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Abstract

When Barret and Donald (2003) in Econometrica proposed a consistent test of

stochastic dominance, they were silent about the asymptotic unbiasedness of their

tests against
p
n-converging Pitman local alternatives. This paper shows that

when we focus on �rst-order stochastic dominance, there exists a wide class of
p
n-converging Pitman local alternatives against which their test is asymptotically

biased, i.e., having the local asymptotic power strictly below the asymptotic size.

This phenomenon more generally applies to one-sided nonparametric tests which

have a sup norm of a shifted standard Brownian bridge as their limit under
p
n-converging Pitman local alternatives. Among other examples are tests of

independence or conditional independence. We provide an intuitive explanation

behind this phenomenon, and illustrate the implications using the simulation

studies.

Key words and Phrases: Asymptotic Bias, One-sided Tests, Stochastic Domi-

nance, Conditional Independence, Pitman Local Alternatives, Brownian Bridge

Processes

JEL Classi�cations: C12, C14, C52.

1 Introduction

Many empirical researches in economics have long been centered around investigating distri-

butional relations between random variables. For instance, many literatures have focused on

a stochastic dominance relation between two or several distributions of investment strategies

1This note was originally inspired when I was working on a paper on testing stochastic dominance with
Oliver Linton and Yoon-Jae Whang. All errors are mine. Address correspondence to: Kyungchul Song,
Department of Economics, University of Pennsylvania, 528 McNeil Building, 3718 Locust Walk, Philadelphia,
Pennsylvania 19104-6297.
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or income distributions. (See Barrett and Donald (2003), Linton, Massoumi, and Whang

(2005), and references therein.) Other examples are testing the independence and testing

conditional independence between two random variables. This independence property has

been widely used as an identifying assumption, and numerous testing procedures have been

proposed, making it impossible to do justice to all the literature in this limited space. To

name but a few, see Linton and Gozalo (1998), Su and White (2004), Delgado and Gonzalez

Manteiga.(2001), and Song (2007).

Many nonparametric tests proposed in this literature are omnibus tests whose rejection

probability converges to one for all types of violation of the null hypothesis. It is also well-

known that one can often obtain a test that is asymptotically unbiased against
p
n-converging

Pitman local alternatives. This asymptotic unbiasedness property is a more re�ned property

than the typical consistency property of tests, and requires an analysis of the local asymp-

totic power function of the test. In two-sided Cramer-von Mises tests, the analysis of local

asymptotic power function has been performed by a principal component decomposition of

the tests. (Anderson and Darling (1952), Durbin and Knott (1972), Neuhaus (1976), Eubank

and LaRiccia (1992), Stute (1997), and Escanciano (2006), to name but a few.) In the case

of Kolmogorov-Smirnov tests, Milbrodt and Strasser (1990) and Janssen (1995) analyzed the

curvature of the local asymptotic power function. Global bounds of the asymptotic power

function for two-sided Kolmogorov-Smirnov tests were obtained by Strasser (1990). How-

ever, less is known for one-sided nonparametric tests. For a limited class of alternatives, the

global local asymptotic power function and local e¢ ciency of one-sided Kolmogorov-Smirnov

tests has been studied by Andel (1967) and Hajek and Sidak (1967).

This paper draws attention to the omnibus property of asymptotic unbiasedness of a test:

a property that a test is asymptotically unbiased against all the directions of
p
n-converging

Pitman local alternatives. This "omnibus" property of asymptotic unbiasedness is often

established by invoking Anderson�s Lemma, and satis�ed by many two-sided tests that have

a Gaussian process with a drift as a limit under local alternatives. However, as far as the

author is concerned, much less is known for the case of one-sided nonparametric tests where

Anderson�s Lemma does not apply. This paper attempts to analyze the local asymptotic

power properties in terms of their global bounds. Unlike the result of Strasser (1990) for

two-sided tests, the bounds are not tight, yet this approach still reveals interesting aspects

of local asymptotic powers and provides an intuitive link between the shape of the local

alternatives and the local asymptotic powers.

More speci�cally, this paper analyzes Kolmogorov-Smirnov type nonparametric tests

whose limit under
p
n-converging Pitman local alternatives is a standard Brownian bridge

process with a drift. This paper formulates a useful bound for the tail-probabilities of the sup
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norm of the Brownian bridge process with a drift. This bound is used to compute the upper

bound for the rejection probability of the nonparametric test. The derivation of the upper

bound utilizes a result of Ferger (1995) who characterizes the joint distribution of a standard

Brownian bridge process and its maximizer. Then, we introduce a class of
p
n-converging

Pitman local alternatives against which the test is indeed asymptotically biased. The class

of local alternatives that this paper considers cannot be thought of as a pathological case.

We provide intuitive explanations behind this asymptotic unbiasedness property. We apply

this �nding to two classes of nonparametric tests: stochastic dominance tests, and tests of

independence or conditional independence.2

We may view this paper�s result in the light of Janssen (1990)�s �nding that any non-

parametric test has nearly trivial local asymptotic powers against all the directions except

for a �nite dimensional subspace. The paper demonstrates that in the case of one-sided

nonparametric tests, there exists a set of Pitman local alternatives against which the local

asymptotic powers are strictly lower than the asymptotic size. Furthermore, this set is not

contained by any �nite dimensional space. Some intuitive examples are provided to illustrate

this phenomenon of asymptotic biasedness.

The result of this paper is also di¤erent from the well known result that when we expand

the space of local alternatives, Kolmogorov-Smirnov type tests or Cramer-von Mises type

tests have trivial asymptotic power against certain local alternatives. (See Horowitz and

Spokoiny (2001), Guerre and Lavergne (2002). See also Ingster and Suslina (2003) for an

excellent introductory monograph.) The �nding in this paper is that even when we con�ne

our attention to
p
n-converging Pitman local alternatives, there still exist a wide class of

local alternatives against which one-sided nonparametric tests have an asymptotic power

below their asymptotic sizes.

