions H(s)
k (·), δ

KS(s)
k (·) and δ

CM(s)
k (·).

Assumption 5: (i) Ckl = {x ∈ X : H
(s)
k (x)−H

(s)
l (x) = 0} is nonempty for all k 6= l.

(ii) mink 6=lsupx∈X (H
(s)
k (x)−H

(s)
l (x)) ≤ 0.

(iii) supx∈Ckl(δ
KS(s)
k (x)−δKS(s)

l (x)) > 0 and
R
Ckl
(max{(δCM(s)

k (x)−δCM(s)
l (x)), 0})2dx > 0, for

all k 6= l.

Assumption 5 comprises conditions for the sequences in (15) and (16) to constitute non-

void local alternatives. Note that when H
(s)
k (x) = EPh

(s)
x (ϕk(W ; θ0, τ0)) for some P ∈

P, these conditions for H(s)
k imply that P ∈ P0, that is, the probability associated with

H
(s)
k belongs to the null hypothesis, in particular, the boundary points.7 The conditions

for δKS(s)
k (x) and δ

CM(s)
k (x) indicate that for each N, the probability PN belongs to the

alternative hypothesis P\P0. Therefore, the sequence PN represents local alternatives that

converge to the null hypothesis (in particular, to the boundary points PKS
00 ) maintaining the

convergence of DKS(s)
k,N (x) to H

(s)
k (x) at the rate of

√
N in the direction of δKS(s)

k (x). The

following theorem shows that the tests are asymptotically unbiased against such sequences

of local alternatives.

Theorem 4 : Suppose that the conditions of Theorem 2 and Assumption 5 hold.

(i) Under the local alternatives PN ∈ P\P0 satisfying the condition in (15),

limN→∞PN

n
D
(s)
N > c∗KS

α,∞

o
≥ α.

(ii) Under the local alternatives PN ∈ P\P0 satisfying the condition in (16),

limN→∞PN

n
C
(s)
N > c∗CMα,∞

o
≥ α.

7Since the distributions are continuous, the contact sets are nonempty under the alternatives. Therefore,
any local alternatives that converge to the null hypothesis will have a limit in the set of boundary points.
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Similarly as in LMW, the asymptotic unbiasedness of the test follows from Anderson’s

Lemma (Anderson (1952)).8 It is interesting to compare the asymptotic power of the boot-

strap procedure that is based on the least favorable set of the null hypothesis. Using the

same bootstrap sample {X∗
ki,b : k = 1, ··, K}ni=1, b = 1, . . . , B, this bootstrap procedure

alternatively consider the following bootstrap test statistics

D
(s)∗LF
N,b = min

k 6=l
sup
x∈X

√
Nq(x)D̄

(s)∗
kl,b (x) and (17)

C
(s)∗LF
N,b = N min

k 6=l

Z
X
max

n
q(x)D̄

(s)∗
kl,b (x), 0

o2
dx.

Let the bootstrap critical values with B →∞ denoted by c∗KS−LF
α,∞ and c∗CM−LFα,∞ respectively.

The results of this paper easily imply the following fact that this bootstrap procedure is

certainly inferior to the procedure that this paper proposes. For brevity, we state the result

for D(s)∗LF
N,b . We can obtain a similar result for C(s)∗LF

N,b .

Corollary 5 : Suppose that the conditions of Theorem 4 hold. Under the local alternatives
PN ∈ P\P0 satisfying the condition in (15),

limN→∞PN

n
D
(s)
N > c∗KS

α,∞

o
≥ limN→∞PN

n
D
(s)
N > c∗KS−LF

α,∞

o
.

Furthermore, assume that for all k 6= l, the union of the closures of the contact sets Ckl is a

proper subset of the interior of X and the Gaussian processes ν(s)kl (x) in Theorem 1 satisfy

that E[{supx∈Ckl ν
(s)
kl (x)}2] > 0. Then the inequality above is strict.

The result of Corollary 5 is remarkable that the bootstrap test of this paper weakly

dominates the bootstrap in (17) regardless of the Pitman local alternative directions. Fur-

thermore, when the union of the closures of the contact sets is a proper subset of the interior

of X , our test strictly dominates the bootstrap in (17) uniformly over the Pitman local al-
ternatives. However, this latter condition for contact sets can be strong when the number K

of prospects are many. In this case, a full characterization of the case for strict dominance

appears to be complicated. The result of Corollary 5 is based on the nonsimilarity of the

bootstrap tests in (17) on the boundary. In fact, Corollary 5 implies that the test based on

the bootstrap procedure using (17) is inadmissible. This result is related to Hansen (2003)’s

finding in an environment of finite-dimensional composite hypothesis testing that a test that

is not asymptotically similar on the boundary is asymptotically inadmissible.
8Anderson’s Lemma does not apply to one-sided Kolmogorov-Smirnov type tests. Song (2008) demon-

strates that there exist a class of
√
n-converging Pitman local alternatives against which one-sided

Kolmogorov-Smirnov type tests are asymptotically biased. Also see the discussion at the end of Section
2.
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5 Monte Carlo Experiments

5.1 Simulation Designs

In this section, we examine the finite sample performance of our tests using Monte Carlo

simulations. In particular, we compare our procedure with the subsampling method and

recentered bootstrap method which were suggested by LMW.

For a fair comparison of the simulation results, the simulation designs we consider are

exactly same as those considered by LMW: the Burr distributions also examined by Tse and

Zhang (2004), the lognormal distributions also considered by Barrett and Donald (2003) and

the exchangeable normal processes of Klecan et. al. (1991).

We first describe the details of the simulation designs. We consider the five different

designs from the Burr Type XII distribution, B(α, β) which is a two parameter family with

cdf defined by:

F (x) = 1− (1 + xα)−β, x ≥ 0.

The parameters and the population values of d∗1, d
∗
2 of the Burr designs are given below.

Design X1 X2 d∗1 d∗2

1a B(4.7, 0.55) B(4.7, 0.55) 0.000(FSD) 0.0000(SSD)

1b B(2.0, 0.65) B(2.0, 0.65) 0.0000(FSD) 0.0000(SSD)

1c B(4.7, 0.55) B(2.0, 0.65) 0.1395 0.0784

1d B(4.6, 0.55) B(2.0, 0.65) 0.1368 0.0773

1e B(4.5, 0.55) B(2.0, 0.65) 0.1340 0.0761

On the other hand, we consider four different designs from the lognormal distribution

LN(μk, σ
2
k). That is, we consider the distributions of Xk = exp(μk + σkZk), where Zk are

i.i.d. N(0, 1). The parameters and the population values of d∗1, d
∗
2 of the lognormal designs

are given below.

Design X1 X2 d∗1 d∗2

2a LN(0.85, 0.62) LN(0.85, 0.62) 0.0000(FSD) 0.0000(SSD)

2b LN(0.85, 0.62) LN(0.7, 0.52) 0.0000(FSD) 0.0000(SSD)

2c LN(0.85, 0.62) LN(1.2, 0.22) 0.0834 0.0000(SSD)

2d LN(0.85, 0.62) LN(0.2, 0.12) 0.0609 0.0122
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To define the multivariate normal designs, we let

Xki = (1− λ)
h
αk + βk

³√
ρZ0i +

p
1− ρZki

´i
+ λXk,i−1,

where (Z0i, Z1i, Z2i) are i.i.d. standard normal random variables, mutually independent.

The parameters λ = ρ = 0.1 determine the mutual correlation of X1i and X2i and their

autocorrelation. The parameters αk, βk are actually the mean and standard deviation of the

marginal distributions of X1i and X2i. The marginals and the true values of the multivariate

normal designs are:

Design X1 X2 d∗1 d∗2

3a N(0, 1) N(−1, 16) 0.1981 0.0000(SSD)

3b N(0, 16) N(1, 16) 0.0000(FSD) 0.0000(SSD)

3c N(0, 1) N(1, 16) 0.1981 0.5967

In computing the suprema in D
(s)
N we took a maximum over an equally spaced grid of

size n on the range of the pooled empirical distribution. To compute the integral for C(2)
N ,

we took the sum over the same grid points. We chose a total of 5 different subsamples for

each sample size N ∈ {50, 500, 1000}. We took an equally spaced grid of subsample sizes:
for N = 50, the subsample sizes are {20, 25, . . . , 45}; for N = 500 the subsample sizes are

{50, 100, . . . , 250}; for N = 1000 the subsample sizes are {100, 200, . . . , 500}.9 This grid of
subsamples are then used to compute the mean of the critical values from the grid, which had

the best overall performance among the automatic methods considered by LMW. We used

a total of 200 bootstrap repetitions in each case. In computing the suprema and integral in

each subsample and bootstrap test statistic, we took the same grid of points as was used in

the original test statistic.

