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Abstract

In this paper, I build a model marketplace populated by a finite number of sellers–

each producing its own variety of the good–and a continuum of buyers–each searching

for a variety he likes. Using the model, I study the response of a seller’s price to privately

observed fluctuations in its idiosyncratic production cost. I find that the qualitative

properties of this response critically depend on the persistence of the production cost.

In particular, if the cost is i.i.d., the seller’s price does not respond at all. If the

cost is somewhat persistent, the seller’s price responds slowly and incompletely. If the

cost is very persistent, the seller’s price adjusts instantaneously and efficiently to all

fluctuations in productivity. I argue that these findings can explain why the monthly

frequency of a price change is so much lower for processed than for raw goods.

JEL Codes : L11, D83

Keywords: Search Frictions, Asymmetric Information, Rigid Prices, Sticky Prices

1 Introduction

The frequency at which prices change varies dramatically across goods. For some goods

such as potatoes, gasoline and airfares, the monthly frequency of a price change is higher
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than fifty percent. For other goods like restaurant meals, haircuts or concerts, the monthly

frequency of a price adjustment is below ten percent. In front of such figures, it is natural to

wonder how much of the difference in the frequency of price adjustment can be explained by

differences in various characteristics of the goods. Using previously unpublished data from

the BLS, Bils and Klenow (2004) find that the single most important explanatory variable

is whether a good is raw or processed. Indeed, the monthly frequency of a price change is 34

percent higher if the good is raw than if it is processed.

What’s so different about raw and processed goods? For one thing, in many markets for

processed goods, each producer makes its own variety of the good and each buyer spends

some time searching for one variety that he likes. On the contrary, in many of the markets for

raw goods, once a buyer finds a variety he likes, he can purchase it from a number of different

producers. In this paper, I ask whether this difference alone can qualitatively explain the

difference in the frequency of price adjustment between these two classes of goods.

In order to answer this question, I build a model of the typical market for processed

goods. Specifically, I consider a marketplace populated by a finite number of sellers–each

producing its own variety of the good–and a continuum of buyers–each demanding at most

one unit of the good per period. In this market, a buyer does not know whether he likes

the variety produced by a certain seller unless he spends some time researching it. Using

this model, I characterize the response of a seller’s price to changes in the cost of producing

its own variety and compare it with the equilibrium price dynamics that would emerge in a

Walrasian market (the natural model for the raw goods market). The analysis is carried out

under the assumption that–perhaps because of reputation concerns–a seller can credibly

commit to a complete contingent price schedule which maps public histories into terms of

trade.

As a preliminary step, I characterize the optimal price schedule when the seller’s cost of

production is public information. I find that the schedule is time inconsistent, i.e. after any

history, it prescribes a price lower than the one that would maximize the seller’s continuation

profits. In addition, I find that the schedule is cost sensitive, i.e. after any history, it pre-

scribes a higher price the higher is the contemporaneous realization of the cost of production.

Intuitively, the schedule is time inconsistent because the seller obtains part of the benefit

from charging a lower price at date t in advance (namely, through the increase in the number

of buyers who search its variety in periods 1, 2, ...t−1), but it bears the cost entirely at date t.
Intuitively, the schedule is cost sensitive because the seller benefits more from investing in its

customer base when the productivity is higher. Taken together, these two properties imply

that the optimal price schedule would typically be non incentive-compatible if the seller had
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private information about its idiosyncratic cost of production. In particular, the seller would

have the incentive to overreport the realization of its cost in order to extract some more rents

from the customer base.

In the second part of the paper, I consider the more realistic case where the seller privately

observe its idiosyncratic cost of production. I find that the qualitative properties of the

optimal incentive-compatible schedule critically depend on the persistence of the seller’s

cost. In particular, if the cost is i.i.d. over time, the schedule prescribes rigid prices–i.e.

the terms of trade do not change in response to fluctuations in the seller’s productivity. If

the cost is somewhat persistent, the schedule prescribes sticky prices–i.e. the terms of trade

adjust slowly and incompletely (as compared to the symmetric information case) in response

to changes in the seller’s cost of production. Finally, if the cost is very persistent, the optimal

price schedule is the same under symmetric and asymmetric information.

In order to develop some intuition about these findings, consider a seller that has realized

a relatively low cost of production and entertains the idea of lying and announcing a higher

cost. On the one hand, if it misreports its type, the seller can charge a higher price to

its customers. Because of the time inconsistent nature of the pricing problem, this effect

increases the seller’s profits. On the other hand, if it misreports its type, the seller induces the

market to form irrationally pessimistic expectations about future costs and prices. Obviously,

this effect lowers the seller’s profits. When the cost of production is i.i.d. over time, the

second effect is mute and the seller correctly reports its type only if it can charge the same

price independently from its productivity. When the cost is somewhat persistent, the second

effect is active and the low-cost seller correctly reports its type as long as prices are not

too responsive to productivity. Finally, when the cost is very persistent, the second effect

is so strong that the optimal price schedule under symmetric information becomes incentive

compatible.

In light of these results, I conclude that sellers making their own variety of the good and

buyers having to search for one variety they like are defining characteristics of the processed

goods market which–in some cases–are alone sufficient to explain why prices adjust less

frequently than in the market for raw goods.

Related Literature. My paper contributes to the theoretical literature on price rigidity. In

models of time-dependent pricing (Calvo 1983, Taylor 1980), it is assumed that–for whatever

reason–a seller cannot change its price in every period. Obviously, this assumption implies

that sometimes a seller’s price does not adjust in response to a change in fundamentals. In

models of state-dependent pricing (Caplin and Spulber 1987, Golosov and Lucas 2007), it is
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assumed that a seller has to pay a fixed menu cost in order to change its price. Obviously,

this assumption implies that a seller’s price doesn’t adjust in response to sufficiently small

changes in fundamentals. My theory of price rigidity differs from these in two respects.

First, according to my theory, adjustment costs are not necessary to explain why prices

remain constant in the face of real changes in fundamentals. Secondly, according to my

theory, there is no reason why prices should not adjust to nominal changes in fundamentals.

Given these fundamental differences, I see my paper more as a complement than a substitute

for menu costs and staggered pricing.

A closer substitute to my paper is Athey, Bagwell and Sanchirico (2004), where another

theory of real rigidities is advanced. Specifically, they show that–under certain conditions–

an optimal collusion scheme requires sellers to keep their price constant in the face of privately

observed fluctuations in their idiosyncratic cost of production. Whether their theory is more

useful than mine for understanding the difference in the frequency of price adjustment across

goods is an open question.

Secondly, my paper contributes to the literature on pricing in markets with search fric-

tions. Diamond (1971) considers a product market where buyers have to search a seller in

order to find out its price. In such a market, the price has only the role of distributing the

gains form trade between the seller and the buyers who have matched with it. Therefore,

no matter how small search frictions are, every seller charges the pure monopoly price. On

the other hand, Montgomery (1991), Moen (1997) and Burdett Shi Wright (2001) consider a

static product market where buyers can observe the sellers’ prices before they decide where

to search. Because of frictions, not every buyer who searches a seller gets served. In such a

market, the price has the role of allocating the buyers’ search effort across sellers. Therefore,

in equilibrium, sellers charge a price that is typically lower than the monopoly level.

In this paper, I consider a dynamic product market in which buyers can observe the

seller’s current and future prices before they decide where to search. In such a market, the

seller’s price at date t allocates the buyers’ search effort in periods 1, 2, ...t and distributes

the gains from trade in period t. Therefore, as time passes, the price becomes progressively

less allocative and more distributive and the seller would like to renege on its promise. In

the context of the Burdett Mortensen (1998) model, Coles (2001) had already recognized

this type of time inconsistency. Yet, I am the first to realize that time inconsistency creates

an incentive problem when the seller has private information about its time-varying cost of

production. Moreover, I am the first to characterize the qualitative properties of the solution

to this incentive problem.
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Finally, my paper relates to the literature on pricing in markets where customers face

a fixed cost of switching from one seller to another (see Klemperer 1987, 1995 and Beggs

Klemperer 1992). In fact, also in these markets, the seller’s price has both an allocative

and a distributive role. And also in these markets, the seller’s problem is time inconsistent

because the allocative role becomes progressively less important relatively to the distributive

role. Yet, because this literature works with the assumption that sellers cannot precommit

to future prices, it has never encountered the kind of incentive problem that is central to my

paper.

Structure of the Paper. In Section 2, I describe the physical environment. In Section

3, I formulate the seller’s problem when productivity shocks are perfectly observable and

characterize the first-best price schedule. In Section 4, I begin by formulating the pricing

problem when productivity shocks are privately observed by the seller. Then, I identify

a condition on the persistence of productivity shocks which guarantees that the first-best

schedule is incentive compatible under asymmetric information. Finally, I characterize the

qualitative properties of the second-best price schedule when the incentive compatibility

constraints are binding. Section 5 briefly concludes. All proofs are relegated in the Appendix.