The paper illustrates the result using small scale Monte Carlo simulations of stochastic

dominace tests. The result of Monte Carlo simulations show the biasedness of the test with

the �nite samples, as predicted by the asymptotic theory. Indeed, some of the rejection prob-

abilities are shown to lie below their empirical sizes as one moves away from the null. The

test recovers nontrivial power when the distribution moves farther away from the null hy-

pothesis beyond these values. The result of this paper suggests that the study of asymptotic

bias in one-sided nonparametric tests in full shape poses a nontrivial problem.

2See also Linton, Song, and Whang (2008) for a nice illustrative example.
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2 A Preliminary Result and Discussions

In this section, we analyze the local asymptotic power properties of nonparametric tests

whose limit under
p
n-converging Pitman local alternatives is a standard Brownian bridge

process with a drift. Let us introduce a lemma that serves as a basis for the analysis in

this paper. For any random element � in L2([0; 1]); de�ne �(�) = infft 2 [0; 1] : �(t) =
sup0�s�1 �(s)g: Suppose that �(�) is a random variable. For given �; let us introduce a real

function H� : R� [0; 1]! [0; 1] such that

H�(y; z) , Pfsup0�t�1�(t) � y and �(�) � zg: (1)

For each y 2 R; the function H�(y; z) increases in z; and hence it is of bounded variation in
z: Let ftmgMm=1 be a partition of [0; 1] such that �tm = jtm� tm�1j ! 0 as M !1: For any
Lebesgue measurable set A � [0; 1]; and for any function g : R! R; we write

Z
A

Hv(g(t); dt) = lim
M!1:�tm!0

MX
m=1:tm2A

fHv(g(tm+1); tm+1)�Hv(g(tm+1); tm)g

when the limit exists and does not depend on the choice of partition. We introduce two

continuous functionals on L2([0; 1]);

�(�) = sup0�t�1�(t) and �+(�) = sup0�t�1maxf�(t); 0g: (2)

Note that when the stochastic process �(�) has bounded sample paths on [0; 1];

P f�(�) > cg = P f�+(�) > cg (3)

for all c > 0:We �rst introduce a general lemma that presents bounds for the local asymptotic

powers.

Lemma 1: Suppose � is a random element in L2([0; 1]) such that � has bounded sample

paths on [0; 1] and �(�) is a random variable.

(i) Suppose that �(t) � D(t) where D : R! [�L; �U ] is decreasing in [0; 1]. Then, for each

c > 0;

P f�(� + �) > cg � 1�
Z 1

0

Hv(c�D(t); dt). (4)

(ii) Suppose that �(t) � D(t) where D : R![�L; �U ] is increasing in [0; 1]. Then, for each
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c > 0;

P f�(� + �) > cg � 1�
Z 1

0

Hv(c�D(t); dt).

The lemma provides bounds of the asymptotic power of any nonparametric test whose

limit under the local alternatives with a drift �(t) is given by �(v + �): This representation

is convenient because in certain cases with �(t) as a Gaussian process, the function H�(y; z)

is explicitly known. Both the inequalities in (i) and (ii) become equalities only when �(t) is

a constant. In the context of a stochastic dominance test, it is required that �(t) ! 0 as

jtj ! 1: Therefore, both the bounds do not hold with equality for any type of Pitman local
alternatives in this context. Note also that the bounds in Lemma 1 also hold for the random

variable �+(� + �) by (3).

Let us consider the following type of one-sided Kolmogorov-Smirnov tests. Suppose �n(t)

is a stochastic process such that �n(t) is constructed by observed random variables and

�n(�) =) �(�) under the null hypothesis and
�n(�) =) �(�) + �(�) under local alternatives,

where �(t) is a Gaussian process, and the notation =) indicates the weak convergence in

the sense of Ho¤man and Jorgensen. Then, the upper bound in (4) serves as an upper bound

for the asymptotic rejection probability of the one-sided Kolmogorov-Smirnov type tests

Tn = �(�n) and Tn;+ = �+(�n)

This upper bound can be explicitly computed when the function H�(y; z) is fully known.

This is indeed the case when � is a standard Brownian bridge process, B0, on [0; 1]: First,

note that the almost sure uniqueness of the maximizer �(B0) is well-known (e.g. Ferger

(1995), Kim and Pollard (1990)). Hence �(B0) is a random variable. By Ferger (1995), we

have in general for all y � 0;

HB0(y; z) = �

 
yp

z(1� z)

!
� exp

�
�2y2

�
�

 
y(2z � 1)p
z(1� z)

!

�(1� z)
 
2�

 
yp

z(1� z)

!
� 1
!

if z 2 (0; 1), and HB0(y; 1) = 1 � exp (�2y2), and HB0(y; 0) = 0: Here � denotes the

distribution function of a standard normal random variable. Hence we can explicitly compute

the upper bound for the asymptotic local power of the test for various classes of local drifts
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�(t):

3 Testing Stochastic Dominance

3.1 Testing Stochastic Dominance

Let fXigni=1 be a set of i.i.d. random variables. We consider testing the following null

hypothesis

HBD
0 : F (t) � t for all t 2 [0; 1]: (5)

This test is a simple version of the stochastic dominance test studied by Barret and Donald

(2003). The null hypothesis says that the distribution of Xi is stochastically dominated

by a uniform distribution. The paper�s framework applies to the situation where we are

interested in testing whether the marginal distribution of Xi is stochastically dominated by

a distribution that has a strictly increasing distribution functionG: Then, the null hypothesis

becomes

HBD
0 : F (t) � G(t) for all t.

Since we know G; we can reformulate the null hypothesis as

HBD
0 : G�1(F (t)) � t for all t.

By writing ~F = G�1 � F; we are back to the original null hypothesis in (5).
The natural test statistics are obtained by using the following stochastic process

�n(t) =
p
n
�
F̂n(t)� t

�
;

where F̂n(t) = 1
n

Pn
i=1 1fXi � tg; the empirical distribution function of fXigni=1: When F (t)

is the distribution function of Uniform(0,1), we may consider the following test statistics:

TBDn , supt2R
p
n
�
F̂n(t)� t

�
!
D

�(B0) and

TBD+n , supt2R
p
n
�
F̂n(t)� t

�
+
!
D

�+(B
0)

where B0(t) is a Brownian bridge process, i.e. a Gaussian process whose covariance kernel

is given by t1 ^ t2 � t1t2; and (f)+ = max(f; 0): The result follows from the well-known

weak convergence of the empirical process: �n(�) =) B0(�) combined with the continuous
mapping theorem.