To estimate the contact set

B̂
(s)
kl =

n
x ∈ X : |D̄(s)

kl (x)| < cN
o
,

we took the tuning parameter to be cN = cN−1/3, where c ∈ {0.25, 0.50, 0.75} for s = 1 and
c ∈ {2.0, 3.0, 4.0} for s = 2. To compute the test statistics and the contact set, we took the
weight function q(x) = 1 for all x ∈ X , i.e., no weighting. In each experiment, the number

of replications was 1, 000.

9LMW considered a finer grid, i.e., 20, of different subsample sizes but their simulation results are very
close to ours.
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5.2 Simulation Results

Tables 1F - 3S present the rejection probabilities for the tests with nominal size 5%. The

simulation standard error is approximately 0.007.

The overall impression is that all the methods considered work reasonably well in samples

above 500. The full- sample methods work better than the subsample method under the null

hypothesis in small samples . Our procedure is always more powerful than the recentered

bootstrap method. In cases (1c,1d,1e,2d below) where the subsample method is better

than the recentered bootstrap, our procedure is strictly more powerful than the subsample

method. The performance of our procedure depend on the choice of the tuning parameter cN .

If it takes larger values, then the rejection probabilities get closer to those of the recentered

bootstrap, but the rejection probabilities increase as cN decreases. This is consistent with

our theory because the rejection probability is a monotonically non-increasing function of

cN . In a reasonable range of the tuning parameter, our procedure strictly dominates the the

subsample and recentered bootstrap methods in terms of power without sacrificing size in

all of the designs we considered.

The first two designs in Tables 1F and 1S are to evaluate the size performance, especially

in the least favorable case of the equality of two distributions, while the other three are to

evaluate the power performance. The subsample method tends to over-reject under the null

when N = 50 but the size distortions are negligible when N ≥ 500. Our procedure has a
good size performance over all tuning parameters we considered in Table 1F, but the case 1b

in Table 1S shows that it tends to over-reject when the tuning parameter is chosen to be too

small. The last three designs (case 1c, 1d, and 1e in Tables 1F and 1S) are quite conclusive.

For moderate and large samples (N ≥ 500), the subsample method is more powerful than
the recentered bootstrap method. However, in these cases, our procedure strictly dominates

the subsample method uniformly over all values of cN we considered. This is so even at

small samples (N = 50). This remarkable results forcefully demonstrate the power of our

procedure.

Tables 2F and 2S give the rejection probabilities under the lognormal designs. The results

under the least favorable case 2a are similar to those of 1a and 1b. The design 2b (in Table

2F) is quite instructive because it corresponds to the boundary case under which the two

distributions "kiss" at points in the interior of the support. The recentered bootstrap tends

to under-reject the null hypothesis and perform very differently from the least favorable case,

while our procedure tends to have correct size for a suitable value of cN . The design 2c in

Table 2F shows that, in small sample N = 50, the full sample method is more powerful than

the subsample method. In design 2d (Tables 2F and 2S), the subsample method is more

powerful than the recentered bootstrap method for all sample sizes, but again our procedure
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dominates the subsample method.

Tables 3F and 3S consider the multivariate normal designs. The designs 3a (Table 2F)

and 3b (Tables 3F and 3S ) are to evaluate the size characteristics of the tests. The latter

designs correspond to the "interior" of the null hypothesis and the rejection probabilities tend

to zero as the sample size increases. This is consistent with our theory. The other designs are

to evaluate the power performance. They show that the subsample method is less powerful

than the recentered bootstrap and the latter is again dominated by our procedure.

Among the Kolmogorov-Smirnov and Cramer-von Mises type tests, the power perfor-

mance depends on the alternatives. In designs 1c,1d,1e, and 2d, the Kolmogorov-Smirnov

type tests are more powerful, while in designs 2c, 3a, and 3c, the Cramer-von Mises type

tests are more powerful.

6 Conclusion

This paper proposes a new method for testing stochastic dominance that improves on the

existing methods. Specifically, our tests have asymptotic sizes that are exactly correct uni-

formly over the entire null hypothesis. In addition, we have extended the domain of ap-

plicability of our tests to a more general class of situations where the outcome variable is

the residual from some semiparametric model. Our simulation study demonstrates that our

method works better than existing methods for quite modest sample sizes.

Our setting throughout has been i.i.d. data, but many time series applications call for the

treatment of dependent data. In that case, one may have to use a block bootstrap algorithm

in place of our wild bootstrap method. We expect, however, that similar results will obtain

in that case.

7 Appendix: Mathematical Proofs
Throughout the proof, C denotes a constant that can assume different values in different places.

7.1 Proofs of the Main Results
Lemma A1 : Let V (x) = xq(x), and Ṽ (x) = |Dkl(x)|q(x) x ∈ X , and introduce pseudo metrics dV (x, x0) =
|V (x)− V (x0)| and dṼ (x, x

0) = |Ṽ (x)− Ṽ (x0)|. Then,

logN[](ε,X , dV ) ≤ C
©
log h−1(C/ε)− log(ε)

ª
and

logN[](ε,X , dṼ ) ≤ C
©
log h−1(C/ε)− log(ε)

ª
,

where h(·) is an arbitrary strictly increasing function.
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Proof of Lemma A1 : Fix ε > 0. Note that |V | is uniformly bounded by Assumption 3(ii) and hence for
some C > 0, V (x) < C/h(x) for all x > 1 where h(x) is an increasing function. Put x = h−1(2C/ε) where
h−1(y) =inf{x : h(x) ≥ y : x ∈ X}, so that we obtain

V (h−1(2C/ε)) < ε/2.

Then, we can choose L(ε) ≤ Ch−1(2C/ε) such that L(ε) ≥ 1 and sup|x|≥L(ε)V (x) < ε/2. Partition
[−L(ε), L(ε)] into intervals {Xm}NL

m=1of length ε with the number of intervalsNL(ε) not greater than : 2L(ε)/ε.
Let X0 = X\[−L(ε), L(ε)]. Then (∪m≥1Xm) ∪ X0 constitutes the partition of X . In terms of dV , the diam-
eter of the set X0 is bounded by ε because supx,x0∈X0 |V (x) − V (x0)| ≤ ε/2 + ε/2 = ε, and the diameter
of Xm, m ≥ 1, is also bounded by Cε because dV (x, x

0) = |V (x) − V (x0)| ≤ C|x − x0| ≤ Cε for all
x, x0 ∈ Im. The second inequality uses the fact that q(x) is Lipschitz continuous. Therefore, we have
N(ε,X , dV ) ≤ 2L(ε)/ε+ 1 ≤ Ch−1(2C/ε)/ε+ 1. Hence logN(ε,X , dV ) ≤ C log h−1(C/ε)− log(ε).

We can obtain the same result for dṼ precisely in the same manner. Note that the properties of V (x)
that we used are that it is uniformly bounded and that |V (x) − V (x0)| ≤ C|x − x0|. By Assumption 2(i),
Ṽ (x) also satisfy these properties.

Lemma A2 : Let F =
n
h
(s)
x (ϕ(·; θ, τ)) : (x, θ, τ) ∈ X ×BΘ×T (δ)

o
. Then,

supP∈P logN[](ε,F , || · ||P,2) ≤ Cε−2d/s2 + C log ε, if s = 1, and

supP∈P logN[](ε,F , || · ||P,2) ≤ Cε−d/s2 + C/ε, if s > 1.

