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Abstract

We construct a framework for measuring economic activity in real time (e.g.,

minute-by-minute), using a variety of stock and flow data observed at mixed frequen-

cies. Specifically, we propose a dynamic factor model that permits exact filtering, and

we explore the efficacy of our methods both in a simulation study and in a detailed

empirical example.
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1 Introduction

Aggregate business conditions are of central importance in the business, finance, and policy

communities, worldwide, and huge resources are devoted to assessment of the continuously-

evolving state of the real economy. Literally thousands of newspapers, newsletters, television

shows, and blogs, not to mention armies of employees in manufacturing and service industries,

including the financial services industries, central banks, government and non-government

organizations, grapple daily with the real-time measurement and forecasting of evolving

business conditions.

Against this background, we propose and illustrate a framework for real-time business

conditions assessment in a systematic, replicable, and statistically optimal manner. Our

framework has four key ingredients.

Ingredient 1. We work with a dynamic factor model, treating business conditions as an

unobserved variable, related to observed indicators. The appeal of latency of business con-

ditions comes from its close coherence with economic theory, which emphasizes that the

business cycle is not about any single variable, whether GDP, industrial production, sales,

employment, or anything else. Rather, the business cycle is about the dynamics and inter-

actions (“co-movements”) of many variables, as forcefully argued by Lucas (1977) among

many others.

Treating business conditions as latent is also a venerable tradition in empirical business

cycle analysis, ranging from the earliest work to the most recent, and from the statistically

informal to the statistically formal. On the informal side, latency of business conditions is

central to many approaches, from the classic early work of Burns and Mitchell (1946) to the

recent workings of the NBER business cycle dating committee, as described for example by

Hall et al. (2003). On the formal side, latency of business conditions is central to the popular

dynamic factor framework, whether from the “small data” perspective of Geweke (1977),

Sargent and Sims (1977), Stock and Watson (1989, 1991), and Diebold and Rudebusch

(1996), or the more recent “large data” perspective of Stock and Watson (2002) and Forni,

Hallin, Lippi and Reichlin (2000).1

Ingredient 2. We explicitly incorporate business conditions indicators measured at differ-

ent frequencies. Important business conditions indicators do in fact arrive at a variety of

frequencies, including quarterly (e.g., GDP), monthly (e.g., industrial production), weekly

(e.g., employment), and continuously (e.g., asset prices), and we want to be able to incorpo-

1For definition and discussion of small-data vs. large-data dynamic factor modeling, see Diebold (2003).
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rate all of them, to provide continuously-updated assessments in real time.

Ingredient 3. We explicitly incorporate a continuously-evolving indicator. Given that our

goal is to track the evolution of real activity in real time, it is crucial to incorporate (or at least

not exclude from the outset) the real-time information flow associated with continuously-

evolving indicators, such as the yield curve. For practical purposes, in this paper we equate

“continuously-evolving” with “daily,” but intra-day information could be used as well.

Ingredient 4. We extract and forecast latent business conditions using linear yet statisti-

cally optimal procedures, which involve no approximations. The appeal of exact as opposed

to approximate procedures is obvious, but achieving exact optimality is not trivial and has

proved elusive in the literature, due to complications arising from temporal aggregation of

stocks vs. flows in systems with mixed-frequency data.

Related to our concerns and framework is a small but nevertheless significant literature,

including Stock and Watson (1989, 1991), Mariano and Murasawa (2003), Evans (2005) and

Proietti and Moauro (2006). Our contribution, however, differs from the others, as follows.2

Stock and Watson (1989, 1991) work in a dynamic factor framework with exact linear

filtering, but they don’t consider data at different frequencies or at high frequencies. We

include data at different and high frequencies, while still achieving exact linear filtering. This

turns out to be a non-trivial task, requiring an original modeling approach.

Mariano and Murasawa (2003) work in a dynamic factor framework and consider data

at different frequencies, but not high frequencies, and their filtering algorithm is not exact.

In particular, they invoke an approximation essentially equivalent to assuming that the log

of a sum equals the sum of the logs.

Evans (2005) does not use a dynamic factor framework and does not use high-frequency

data. Instead, he equates business conditions with GDP growth, and he uses state space

methods to estimate daily GDP growth using data on preliminary, advanced and final releases

of GDP, as well as a variety of other macroeconomic variables.