2 The Environment

The market for an indivisible and perishable consumption good is populated by a finite

number of sellers and a continuum of buyers with large measure. In period t each seller

i can produce its variety of the good at the constant marginal cost ci,t. This cost is an

idiosyncratic random variable that can take either the relatively low value c or the relatively

high value ch, 0 < c < ch. The probability of each realization depends on the seller’s past

productivity–namely, Pr (ci,t+1 = ci,t) = ρ ≥ 1
2 . The seller maximizes the expected sum of

profits discounted at rate β ∈ (0, 1) . In period t, each buyer j can participate to the market

by paying an opportunity cost of z > 0 utils. If the buyer decides to visit the market, finds a

variety that he likes and purchases one unit of it at the price pj,t, he receives the periodical

utility u − pj,t, u ∈ (z + ch,∞). If the buyer visits the market and doesn’t purchase the
good, his periodical utility is normalized to zero. The buyer maximizes the expected sum of

utilities discounted at rate β.

Buyers and sellers come together through a search and matching process. If buyer j

searches seller i, the two parties match successfully (i.e. the buyer likes the seller’s variety)

with probability λi,t and fail to match with probability 1− λi,t. In the first case, the buyer

has the option to purchase one unit of the good from the seller in the current period and,
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as long as the match survives, in future periods. In the second case, the buyer does not

trade in the current period and has to search for a seller in the next period. Because of

congestion effects, I assume that the probability λi,t is a decreasing function of the measure

qi,t of buyers searching seller i in period t. Because of network effects, I assume that the

probability λi,t is an increasing function of the measure ni,t of buyers who purchased from

seller i in period t−1. For the sake of analytical tractability, I assume that λi,t only depends
on the ratio between qi,t and ni,t. In particular, the function λ maps Rt into [0, 1] and is such
that λ0 (q/n) < 0, λ (0) = 1 and λ (∞) = 0. A match dissolves if the buyer is exogenously
displaced from the market (an event that occurs with probability σ ∈ (0, 1) in each period),
if he voluntarily decides to leave the seller to search elsewhere or if he stops actively trading

with the seller.1

In period t, events unfold in four stages. In the first stage, each seller realizes its pro-

ductivity shock and publishes its terms of trade. Moreover, existing matches are subject

to the displacement shock. In the second stage, buyers observe the entire distribution of

terms of trade. Based on this information, matched buyers decide whether to remain with

their current provider, search elsewhere or leave the market altogether. Unmatched buyers

decide whether to visit the market and, if so, which seller to search. In the third stage, new

matches are formed. In the fourth and final stage, matched buyers demand the good and

sellers produce it. Throughout the paper, I assume that sellers cannot price discriminate

because buyers are anonymous.

3 Pricing with Publicly Observed Costs

The purpose of this paper is to formulate and solve the pricing problem of a seller that

enters the market in period t = 0 with the cost of production c0 and a base of customers of

measure n(c0) > 0. I assume that–perhaps because of reputational concerns–the seller can

pre-commit to a sequence of state-contingent prices p = {p (ht)}∞t=0, where ht is the seller’s
public history up to date t. In this section, I also assume that the seller’s idiosyncratic cost

of production is publicly observed and therefore ht = ct = {c0, c1,......ct}.

3.1 Seller’s Problem

Denote with U (ct) the expected lifetime utility for a buyer who is matched with the seller

in period t, after the history ct has been realized. In period t, the buyer trades with the
1This no recall assumption is typical in search theory because it greatly simplifies the dynamics of the

buyers’ problem (cf Burdett and Mortensen (1998), Burdett and Coles (2003), Fishman and Rob (1995)).
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seller and receives the periodical utility u − p (ct). With probability 1 − σ, in period t + 1

the buyer has the option of remaining matched to the seller and receiving the continuation

utility U(ct+1) or searching some other seller/market and receiving the continuation utility

Z. With probability σ, in period t + 1 the buyer is exogenously displaced from the market

and he receives the continuation utility Z. Therefore, U (ct) is equal to

U(ct) = u− p(ct) + β
X
ct+1

Pr(ct+1|ct)
£
(1− σ)max

©
U(ct+1), Z

ª
+ σZ

¤
. (1)

Notice that Z is greater than (1−β)−1z because the buyer is free to stay out of the market.

Also, Z is smaller than (1 − β)−1z because, at this value, the entry of new buyers in the

market is infinitely elastic. Therefore, Z is equal to the present value of the flow cost of entry

z.

Next, consider a buyer who decides to search the seller in period t, after the history ct

has been realized. With probability λ(q(ct)/n(ct)), the buyer matches successfully with the

seller and receives the expected lifetime utility U(ct). With probability 1 − λ(q(ct)/n(ct)),

the buyer does not match with the seller and receives the lifetime utility βZ. In expectation,

the value of searching the seller in period t is smaller than Z–because buyers are free to

enter the market and search any particular seller they like–and is greater than Z whenever

q(ct) > 0–because those q(ct) buyers are free to search elsewhere. Therefore, in equilibrium,

the measure of buyers q(ct) searching the seller is such that

λ
¡
q
¡
ct
¢
/n
¡
ct
¢¢
[U
¡
ct
¢
− βZ] + βZ ≤ Z (2)

and q (ct) ≥ 0 with complementary slackness condition. It is convenient to denote with

θ(U(ct)) the ratio of buyers searching the seller q(ct) to old customers n(ct) that solves the

equilibrium condition (2).

If the value U(ct) of being matched to the seller is smaller than the outside option Z,

every single one of the n(ct) old customers leaves and no new customers arrive. If U(ct) is

greater than Z, a fraction 1−σ of the seller’s n(ct) old customers returns and n(ct) ·θ(U(ct)) ·
λ (θ(U(ct))) new customers arrive. Overall, the law of motion for the seller’s customer base

can be written as

n(
©
ct, ct+1

ª
) = n

¡
ct
¢
·
£
1− σ + η

¡
U
¡
ct
¢¢¤
, (3)

where η : R→ R is a function that takes the value σ−1 if U < Z and θ(U)·λ (θ(U)) otherwise.
I assume that λ(θ) is such that the function η(U) is twice continuously differentiable, strictly

increasing and weakly concave and that η (∞) ≤ β−1 − (1− σ).2

2All these conditions on η(U) are satisfied if, for example, the function λ(θ) is equal to (1 + αθγ)−1/γ ,

where γ lies between [0, 1] and α is strictly positive.

7



In period t = 0, the seller commits to the price schedule p that maximizes the expected

discounted sum of profits taking as given the law of motion for the customer base, i.e.

max
p

∞P
t=0

βt
∙P
ct
Pr(ct|c0)n(ct)[1− σ + η(U(ct))][p(ct)− ct]

¸
, s.t.

(1), (3) and c0, n(c0) given.

(SP1)

The sequence problem (SP1) has two remarkable properties. First, after any history ct,

the optimal schedule p maximizes the seller’s continuation profits subject to providing the

buyers’ at least the lifetime utility U(ct). Secondly, after any history ct, the price schedule

that maximizes the seller’s continuation profits subject to providing the buyers with U(ct)

is independent from the customer base n(ct) and the maximized profits are proportional

to n(ct). In the Appendix, I use these two properties to prove that the sequence problem

(SP1) has an equivalent recursive-form representation. In the recursive problem, the state

variables are the seller’s cost of production ci and the buyers’ promised value U . The choice

variables are the value V actually delivered to the buyers, V ≥ U , the current price p and

next period’s promised values U 0j , j = { , h}. The objective function is the sum of current

profits (1−σ+η(V )) · (p− ci) and discounted future profits (1−σ+η(V )) ·β ·E[Πj(U 0j)|ci].

Lemma 1: (Recursive Formulation) Denote with Πi(U) the value function associated to the

sequence problem (SP1) when c0 = ci, n(c0) = 1 and U(c0) is constrained to be greater or

equal than U . Then Πi(U) is the unique solution to the Bellman equation

Πi(U) = max
p,V,U 0

j≥Z
(1− σ + η(V ))

h
p− ci + β

P
j Pr(cj |ci)Πj(U 0j)

i
, s.t.

U ≤ V = u− p+ β
P

j Pr(cj|ci)
£
(1− σ)U 0j + σZ

¤
.

(BE1)

Let {Vi(U), pi(U), U 0i|j(U)} be the policy functions associated to the Bellman equation above.
Then, for all histories ct = {ct−2, ci, cj}, the optimal price schedule is such that p(ct) is equal
to pj(Ũ(c

t)), where Ũ(ct) = U 0j|i(Ũ(c
t−1)) and Ũ(c0) = Z.