Proof of Lemma A2 : Let H = {h(s)x : x ∈R} and γx(y) = 1{y ≤ x}. Observe that the function
(x− ϕ)s−1γx(ϕ) is monotone decreasing in ϕ for all x, z. Define Φ = {ϕ(·; θ, τ) : (θ, τ) ∈ Θ × T }. Then by
the local uniform Lp-continuity condition in Assumption 2(i)(c), we have

logN[](ε,Φ, || · ||P,2) ≤ logN[](Cε
1/s2 ,Θ× T , || · ||P,2) ≤ Cε−d/s2 . (18)

Choose ε-brackets (ϕj ,∆1,j)
N1
j=1 of Φ such that

R
∆21,jdP ≤ ε2. For each j, let Qj,P be the distribution of

ϕj(W ) where Wj is distributed as P.
Suppose s = 1. In Lemma A1, we take h(x) = (log x)s2/d and obtain logN(ε,X , dV ) ≤ Cε−d/s2 −

C log(ε). Fix ε > 0 and choose the partition X = ∪NL
m=0Xm as above. Let xm be the center of Xm,m ≥ 1,

and let x0 be any point in X0. Write

supϕ∈Φjsupx∈Xm
¯̄
γx(ϕ(w))q(x)− γxm(ϕj(w))q(xm)

¯̄
(19)

≤ supϕ∈Φjsupx∈Xm
¯̄
γx(ϕ(w))q(x)− γxm(ϕj(w))q(x)

¯̄
+supϕ∈Φjsupx∈Xm

¯̄
γxm(ϕj(w))q(x)− γxm(ϕj(w))q(xm)

¯̄
= ∆∗m,j(w), say.

Then,

E
h
supϕ∈Φjsupx∈Xm

¯̄
γx(ϕ(W ))− γxm(ϕj(W ))

¯̄2
q(x)2|W1

i
≤ E

£
supx∈Xm1{x−∆1,j(W1)− |x− xm| ≤ ϕj(W ) ≤ x+∆1,j(W1) + |x− xm|}q(x)2|W1

¤
≤ supx∈X0q(x)

21{m = 0}+ C {ε+∆1,j(W1)} 1{m ≥ 1}
≤ Cε21{m = 0}+ C {ε+∆1,j(W1)} 1{m ≥ 1} ≤ Cε+ C∆1,j(W1).
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The second inequality is obtained by splitting the supremum into the case m = 0 and the case m ≥ 1.

The third and fourth inequalities follow because supx∈X0 |q(x)|2 ≤ sup|x|>L(ε) |x|2|q(x)|2 ≤ ε2/4. The last
inequality follows by subsuming Cε2 into Cε. Similarly we can show that

E
h
supϕ∈Φjsupx∈Xm

¯̄
γxm(ϕj(W ))q(x)− γxm(ϕj(W ))q(xk)

¯̄2 |W1

i
≤ C|q(x)− q(xk)|2 ≤ Cε2.

We conclude that ||∆∗k,j ||P,2 ≤ Cε1/2. Hence

supP∈P logN[](Cε
1/2,F , Lp(P )) ≤ logN[](ε,Φ, Lp(P )) + logN[](ε,X , dV )

≤ Cε−d/s2 − C log ε.

Suppose s > 1. Then (x−ϕ)s−1γx(ϕ)q(x) is infinite times continuously differentiable in ϕ with bounded
derivatives. Choose ε-brackets (ϕj ,∆1,j)

N1
j=1 of Φ as before. Then for each j, we choose also ε-brackets

(hk,j ,∆2,k,j)
N2(j)
k=1 such that for all h ∈ H, |h− hk,j | ≤ ∆2,k,j and

R
∆p
2,k,jdQj,P ≤ εp. Since H is monotone

increasing and uniformly bounded, we can take N2(j) ≤ N[](ε,H, Lp(Qj,P )) ≤ C/ε by Birman and Solomjak
(1967). Now, observe that

¯̄
h(ϕ(w))− hk,j(ϕj(w))

¯̄
≤

¯̄
h(ϕ(w))− h(ϕj(w))

¯̄
+
¯̄
h(ϕj(w))− hk,j(ϕj(w))

¯̄
≤

¯̄
h(ϕj(w)−∆1,j(w))− h(ϕj(w) +∆1,j(w))

¯̄
+∆2,k,j(ϕj(w))

≤ C∆1,j(w) +∆2,k,j(ϕj(w)).

The last inequality is due to the fact that h is Lipschitz with a uniformly bounded coefficient. Take

∆∗k,j(w) = C∆1,j(w) +∆2,k,j(ϕj(w)).

and note that
R
(∆∗k,j)

2dP ≤ Cε. Therefore, logN[](ε,F , || · ||P,2) ≤ logN[](Cε,Φ, || · ||P,2) + C/ε. Observe
that the constants above do not depend on the choice of the measure P . By (18), we obtain the wanted
results.

Proof of Theorem 1 : Consider the following empirical process

v
(s)
kN (f) =

1√
N(s− 1)!

NX
i=1

{f(Wi)−E [f(Wi)]} , f ∈ F (20)

where F is as defined in Lemma A2 above. Recall that F is uniformly bounded. Therefore, by Lemma A2
and d/s2 < 1, F is asymptotically equicontinuous uniformly in P ∈ P and totally bounded for all P ∈ P.
By Proposition 3.1 and Theorem 2.3 of Giné and Zinn (1991) (See also Theorem 2.8.4 of van der Vaart and
Wellner (1996)), the weak convergence of v(s)kN (·) in l∞(F) uniform over P ∈ P immediately follows. Here
l∞(F) denotes the space of uniformly bounded real functions on F .

Let FN = {f(·; θ, τ) : (θ, τ) ∈ ΘN × TN}. Let us consider the covariance kernel of the process v(s)kN (f) in
f ∈ FN . Choose f1,N (w) = f(w; θ1,N , τ1,N ) and f2,N (w) = f(w; θ2,N , τ2,N ), and let f1,0(w) = f(w; θ0, τ0)

25



and f2,0(w) = f(w; θ0, τ0). Then,

|Pf1,Nf2,N − Pf1,NPf2,N − {Pf1,0f2,0 − Pf1,0Pf2,0}|
≤ C |P (f1,N − f1,0)|+ C |P (f2,N − f2,0)|
≤ C {||θ1,N − θ0||+ ||τ1,N − τ1,0||P,2}+ C {||θ2,N − θ0||+ ||τ2,N − τ2,0||P,2}→ 0.

The convergence is uniform over all P ∈ P. Hence, the uniform weak convergence of v(s)kN (·) in l∞(FN ) to a
Gaussian process follows by Theorem 2.11.23 of van der Vaart and Wellner (1996). The covariance kernel of
the Gaussian process is given by Pf1,0f2,0 − Pf1,0Pf2,0.

Suppose that we are under the null hypothesis. Note that

√
ND̄

(s)
k (x, θ̂, τ̂)−

√
N

(s− 1)!Eh
(s)
x (ϕk(W ; θ0, τ0))

=
1√

N(s− 1)!

NX
i=1

n
h(s)x (ϕk(Wi; θ̂, τ̂))−E

h
h(s)x (ϕk(Wi; θ̂, τ̂))

io
+

√
N

(s− 1)!
n
E
h
h(s)x (ϕk(Wi; θ̂, τ̂))− h(s)x (ϕk(Wi; θ0, τ0))

io
=

1√
N(s− 1)!

NX
i=1

n
h(s)x (ϕk(Wi; θ0, τ0))−E

h
h(s)x (ϕk(W ; θ0, τ0))

io
+

√
N

(s− 1)!Γk,P (x)[θ̂ − θ0, τ̂ − τ0] + oP (1)

uniformly over P ∈ P. Hence we write

√
ND̄

(s)
kl (x, θ̂, τ̂)−

√
N

(s− 1)!Eh
∆
x,kl(W )

=
1√

N(s− 1)!

NX
i=1

n
h∆x,kl(Wi) + ψ∆x,kl(Wi)−E

h
h∆x,kl(W ) + ψ∆x,kl(W )

io
+ oP (1).

Under P ∈ P0, let δkl(x) = E
h
h∆x,kl(W )

i
. Therefore,

√
ND̄

(s)
kl (x, θ̂, τ̂)−

√
Nδkl(x)

(s− 1)!

=
1√

N(s− 1)!

NX
i=1

n
h∆x,kl(Wi) + ψ∆x,kl(Wi)−E

h
h∆x,kl(W ) + ψ∆x,kl(W )

io
+ oP (1).