One can show that the test based on TBDn is consistent against all the violations of the null
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hypothes is. However, we demonstrate that the test is not asymptotically unbiased against

all types of Pitman local alternatives that converge to the null hypothesis at the rate of
p
n: In nonparametric tests, Anderson�s Lemma is usually used to establish the asymptotic

unbiasedness of a test. Note that here, we cannot apply Anderson�s Lemma because the

class of functions: ff : �+(f) � cg is convex, but not symmetric.
Let Fn(t) be the distribution function of Xi under local alternatives �(t) and satisfy

Fn(t) = F (t) +
�(t)p
n

(6)

where F (t) is the distribution function of Unif[0,1]. The following result shows that there

exists a test of the form 1fTn > cg that is asymptotically biased against a certain class of
Pitman local alternatives.

Corollary 1: There exists c�; c+� > 0 and a subset A of bounded drifts �(t) such that for

each �(t) 2 A,

lim
n!1

P
�
TBDn > c�

	
= � and lim

n!1
P
�
TBD+n > c+�

	
= � under the null hypothesis and

lim
n!1

P
�
TBDn > c�

	
< � and lim

n!1
P
�
TBD+n > c+�

	
< � under the local alternatives.

Furthermore, this set A is not contained by any �nite dimensional space of drifts �(t).

Corollary 1 demonstrates the existence of a set of local shifts against which the test is

asymptotically biased. The result also shows that this phenomenon of asymptotic biasedness

does not disappear simply by changing the functional � to �+: The proof is based on a

construction of local alternatives of a simpli�ed form. This facilitates the computation of

the upper bound in Lemma 1, and at the same time, provides an intuitive view of the

local asymptotic power of the test against local alternatives. To construct this class, we �x

numbers x 2 (0; 1) and b 2 R and let D(t) be a function such that

D(t;x; b1; b2) =

8>>>><>>>>:
0 if t < 0

b1 if 0 � t � x
�b2 if x < t � 1
0 if t > 1:

(7)

Note that D(t;x; b1; b2) is decreasing in t 2 [0; 1]: When x > b2=
p
n and b1 > 0; there exists

a class of local shifts A such that for all �(t) 2 A, �(t) � D(t;x; b1; b2) and t + �(t)=
p
n is

nondecreasing in t, taking values in [0; 1]: Using Lemma 1, we can deduce that under any
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Pitman local alternatives in (6) with any such �(t) � D(t;x; b1; b2); it is satis�ed that

lim
n!1

P
�
TBDn > c�

	
� 1�

Z 1

0

HB0(c� �D(t;x; b1; b2); dt) , �(x; b1; b2); say,

where �(x; b1; b2) can be computed as

�(x; b1; b2) = HB0(c� + b2; x)�HB0(c� � b1; x) + exp(�2(c� + b2)2):

An example of such local alternatives, Fn(t) = t+ �(t) with n = 1; appears in Figure 1.

INSERT FIGURES 1 AND 2 HERE

If we take c� = 1:224; Pfsupt2[0;1]B0(t) > cg = exp(�2c2) � 0:05: The graph of an upper
bound �(x; b1; b2) for the asymptotic rejection probability with this critical value c� and

b2 = 0:2 is plotted in Figure 2. For example, when x is equal to 0:3 and b1 is chosen to be

smaller than 0.2, the upper bound for the asymptotic rejection probability lies below the

nominal level 0.05.

The main reason for this phenomenon is purely due to the nature of the alternative

hypothesis that is both in�nite dimensional and one-sided. To see this, we consider �(t)

de�ned in (12). (See Figure 4.) In this example, when x is small, B0 is more likely to

attain its maximum in the area where �(t) takes a negative value than in the area where �(t)

takes a positive value. When x is small enough and the maximum value of �(t) is bounded

appropriately, the same pheonomenon arises for B0 + �: Therefore, the supremum of B0 + �

is more likely to lie below the supremum of B0. This is the intuition behind the asymptotic

biasedness of the test.

Since the maximizer of a standard Brownian bridge process follows Uniform(0,1), the

probability of whether B0 attains its maximum in the area where D(t;x; b1; b2) takes a

positive value is equal to the Lebesgue measure of [0; x] or just x: Hence the value of x at

which the upper bound �(x; b; b) for the local asymptotic power crosses the asymptotic size

0.05 will be closer to 1/2 as b1 and b2 become closer to zero. Figure 3 shows the graphs of

the upper bound �(x; b; b) with varying b�s. The graph shows that as b becomes smaller, the

upper bound of the asymptotic power, �(x; b; b); crosses the size 0.05 at a value nearer to

1/2 as predicted.

INSERT FIGURE 3 HERE
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Observe that the result of Theorem 1 applies to many other one-sided nonparametric

tests whose limiting distribution under the null hypothesis is a supremum of a standard

Brownian bridge. Later, we discuss the case of testing independence and testing conditional

independence.

3.2 Testing the Absence of Stochastic Dominance Relationship

A di¤erent formulation of stochastic dominance is the following :

HLMW
0 : neither F (t) � t for all t 2 [0; 1]; nor t � F (t) for all t 2 [0; 1]: (8)

This is the test of the absence of stochastic dominance relation of F (t) with a uniform

distribution. The test is a special case of the stochastic dominance relation studied by Linton,

Massoumi, and Whang (2005). Similarly as in Linton, Massoumi, and Whang (2005), we

may consider the following test statistics:

TLMW
n = min

n
supt2R

p
n
�
F̂n(t)� t

�
; supt2R

p
n
�
t� F̂n(t)

�o
;

where F̂n(t) is the empirical distribution function of fXigni=1 as de�ned previously. Then,
under the null hypothesis of F (t) = t;

TLMW
n !