3.2 First-Best Price Schedule

After substituting out the price p, the recursive problem (BE1) can be broken down in two

stages, i.e.

Πi(U) = max
V
(1− σ + η(V )) · πi(V ),

πi(V ) = u− ci − V + βσZ + max
U 0
j≥Z

P
j Pr(cj |ci)

£
Πj(U

0
j) + (1− σ)U 0j

¤
.

(4)
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In the first stage, the seller decides how much lifetime utility V its customers should be

offered subject to the promise-keeping constraint V ≥ U . In the second stage, the seller

decides how the lifetime utility V should be allocated over time and across states.

How much lifetime utility should the seller offer to its customers? If V is smaller than the

outside option Z, the seller does not have any customers and its profits are equal to zero. If

V is greater than Z, the seller has 1−σ+ η(V ) customers and obtains the profit πi(V ) from

each one of them. Over this region, the seller’s total profits (1 − σ + η(V ))· πi(V ) are first
positive and increasing and then decreasing in the lifetime utility V . They are maximized at

U i, where the benefit of attracting η0(U i) additional new customers is equal to the cost of

lowering the current price by 1 dollar, i.e.

η0(U i) · πi(U i) = 1− σ + η(U i) (5)

The seller’s offer is subject to the promise-keeping constraint V ≥ U . If U is lower than U i,

the constraint is moot and the seller offers the profit-maximizing value U i. If U is greater

than U i, the constraint binds and the seller offers its customers the value it had promised

them.

How should the seller allocate the buyers’ lifetime utility V over time and across states?

The seller can backload any feasible allocation by reducing the utility u − p offered to its

customers in the current period by Pr(cj |ci)β(1−σ) dollars and increasing their continuation
value U 0j by 1 dollar. Then, in the current period, the seller collects Pr(cj |ci)β(1 − σ)

extra dollars per unit of output sold. And, in the next period, it attracts η0(U 0j) additional

customers and lowers the price by 1 dollar. If the seller frontloads a feasible allocation, the

effects on current and future profits have the same magnitude and the opposite sign. The

optimal allocation (u−p, U 0, U 0h) is such that the seller’s profits cannot be increased by tilting
the timing of benefits neither back nor forth, i.e.

−(1− σ) = η0(U 0j) · πj(U 0j)− (1− σ + η(U 0j)), for j = , h, (6)

p(V ) = u− V + β
P

j Pr(cj |ci)
£
(1− σ)U 0j + σZ

¤
. (7)

Notice that, because an increase in U 0j by 1 util allows the seller to not only attract η
0(U 0j) ad-

ditional customers in the next period but also raise its current price, the optimal continuation

value U 0j is greater than U j .

Using the solution to the first and second stage problems, I can recover the structure of

the first-best price schedule p and its qualitative properties. In period t = 0, the seller enters

the market with no prior obligations, U(c0) = Z, and the production cost c0 = ci. The seller
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offers its customers the profit-maximizing lifetime utility U i by setting the current period’s

price to p(U i) and committing to the continuation values (U
0, U 0h). In period t ≥ 1, after

the history ct has been realized, the seller has the production cost ct = cj and an obligation

to deliver its customers at least U 0j . The seller offers them the promised lifetime utility U 0j

by setting the current period’s price to p(U 0j) and committing to the continuation values

(U 0, U 0h). Because U
0
i is greater than U i, prices are decreasing over time. Also, because U

is greater than Uh and U 0 is greater than U 0h, prices are increasing in the contemporaneous

realization of the cost of production.

Proposition 1: (Pricing with Publicly Observed Costs). When the seller’s idiosyncratic

cost of production is publicly observed, the optimal price schedule p = {p (ct)}∞t=0 prescribes
the price p(c0) = p(U i) for c0 = ci and the price p(ct) = p(U 0i) for t ≥ 1 and ct =

{ct−1, ci}. Keeping the cost of production constant, the prescribed prices are decreasing over
time: p(ct) < p(c0) for t ≥ 1, ct = {ct−1, ci} and c0 = ci. Keeping the calendar date

constant, the prescribed prices are increasing in the seller’s production cost: p(ct1) > p(ct2)

for ct1 = {ct−11 , ch} and ct2 = {ct−12 , c }.

The first-best price schedule characterized in Proposition 1 is time-inconsistent. At date

t = 0, the seller finds optimal to charge its customers the high price p(U i) and promise

them the low price p(U 0i) for the subsequent period. When date t = 1 arrives, the seller has

already obtained part of the benefit of promising p(U 0i)–i.e. the increase in the inflow of

new customers at t = 0–but has still to bear its entire cost. Then, the seller would like to

renege the original schedule and, once again, charge its customers the high price p(U i) and

promise them the low price p(U 0i) in the future.

4 Pricing with Privately Observed Costs

Consider a seller that enters the market in period t = 0 with the cost of production c0 and

a customer base of measure n(c0) > 0. Assume that the seller can commit to a sequence

of state-contingent prices p = {p(ht)}∞t=0, where ht is the seller’s public history up to date
t. Assume that, in every period t ≥ 1, the seller privately observes the realization of its

cost of production ct and makes a public announcement bct ∈ {c , ch} about it. Hence, ht

is bct = {c0,bc1, ...bct}. In this section, I formulate and solve the pricing problem of the seller

subject to the restriction that, after any history bct, the customer’s beliefs about the cost of
production ct are degenerate.
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4.1 Seller’s Problem

Without loss in generality, I can assume that the buyers interpret the seller’s reports as

truthful, i.e. Pr(ct = ĉt|bct−1) = 1. Denote with U(bct) the expected lifetime utility for a buyer
who is matched with the seller in period t, after the history of announcements bct = {bct−1, cj}
has been reported. In period t, the buyer trades with the seller and receives the periodical

utility u− p(bct). In period t+ 1,the buyer expects that the seller will report the production

cost cj and offer him the continuation utility U({bct, cj}) with probability ρ ≥ 1/2. The buyer
expects that the seller will report the production cost c−j and offer him the continuation

utility U({bct, c−j}) with probability 1− ρ. Given those beliefs, U(bct) is equal to
U(bct) = u− p(bct) + β

£P
ct+1 Pr(bct+1|bct)[(1− σ)max{U(bct+1), Z}+ σZ]

¤
. (8)

Along the equilibrium path, the seller’s reporting strategy must be consistent with the

buyers’ inference of the production cost ct from the announcement ĉt. Therefore, for allbct−1 = ct−1 and ct = ci, the price schedule p must induce the seller to report its type

correctly, i.e.

∞P
τ=t

βτ−t {
P

cτ Pr(c
τ |ct)n (cτ ) [1− σ + η(U (cτ ))] [p (cτ )− cτ ]} ≥

∞P
τ=t

βτ−t {
P

cτ Pr (c
τ |ct)n (bc (cτ )) [1− σ + η(U (bc (cτ )))] [p (bc (cτ ))− cτ ]} ,

(IC)

where bc(cτ ) is the public history {ct−1, c−i, ct+1,...cτ}. In writing the incentive compatibility
constraint (IC), I have assumed that–independently from its period−t announcement–the
seller will find optimal to report its type correctly in any subsequent period τ ≥ t. This is

the right assumption to make because the seller’s expected profits from reporting its true

type and from lying depend on the public history bcτ−1 and on the cost of production cτ but

not on the previous realizations of productivity shocks cτ−1. Therefore, the same incentive

compatibility constraint (IC) which guarantees that the seller will truthfully report cτ after

the history bcτ−1 has been realized and reported, also guarantees that the seller will truthfully
report cτ after the history bcτ−1 has been reported and some different history has been realized.
In general, the optimal incentive-compatible price schedule p∗ need not be renegotiation

proof, i.e. there may exist some histories after which the seller and its customers would agree

to modifying p∗. In order to rule out this possibility, I restrict attention to price schedules p

11



such that, for any reported history ĉt = ct and for any feasible p̂3 , if U(ct|p̂) > U(ct|p) then
∞P
τ=t

βτ−t {
P

cτ Pr (c
τ |ct)n(cτ |p)[1− σ + η (U (cτ |p))][p(cτ )− cτ ]} >

∞P
τ=t

βτ−t {
P

cτ Pr (c
τ |ct)n(cτ |p̂)[1− σ + η (U (cτ |p̂))][p̂(cτ )− cτ ]} .

(RP)

Notice that–because the value of a price schedule depends on the reported history bct−1 and
on the production cost ct, but does not depend on the realized history ct−1–the renegotiation

proofness constraint (RP) guarantees that p is ex-post efficient even if the seller has lied in

some previous period τ ≤ t− 1.