Let Ψkl = {ψ∆x,kl : x ∈ X} and Hkl = {h∆x,kl : x ∈ X}. Consider the class of functions Fkl = {h+ψ : (h,ψ) ∈
Hkl×Ψkl}. By Lemma A2 above and Theorem 6 of Andrews (1994), we have supP∈P logN[](ε,Hkl, ||·||P,2) <
Cε−((2d/s2)∨1) and by Assumption 1(iv), supP∈P logN[](ε,Ψkl, || · ||P,2) < Cε−d. Note that Hkl is uniformly
bounded and Ψkl has an envelope 2ψ̄ such that ||2ψ̄||P,2+δ < C. Therefore, Fkl is a P -Donsker class. The
computation of the covariance kernel of the limiting Gaussian process is straightforward. Therefore,

√
ND̄

(s)
kl (·, θ̂, τ̂)−

√
Nδkl(·)
(s− 1)! =⇒ ν

(s)
kl ,

26



uniformly in P ∈ P. This yields the limit results both for the Kolmogorov-Smirnov type test and the
Cramér-von Mises type test.

Let F be as defined in Lemma A2 above. Let the bootstrap process

ν
∗(s)
k,b (x) =

1√
N(s− 1)!

NX
i=1

n
h(s)x (ϕk(W

∗
i,b; θ̂

∗
b , τ̂
∗
b))−EN

h
h(s)x (ϕk(Wi; θ̂, τ̂))

io
, x ∈ X ,

where W ∗i = (Y
∗
i , Zi). The following lemma is a key step for the bootstrap consistency of the test (Theorem

2). In the following, we use the usual stochastic convergence notation oP∗ and OP∗ that is with respect to
the conditional distribution given GN .

Lemma A3 : Under the assumptions of Theorem 2,

ν
∗(s)
k,b (x) =

1√
N(s− 1)!

NX
i=1

n
h(s)x (ε

∗
ki,b(θ0, τ0))−EN [h

(s)
x (ε∗ki,b(θ0, τ0))]

o
+

1√
N(s− 1)!

NX
i=1

ψx,P (ε
∗
ib(θ0, τ0)) + oP∗(1)

in P uniformly in P ∈ P. Furthermore, let FN be the class defined in the proof of Theorem 1. Then
ν
∗(s)
kl,b → ν

(s)
kl weakly in l∞(F) in P uniformly in P ∈ P.10

Proof of Lemma A3 : Observe that

X∗ki,b(θ, τ , θ̃, τ̃) = g(Zki, θ̃, τ̃)− g(Zki, θ, τ) + ε∗ki,b(θ̃, τ̃).

Then, we are interested in the weak convergence of the following bootstrap empirical process

1√
N(s− 1)!

NX
i=1

n
h(s)x (X

∗
ki,b(θ̂, τ̂ , θ̂

∗
b , τ̂
∗
b))−EN

h
h(s)x (X

∗
ki,b(θ̂, τ̂ , θ̂, τ̂))

io
(21)

=
1√

N(s− 1)!

NX
i=1

n
h(s)x (X

∗
ki,b(θ̂, τ̂ , θ̂

∗
b , τ̂
∗
b))− h(s)x (X∗ki,b(θ̂, τ̂ , θ̂, τ̂))

o
+

1√
N(s− 1)!

NX
i=1

n
h(s)x (X

∗
ki,b(θ̂, τ̂ , θ̂, τ̂))−EN [h

(s)
x (X∗ki,b(θ̂, τ̂ , θ̂, τ̂))]

o
.

We consider the bootstrap empirical process

ν∗1(x, θ, τ) =
1√

N(s− 1)!

NX
i=1

n
h(s)x (ε∗ki,b(θ, τ))−EN [h

(s)
x (ε

∗
ki,b(θ, τ))]

o
.

We can view the process as indexed by h
(s)
x ◦ ϕ(·; θ, τ) ∈ F and the process as a l∞(F)-valued random

(potentially nonmeasurable) element, where F is the class defined in Lemma A2. By Proposition 3.1 of Giné
and Zinn (1991), Lemma A2 implies that F is finitely uniformly pregaussian. Theorem 2.3 of Giné and
Zinn (1991) combined with Proposition B1 below gives the central limit theorem for the bootstrap empirical

10For the definition of the bootstrap uniform weak convergence, see Section 7.2 below.
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process ν∗1 and so, the law of the process converges weakly to the law of a centered Gaussian process ν1 on
X conditionally on GN in P uniformly in P ∈ P. The Gaussian process ν1 has a covariance kernel

CovP (h
∆
x1,kl(W ; θ1, τ1), h

∆
x2,kl(W ; θ2, τ2)),

where h∆x,kl(W ; θ, τ) = h
(s)
x (ϕk(W ; θ, τ)) − h

(s)
x (ϕl(W ; θ, τ)). The asymptotic equicontinuity associated with

this bootstrap uniform CLT implies that

supx
¯̄̄
ν∗1(x, θ̂, τ̂)− ν∗1(x, θ0, τ0)

¯̄̄
= oP∗(1) in P,

uniformly in P. We turn to the term in the second line of (21). Then write it as

√
N

(s− 1)!
n
ENh

(s)
x (X∗ki,b(θ̂, τ̂ , θ̂

∗
b , τ̂
∗
b))−ENh

(s)
x (X∗ki,b(θ̂, τ̂ , θ̂, τ̂))

o
. (22)

By Assumptions 1(iv) and 4(ii), we deduce that the process in (22) is asymptotically equivalent to

1√
N

NX
i=1

ψx,k,P (W
∗
i,b) + oP∗(cN ) in P,

uniformly in P ∈ P. Recall that W ∗i,b = ([Yki − g(Zki, θ̂, τ̂)]
∗ + g(Zki, θ̂, τ̂), Zki)

K
k=1 where [·]∗ is the part

obtained through the wild-bootstrap procedure. The above process is a bootstrap empirical process already
centered. The wanted result follows from the asymptotic equicontinuity condition, Assumption 3(i), and the
bootstrap CLT in Proposition B1.

Proof of Theorem 2 : (i) Let B(s)
kl = {x : D

(s)
kl (x) = 0}. Denote [B

(s)
kl ]

ε = {x : q(x)|D(s)
kl (x)| < ε}. We will

show the following at the end of the proof:

P
n
B
(s)
kl ⊂ B̂

(s)
kl ⊂ [B

(s)
kl ]

2cN
o
→ 1, uniformly in P ∈ P. (23)

Note that [Bkl]
2cN ⊂ X from some sufficiently large N on by Assumption 1(i)(b). Let ν̄∗kl,b(x) =√

ND̄
(s)∗
kl,b (x) and define 1K = {Bkl 6= ∅ for all k 6= l} and 12cNK = 1{[Bkl]

2cN 6= ∅ for all k 6= l}. Also define
1̂K = {B̂kl 6= ∅ for all k 6= l} and 1̂2cNK = 1{[B̂kl]

2cN 6= ∅ for all k 6= l}. Since P
n
B
(s)
kl ⊂ B̂

(s)
kl ⊂ [B

(s)
kl ]

2cN
o
→

1 by (23) and cN → 0, it follows that with probability (uniformly over P ∈ P) approaching one,

supx∈Bkl ν̄
∗
kl,b(x)1K + πN (1− 12cNK ) (24)

≤ supx∈B̂kl ν̄
∗
kl,b(x)1̂K + πN (1− 1̂K)

≤ supx∈[Bkl]2cN ν̄
∗
kl,b(x)1

2cN
K + πN (1− 1K).