D
min

�
supt2[0;1]B

0(t); supt2[0;1] �B0(t)
	
;

from the well-known Donsker�s theorem. The asymptotic size is obtained by choosing the

critical value c such that the following probability

P
�
min

�
supt2[0;1]B

0(t); supt2[0;1] �B0(t)
	
> c
	

(9)

= 2P
�
supt2[0;1]B

0(t) > c
	
�
�
1� P

�
supt2[0;1]jB0(t)j � c

	�
equals 0.05. The last two probabilities can be precisely evaluated; in particular,

Pfsupt2[0;1]jB0(t)j � cg = 1 + 2
1X
k=1

(�1)ke�2k2c2 :

When we set c = 0:6781; the asymptotic size is set to be approximately 0.05. The asymptotic

unbiasedness immediately follows from Anderson�s Lemma for Pitman local alternatives with

any �(t):
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4 Testing Independence and Conditional Independence

The asymtotic biasedness result applies to other examples of one-sided nonparametric tests.

We introduce two examples: testing independence and testing conditional independence, and

propose one-sided tests. These tests contain empirical quantile transforms in the indicator

functions which requires slightly involved techniques. We resort to Song (2007) to deal with

this.

4.1 Testing Independence

Suppose that we are given a random sample fXi; Digni=1 of (Xi; Di) where Xi is a continuous

random variable and Di is a binary random variable. We say that Xi and Di are positively

dependent if and only if

E[1fF (X) � tgD] > PfF (X) � tgE[D] for all t 2 [0; 1]; (10)

where F (�) is the distribution function of X: When the inequality is reversed, we say that
they are negatively dependent. Taking the quantile transform of X into F (X) is to normalize

the marginal distribution of X to a uniform distribution on [0; 1]:When the strict inequality

in (10) is replaced by equality, the equality indicates the independence of Xi and Di:

Consider the following test:

H0 : Xi and Di are independent

H1 : Xi and Di are positively dependent.

Then, the null hypothesis can be formulated as

H0 : E [1fXi � tgDi] = PfXi � tgE [Di] for almost all t:

In order to obtain an asymptotically pivotal test, let us consider the empirical quantile

transform of fXigni=1: De�ne Un;i = Fn;i(Xi) where Fn;i(x) = 1
n�1

Pn
j=1;j 6=i 1fXj � xg: In

this case, one might consider the following process:

�n(t) =
1p
n�̂2D

nX
i=1

 
1fUn;i � tgDi �

1

(n� 1)(n� 2)

nX
j=1;j 6=i

nX
k=1;j 6=i;j

1fUn;j � tgDk

!
;

where �̂2D = �Dn � �D2
n and �Dn =

1
n

Pn
i=1Di: Then, we can show that this process weakly

10



converges to a standard Brownian bridge:

�n =) B0:

Consider the following Kolmogorov-Smirnov test:

T In = sup
t2[0;1]

�n(t):

Then, the result of this paper shows that there exists a class of local alternatives against

which this test is asymptotically biased. The local alternatives take a form as

E [1fUi � tgDi]

E [Di]
� PfUi � tg =

1p
n
�(t);

where Ui = F (Xi) and � (t) is given as before.

Theorem 1: Under the assumption that (Xi; Di)
n
i=1 is i.i.d. with �nite second moments,

and that E [Di] 2 (0; 1);

T In !
D
sup
t2[0;1]

B0(t) under the null hypothesis and

T In !
D
sup
t2[0;1]

fB0(t) + �(t)g under the local alternatives.

Hence the asymptotic biasedness result of this paper applies to this case with �(t) de�ned

previously. The result of this paper implies that when the Lebesgue measure of the set of t�s

such that the negative dependence between 1fXi � tg and Di arises is much greater than

that of t�s such that the positive dependence arises, the rejection probability can be smaller

than the size.

Following the same manner as in (8), we may consider the following null and alternative

hypotheses:

H0 : Xi and Di are neither positively dependent nor negatively dependent

H1 : Xi and Di are positively dependent or negatively dependent

The null hypothesis H0 is weaker than the hypothesis of independence. We can formulate

the test statistic as

T I0n = min

(
sup
t2[0;1]

�n(t); sup
t2[0;1]

��n(t)
)
:

Then, the limiting behavior of the test statistic T I0n can be derived similarly as before. This

11



test does not su¤er from the previous kind of asymptotic biasedness, due to Anderson�s

lemma.

4.2 Testing Conditional Independence

The result of this paper also applies to one-sided tests of conditional independence. For

example, various forms of one sided tests of conditional independence have been used in the

literature of contract theory. (e.g. Cawley and Phillipson (1999), Chiappori and Salanié

(2000), Chiappori, Jullien, Salanié, and Salanié (2002).) Conditional independence restric-

tions also have been used in the identi�cation of treatment e¤ects parameters in program

evaluations. One-sided test of conditional independence can be used when the conditional

positive or negative dependence of the participation in the program and counterfactual out-

comes is excluded a priori. Following the suit of testing independence, we say that Xi and

Di are conditionally positively dependent (CPD) given Zi if and only if

E[1fF (XjZ) � tgDjZ] > PfF (XjZ) � tjZgE[DjZ] for all t 2 [0; 1];

where F (�jZ) is the conditional distribution function ofX given Z:When the reverse inequal-

ity holds, we say that they are conditionally negatively dependent (CND) given Zi. Again,

taking the conditional quantile transform of X into F (XjZ) is to normalize the conditional
distribution of X given Z to a uniform distribution on [0; 1]: When the strict inequality in

(10) is replaced by equality, the equality indicates the conditional independence of Xi and

Di given Zi:

Let Xi be a continuous variable and Di a binary variable taking values from D = f0; 1g,
and Zi a discrete random variable taking values from a �nite set Z � R: We assume that

PfZi = zg 2 ("; 1� ") for some " > 0: Consider the following test

H0 : Xi and Di are conditionally independent given Zi

H1 : Xi and Di are CPD given Zi;

The null hypothesis of conditional independence can be written as

H0 : E [1fXi � tgDijZi] = PfXi � tjZigE [DijZi] for almost all t:

In order to obtain an asymptotically pivotal test, we follow the idea of Song (2007) and

consider the empirical conditional quantile transform of fXigni=1 given Zi: De�ne ~Xn;i =

Fn;i(XijZi) where Fn;i(xjz) = 1
n�1

Pn
j=1;j 6=i 1fZj = zg1fXj � xg= 1

n�1
Pn

j=1;j 6=i 1fZj = zg: Then

12



the test can be constructed as a one-sided Kolmogorov-Smirnov functional of the following

process:

�n(t; z) =
1p
n�̂2D

nX
i=1

1fZi = zg
�
Di � F̂ (DijZi = z)

��
1f ~Xn;i � tg � t

�
;

where �̂2D =
1
n

Pn
i=1 1fZi = zgfDi � F̂ (DijZi = z)g

�
1f ~Xn;i � tg � t

�
2and F̂ (DijZi = z) =

1
n�1

Pn
j=1;j 6=i 1fZj = zgDj=

1
n�1

Pn
j=1;j 6=i 1fZj = zg: The local alternatives that we focus on

are

E [1fF (XijZi) � tgDijZi]� tE [DijZi] =
1p
n
�(t)�2D; for almost all t:

De�ne the test statistic

TCIn = sup
z2Z

sup
t2[0;1]

�n(t; z):

The theorem below presents the asymptotic distribution of TCIn : Note that a similar result

was obtained by the author (Song, 2007) when Zi is a continuous variable and contains an

unknown parameter.

Theorem 2 : Suppose that (Xi; Di; Zi)
n
i=1 is i.i.d. with �nite second moments and that

P (Zi = z) 2 ("; 1�") for all z 2 Z for some " > 0: Furthermore assume that the conditional
distribution of Xi given Zi = z is absolutely continuous with respect to the Lebesgue measure

for all z 2 Z: Then,

TCIn !
D
sup
z2Z

sup
t2[0;1]

�(t; z) under the null hypothesis and

TCIn !
D
sup
z2Z

sup
t2[0;1]

f�(t; z) + �(t)g under the local alternatives,

where �(t; z) is a mean-zero Gaussian process such that

E [�(t1; z)�(t2; z)] = t1 ^ t2 � t1t2 and
E [�(t1; z)�(t2; z)] = 0 if z1 6= z2:

The test TCIn is asymptotically pivotal. We can construct asymptotic critical values for the

test TCIn in the following way. Let c1�� be such that

P

(
sup
t2[0;1]

B0(t) � c1��

)
= (1� �)1=jZj;

13



where jZj denotes the cardinality of the set Z. Then, it follows that

P
�
TCIn � c1��

	
! P

(
sup
z2Z

sup
t2[0;1]

�(t; z) � c1��

)
(11)

=

"
P

(
sup
t2[0;1]

�(t; z) � c1��

)#jZj
=

"
P

(
sup
t2[0;1]

B0(t) � c1��

)#jZj
= 1� �:

The �rst equality above follows because supt2[0;1] �(t; z) is i.i.d across di¤erent z�s in Z.
Although the test statistic TCIn does converges to a Kolmogorov-Smirnov functional of a

standard Brownian bridge process, we can obtain the same result of Theorem 1, namely

that the test is asymptotically biased against a class of Pitman local alternatives. If the

negative conditional dependence arises for a larger set of t�s than the positive dependence,

the rejection probability of the test can be smaller than the size of the test.

Again, we may be interested in the following null hypothesis and alternative hypothesis:

H0 : Xi and Di are neither CPD nor CNP given Zi

H1 : Xi and Di are CPD or CNP given Zi

The null hypothesis H0 is weaker than the hypothesis of conditional independence. We can

formulate the test statistic as

TCI0n = min

(
sup
z2Z

sup
t2[0;1]

�n(t; z); sup
z2Z

sup
t2[0;1]

��n(t; z)
)
:

Then, the limiting behavior of the test statistic T I0n can be derived similarly as before. The

computation of asymptotic critical values can be done by combining (9) and (11). More

speci�cally, let �1 and �2 be such that 1� 2(1� �1)jZj + (1� �2)jZj = � and let c1�� such
that

P

(
sup
t2[0;1]

B0(t) � c1��

)
= �1 and P

(
sup
t2[0;1]

jB0(t)j � c1��

)
= �2:

14



Then, similarly as in (9), we write

P

�
min

�
sup
z2Z

supt2[0;1]�(t; z); sup
z2Z

supt2[0;1] � �(t; z)
�
> c1��

�
= 2P

(
sup
z2Z

sup
t2[0;1]

�(t; z) � c1��

)
�
�
1� P

�
sup
z2Z

supt2[0;1] j�(t; z)j � c1��
��

= 1� 2P jZj
(
sup
t2[0;1]

B0(t) � c1��

)
+ P jZj

�
supt2[0;1]

��B0(t)�� � c	 = �:
Hence the asymptotic critical value c1�� is valid. Again, this test does not su¤er from the

previous kind of asymptotic biasedness, due to Anderson�s Lemma.

5 Simulations

To illustrate the implications of the asymptotic biasedness of the test, we consider the fol-

lowing simulation exercise. Let U1 be a random variable distributed Uniform(0,1). Then, we

de�ne

Xi = (U � ab1)1fab1 � U � xg+ (U + �b2)1fx < U � 1� �b2g

for a 2 (0; 1): As a becomes closer to zero, the distribution of Xi becomes closer to the

uniform distribution and when a = 0; the data generating process corresponds to the null

hypothesis. Then the distribution function of Xi becomes

P (Xi � tg = t+ a�(t);

where

�(t) =

8>>>>>><>>>>>>:

0 if t � 0
b1 if 0 < t � x� b1
x� t if x� b1 < t � x+ b2
�b2 if x+ b2 < t � 1
0 if t > 1:

(12)

Note that this �(t) is one example satisfying �(t) � D(t) for D(t) in (7). The shape of

F (t) + �(t) is depicted in Figure 4.

INSERT FIGURES 4 AND 5 HERE

The Monte Carlo simulation number is set to be 2000 and the sample size is equal to

600. The following table contains the results of the �nite sample size and power of the test.
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Table 1: The Rejection Probability of the Test TBDn of HBD
0 with b1 = 0:1 and b2 = 0:1 and

n = 600:

x = 0:2 x = 0:3 x = 0:4 x = 0:5

a = 0 0.0525 0.0540 0.0420 0.0425

a = 0:03 0.0295 0.0435 0.0520 0.0565

a = 0:06 0.0315 0.0435 0.0540 0.0700

a = 0:09 0.0295 0.0455 0.0755 0.0895

a = 0:12 0.0370 0.0550 0.0860 0.1275

a = 0:15 0.0465 0.0880 0.1335 0.1685

a = 0:2 0.0840 0.1535 0.2130 0.2435

a = 0:3 0.2510 0.3495 0.4105 0.4550

The numbers in the �rst row with a = 0 represent the empirical size of the test. The

�nite sample distribution of the test does not depend on the choice of x and hence the

variation among these numbers show the sampling variations in Monte Carlo simulations.