In period t = 0, the seller commits to the price schedule p that maximizes the expected

discounted profits subject to the incentive compatibility and renegotiation proofness con-

straints, i.e.

max
p

∞P
τ=t

βt {
P

ct Pr(c
t|c0)n(ct)[1− σ + η(U(ct))][p(ct)− ct]}, s.t.

(IC), (RP) and c0, n(c0) given.

(SP2)

The sequence problem (SP2) has two remarkable features. First, after any realized history ct

and reported history bct, the optimal price schedule p satisfies (IC) and (RP) at all subsequent
dates τ ≥ t+1. And, among all the feasible schedules, p is the one that maximizes the profits

of a seller with production cost ĉt subject to providing the buyers with a lifetime utility

non-smaller than U(bct). Secondly, after any realized history ct and reported history bct, the
feasible schedule that maximizes the seller’s profits subject to providing the buyers with U(bct)
is independent from the customer base n(ĉt) and the maximized profits are proportional to

n(ĉt). Using these two properties, in the Appendix, I prove that the sequence problem (SP2)

has an equivalent recursive-form representation.

Lemma 2: (Recursive Formulation) Denote with Πi(U) the value function associated to the

sequence problem (SP2) when c0 = ci, n(c0) = 1 and U(c0) is constrained to be greater or

equal than U . Then Πi(U) solves the Bellman equation

Πi(U) = max
p,V,U 0

j≥Z
(1− σ + η(V ))

h
p− ci + β

P
j Pr(cj |ci)Πj(U 0j)

i
, s.t.

U ≤ V = u− p+ β
P

j Pr(cj |ci)
£
(1− σ)U 0j + σZ

¤
,

Πj(U
0
j) ≥ Π̃−j(U 0−j) for j = , h,

Π̃i(U) = (1− σ + η(Vi(U)))
h
pi(U)− c−i + β

P
j Pr(cj |c−i)Πj(U 0j|i(U))

i
.

(BE2)

3The schedule p̂ is feasible if it satisfies the incentive-compatibility constraint (IC) and the renegotiation-

proofness condition (RP) in all periods τ ≥ t+ 1.
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Let {Vi(U), pi(U), U 0i|j(U)} be the policy functions associated to the solution Πi(U) of the
Bellman equation above. Then, for all histories ct = {ct−2, ci, cj}, the optimal price schedule
is such that p(ct) is equal to pj(Ũ(c

t)), where Ũ(ct) = U 0j|i(Ũ(c
t−1)) and Ũ(c0) = Z.

4.2 Very Persistent Costs: Fully Flexible Prices

When it satisfies the incentive compatibility and renegotiation proofness constraints, the

first-best schedule is the solution to the pricing problem under asymmetric information.

Because the first-best schedule is ex-post efficient, the renegotiation proofness constraint

(RP) is certainly satisfied. But because the schedule is time-inconsistent, the incentive

compatibility constraint (IC) need not hold. In this subsection, I identify a necessary and

sufficient condition on the persistence of productivity shocks which guarantees that the first-

best schedule will be incentive compatible. For the sake of simplicity, I carry out the analysis

under the assumption that η is approximately linear over the range of values promised by

the seller.

Imagine that the seller realizes the high cost of production ch after having announced the

history ĉt−1. If it chooses to report the low cost c instead of ch, the seller lowers its price by

p(U 0h)− p(U 0) dollars and attracts η0(U 0−U 0h) additional customers in period t. Because the

first-best price schedule is history independent, the report ĉt does not affect the dynamics of

prices and customers in subsequent periods. Therefore, the seller reports its actual cost of

production ch if and only if

Πh(U
0
h)− Π̃ (U 0) =

{(1− σ + η(U 0)) [1− β(1− σ) (2ρ− 1)]− η0πh(U
0
h)} (U 0 − U 0h) =

{(1− σ) [1− β (1− σ + η(U 0)) (2ρ− 1)] + η0(U 0 − U 0h)} (U 0 − U 0h) ≥ 0

(9)

where the third line is obtained after substituting in the first order condition (6). Analytically,

it is immediate to verify that the incentive compatibility constraint (9) is always satisfied.

Intuitively, the seller has no incentive to report c instead of ch because this would imply

lowering a price that, from its perspective in period t, is already too low.

Next, imagine that the seller realizes the low cost of production c after having announced

the history ĉt−1. If it chooses to report the high cost ch instead of c , the seller increases

its price by p(U 0h) − p(U 0) dollars and attracts η0(U 0 − U 0h) fewer customers in period t.

The report ĉt does not affect the dynamics of prices and customers in subsequent periods.
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Therefore, the seller reports its actual cost of production c if and only if

Π (U 0)− Π̃h(U 0h) =

{η0π (U 0)− (1− σ + η(U 0h)) [1− β (1− σ) (2ρ− 1)]} (U 0 − U 0h) =

{η0(U 0 − U 0h)− (1− σ) [1− β (1− σ + η(U 0h)) (2ρ− 1)]} (U 0 − U 0h) ≥ 0.

(10)

The incentive compatibility constraint (10) may be satisfied or violated depending on pa-

rameter values. In particular, there exists a critical level of persistence ρ∗ of the cost of

production such that the constraint (10) is satisfied if ρ is greater than ρ∗ and is violated if

ρ is below ρ∗. Intuitively, because the schedule is time inconsistent, the low cost seller would

like to raise the current price. But by reporting ch instead of c , the seller not only increases

the current price, it also makes customers irrationally pessimistic about the future terms of

trade. And this side effect becomes stronger the more persistent costs of production are.

Proposition 2: (Fully Flexible Prices) There exists a ρ∗ ∈
£
1
2 , 1
¤
such that, for all ρ >

(<)ρ∗, the first-best price schedule is feasible and optimal (not feasible) when the seller has

private information about its idiosyncratic cost of production.

4.3 IID Costs: Rigid Prices

When the persistence of productivity shocks is lower than the critical level ρ∗, the first-best

schedule violates the incentive compatibility constraint (IC). In order to characterize the

second-best schedule, it is convenient to break down the recursive problem (BE2) in two

stages

Πi(U) = max
V≥U

(1− σ + η(V )) · πi(V ),

πi(V ) = u− ci − V + βσZ + max
U 0
j≥Z

P
j Pr(cj |ci)

£
Πj(U

0
j) + (1− σ)U 0j

¤
, s.t.

Πj(U
0
j) ≥ Π̃j(U 0j) for j ∈ { , h}.

(11)

In the first-stage problem, the choice variable is the customers’ lifetime utility V . The

objective function is the expected discounted profit for a seller with the current cost of

production ci. The function is first increasing and then decreasing in V and attains its

unique maximum at U i, where U i is the solution to the equation (5). The choice of V is

limited by the promised-keeping constraint U ≤ V . Therefore, if U ≤ U i, the solution to the

first-stage problem is to provide customers with the profit-maximizing value U i. If U > U i,

the solution is to provide customers with the promised value U .
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In the second-stage problem, the choice variables are the customers’ continuation values

U 0 and U 0h. The objective function is the profit per customer for a seller that provides them

with the lifetime utility V . The function is quasi-concave in (U 0, U 0h) and attains its unique

maximum at (U 0∗, U 0∗h ), where U
0∗
j is the solution to the equation (6). The choice of (U 0, U 0h)

is limited by the incentive-compatibility constraint Πj(U 0j) ≥ Π̃−j(U 0−j). Because V enters

the objective function separately from the choice variables, the solution to the second-stage

problem is independent from the lifetime utility V and can be denoted with (U 0|i, U
0
h|i).

Because the objective function is increasing in U 0j and the constraint is independent from U 0j

for all U 0j ≤ U j , the solution to the second-stage problem (U
0
|i, U

0
h|i) is greater than (U ,Uh).

Using the qualitative properties of the solution to the first and second stage problems, I

can express the incentive compatibility constraint as

(1− σ + η(U 0j)) · πj(U 0j) ≥ (1− σ + η(U 0−j)) · π̃−j(U 0−j),

π̃i(U) ≡ u− c−i − U + β
P

j

n
Pr(cj |ci)

h
(1− σ)U 0j|i + σZ

i
+Pr(cj |c−i)Πj(U 0j|i)

o
.

(12)

Notice that, if the seller realizes the production cost c−i but announces ci, its expected profits

per customer π̃i(U) are generally different from π−i(U). First, when the seller misreports its

type, the customers’ expectations about the value of the match are not correct. In particular,

while the customers expect to receive the continuation value U 0i|i with probability ρ and U
0
−i|i

with probability 1 − ρ, the seller offers them U 0i|i a fraction 1 − ρ of the time and U 0−i|i a

fraction ρ of the time. Secondly, when the seller misreports its type, the continuation values

U 0|i and U
0
h|i prescribed by the second-best schedule are not its preferred way to allocate the

customers’ lifetime utility over time and across states.