We can apply the weak convergence of the process ν̄∗kl,b in Lemma A3 so that for each c > 0,

P
n
suph|E[h(ν̄∗kl,b)|GN ]−Eh(ν

(s)
kl )| > c, i.o.

o
→ 0,

where the supremum is over the space of bounded linear functionals h on l∞(F) and the convergence is
uniform over P ∈ P. (Corollary 2.7 of Giné and Zinn (1991). See also Giné (1997)). Furthermore, since the
class of functions indexing the bootstrap empirical process ν̄∗kl,b is uniformly pregaussian (as implied by the
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bracketing entropy conditions in Lemma A2 and Proposition 3.1 of Giné and Zinn (1991)), the process ν
satisfies that

limε→0supP∈PEP supf1,f2∈F:||f1−f2||P,2<ε |ν(f1)− ν(f2)| = 0. (25)

(See Definition 2.4 of Giné and Zinn (1991).)
Suppose that for all k, l, Bkl 6= ∅ so that P ∈ PKS

00 . From (24), with probability approaching one,

supx∈Bkl ν̄
∗
kl,b(x) ≤ supx∈B̂kl ν̄

∗
kl,b(x)1̂K + πN (1− 1̂K) ≤ supx∈[Bkl]2cN ν̄

∗
kl,b(x).

Therefore, we deduce that with probability approaching one,¯̄̄
supx∈B̂kl ν̄

∗
kl,b(x)1̂K + πN(1− 1̂K)− supx∈Bkl ν̄

∗
kl,b(x)

¯̄̄
(26)

≤ supx∈[Bkl]2cN ν̄
∗
kl,b(x)− supx∈Bkl ν̄

∗
kl,b(x)

≤ supx∈X : dṼ (x,x0)≤2cN
¯̄
ν̄∗kl,b(x)− ν̄∗kl,b(x

0)
¯̄
.

Given samples {Wi}Ni=1, we define a random metric:

d̂kl(x, x
0) =

(
1

N

NX
i=1

¯̄̄
{h(s)x (X̂ki)− h(s)x (X̂li)}− {h(s)x0 (X̂ki)− h

(s)
x0 (X̂li)}

¯̄̄2)1/2
.

From the proof of Theorem 1, the class F is a uniform Donsker, and hence it follows that

supdṼ (x,x0)<δd̂kl(x, x
0) = supdṼ (x,x0)<δdkl(x, x

0) +OP (N
−1/2)

uniformly in P ∈ P, where dkl(x, x0) = {E|{h(s)x (Xki) − h
(s)
x (Xli)} − {h(s)x0 (Xki) − h

(s)
x0 (Xli)}|2}1/2. Let us

define the following process:

ν
∗(s)
k,b (x; θ̂, τ̂) =

1√
N(s− 1)!

NX
i=1

n
h(s)x (ε∗ki,b(θ̂, τ̂))−EN

h
h(s)x (ε

∗
ki,b(θ̂, τ̂))

io
+

1√
N(s− 1)!

NX
i=1

ψx,k,P (W
∗
i,b),

where W ∗i,b = [g(Zki; θ̂, τ̂) + ε∗ki(θ̂, τ̂), Zki]
K
k=1. By Assumption 4(iv), we have

ckl

n
d̂kl(x, x

0)
opkl

≤ CdṼ (x, x
0) +OP (N

−pkl/2) = CdṼ (x, x
0) +OP (N

−1/2). (27)

Therefore,

supx∈X : dṼ (x,x0)≤2cN
¯̄
ν̄∗kl,b(x)− ν̄∗kl,b(x

0)
¯̄

≤ sup
n¯̄
ν̄∗kl,b(x)− ν̄∗kl,b(x

0)
¯̄
: x ∈ X : ckl

n
d̂kl(x, x

0)
opkl

≤ 3cN
o
,

with probability approaching one. The sequence 3cN is introduced to take into account the termOP (N
−1/2) in

29



(27). Following the proof of Lemma A3, we obtain that for some δ > 0,

EP

h
supx∈X : ckl{d̂kl(x,x0)}pkl≤3cN

¯̄
ν̄∗kl,b(x)− ν̄∗kl,b(x

0)
¯̄
|GN

i
= EP

h
supx∈X : ckl{d̂kl(x,x0)}pkl≤3cN

¯̄̄
ν
∗(s)
k,b (x; θ̂, τ̂)− ν

∗(s)
k,b (x

0; θ̂, τ̂)
¯̄̄
|GN

i
+ oP∗(cN ) in P

uniformly in P. Conditional on GN , the expected supnorm in the second line is bounded by that of a
symmetrized one by the symmetrization lemma. This symmetrized process is sub-Gaussian with respect to
d̂kl by Hoeffding’s inequality (e.g. van der Vaart and Wellner (1996), p.101), and hence by Corollary 2.2.8
of van der Vaart and Wellner (1996), we have

EP

h
sup

x∈X : d̂kl(x,x0)≤3c
1/pkl
N /ckl

¯̄
ν̄∗kl,b(x)− ν̄∗kl,b(x

0)
¯̄
|GN

i
≤ C

Z Cc
1/pkl
N

0

q
logD(ε, d̂kl)dε

where D(ε, d̂kl) is the packing number of X with respect to d̂kl. Note that d
1/pkl
Ṽ

(x, x0)/ckl < max{ε/2, cN/2}
implies d̂kl(x, x0) < ε with probability approaching one by (31). Hence we observe that

logD(ε, d̂kl) ≤ logD(max{ε/2, cN/2}, Cd1/pklṼ
) ≤ logD(max{εpkl/2, cpklN /2}, CdṼ )

≤ logD(εpkl/2, CdṼ ) ≤ −C log(ε),

with probability approaching one. The last inequality is obtained by choosing h(x) = C1x
1−C2 with appro-

priate constants C1 and C2, and applying Lemma A1. Therefore,

EP

h
supx∈X : d̂kl(x,x0)≤CcN

¯̄
ν̄∗kl,b(x)− ν̄∗kl,b(y)

¯̄
|GN

i
= OP (cN

p
− log cN )

uniformly in P ∈ P. From (26), we conclude that

supx∈B̂kl ν̄
∗
kl,b(x)1̂K + πN (1− 1̂K)

= supx∈Bkl ν̄
∗
kl,b(x) +OP∗(cN

p
− log cN ) in P uniform over P ∈ PKS

00 .

Since sup
x∈B(s)

kl

ν̄∗kl,b(x) →
D∗
sup

x∈B(s)
kl

ν
(s)
kl (x) uniformly in P, we deduce that

c∗KS
α,∞ = cKS

α +OP (1/
√
N) +OP (cN

p
− log cN ) = cKS

α +OP (cN
p
− log cN ),

uniformly in P ∈ PKS
00 , where cKS

α is such that

cKS
α = infc∈R

n
P
n
mink 6=lsupx∈Bklν

(s)
kl (x) ≤ cKS

α

o
≥ 1− α

o
.

Hence P{D(s)
N > c∗KS

α,∞} = α+OP (cN
√
− log cN ). This result yields the first result of asymptotic similarity.

Now, suppose that P ∈ P0\PKS
00 . In this case, for some k, l, we have D(s)

kl (x) < 0 for all x ∈ X so that
for some k, l, Bkl = ∅ and 1K = 0. From (24),

πN (1− 12cNK ) ≤ mink 6=lsupx∈B̂kl ν̄
∗
kl,b(x)1̂K + πN (1− 1̂K), (28)

with probability approaching one. Recall that 12cNK = 0 when [Bkl]
2cN = ∅ for some k 6= l. For k, l such that

Bkl = ∅ or supx∈X |D
(s)
kl (x)| > 0, there exists N0 such that for all N ≥ N0, supx∈X |D

(s)
kl (x)| > 2cN > 0
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so that [Bkl]
2cN = ∅. Hence from some large N on, we have [Bkl]

2cN = ∅ or 12cNK = 0. The bootstrap test
statistic on the right-hand side of (28) is bounded from below by πN from some large N on. Therefore,

c∗KS
α,∞ ≥ πN , (29)

from some large N on. Now, by Theorem 1,

P

∙
min
k 6=l

sup
x∈X

√
Nq(x)D̄

(s)
kl (x, θ̂, τ̂) ≥ c∗KS

α,∞

¸
≤ P

∙
min
k 6=l

sup
x∈X

√
Nq(x)

³
D̄
(s)
kl (x, θ̂, τ̂)−D

(s)
kl (x) +D

(s)
kl (x)

´
≥ πN

¸
(from some large N on)

≤ P

∙
maxk 6=l sup

x∈X

√
Nq(x){D̄(s)

kl (x, θ̂, τ̂)−D
(s)
kl (x)} ≥ πN/2

¸
+P

∙
min
k 6=l

sup
x∈X

√
Nq(x)D

(s)
kl (x) ≥ πN/2

¸
.