Proietti and Moauro (2006) work in the Mariano-Murasawa framework and are able to

avoid the Mariano-Murasawa approximation, but only at the cost of moving to a non-linear

model, resulting in a filtering scheme that is more tedious than the Kalman filter and that

involves approximations of its own.

We proceed as follows. In section 2 we provide a detailed statement of our methodological

framework, covering the state space formulation with missing data, optimal filtering and

2Other related and noteworthy contributions include Shen (1996), Abeysinghe (2000), Altissimo et al.
(2002), Liu and Hall (2001), McGuckin, Ozyildirim and Zarnowitz (2003), and Ghysels, Santa Clara and
Valkanov (2004).
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smoothing, and estimation. In section 3 we report the results of a small simulation exercise,

which lets us illustrate our methods and assess their efficacy in a controlled environment. In

section 4 we report the results of a four-indicator empirical analysis, using quarterly GDP,

monthly employment, weekly initial claims, and the daily yield curve term premium. In

section 5 we conclude and offer directions for future research.

2 Methodology

Here we propose a state space macroeconomic model with an ultra-high base observational

frequency, treating specification, estimation, state extraction and state prediction. Our

framework facilitates exactly optimal filtering and forecasting, which we achieve throughout.

2.1 Missing Observations and Temporal Aggregation

We assume that the state of the economy evolves at a very high frequency; without loss

of generality, call it “daily.”3 Similarly, we assume that all economic and financial variables

evolve daily, although many are not observed daily. For example, an end-of-year wealth

variable is observed each December 31, and is “missing” for every other day of the year.

Let yi
t denote a daily economic or financial variable, and let ỹi

t denote the same variable

observed at a lower frequency (without loss of generality, call it the “tilde” frequency). The

relationship between ỹi
t and yi

t depends on whether yi
t is a stock or flow variable. In the case

of a stock variable, which by definition is a point-in-time snapshot, we have:

ỹi
t =

{
yi

t if yi
t is observed

NA otherwise,

where NA denotes missing data. In the case of a flow variable, the lower-frequency observa-

tions of which are functions of current and past daily observations, we have

ỹi
t =

{
f(yi

t, y
i
t−1, ..., y

i
t−Di

) if yi
t is observed

NA otherwise,

where Di denotes the relevant number of days for the temporal aggregation. For ease of

exposition we assume for now that Di is fixed, but in our subsequent implementation and

3In our subsequent empirical work, we will indeed use a daily base observational frequency, but much
higher (intra-day) frequencies could be used if desired.
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empirical work we allow for time-varying Di, which allows us to accommodate, for example,

the fact that some months have 28 days, some have 29, some have 30, and some have 31.

Satisfactory treatment of temporal aggregation remains elusive in the literature. Most

authors work in logarithms and are effectively forced into the unappealing “approximation”

that the log of a sum equals the sum of the logs. Mariano and Murasawa (2003), for example,

assume that quarterly GDP is the geometric average of the intra-quarter monthly GDPs.

In contrast, our framework permits exact aggregation. We work in levels, so that flow

variables aggregate linearly and exactly. Specifically, we model the levels of all observed

variables as stationary deviations from polynomial trends of arbitrary order. The result is a

linear state space system for which the standard Kalman filter is optimal, as we now describe

in detail.

2.2 The Model

We assume that underlying business conditions xt evolve daily with AR(p) dynamics,

xt = ρ1xt−1 + ...+ ρpxt−p + vt, (1)

where vt is a white noise innovation with unit variance.4 We are interested in tracking and

forecasting real activity, so we use a single-factor model; that is, xt is a scalar, as for example

in Stock and Watson (1989). Additional factors could of course be introduced to track, for

example, nominal wage/price developments.

We assume that all economic variables yi
t evolve daily, although they are not necessarily

observed daily. We assume that yi
t depends linearly on xt and possibly also various exogenous

variables and/or lags of yi
t:

yi
t = ci + βixt + δi1w

1
t + ...+ δikw

k
t + γi1y

i
t−Di

+ ...+ γiny
i
t−nDi

+ ui
t, (2)

where the wt are exogenous variables, we include n lags of the dependent variable, and the

ui
t are contemporaneously and serially uncorrelated innovations. Notice that we introduce

lags of the dependent variable yi
t in multiples of Di, because the persistence in yi

t is actually

linked to the lower (tilde) observational frequency of ỹi
t. Persistence modeled only in the

higher daily frequency would be inadequate, as it would decay too quickly. We use (2) as

the measurement equation for all stock variables.