Only when costs are i.i.d., π̃i(U) is equal to π−i(U). In this case, a seller that realizes

the cost of production cj correctly reports its type if it attains higher profits by offering to

its customers the lifetime utility U 0j rather than U 0−j , i.e.

(1− σ + η(U 0j)) · πj(U 0j) ≥ (1− σ + η(U 0−j)) · πj(U 0−j). (13)

Since U 0h and U 0 are both greater than Uh, a seller that realizes the cost of production ch

announces its true type if and only if U 0h is smaller than U 0. Since U 0 is greater than U but

U 0h need not be greater than U , a seller that realizes the cost of production c announces

its true type if either U 0h is greater than U
0 or sufficiently smaller than the profit-maximizing

value U . The set of continuation values (U 0, U 0h) that induces both seller’s types to report

their actual costs is illustrated in Figure 1.
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   Figure 1: Incentive compatible continuation values (IID Shocks) 
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Given the characterization of the incentive compatibility constraint (13), I can conclude

that there exist two candidate solutions to the second-stage problem. The first solution

prescribes that the continuation value offered to the customers should be independent from

the seller’s announcement about its cost of production, i.e. U 0h = U 0 = U 0, and such that the

allocation of customers’ utility over time is on average efficient

−(1− σ) =
P

j
1
2 [η

0(U 0) · πj (U 0)− 1− σ + η(U 0)] . (14)

The second solution prescribes that the continuation value should be lower when the cost of

production announced by the seller is higher, i.e. U 0h < U 0, and that U 0h should be sufficiently

far below U to induce the low-cost seller to truthfully report its type. When productivity

shocks are small, the state-independent solution is optimal because it closely approximates

the first-best (U 0∗, U 0∗h ) while the state-contingent solution approximates the no commitment

outcome (U ,Uh). This leads to the following proposition.

Proposition 3 (Rigid Prices) Let c = c − ∆ and ch = c + ∆ for some c ∈ (0, u− z) .

When the seller’s cost of production is privately observed and i.i.d. over time, there exists a

∆∗ > 0 such that, for all ∆ ∈ (0,∆∗), the optimal price schedule {p(ĉt)}∞t=0 prescribes the
price p(ĉt) = u− U 0 + β[(1− σ)U 0 + σZ] for all dates t ≥ 1 and all histories ĉt.

4.4 Moderately Persistent Costs: Sticky Prices

In this subsection, I characterize the optimal price schedule under asymmetric information

when production costs are positively correlated over time, but not to the point where the
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first-best schedule becomes feasible. In order to develop the analysis, I find convenient

to first solve a version of the second-stage problem (11) that abstracts from the incentive

compatibility constraint for the high-cost seller and to later verify that the constraint is

satisfied.

Let the persistence ρ of production costs be anywhere in the interval (0, ρ∗). The relaxed

version of the second-stage problem in (11) is

πi(V ) = u− ci − V + βσZ + max
U 0
j≥Uj

P
j Pr(cj |ci)

£
Πj(U

0
j) + (1− σ)U 0j

¤
, s.t.

(1− σ + η (U 0)) · π (U 0) ≥ (1− σ + η (U 0h)) · eπh (U 0h) . (15)

Consider the incentive compatibility constraint for the low-cost seller. On the one hand,

the seller’s profits from truthfully reporting its type are monotonically decreasing with the

continuation value U 0 promised to its customers. On the other hand, the seller’s profits

from misreporting its type are first increasing and then decreasing in the continuation value

U 0h expected by the customers and they are maximized at Ũh ∈ [Z,U ]. Moreover, when

U 0 = U 0h, the seller makes higher profits by correctly reporting its type rather than lying.

Therefore, the incentive compatibility constraint is satisfied either when U 0h is not much

smaller than the alternative continuation value U 0 or when U 0h is sufficiently far below the

profit-maximizing value Ũh. The set of incentive-compatible continuation values is illustrated

in Figure 2.

 

Figure 2: Incentive compatible continuation values (Persistent Shocks) 
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When ρ < ρ∗, the first-best solution (U 0∗, U 0∗h ) to the second-stage problem does not sat-

isfy the low-cost seller’s incentive compatibility constraint. The second-best solution distorts

the continuation values (U 0, U 0h) away from (U
0∗, U 0∗h ) in order to make the low-cost seller in-

different between correctly reporting its type and lying. More specifically, when productivity

shocks are small, the second-best solution distorts the continuation value U 0 downward and

U 0h upward. And, if in the previous period the seller has reported the low cost of production,

then U 0 is distorted less and U 0h is distorted more than if the seller had reported ch. Over-

all, the second-best continuation values (U 0|i, U
0
h|i) are such that U

0∗
h ≤ U 0h|i < U 0|i ≤ U 0∗|i,

U 0| > U 0|h and U 0h|h < U 0h| .

Now, I am in the position to recover the structure of the second-best price schedule

p = {p (bct)}∞t=0. In period t = 0, the seller enters the market with no prior obligations,

U(c0) = Z, and the production cost ci. The seller offers its customers the profit-maximizing

lifetime utility U i by setting the current period’s price to pi(U i) and committing to the

continuation values (U 0|i, U
0
h|i), where

pi(U) = u− U + β
P

j Pr (cj |ci) [(1− σ)U 0j|i + σZ]. (16)

In period t ≥ 1 and after the public history ĉt−1 = {ĉt−2, ci} has been realized, the seller
reports its actual production cost cj and offers its customers the promised lifetime utility U 0j|i
by setting the current period’s price to pj(U

0
j|i) and committing to the continuation values

(U 0|j , U
0
h|j).

From the properties of the continuation values U 0j|i, I can characterize the joint dynamics

of costs and prices. First, “steady-state” prices are increasing in the production cost. That is,

if the seller realizes the production cost c for a sufficiently long period of time, it charges the

price p (U 0| ) which is strictly lower than the price ph(U
0
h|h) it would have charged if it had

realized ch instead. Secondly, prices are “sticky.” That is, when the seller first realizes the

high production cost, it charges a price ph(U 0h| ) which is strictly lower than the steady-state

level ph(U 0h|h). Conversely, when the seller first realizes the low production cost, it charges a

price p (U 0|h) which is strictly greater than p (U 0| ).

Proposition 4: (Sticky Prices) Let c = c−∆ and ch = c+∆ for some c ∈ (0, u− z) and

suppose that the solution to the Bellman equation (BE2) is unique. Then, when the seller’s

cost of production is privately observed and persistent ( ρ > 1/2), there exists a ∆∗ > 0

such that, for all ∆ ∈ (0,∆∗), the optimal price schedule {p(ĉt)}∞t=0 prescribes the price
p(c0) = pi(U i) for c0 = ci and the price p(ĉt) = pj(U

0
i|j) for t ≥ 1 and ct = {ct−2, ci, cj}.

The prescribed price is increasing in ci if the seller has reported ci for two or more periods:

p(ct1) > p(ct2) for ct1 = {ct−21 , ch, ch} and ct2 = {ct−22 , c , c }. The prescribed price adjusts
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slowly over time in response to a change in the reported cost of production: p(ct+1) > p(ct)

for ct+1 = {ct−2, c , ch, ch} and p(ct+1) < p(ct) for ct+1 = {ct−2, ch, c , c }.

5 Conclusions

In this paper, I have built a model marketplace populated by a finite number of sellers–each

producing its own variety of the good–and a continuum of buyers–each searching for a

variety he likes. Using the model, I have studied the response of a seller’s price to privately

observed fluctuations in its idiosyncratic production cost. I have found that the qualitative

properties of this response critically depend on the persistence of the production cost. In

particular, if the cost is i.i.d., the seller’s price does not respond at all. If the cost is somewhat

persistent, the seller’s price responds slowly and incompletely. If the cost is very persistent,

the seller’s price adjusts instantaneously and efficiently to all fluctuations in productivity. I

have argued that these findings can explain why the monthly frequency of a price change is

so much lower for processed than for raw goods.
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A Appendix

A.1 Proof of Lemma 1

Claim 1: After any history ct, the optimal price schedule p is such that U(ct|p) ≥ Z.

Proof: On the way to a contradiction, let ct1 be the earlier history at which U(ct1|p) ≥ Z.