Since the term maxk 6=l supx∈X
√
Nq(x){D̄(s)

kl (x, θ̂, τ̂) − D
(s)
kl (x)} is uniformly asymptotically tight uniform

over P ∈ P and πN →∞, the first probability vanishes. Under H0, the term mink 6=l supx∈X
√
Nq(x)D

(s)
kl (x)

is less than or equal to zero uniformly over P ∈ P0, and hence the second probability also vanishes uniformly
over P ∈ P0. Hence we obtain the wanted result.

Now, let us turn to the result for Cramér-von Mises type tests. Noting that PCM
00 ⊂ PKS

00 and using the
previous arguments we can show that uniformly in P ∈ PCM

00 ,

c∗CMα,N = cCMα +OP (cN
p
− log cN ),

where cCMα is such that

cCMα = infc∈R

(
P

(
mink 6=l

Z
B
(s)
kl

³
max{ν(s)kl (x), 0}

´2
dx ≤ cCMα

)
≥ 1− α

)
.

For P ∈ P0\PCM
00 , observe that we have c∗CMα,N ≥ πN as before,

P

"
min
k 6=l

N

Z
B
(s)
kl

(max{q(x)D̄(s)
kl (x, θ̂, τ̂), 0})2dx ≥ cCMα,N

#
.

Observe that max(a+ b, 0) ≤ max(a, 0) +max(b, 0). Since we can bound the probability above by

P

"
max
k 6=l

2N

Z
B
(s)
kl

³
max{q(x)(D̄(s)

kl (x, θ̂, τ̂)−D
(s)
kl (x)), 0}

´2
dx ≥ πN/2

#

+P

"
min
k 6=l

2N

Z
B
(s)
kl

³
max{q(x)D(s)

kl (x), 0}
´2

dx ≥ πN/2

#
,

for some sufficiently large N on. By the asymptotic tightness of the empirical process, the first probability
converges to zero. The second probability also converges to zero because under the null hypothesis, D(s)

kl (x) ≤
0 for some k 6= l.

Let us turn to (23). Since the empirical process
√
Nq(x){D(s)

k (x)− D̄
(s)
k (x)} is asymptotically tight for
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each k = 1, . . . ,K, P{supx(q(x)|D(s)
l (x) − D̄

(s)
l (x)| + q(x)|D(s)

k (x) − D̄
(s)
k (x)|) > cN} → 0 by the choice of

cN → 0 and cN
√
N →∞. For any x ∈ Bkl so that D

(s)
kl (x) = 0, by the triangular inequality,

q(x)
¯̄̄
D̄
(s)
kl (x)

¯̄̄
≤ q(x)

¯̄̄
D
(s)
l (x)− D̄

(s)
l (x)

¯̄̄
+ q(x)

¯̄̄
D
(s)
k (x)− D̄

(s)
k (x)

¯̄̄
≤ cN

with probability approaching one. Thus we deduce that P{B(s)
kl ⊂ B̂

(s)
kl }→ 1. Now, for any x ∈ B̂kl, by the

triangular inequality,

q(x)
¯̄̄
D
(s)
kl (x)

¯̄̄
≤ cN + q(x)

¯̄̄
D
(s)
l (x)− D̄

(s)
l (x)

¯̄̄
+ q(x)

¯̄̄
D
(s)
k (x)− D̄

(s)
k (x)

¯̄̄
≤ 2cN ,

with probability approaching one. Therefore, P{B̂(s)
kl ⊂ [B

(s)
kl ]

2cN}→ 1. The convergence uniform over P ∈ P
immediately falls from the fact that

√
N{D(s)

k (x)− D̄(s)
k (x)} is asymptotically tight uniformly over P ∈ P.

Proof of Theorem 3: (i) The contact sets B(s)
kl are not empty for all k 6= l under each alternative hypothesis

because the marginal distributions of Xk and Xl are continuous. Following the proof of Theorem 2 in the
case of d(s)∗ = 0, we have for the bootstrap critical values c∗KS

α,∞ ,

c∗KS
α,∞ = cKS

α +OP (cN
p
− log cN ).

Now, following the proof of Theorem 1, we can show that when d
(s)
∗ > 0,

mink 6=lsupx∈X
√
ND̄

(s)
kl (x, θ̂, τ̂)→∞.

Hence the result follows.
(ii) The proof is very similar to (i) and hence it is omitted.

Proof of Theorem 4: (i) For any sequence {PN}∞N=1 ∈ P, the weak convergence result in the proof of
Theorem 1 gives

√
ND̄

(s)
k (x, θ̂, τ̂)−

√
N

(s− 1)!ENh
(s)
x (ϕk(W ; θ0, τ0))

=
1√

N(s− 1)!

NX
i=1

n
h(s)x (ϕk(Wi; θ̂, τ̂))−EN

h
h(s)x (ϕk(Wi; θ̂, τ̂))

io
+

√
N

(s− 1)!
n
EN

h
h(s)x (ϕk(Wi; θ̂, τ̂))− h(s)x (ϕk(Wi; θ0, τ0))

io
=⇒ ν

(s)
k (x),

where EN denotes the expectation with respect to PN . This result follows because the functions constituting
the process is a uniform Donsker class. Under any sequence PN such that

ENh
(s)
x (ϕk(W ; θ0, τ0))/(s− 1)! = H

(s)
k (x) + δk(x)/

√
N

as N →∞, we obtain that
√
ND̄

(s)
k (x, θ̂, τ̂)−

√
NH

(s)
k (x) =⇒ δk(x)+ν

(s)
k (x) or that under the local sequence

{PN}, √
ND̄

(s)
kl (x, θ̂, τ̂)−

√
NH

(s)
kl (x)⇒ ν

(s)
kl (x) + δkl(x),
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where H(s)
kl (x) = H

(s)
k (x)−H

(s)
l (x). Hence

min
k 6=l

sup
x∈X

n√
ND̄

(s)
kl (x, θ̂, τ̂)

o
= min

k 6=l
sup
x∈X

n√
NH

(s)
kl (x) + ν

(s)
kl (x) + δkl(x)

o
+ oP (1).

= min
k 6=l

sup
x∈X :H(s)

kl (x)=0

n√
NH

(s)
kl (x) + ν

(s)
kl (x) + δkl(x)

o
+ oP (1)

= min
k 6=l

sup
x∈X :H(s)

kl (x)=0

n
ν
(s)
kl (x) + δkl(x)

o
+ oP (1).

Therefore, the asymptotic unbiasedness result follows from Theorem 2 by applying Anderson’s Lemma (e.g.
Bickel, Klaassen, Ritov, and Wellner (1993), p.466.)
(ii) The asymptotic unbiasedness follows similarly by Anderson’s Lemma. Observe that the set of functions
{(f)Kk=1 :mink 6=j

R
(max{fk − fj , 0})2dx < c} is convex and symmetric around zero.

Proof of Corollary 5 : Since the test statistics are the same, it suffices to compare the bootstrap critical
values as B →∞. By the construction of the local alternatives, we are under the probability on the boundary.
Since this bootstrap test statistic is recentered, it converges in distribution (conditional on GN ) to the
distribution of mink 6=lsupx∈Xν

(s)
kl (x), while the distribution of the bootstrap test statistic D

(s)∗
N,b converges to

that of mink 6=lsupx∈Cklν
(s)
kl (x). Note that

mink 6=lsupx∈Xν
(s)
kl (x) ≥ mink 6=lsupx∈Cklν

(s)
kl (x)

because Ckl ⊂ X . Hence c∗KS−LF
α,∞ ≥ c∗KS

α,∞ . This implies that

limN→∞PN
n
D
(s)
N > c∗KS

α,∞

o
= P

n
mink 6=lsupx∈Ckl

n
ν
(s)
kl (x) + δkl(x)

o
> c∗KS

α,∞

o
(30)

≥ P
n
mink 6=lsupx∈Ckl

n
ν
(s)
kl (x) + δkl(x)

o
> c∗KS−LF

α,∞

o
.