Under the alternatives, the rejection probability tends to increase with x because the area

of t�s giving �(t) a negative value becomes smaller. Under the alternatives with x = 0:2 and

a�s from 0:03 to 0:15; the rejection probabilities lie below the empirical size, as predicted by

the asymptotic bias result. However, as a moves farther from zero beyond these values, the

empirical power of the test becomes nontrivial. A similiar phenomenon arises when x = 0:3

but less conspicuously. As we move x to farther away from the corner of 0; the triviality of

the empirical power disappears, as consistent with the theoretical results of this note.

For comparison, we present the results from the two-sided Kolmogorov-Smirnov test in

Table 2.

Table 2: The Rejection Probability of the Two-Sided Test of HBD
0 with b1 = 0:1 and

b2 = 0:1 and n = 600:

x = 0:2 x = 0:3 x = 0:4 x = 0:5

a = 0 0.0440 0.0450 0.0420 0.0460

a = 0:03 0.0465 0.0505 0.0450 0.0490

a = 0:06 0.0560 0.0595 0.0605 0.0675

a = 0:09 0.0675 0.0785 0.0785 0.0945

a = 0:12 0.0940 0.1235 0.1300 0.1330

a = 0:15 0.1240 0.1505 0.1685 0.1765

a = 0:2 0.2240 0.2335 0.2695 0.2725

a = 0:3 0.5070 0.5525 0.5785 0.6120

16



Table 2 shows that the rejection probabilities are larger than the empirical sizes, as

predicted by the asymptotic unbiasedness results.

The following table is the test of the presence of stochastic dominance test that is consid-

ered in Section 2.2. Although much more general cases were studied by Linton, Massoumi

and Whang (2005), a simulation result for this simple case is presented for comparison.

Table 3: The Rejection Probability of the Test of TLMW
n of HLMW

0 with b1 = 0:1 and 0:1

and n = 600:

x = 0:2 x = 0:3 x = 0:4 x = 0:5

a = 0 0.0300 0.0385 0.0420 0.0315

a = 0:03 0.0495 0.0490 0.0400 0.0455

a = 0:06 0.0665 0.0720 0.0675 0.0770

a = 0:09 0.1040 0.1145 0.1220 0.1325

a = 0:12 0.1700 0.2160 0.2090 0.2025

a = 0:15 0.2660 0.3110 0.3490 0.3270

a = 0:2 0.5070 0.5385 0.5525 0.5530

a = 0:3 0.8990 0.9105 0.9080 0.9190

First, observe that the results show size distortions with the sample size 600. The test

does not show any "dip" in power as in the previous case. This is expected by the omnibus

asymptotic unbiasedness of the test as explained previously. It is also interesting to note

that the rejection probabilities are larger than the case of testing HBD
0 : This demonstrates

that the presence of a stochastic dominance relation is easier to detect from the data than

both the existence and the direction of the stochastic dominance relation. This phenomenon

is intuitive because the null hypothesis HBD
0 is stronger than the null hypothesis HLMW

0 and

hence requires stronger evidence to be rejected.

6 Closing Remarks

This paper demonstrates that there exist
p
n-converging Pitman local alternatives against

which the one-sided Kolmogorov test of distributional inequalities is asymptotically biased.

Among the examples are testing stochastic dominance tests, testing independence or condi-

tional independence. The examples are not pathological ones, nor does it apply only to a

narrow class of examples. The result of this paper demonstrates that in the case of one-sided

nonparametric tests, it is not a trivial problem to characterize the class of Pitman local

alternatives against which the test is asymptoticall unbiased.
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7 Appendix
Lemma A1 : Let fAmg1m=1 and fBmg1m=1 be sequences of sets such that [Mm=1Am � [Mm=1Bm for all
M � 1: Then, for any decreasing sequence of sets C1 � C2 � C3 � � � �;

[Mm=1(Am \ Cm) � [Mm=1(Bm \ Cm) for all M � 1:

Proof of Lemma A1: Take x 2 Am0 \ Cm0 for some m0 � M: Then, obviously, x 2 ([m0

m=1Bm) \ Cm0 �
[m0

m=1(Bm \ Cm) � [Mm=1(Bm \ Cm):

Proof of Lemma 1: First let us consider (i). The case with (ii) can be dealt with similarly. Observe that

P
�
sup0�t�1 (�(t) + �(t)) � c

	
� P

�
sup0�t�1 (�(t) +D(t)) � c

	
by the assumption that �(t) � D(t): Choose a set of grid points fb1; � � �; bMg � [�L; �U ] such that

�L = b1 < b2 < � � � < bM�1 < bM = �U :

Let Am = ft 2 R : bm < �(t) � bm+1 and �(t) � 0g: Then, R = [Mm=1Am: Note that Am�s are disjoint.
De�ne DM : R! [�L; �U ] as

DM (t) =
MX
m=1

bm+11ft 2 Amg:

By construction, �(t) � DM (t), for all t 2 R. Hence sup0�t�1 (�(t) + �(t)) �sup0�t�1f�(t)+DM (t)g: De�ne

�D(�) = arg max
t2[0;1]

f�(t) +DM (t)g:

Since DM (t) is constant almost everywhere in R; �D(�) is a random variable. Now,

P
�
sup0�t�1 (�(t) +DM (t)) � c

	
=

MX
m=1

P
�
sup0�t�1 (�(t) +DM (t)) � c; �D(�) 2 Am

	
: (13)

Observe that

P
�
sup0�t�1 (�(t) +DM (t)) � c; �D(�) 2 Am

	
= P

�
supt2Am (�(t) +DM (t)) � c; �D(�) 2 Am

	
= P

�
supt2Am�(t) � c� bm+1; �D(�) 2 Am

	
� P

�
sup0�t�1�(t) � c� bm+1; �D(�) 2 Am

	
:

Because DM is a decreasing function, �D(�) � �(�): We deduce from Lemma A1 above that

MX
m=1

P
�
sup0�t�1�(t) � c� bm+1; �D(�) 2 Am

	
�

MX
m=1

P
�
sup0�t�1�(t) � c� bm+1; �(�) 2 Am

	
:

Therefore,

P
�
sup0�t�1 (�(t) +D(t)) � c

	
�

MX
m=1

P
�
sup0�t�1�(t) � c� bm+1; �(�) 2 Am

	
=

MX
m=1

fH(c� bm+1; am+1)�H(c� bm+1; am)g :
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The inequality in the above does not depend on a speci�c choice of partitions. By choosing the partition
[�L; �U ] �ner, we obtain that as M !1;

P
�
sup0�t�1 (�(t) +D(t)) � c

	
�
Z
[0;1]

Hv(c�D(z); dz):

Now, as M !1; we have DM (t)! D(t): The proof is complete.

Proof of Theorem 1: We �rst show that

V̂n;i(r) ,
1p
n

nX
j=1;j 6=i

(1fUn;j � tg � t) = oP (1)

uniformly over t 2 [0; 1]: Let ��;r(y) = �
�
r�y
�

�
where � is the distribution function of a standard normal

variate. De�ne

V̂n;�(r) =
1p
n

nX
i=1

(��;r(Un;i)� r) and Vn;�(r) =
1p
n

nX
i=1

(��;r(Ui)� r) :

We can show that
V̂n(r)� Vn(r) = V̂n;�(r)� Vn;�(r) + o(�)

as � ! 0: Now, using an appropriate linearization, we can show that

V̂n;�(r)� Vn;�(r) =
1p
n

nX
i=1

�0�;r(Ui) fUn;i � Uig+ oP (1): (14)

The leading term on the right-hand side of (14) becomes

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

�0�;r(Ui) f1fUj � Uig � Uig+ oP (1):

Note that E
h
�0�;r(Ui) f1fUj � Uig � Uig jUi

i
= 0 and the Hajek projection of the leading sum becomes

1p
n

nX
j=1

E
�
�0�;r(Ui) f1fUj � Uig � Uig jUj

�
+ oP (1)

=
1p
n

nX
j=1

Z 1

0

�0�;r(u) f1fUj � ug � ug du+ oP (1):

The leading term is equal to (as � ! 0)

� 1p
n

nX
j=1

�
��;r(Uj)�

Z 1

0

��;r(u)du

�
+ oP (1) (by integration by parts).
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However, by integration by parts,
R 1
0
�0�;r(u) f1fUj � ug � ug du is equal to

[��;r(u)]
1
Uj �

Z 1

0

�0�;r(u)udu = ��;r(1)� ��;r(Uj)� [��;r(u)u]10 +
Z 1

0

��;r(u)du

= ���;r(Uj) +
Z 1

0

��;r(u)du = �1fUj � rg+
Z 1

0

1fu � rgdu+ o(�)

= �1fUj � rg+ r + o(�):

Therefore, V̂n(r) � Vn(r) = � 1p
n

Pn
i=1 f1fUi � rg � rg + oP (1) = �Vn(r) + oP (1); implying that V̂n(r) =

oP (1):
Hence

1q
�̂2D(n� 1)

nX
i=1

1p
n

nX
j=1;j 6=i

(1fUn;j � tg � t)

8<: 1

n� 2

nX
k=1;j 6=i;j

Dk

9=; = oP (1):

Therefore,

�n(t) =
1q
n�̂2D

nX
i=1

0@1fUn;i � tgDi �
t

n� 2

nX
k=1;j 6=i;j

Dk

1A+ oP (1)
=

1q
n�̂2D

nX
i=1

(1fUn;i � tgDi � tPfDi = 1g)

� tq
�̂2D

p
n

n� 2

nX
k=1;j 6=i;j

(Dk � PfDi = 1g) + oP (1):

Let us deal with the �rst term:

1q
n�̂2D

nX
i=1

(1fUn;i � tgDi � tPfDi = 1g)

=
1q
n�̂2D

nX
i=1

PfDi = 1g (1fUn;i � tg � t) + 1q
n�̂2D

nX
i=1

1fUn;i � tg (Di � PfDi = 1g)

=
1q
n�̂2D

nX
i=1

1fUn;i � tg (Di � PfDi = 1g) + oP (1)

Therefore,

�n(t) =
1q
n�̂2D

nX
i=1

(1fUn;i � tg � t) (Di � PfDi = 1g) + oP (1)

=
1q
n�̂2D

nX
i=1

(1fUi � tg � t) (Di � PfDi = 1g) + oP (1)

=
1p
n�2D

nX
i=1

(1fUi � tg � t) (Di � PfDi = 1g) + oP (1)

because �̂2D !P �
2
D: Now, the last term weakly converges to a Gaussian process because the classes indexing

the process is P -Donsker. It is easy to check that this Gaussian process has the same covariance kernel as
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that of a standard Brownian bridge.

Proof of Theorem 2 : The proof closely follows that of Theorem 1 in Song (2007). We sketch the steps
here. First, write

1p
n

nX
i=1

1fZi = zg
�
Di � F̂ (DijZi = z)

��
1f ~Xn;i � tg � t

�
(15)

=
1p
n

nX
i=1

1fZi = zg (Di � F (DijZi = z))
�
1f ~Xn;i(z) � tg � t

�
� 1p

n

nX
i=1

1fZi = zg
�
F̂ (DijZi = z)� F (DijZi = z)

��
1f ~Xn;i(z) � tg � t

�
:

We turn to the leading sum on the right-hand side, which we write as

1p
n

nX
i=1

1fZi = zg (Di � F (DijZi = z))
�
1f ~Xi(z) � tg � t

�
+
1p
n

nX
i=1

1fZi = zg (Di � F (DijZi = z))
�
1f ~Xn;i(z) � tg � 1f ~Xi(z) � tg

�
:

Similarly in the proof of Claim 2 of Theorem 1 of Song (2007), we can obtain that the last term is oP (1)
uniformly in (t; z) 2 [0; 1]�Z.