Then, if the history ct1 is realized (an event which occurs with positive probability), the seller
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loses all its current customers and can’t attract any any new customers in the future. Its

expected discounted profits are equal to zero. Now, consider an alternative schedule bp such
that bp(cτ ) = p(cτ ) if cτ is not a subsequent of ct1 and bp(cτ ) = u − z > 0 otherwise. For all

τ < t, the seller’s periodical profits are the same with bp and p because prices and customers
are the same. Similarly, for all ct 6= ct1, the seller’s continuation profits are the same with bp
and p. Finally for ct = ct1, the continuation profits are strictly positive. Overall, in period

t = 0, the seller strictly prefers to commit to the schedule bp that p, which contradicts the
optimality of the latter. k

Denote with Πi(U) the value function associated to the sequence problem (SP1) when

c0 = ci, n(c0) = 1 and U(c0) is constrained to be greater or equal than U. Denote with Π
+
i (U)

the value function associated to (SP1) when c0 = ci, n(c0) = 1 and U(c0) is constrained to

be equal to U.

Claim 2: The value functions Πi(U) and Π
+
i (U) are such that

Πi(U) = max
V,p,U 0

j≥Z
(1− σ + η(V ))

h
p− ci + β

P
j Pr(cj |ci)Π

+
j (U

0
j)
i
, s.t.

U ≤ V ≡ u− p+ β
P

j Pr(cj |ci)
£
(1− σ)U 0j + σZ

¤
.

(A1)

Proof: Making use of Claim 1, I can write the value function Πi (U) as

Πi(U) = max
p(c0),p1,

U(c0),U(c
1)

n(c1)
h
p(c0)− ci + β

P
j Pr(cj |ci)

hP
cτ Pr (c

t| {c0, cj}) n(c
t+1)

n(c1) [p(c
t)− ct]

ii
U ≤ U(c0) ≡ u− p(c0) + β

P
j Pr(cj |ci) [(1− σ)U({c0, cj}) + σZ],

Z ≤ U (ct) ≡ u− p(ct) + β
P

ct+1 Pr(c
t+1|ct)

£
(1− σ)U(ct+1) + σZ

¤
,

n(c1) = (1− σ + η(U(c0))), n(c
t+1)

n(c1) = n(ct)
n(c1) (1− σ + η(U(ct))).

The maximization problem above can be broken down in two stages. In the first stage,

the seller chooses p(c0), U(c0) and U({c0, cj}) subject to the first and third constraints. In
the second stage, the seller chooses p1 = {p (ct)}∞t=1 in order to maximize its continuation
profits subject to delivering exactly U({c0, cj}) to the customers and given an initial cost
of production cj and a customer base with measure n

¡
c1
¢
/n
¡
c1
¢
= 1. Therefore, the value

function associated to the second-stage problem is Π+j (U({c0, cj})). k

Claim 3: The function Πi (U) satisfies the Bellman equation (BE1).

Proof: First, notice that the solution to the maximization problem in (A1) is a continuation

value U+j that belongs to the set UPF
j = {U : Π+j (U) = Πj(U)}, i.e. the set of continuation

21



values U such that the seller could not increase its profits by delivering more than U. There-

fore, I can restrict attention to continuation values in UPF
j and replace Π+j (U) with Πj(U)

in (A1). Secondly, notice that, if the continuation function in (A1) is Πj(U) and the choice

of continuation values is not restricted to UPF
j , the solution to the maximization problem is

U 0j ∈ UPF
j . Therefore, I can relax the choice set and obtain (BE1). k

Claim 4: If Pi (U) is a solution to the functional equation (BE1), then Pi (U) is equal to

Πi (U) .

Proof: Denote with T the mapping associated to (BE1). It is immediate to verify that T

satisfies the Blackwell’s sufficient conditions for a contraction mapping. Therefore, T has a

unique fixed point. k

To conclude the proof of Lemma 1, notice that the value function associated to the

sequence problem (SP1) when c0 = ci and n(c0) > 0 is given by n(c0) ·Πi(0).

A.2 Proof of Proposition 1

Consider the first-stage problem in (4). For V < Z, the objective function (1− σ + η (V )) ·
πi(V ) is equal to zero because η(V ) = σ − 1. For V = Z, the function is strictly positive

because η(V ) = 0 and, as proved in Lemma 1, πi(Z) > 0. For V ≥ Z, the function is quasi-

concave because it is concave wherever increasing and may be convex only when strictly

decreasing. The function attains its maximum for V = U i, where U i satisfies

[η0(U i) · πi(U i)− (1− σ + η(U i))] · (U i − Z) = 0. (A2)

From the properties of the objective function, it follows that the solution Vi(U) to the first-

stage problem is U i whenever U ≤ U and U otherwise. In turn, the value function Πi(U)

associated to the first-stage problem is constant at (1− σ+ η(U i)) · π(U i) whenever U ≤ U i

and is strictly decreasing and quasi-concave otherwise.

Next, consider the second-stage problem in (4). As proved in Lemma 1, the choice set can

be restricted to those continuation values that are greater than the profit-maximizing values

(U ,Uh). Over this domain, the objective function is quasi-concave and attains is maximum

at (U 0, U 0h), where U
0
j satisfies

η0(U 0j) · πj(U 0j)− (1− σ + η(U 0j)) = − (1− σ) . (A3)
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Because η0πj − (1−σ+ η) is non-negative for all U ≤ U j , the optimal continuation value U
0
j

is strictly greater than the profit-maximizing value U j .

Finally, I want to compare the solution to the first and second stage problem under

high and low cost of production. Denote with T the contraction mapping associated to the

Bellman equation (BE1). Since (TP )h < (TP ) whenever Ph ≤ P , the unique fixed point

Π of the contraction mapping T associated to the Bellman equation (BE1) is such that the

profit function is strictly decreasing in the cost of production. In turn, this implies that

πh(U) < π (U) and, through the first order conditions (A2) and (A3), that Uh ≤ U and

U 0h < U 0.

A.3 Proof of Lemma 2

Claim 1: After any history bct, the optimal price schedule p is such that U (bct|p) ≥ Z.

Proof: Suppose that, at bct1, the optimal schedule p is such that the buyers’ lifetime utility
U (bct|p) is strictly smaller than Z and, consequently, the seller’s expected profits are zero.

Consider the alternative schedule bp which prescribes the constant price bp(bcτ ) = u − z for

all histories bcτ that are subsequents of bct1. At bct1, the alternative schedule bp is such that
the buyers’ lifetime utility U (bct|bp) is equal to Z and the seller’s expected profits are strictly
positive. The schedule bp satisfies the incentive-compatibility constraint (IC). If it is also
renegotiation-proof, then bp is a feasible Pareto improvement over p after the history bct1 is
realized. Therefore, p violates the constraint (RP) and is not an optimum. If bp is not
renegotiation-proof, then there exists a feasible schedule p̃ which is a Pareto improvement

over bp and, a fortiori, over p. Again, p violates the constraint (RP) and is not an optimum.
k

Denote with Πi (U) the value function associated to (SP2) when c0 = ci, n(c0) = 1 and

U(c0) is constrained to be greater or equal than U. Denote with Π+i (U) the value function

associated to (SP2) when c0 = ci, n(c0) = 1 and U(c0) is constrained to be equal to U.

Finally, let UPF be the set of promised values U such that the seller could not increase its

profits by delivering more than U , i.e. UPF
i = {U : Π+i (U) = Πi(U)}.

Claim 2: The value function Π+i (U) satisfies the Bellman equation

Π+i (U) = max
pi,U 0

j∈UPF
j

(1− σ + η(U))
h
p− ci + β

P
j Pr(cj |ci)Π

+
j (U

0
j)
i
, s.t.

U = u− p+ β
P

j Pr(cj |ci)
£
(1− σ)U 0j + σZ

¤
,

Π+j (U
0
j) ≥ Π̃+−j(U 0−j),

(A4)
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where

Π̃+i (U) = (1− σ + η (U))
h
p+i (U)− c−i + β

P
j Pr(cj|c−i)Π

+
j (U

0+
j|i (U))

i
.

Moreover, the value functions Πi(U) and Π
+
i (U) satisfy the functional equation

Πi(U) = max
V,p,U 0

j∈UPF
j

(1− σ + η(V ))
h
p− ci + β

P
j Pr(cj |ci)Π

+
j (U

0
j)
i
, s.t.

U ≤ V = u− p+ β
P

j Pr(cj |ci)
£
(1− σ)U 0j + σZ

¤
,

Π+j (U
0
j) ≥ Π̃+−j(U 0−j).

(A5)

Proof: The proof of this claim follows directly from the analysis of the seller’s problem in

Section 4.1. k

Claim 3: The function Πi (U) satisfies the Bellman equation (BE2).