Now, assume that the set X\∪k 6=lcl(Ckl) contains a nonempty interior, so that

supx∈X\∪k 6=lcl(Ckl)ν
(s)
kl (x) > supx∈∪k 6=lcl(Ckl)ν

(s)
kl (x) for all k 6= l

with positive probability because ν(s)kl (x) is a Gaussian process. Therefore, c
∗KS−LF
α,∞ > c∗KS

α,∞ . In this case,
by Gaussianity of the process ν(s)kl (x) + δkl(x), the inequality in (30) is strict.

7.2 Bootstrap Uniform Central Limit Theorem
In this section, we show how we can extend the bootstrap CLT result of Giné (1997) to accommodate the
situation where bootstrap samples are non-identically distributed. The essential nature of the residual based
bootstrap is to resample only from a marginal distribution of a random vector while leaving the remaining
part intact. For example, consider the nonlinear regression model Yi = g(Xi, θ)+εi. Then, bootstrap sample
is obtained as {Y ∗i ,Xi}ni=1 or as {g(Xi, θ̂)+ [Yi−g(Xi, θ̂)]

∗,Xi}ni=1 where [·]∗ indicates the variable obtained
from resampling. The bootstrap central limit theorem in this section is appropriate for this situation.

We adapt the notations and definitions of Giné and Zinn (1991) and Giné (1997) to our case of residual
based bootstrap processes. Let (S,S, P ) be a probability space on a Banach space S, and let (Xi, Zi) :

(SN,SN, PN) → (S,S, P ) be the i-th coordinate function. Hence {(Xi, Zi)}i∈N is a sequence of pairs of
B-valued (i.e. taking values from a Banach space) random elements taking values from X × Z. Let F be
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a class of uniformly bounded measurable functions on (S,S) with an envelope F , and let F 0 = {f(·, z) :
(f, z) ∈ F ×Z}. Then, we define

Pn,X(ω) ,
1

n

nX
i=1

δXi(ω) and Pn(ω) ,
1

n

nX
i=1

⎧⎨⎩δ(X̂i,Zi)
(ω)− 1

n

nX
j=1

δ(Xj ,Zi)(ω)

⎫⎬⎭
where X̂1, . . . , X̂n i.i.d. Pn,X(ω). The focus of this paper is the distribution of (X̂i, Zi)

n
i=1. The main difference

from the usual nonparametric bootstrap is that the conditional distribution of (X̂i, Zi) given {Xi, Zi}i∈N is
not identical across different i’s.

The measure Pn(ω) is a signed measure, and we writeEPnf(X,Z) = 1
n

Pn
i=1{f(X̂i, Zi)− 1

n

Pn
j=1 f(Xj , Zi)}. Let

GP be a P -Brownian bridge, i.e. the centered Gaussian process on L2(P ) with the covariance kernel given
by CovP (f, g). Let ν∗n ,

√
nPn and define

dPn(ν
∗
n, GP ;F) , supH∈BL(F) |EPnH(ν

∗
n)−EPnH(GP )| ,

where BL(F) = {H : l∞(F)→R: ||H(v1)−H(v2)|| ≤supf∈F ||v1(f)− v2(f)|| and supv∈l∞(F) ||H(ν)|| <∞}.
Conditional on {Xi, Zi}i∈N, the process ν∗n is an empirical process of independent but nonidentically dis-
tributed random elements. Similarly we define νn ,

√
n(Pn,X − PX) and dP (νn, GP ;F 0). Then, we say

F ∈BUCLT(P) if F is P -pregaussian and supP∈P dBL,Pn(ν
∗
n, GP ;F)→ 0 in P uniformly in P ∈ P. (For de-

tails, see Giné and Zinn (1991)). The primary focus is to identify sufficient conditions for F ∈BUCLT(P).We
follow the proof for the direct implication part of Theorem 2.2. of Giné (1997). For this we need the following
lemma which is a slight variant of Proposition 2.5 of Giné (1997).

Lemma B1: Let B be a Banach space, and for any n ∈ N, let wji = (xj , zi), where xj , zi, i, j ∈ N, are
points in B and let wi , 1

nΣ
n
j=1(xj , zi). Let W1, . . . ,Wn be independent, non-identically distributed B-valued

random variables with each Wi having law P{Wi = wji} = 1/n, j = 1, . . . , n. Let Nji, i, j ∈ {1, . . . , n},
be i.i.d. Poisson random variables with parameter 1. Assume these random vectors and variables are all
independent. Then,

E

°°°°°
nX
i=1

(Wi − wi)

°°°°° ≤ e

n(e− 1)E

°°°°°°
nX
j=1

nX
i=1

(Nji − 1)(wji − wi)

°°°°°°
Proof of Lemma B1: For any probability measure L, define Pois(L) = exp(L− 1). Let L(X) denote the
distribution of X. By the Poissonization lemma (e.g. (2.5’) of Giné (1997)), we obtain that

E

°°°°°
nX
i=1

(Wi − wi)

°°°°° ≤ e

e− 1

Z
||x||dPois

Ã
nX
i=1

L(W b
i − wi)

!
. (31)

Note that
Pn

i=1 L(Wi − wi) =
1
n

Pn
i=1

Pn
j=1 δwji−wi and that

Pois

⎛⎝ nX
j=1

δwji−wi

⎞⎠ = Pois(N1i(w1i − wi)) ∗ · · · ∗ Pois(Nni(wni − wi))

= L

⎛⎝ nX
j=1

Nji(wji − wi)

⎞⎠ = L

⎛⎝ nX
j=1

(Nji − 1)(wji − wi)

⎞⎠ .
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Therefore, Pois
³Pn

i=1

Pn
j=1 δwji−wi

´
= L

³Pn
i=1

Pn
j=1(Nji − 1)(wji − wi)

´
. By (2.7) of Giné (1997) and

by (31), we obtain the wanted result.

Proposition B1: Suppose that supP∈P
R∞
0

p
logN[](ε,F , || · ||P,2)dε <∞ and supP∈P

R
F 2dP <∞. Then

F ∈BUCLT(P).

Proof of Proposition B1: We follow the proof Theorem 2.2 of Giné (1997). A close examination of the
proof shows that the only modification needed for this extension is bounding the oscillation of the bootstrap
empirical process. Let E∗ denote the expectation with respect to the bootstrap distribution. Similarly as in
the proof there, we proceed as follows:

EE∗||ν∗n||Fδ0 = EE∗

°°°°° 1√
n

nX
i=1

³
δ(X̂i,Zi)

− Pn,i

´°°°°°
Fδ0

(32)

≤ e

e− 1E

°°°°°° 1

n
√
n

nX
i=1

nX
j=1

(Nji − 1)
(
δ(Xj ,Zi) −

1

n
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δ(Xk,Zi)

)°°°°°°
Fδ0

≤ e

e− 1
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°°°°°° 1
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√
n

nX
i=1

nX
j=1

(Nji − 1)δ(Xj ,Zi)

°°°°°°
Fδ0

+E

°°°°°° 1

n2
√
n

nX
i=1

nX
j=1

(Nji − 1)
nX

k=1

δ(Xk,Zi)

°°°°°°
Fδ0

⎫⎪⎬⎪⎭ .