We turn to the last sum in (15). Recall that ~Xn;i(z) = Fn;i(Xijz) where Fn;i(�jz) is uniformly bounded
in [0; 1] and increasing for each z 2 Z. Furthermore, we can establish that

p
n sup
z2Z

jjFn;i(�jz)� F (�jz)jj1 = OP (1):

We consider the following sum:

1p
n

nX
i=1

1fZi = zg
�
F̂ (DijZi = z)� F (DijZi = z)

�
(1fGz(Xi) � tg � t) ;

where Gz 2 Gz;n = fG : G is uniformly bounded in [0; 1] and increasing, and jjG � F (�jz)jj1 � Cn�1=3g:
By noting the bracketing entropy bound for Gz;n (Birman and Solomjak (1967)), we can apply Lemma B1
below to deduce that the sum is equal to

1p
n

nX
i=1

1fZi = zg (Di � F (DijZi = z))E
h
1f ~Xi(z) � tg � tjZi = z

i
+ oP (1) = oP (1);

uniformly in (t; z) 2 [0; 1]�Z. The last equality follows because ~Xi(z) = F (Xijz) and conditional on Zi = z;
Xi is absolutely continuous with respect to the Lebesgue measure. By collecting the results, we conclude
that the �rst sum in (15) is equal to

1p
n

nX
i=1

1fZi = zg (Di � F (DijZi = z))
�
1f ~Xi(z) � tg � t

�
+ oP (1):

The class of functions indexing this process is obviously P -Donsker, and its weak convergence to a Gaussian
process follows by the usual procedure. (e.g. van der Vaart and Wellner (1996)). The computation of the
covariance kernel for this Gaussian process follows straightforwardly.
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The following lemma is used to prove Theorem 2 and useful for other purposes. Hence we make the
notations for the lemma self-contained here. The lemma is a variant of Lemma B1 of Song (2007), but not
a special case, because the conditioning variable here is discrete. The proof is much simpler in this case.
Let 	n and �n be classes of functions  : RdS ! R and ' : RdW ! R that satisfy Assumptions B1 and
B2 below and let (Wi; Zi; Xi)

n
i=1 be i.i.d. from P where Zi is a discrete random variable. We establish the

uniform asymptotic representation of the following process �̂n('; ); ('; ) 2 �n �	n; de�ned by

�̂n('; ) =
1p
n

nX
i=1

 (Wi) fĝ';i(Zi)� g'(Zi)g

where ĝ';i(�) is an estimator of g'(z) = E ['(X)jZ = z]:

ĝ';i(z) =
1

n�1
Pn
j=1;j 6=i '(Xj)1fZj = zg

1
n�1

Pn
j=1;j 6=i 1fZj = zg

: (16)

For �n and 	n; we assume the following.

Assumption B : (i) For classes �n and 	n, there exist b�; b	 2 [0; 1) and p > 2 such that

logN[](";�n; jj � jjp) < bn"
�b� ; logN[](";	n; jj � jjp) < dn"

�b	

and envelopes ~' and ~ for �n and 	n satisfy that E[j~'(X)jpjZ] <1 and E[j~ (W )jpjZ] <1; a.s.
(ii) PfZi = zg 2 ("; 1� ") for some " > 0:

Lemma B1 : Suppose that Assumption 5 holds for the kernel and the bandwidth and Assumptions B1-B2
hold. Then

sup
('; )2�n�	n

������̂n('; )� 1p
n

nX
i=1

E [ (Wi)jZi] f'(Xi)� g'(Zi)g
����� = oP (1):

Proof of Lemma B1 : De�ne �̂';i(z) =
1

n�1
Pn
j=1;j 6=i 1fZj = zg'(Xj) and p̂i(z) = 1

n�1
Pn
j=1;j 6=i 1fZj =

zg; and write ĝ';i(Zi)� g'(Zi) as�
�̂';i(Zi)� g'(Zi)p̂i(Zi)

�
f1=p(Zi) + 1=p̂(Zi)� 1=p(Zi)g

=
�
�̂';i(Zi)� g'(Zi)p̂i(Zi)

�
=p(Zi) + oP (n

�1=2);

where ~�n;i = �n;i + �2n;i(1 � �n;i)
�1 and �n;i = p(Zi) � p̂(Zi) and p(z) = PfZj = zg: By the law of large

numbers, max1�i�n
���~�n;i��� = oP (1): Hence it su¢ ces to show that

1p
n

nX
i=1

 (Wi)

p(Zi)

�
�̂';i(Zi)� g'(Zi)p̂i(Zi)

�
=

1p
n

nX
i=1

E [ (Wi)jZi] f'(Xi)� g'(Zi)g+ oP (1): (17)

Write the right-hand side as

1p
n

nX
i=1

 (Wi)

p(Zi)

�
�̂';i(Zi)� g'(Zi)p̂i(Zi)

�
=

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q(Si; Sj ;'; ); Si = (Wi; Zi; Xi);

where q(Wi; Zi; Xj ;'; ) =  (Wi)1fZj = Zig f'(Xj)� g'(Zi)g =pi(Zi): Since E[q(Si; Sj ;'; )jSi] = 0; the
usual Hoe¤ding�s decomposition allows us to write the above sum as

1p
n

nX
j=1

E [q(Si; Sj ;'; )jSj ] + rn('; ) + oP (1)
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where rn('; ) is a degenerate U-process. Following similar steps in Song (2007) using the maximal inequality
of Turki-Moalla (1998), we can show that it is oP (1) uniformly in ('; ) 2 �n �	n: Note that

E [q(Si; Sj ;'; )jSj ] = E [ (Wi)1fZj = Zig f'(Xj)� g'(Zi)g jSj ] =pi(Zi)
= E [E [ (Wi)jZi] 1fZj = Zig f'(Xj)� g'(Zi)g jSj ] =pi(Zi)
= E [ (Wj)jZj ] f'(Xj)� g'(Zj)g :

Hence we obtain the result in (17) for each ( ;') 2 	n � �n: Now, the unifomity over these latter space is
obtained by the stochastic equicontinuity of the process, which follows from the bracketing entropy conditions
in Assumption B.
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