Proof: The continuation value U 0j that solves the maximization problem in (A5) belongs to

the set UPF
j . For all U ∈ UPF

j , the profit function Π+j (U) is equal to Πj(U) and the function

Π̃+j (U) is equal to Π̃j(U), where Π̃j(U) is defined in (BE2). Therefore, I can replace the

continuation profit Π+j (U) with Πj(U) in the objective function of (A5) and substitute the

incentive compatibility constraint Π+j (U
0
j) ≥ Π̃+−j(U 0−j) with Πj(U 0j) ≥ Π̃−j(U 0−j). Moreover,

if the constraint U 0j ∈ UPF is removed from the modified problem, the optimal continuation

value U 0j belongs to U
PF
j . Therefore, I can also substitute the constraint U 0j ∈ UPF

j with the

constraint Uj ≥ Z. k

To conclude the proof of Lemma 2, notice that the value function associated to the

sequence problem (SP2) when c0 = ci and n(c0) > 0 is given by n(c0) ·Πi(0).

A.4 Proof of Proposition 2

For ĉt−1 = ct−1 and ct = ch, the first-best schedule satisfies the incentive compatibility

constraint (IC) if and only if

(1− σ) [1− β (1− σ + η(U 0)) (2ρ− 1)] + η0(U 0 − U 0h) ≥ 0.

The first term on the LHS is positive because β (1− σ + η (U)) is strictly smaller than 1.

The second term on the LHS is positive because U 0 is strictly greater than U 0h. Therefore,

the incentive compatibility constraint is satisfied.
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For ĉt−1 = ct−1 and ct = ch, the first-best schedule satisfies the incentive compatibility

constraint (IC) if and only if

η0(U 0 − U 0h)− (1− σ) [1− β (1− σ + η(U 0h)) (2ρ− 1)] ≥ 0.

The derivative of the LHS with respect to the persistence ρ of productivity shocks is given

by

η0
½
dU 0

dρ
+ [1− β (1− σ) (2ρ− 1)] dU

0
h

dρ

¾
+ (1− σ)β2(1− σ + η (U 0h)).

If dU 0/dρ > 0 and dU 0h/dρ < 0, the derivative is strictly positive and, hence, there exists a

critical level of persistence ρ∗ ∈ [1/2, 1] such that the incentive compatibility constraint is
satisfied when and only when ρ ≥ ρ∗.

In order to identify the sign of dU 0i/dρ, it is convenient to let Pi(U ,Uh; ρ) denote the

profits of a seller that has realized the production cost ci and has committed to providing its

customers with the lifetime utility U whenever ct = c and with Uh whenever ct = ch, i.e.

Pi(U ,Uh; ρ) = (1− σ + η(Ui)) [pi − ci + βρPi + β(1− ρ)P−i]

pi(U ,Uh; ρ) = u− Ui + βσZ + β(1− σ) [ρUi + (1− ρ)U−i] .

For a generic couple (U ,Uh), Pi is smaller than the value function Πi. For (U ,Uh) equal to

the optimal continuation values (U 0, U 0h), Pi is equal to Πi. The derivative of Pi with respect

to the persistence of the cost of production is given by

∂Pi
∂ρ

= ∆−1β [(1− σ)(Ui − U−i) + (Pi − P−i)] ,

where ∆ is a positive constant. When evaluated at (U 0, U 0h), ∂P /∂ρ is strictly positive and

∂Ph/∂ρ is strictly negative because U 0 > U 0h and P = Π > Πh = Ph.

The value function πi(V ; ρ) associated to the second-stage problem in (4) is equal to

πi(V ; ρ) = u− ci − V + βσZ + β max
U ,Uh

P
j Pr(cj |ci) [Pj(U ,Uh; ρ) + (1− σ)Uj ]

and its derivative with respect to the persistence ρ of productivity shocks is

∂πi
∂ρ

= β

∙
(1− σ)(U 0i − U 0−i) + (Pi − P−i) + ρ

∂Pi
∂ρ

+ (1− ρ)
∂P−i
∂ρ

¸
=

=
β

1− σ + η(U 0i)

∂Pi
∂ρ
.

From the second line, it follows that ∂π /∂ρ is strictly positive and ∂πh/∂ρ is strictly negative.

In turn, from the first order condition (6) for the continuation value, it follows that dU 0/dρ

is strictly positive and dU 0h/dρ is strictly negative.
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A.5 Preliminaries to Propositions 3 and 4

Consider the first-stage problem in (11). For V < Z, the objective function (1− σ + η (V )) ·
πi(V ) is equal to zero because η(V ) = σ − 1. For V = Z, the function is strictly positive

because 1 + σ = η(V ) = 1 − σ > 0 and πi(Z) > 0 as proved in Lemma 2. For V ≥ Z, the

function is quasi-concave. The function attains its maximum for V = U i, where U i is the

solution to equation (A2). From the properties of the objective function, it follows that the

solution Vi(U) to the first-stage problem is U i whenever U ≤ U i and U otherwise. In turn, the

value function Πi(U) associated to the first-stage problem is constant at (1−σ+η(U i))·π(U i)

whenever U ≤ U i and is strictly decreasing and quasi-concave otherwise.

Next, consider the second-stage problem in (11). As proved in Lemma 2, the choice set can

be restricted to the continuation values (U 0, U 0h) that are greater than the profit-maximizing

values (U ,Uh). Over this domain, the objective function is jointly quasi concave in (U
0, U 0h).

Also, for any given U 0h, the objective function is maximized at U
0∗, where U 0∗ is the solution

to equation (A3) for j = and is strictly greater than U . For any given U 0, the objective

function is maximized at U 0∗h , where U
0∗
h is the solution to equation (A3) for j = h and is

strictly greater than Uh. The choice of the continuation values is limited by the incentive

compatibility constraint Πj(U 0j) ≥ eΠ−j(U 0−j). Since V enters separately from (U 0, U 0h) in the

objective function and does not enter the constraints, the solution U 0j|i(V ) to the second-stage

problem is independent from V and can be denoted with U 0j|i.

A.6 Proof of Proposition 3

When ρ = 1/2, the second-stage problem in (12) can be reformulated as

πi(V ) = u− ci − V + βσZ +
β

2
max
U 0
j≥Uj

P
j

£
Πj(U

0
j) + (1− σ)U 0j

¤
, s.t.

(1− σ + η(U 0j)) · πj(U 0j) ≥ (1− σ + η(U 0−j)) · πj(U 0−j). (A6)

Since U 0h ≥ Uh, U
0 ≥ U ≥ Uh and the function (1− σ + η) · πh is strictly decreasing for all

U ≥ Uh, the high-cost seller’s incentive compatibility constraint (A6) is equivalent to U
0 ≥

U 0h. Since the function (1 − σ + η) · π is strictly increasing for U ∈ [Uh, U ] and strictly

decreasing for U ≥ U , the low-cost seller’s incentive compatibility constraint (A6) is satisfied

either if U 0h ≥ U 0 or if U 0h is sufficiently lower than U . Overall, a couple of continuation

values (U 0, U 0h) is feasible if either U
0 = U 0h ≥ U or U 0 6= U 0h and U 0h ≤ U , U 0 ≥ U .

Let c (∆) = c−∆ and ch (∆) = c+∆ for some c ∈ (0, u−z) and ∆ ≥ 0. If the solution to
the second-stage problem is such that U 0 = U 0h, the seller’s profits per customer are bounded
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below by

πPi (V ;∆) = u− ci (∆)− V + βσZ +
β

2

P
j [Πj (U

0∗(∆);∆) + (1− σ)U 0∗(∆)] .

If the solution to the second-stage problem is such that U 0 6= U 0h, the seller’s profits per

customer are bounded above by

πSi (V ;∆) = u− ci (∆)− V + βσZ +
β

2

P
j

£
Πj(U

S
j (∆);∆) + (1− σ)USj (∆)

¤
,

where USh (∆) = min{U 0∗h (∆), U (∆)} and US(∆) = U 0∗(∆). Independently from the nature

of the solution to the second-stage problem, the seller’s profits per customer are bounded

above by

πPi (V ;∆) = u− ci (∆)− V + βσZ +
β

2

P
j

£
Πj(U

0∗
j (∆);∆) + (1− σ)U 0∗j (∆)

¤
.

For ∆ = 0, πPi (V ;∆) is equal to π∗i (U ;∆) because Π (U ;∆) = Πh(U ;∆) and U 0∗(∆) =

U 0∗h (∆). For ∆ = 0, π
S
i (U ;∆) is strictly smaller than to π

∗
i (U ;∆) because U

S
h (∆) = Uh(∆)

and Uh(∆) < U 0∗h (∆). By continuity, I conclude that the solution to the second-stage problem

is such that U 0 = U 0h for all ∆ ∈ (0,∆∗).

A.7 Proof of Proposition 4

In order to characterize the second-best price schedule when productivity shocks are per-

sistent, I start by conjecturing that the solution to the problem (SP2) is such that: (i) the

high-cost seller’s incentive compatibility constraint is moot, i.e. Πh(U 0h|i) > Π̃ (U 0|i) for

i = , h; (ii) the low-cost seller prefers to report its true type rather than lying whenever

U 0 = U 0h = U , i.e. π (U) ≥ eπh(U).
If the high-cost seller’s incentive compatibility constraint is moot, the second-stage prob-

lem in (12) can be reformulated as

πi(V ) = u− ci − V + βσZ + max
U 0
j≥Uj

P
j Pr(cj |ci)

£
Πj(U

0
j) + (1− σ)U 0j

¤
, s.t.