We can show that the limδ→0limsupn→∞ of both the terms are equal to zero for each P ∈ P by proceeding
exactly in the same manner as in the proof of Theorem 4.10 of Arcones and Giné (1993). Uniformity
over P ∈ P can be ensured by applying to the chaining argument a uniform version of Bernstein’s inequality
(Proposition 2.3 of Arcones and Giné (1993)) that involves supP∈P

R
F 2k dP, where Fk is the class of functions

that are bracketed by the k-th bracket. The number of the brackets can be chosen not to depend on P due
to the condition that supP∈P

R∞
0

p
logN[](ε,F , || · ||P,2)dε <∞. Details are omitted.
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KS CM

LSW LSW

Design N SUB BTS I II III SUB BTS I II III

50 .137 .063 .070 .063 .063 .105 .064 .084 .064 .064

1a, d∗1 = 0 500 .046 .056 .057 .056 .056 .050 .057 .058 .057 .057

1000 .052 .049 .049 .049 .049 .046 .060 .061 .060 .060

50 .122 .055 .061 .055 .055 .082 .071 .080 .072 .071

1b, d∗1 = 0 500 .052 .051 .051 .051 .051 .058 .059 .061 .059 .059

1000 .048 .059 .060 .051 .051 .056 .046 .048 .046 .046

50 .399 .685 .762 .707 .689 .279 .411 .581 .457 .424

1c, d∗1 > 0 500 .981 .983 .983 .983 .983 .975 .981 .983 .982 .982

1000 .994 .995 .995 .995 .995 .993 .994 .994 .994 .994

50 .381 .684 .781 .706 .689 .262 .426 .578 .464 .437

1d, d∗1 > 0 500 .986 .984 .987 .985 .985 .985 .982 .983 .982 .982

1000 .995 .994 .994 .994 .994 .995 .993 .993 .993 .993

50 .397 .646 .738 .670 .653 .265 .371 .528 .408 .387

1e, d∗1 > 0 500 .986 .992 .992 .992 .992 .975 .991 .991 .991 .991

1000 .987 .992 .992 .992 .992 .987 .989 .991 .991 .991

Table 1F. Rejection frequencies for the test of First Order Stochastic Dominance for Design

1. SUB refers to the subsampling method with critical values computed by the automatic method

"Mean" described by LMW(2005) for the 5% null rejection probabilities. BT refers to the recentered

bootstrap. LSW refers to the recentered bootstrap with set estimation, where the tuning parameter

is given by cN = c ·N−1/3 with c = 0.25, 0.50, and 0.75 for cases I, II, and III, respectively.

38



KS CM

LSW LSW

Design N SUB BTS I II III SUB BTS I II III

50 .110 .066 .068 .066 .066 .090 .062 .063 .062 .062

1a, d∗2 = 0 500 .055 .055 .055 .055 .055 .049 .057 .057 .057 .057

1000 .052 .050 .050 .050 .050 .048 .050 .050 .050 .050

50 .084 .061 .132 .075 .066 .064 .066 .154 .080 .071

1b, d∗2 = 0 500 .068 .060 .178 .091 .071 .063 .060 .210 .096 .070

1000 .073 .050 .177 .084 .058 .060 .051 .219 .086 .063

50 .261 .336 .846 .525 .368 .159 .200 .850 .380 .212

1c, d∗2 > 0 500 .942 .451 .995 .985 .983 .738 .003 .996 .986 .983

1000 .993 .545 .997 .996 .995 .969 .003 .997 .996 .995

50 .233 .329 .841 .544 .368 .149 .197 .851 .370 .209

1d, d∗2 > 0 500 .958 .423 .994 .987 .985 .710 .004 .994 .987 .984

1000 .995 .524 .999 .996 .994 .955 .003 .999 .998 .994

50 .233 .299 .798 .478 .326 .138 .179 .810 .346 .189

1e, d∗2 > 0 500 .933 .424 .995 .993 .992 .653 .009 .996 .993 .991

1000 .984 .484 .997 .995 .992 .934 .001 .998 .997 .992

Table 1S. Rejection frequencies for the test of Second Order Stochastic Dominance for Design

1. SUB refers to the subsampling method with critical values computed by the automatic method

"Mean" described by LMW(2005) for the 5% null rejection probabilities. BT refers to the recentered

bootstrap. LSW refers to the recentered bootstrap with set estimation, where the tuning parameter

is given by cN = c ·N−1/3 with c = 2.0, 3.0, and 4.0 for cases I, II, and III, respectively.
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KS CM

LSW LSW

Design N SUB BTS I II III SUB BTS I II III

50 .130 .054 .058 .054 .054 .082 .058 .071 .059 .058

2a, d∗1 = 0 500 .049 .055 .055 .055 .055 .054 .057 .057 .057 .057

1000 .070 .044 .044 .044 .044 .050 .061 .062 .061 .061

50 .078 .072 .088 .075 .073 .031 .056 .068 .056 .056

2b, d∗1 = 0 500 .010 .026 .104 .046 .028 .002 .004 .028 .005 .004

1000 .020 .018 .170 .076 .034 .007 .001 .031 .009 .002

50 .300 .453 .787 .626 .574 .272 .718 .918 .872 .831

2c, d∗1 > 0 500 .979 1.00 1.00 1.00 1.00 .988 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 .257 .173 .555 .427 .377 .184 .016 .396 .223 .159

2d, d∗1 > 0 500 .969 .988 1.00 1.00 1.00 .954 .644 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 .995 1.00 1.00 1.00

Table 2F. Rejection frequencies for the test of First Order Stochastic Dominance for Design

2. SUB refers to the subsampling method with critical values computed by the automatic method

"Mean" described by LMW(2005) for the 5% null rejection probabilities. BT refers to the recentered

bootstrap. LSW refers to the recentered bootstrap with set estimation, where the tuning parameter

is given by cN = c ·N−1/3 with c = 0.25, 0.50, and 0.75 for cases I, II, and III, respectively.
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KS CM

LSW LSW

Design N SUB BTS I II III SUB BTS I II III

50 .077 .056 .063 .056 .056 .068 .061 .074 .061 .061

2a, d∗2 = 0 500 .061 .046 .050 .046 .046 .054 .058 .066 058. .058

1000 .063 .065 .065 .065 .065 .057 .064 .064 .064 .064

50 .063 .078 .119 .078 .078 .037 .077 .135 .077 .077

2b, d∗2 = 0 500 .002 .006 .154 .018 .006 .001 .002 .171 .006 .002

1000 .004 .001 .215 .023 .001 .001 .000 .239 .014 .000

50 .032 .006 .007 .006 .006 .001 .006 .006 .006 .006

2c, d∗2 = 0 500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

50 .177 .027 .823 .499 .069 .145 .001 .851 .407 .006

2d, d∗2 > 0 500 .936 .332 1.00 1.00 1.00 .857 .000 1.00 1.00 1.00

1000 1.00 .860 1.00 1.00 1.00 .991 .000 1.00 1.00 1.00

Table 2S. Rejection frequencies for the test of Second Order Stochastic Dominance for Design

2. SUB refers to the subsampling method with critical values computed by the automatic method

"Mean" described by LMW(2005) for the 5% null rejection probabilities. BT refers to the recentered

bootstrap. LSW refers to the recentered bootstrap with set estimation, where the tuning parameter

is given by cN = c ·N−1/3 with c = 2.0, 3.0, and 4.0 for cases I, II, and III, respectively.
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KS CM

LSW LSW

Design N SUB BTS I II III SUB BTS I II III

50 .637 .959 .993 .986 .977 .612 .972 .997 .992 .988

3a, d∗1 > 0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 .060 .025 .032 .026 .025 .037 .026 .040 .028 .026

3b, d∗1 = 0 500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

50 .611 .949 .993 .989 .985 .575 .970 .996 .992 .990

3c, d∗1 > 0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3F. Rejection frequencies for the test of First Order Stochastic Dominance for Design

3. SUB refers to the subsampling method with critical values computed by the automatic method

"Mean" described by LMW(2005) for the 5% null rejection probabilities. BT refers to the recentered

bootstrap. LSW refers to the recentered bootstrap with set estimation, where the tuning parameter

is given by cN = c ·N−1/3 with c = 0.25, 0.50, and 0.75 for cases I, II, and III, respectively.
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KS CM

LSW LSW

Design N SUB BTS I II III SUB BTS I II III

50 .031 .021 .025 .022 .021 .000 .016 .022 .016 .016

3a, d∗2 = 0 500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

50 .048 .044 .123 .053 .046 .039 .050 .149 .065 .051

3b, d∗2 = 0 500 .000 .000 .020 .005 .002 .000 .000 .030 .006 .002

1000 .000 .000 .011 .001 .000 .000 .000 .018 .002 .000

50 .546 .934 .942 .940 .938 .458 .920 .939 .926 .924

3c, d∗2 > 0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3S. Table 1F. Rejection frequencies for the test of Second Order Stochastic Dominance for

Design 3. SUB refers to the subsampling method with critical values computed by the automatic

method "Mean" described by LMW(2005) for the 5% null rejection probabilities. BT refers to

the recentered bootstrap. LSW refers to the recentered bootstrap with set estimation, where the

tuning parameter is given by cN = c · N−1/3 with c = 2.0, 3.0, and 4.0 for cases I, II, and III,

respectively.
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