(1− σ + η (U 0)) · π (U 0) ≥ (1− σ + η (U 0h)) · eπh (U 0h) . (A7)

For all U 0 ≥ U , the LHS of (A7) is strictly decreasing. For all U 0h ≥ Uh, the RHS of (A7)

is quasi-concave because it is concave whenever increasing and convex only when strictly

decreasing. The RHS attains its maximum for U 0h = eUh ≤ U , where eUh satisfiesh
η0(eUh) · eπh(eUh)− (1− σ + η(eUh))

i
· (eUh − Z) = 0.
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It is useful to partition the feasible set of the second-stage problem into the subsets P
and S. Specifically, P is the set of continuation values (U 0, U 0h) that are feasible and such

that U 0h ≥ eUh, while S is the set of continuation values that are feasible and such that

U 0h ≤ eUh. The set P contains the state-independent continuation values U 0 = U 0h ≥ U

because π (U 0) ≥ eπh(U 0). The set S does not contain any continuation values (U 0, U 0h) such
that U 0h is greater than U because eUh ≤ U .

Let c (∆) = c−∆ and ch (∆) = c+∆ for some c ∈ (0, u− z) and ∆ ≥ 0. If the solution
to the second-stage problem belongs to the subset P, the seller’s profits per customer are
bounded below by

πPi (V ;∆) = u− ci (∆)− V + βσZ + β
P

j Pr (cj |ci) [Πj (U 0∗(∆);∆) + (1− σ)U 0∗(∆)] .

If the solution to the second-stage problem belongs to the subset S, the seller’s profits per
customer are bounded above by

πSi (V ;∆) = u− ci (∆)− V + βσZ + β
P

j Pr (cj |ci)
£
Πj(U

S
j (∆);∆) + (1− σ)USj (∆)

¤
,

where USh (∆) = min{U 0∗h (∆), U (∆)} and US(∆) = U 0∗(∆). Independently from the nature

of the solution to the second-stage problem, the seller’s profits per customer are bounded

above by

πPi (V ;∆) = u− ci (∆)− V + βσZ + β
P

j Pr (cj |ci)
£
Πj(U

0∗
j (∆);∆) + (1− σ)U 0∗j (∆)

¤
.

For ∆ = 0, πPi (V ;∆) is equal to π∗i (U ;∆) because Π (U ;∆) = Πh(U ;∆) and U 0∗(∆) =

U 0∗h (∆). For ∆ = 0, π
S
i (U ;∆) is strictly smaller than to π

∗
i (U ;∆) because U

S
h (∆) = Uh(∆)

and Uh(∆) < U 0∗h (∆). By continuity, I conclude that the solution to the second-stage problem

belongs to P for all ∆ ∈ (0,∆1).

When ∆ is sufficiently small, i.e. ∆ ∈ (0,∆2), the unconstrained maximum of the second-
stage problem (U 0∗, U 0∗h ) is not feasible because it violates the low-cost seller’s incentive

compatibility constraint (cf. condition (10)). When this is the case, the constraint (A7) holds

with equality because the objective function of the second-stage problem is quasi concave.

Therefore, for all ∆ ∈ (0,∆∗), where ∆∗ = min{∆1,∆2}, the solution to the second-stage
problem belongs to the subset P and satisfies the constraint (A7) with equality.

For all ∆ ∈ (0,∆∗), the solution (U 0|i, U 0h|i) to the second-stage problem has the following
properties:

1. The continuation value U 0|i is smaller than U 0∗. Proof: If U 0|i is strictly greater than

U 0∗, then (U 0∗, U 0h|i) is feasible because Π (U
0∗) > Π (U 0|i). Also, (U

0∗, U 0h|i) is prefer-

able because the objective function is quasi concave in U 0 and is maximized at U 0∗.
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2. The continuation value U 0h|i is greater than U 0∗h . Proof: If U 0h|i is strictly smaller

than U 0∗h , then (U
0
|i, U

0∗
h ) is feasible because Π̃h(U

0∗
h ) < Π̃h(U

0
h|i). Also, (U

0
|i, U

0∗
h ) is

preferable because the objective function is quasi concave in U 0h and is maximized at

U 0∗h .

3. The continuation value U 0h|i is strictly smaller than U 0|i. Proof: If U
0
h|i is greater than

U 0|i, then Π (U
0
|i) ≥ Π̃h(U 0|i) > Π̃h(U 0h|i). This is not possible because (A7) holds

with equality for all ∆ ∈ (0,∆∗).

4. If U 0h|j > U 0h|i, then U
0
|j is strictly greater than U

0
|i. Proof: Since the LHS and RHS of

(A7) are strictly decreasing in U 0 and U 0h and the constraint (A7) holds with equality,

if U 0h|j > U 0h|i then U 0|j > U 0|i.

5. The continuation values are such that U 0| ≥ U 0|h and U 0h| ≥ U 0h|h. Proof: Since

the objective function puts more weight on Π (U 0) + (1− σ)U 0 and less weight on

Πh(U
0
h) + (1− σ)U 0h when ci = c than when ci = ch, Π (U 0| ) + (1− σ)U 0| is greater

than Π (U 0|h) + (1− σ)U 0|h. In light of property (1), this implies that U
0
| is greater

than U 0|h. In light of property (2), this implies that U
0
h| is greater than U 0h|h.

6. The continuation values are such that E
h
(1− σ)U 0j|i +Πi(U

0
j|i)|ck

i
is greater for k = i

than −i. Proof: This result follows immediately from property (5).

These six properties of the optimal continuation values lead immediately to Proposition 4.

In the last step of the analysis, I have to verify my initial conjectures. In order to

verify that the high-cost seller’s incentive compatibility constraint is moot, it is convenient

to rewrite Πh(U 0h|i) ≥ Π̃ (U 0|i) as

η0(U 0h|i − U 0|i) · πh(U 0h|i) ≥

(1− σ + η(U 0|i))

⎡⎢⎢⎣
U 0h|i − U 0|i + β (1− σ) (2ρ− 1) (U 0| − U 0h| )+

β
n
E
h
(1− σ)U 0i| +Πi(U

0
i| )|ch

i
−E

h
(1− σ)U 0i|h +Πi(U

0
i|h)|ch

io
.

⎤⎥⎥⎦
(A8)

First, notice that U 0h|i ≥ U 0∗h implies that η0πh(U 0h|i) is smaller than η(U 0h|i) and that the

LHS of (A8) is bounded below by

(U 0h|i − U 0|i) · η(U 0h|i). (A9)

Secondly, notice thatE
h
(1− σ)U 0i|h +Πi(U

0
i|h)|ch

i
greater thanE

h
(1− σ)U 0i| +Πi(U

0
i| )|ch

i
and U 0|h−U 0h|h greater than U

0
| −U 0h| (a fact that can be derived from the low-cost seller’s
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incentive compatibility constraint) imply that the RHS of (A8) is bounded above by both

(1− σ + η(U 0|i))
h
U 0h|i − U 0|i + β (1− σ) (2ρ− 1) (U 0| − U 0h| )

i
,

(1− σ + η(U 0|i))
h
U 0h|i − U 0|i + β (1− σ) (2ρ− 1) (U 0|h − U 0h|h)

i
.

(A10)

Overall, the high-cost seller’s incentive constraint (A8) is satisfied if (A9) is greater than

(A10) or, equivalently, if

(1− σ)
h
1− β(1− σ + η(U 0h|i))(2ρ− 1)

i
+ η0(U 0|i − U 0h|i) ≥ 0. (A11)

Because β(1 − σ + η(U 0h|i)) is smaller than 1 and U 0|i is greater than U 0h|i, the sufficient

condition (A11) is satisfied.

Finally, I have to verify the conjecture that the low-cost seller prefers to report its true

type rather than lying whenever U 0 = U 0h = U , i.e. π (U) ≥ π̃h(U) or

E
h
Πj(U

0
j| ) + (1− σ)U 0j| |c

i
≥

E
h
Πj(U

0
j|h) + (1− σ)U 0j|h|c

i
+ (2ρ− 1) (1− σ) (U 0h|h − U 0|h).

(A12)

Since E
h
Πj(U

0
j| ) + (1− σ)U 0j| |c

i
is greater than E

h
Πj(U

0
j|h) + (1− σ)U 0j|h|c

i
and U 0h|h

is smaller than U 0|h, condition (A12) is satisfied.
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