4As is well-known, identification of factor models requires normalization either on a factor loading or on
the factor variance, and we choose to normalize the factor variance to unity.
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Temporal aggregation in our framework is very simple: flow variables observed at a tilde

frequency lower than daily are the sums of the corresponding daily variables,

ỹi
t =


Di−1∑
j=0

yi
t−j if yi

t is observed

NA otherwise.

The relationship between an observed flow variable and the factor then follows from (2),

ỹi
t =



Di−1∑
j=0

ci + βi

Di−1∑
j=0

xi
t−j + δi1

Di−1∑
j=0

w1
t−j + ...+ δik

Di−1∑
j=0

wk
t−j

+γi1

Di−1∑
j=0

yi
t−Di−j + ...+ γin

Di−1∑
j=0

yi
t−nDi−j + u∗it

if yi
t is observed

NA otherwise,

(3)

where

Di−1∑
j=0

yi
t−Di−j is by definition the observed flow variable one period ago (ỹi

t−Di
), and u∗it

is the sum of the ui
t over the tilde period. Note that although u∗it follows a serially correlated

moving average process of order Di− 1 at the daily frequency, it nevertheless remains white

noise when observed at the tilde frequency, due to the cutoff in the autocorrelation function

of an MA(Di − 1) process at displacement Di − 1. Hence we will appropriately treat u∗it as

white noise in what follows, and we have var (u∗it ) = Dvar (ui
t) .

The exogenous variables wt are the key to handling trend. In particular, in the important

special case where the wt are simply deterministic polynomial trend terms (w1
t−j = t − j,

w2
t−j = (t− j)2 and so on) we have that

Di−1∑
j=0

[
ci + δi1 (t− j) + ...+ δik (t− j)k

]
≡ c∗i + δ∗i1t+ ...+ δ∗ikt

k, (4)

which yields

ỹi
t =


c∗i + βi

Di−1∑
j=0

xi
t−j + δ∗i1t+ ...+ δ∗ikt

k + γi1ỹ
i
t−Di

+ ...+ γinỹ
i
t−nDi

+ u∗it if yi
t is observed

NA otherwise.

(5)
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We use (5) as the measurement equation for all flow variables. In the appendix we derive the

mapping between (c, δ1, δ2, δ3) and (c∗, δ∗1, δ
∗
2, δ
∗
3) for cubic trends, which we use throughout

this paper.5

This completes the specification of our model, which has a natural state space form, to

which we now turn.

2.3 State Space Representation, Filtering and Smoothing

Assembling the discussion thus far, the state space representation of our model is

yt = Ztαt + Γtwt + εt

αt+1 = Tαt +Rηt (6)

εt ∼ (0, Ht) , ηt ∼ (0, Q) ,

t = 1, ..., T , where T denotes the last time-series observation, yt is an N×1 vector of observed

variables, αt is an m× 1 vector of state variables, wt is a e× 1 vector of exogenous variables,

and εt and ηt are vectors of measurement and transition shocks which will collectively contain

vt and ui
t. The vector wt includes an entry of unity for the constant, k trend terms and N×n

lagged dependent variables, n for each of the N elements of the yt vector. The exact structure

of these vectors will vary across the different setups we consider below. The observed data

vector yt will have many missing values, reflecting those variables observed at a frequency

lower than daily, as well as missing daily data due to holidays. At a minimum, the state

vector αt will include p lags of xt, as implied by (1). Moreover, because the presence of flow

variables requires a state vector containing all lags of xt inside the aggregation period, in

practice the dimension of αt will be much greater than p. The system parameter matrices

T,R and Q, are constant, while Zt, Γt and Ht are not, because of the variation in the number

of days in a quarter or month (Di for each i).6

With the model cast in state space form, we can immediately apply the Kalman filter

and smoother. We first present the algorithm assuming no missing data values, and then

we incorporate missing data. For given parameters, we initialize the Kalman filter using

5For numerical stability we use t/1000, (t/1000)2 and (t/1000)3 instead of simply t, t2 and t3 in specifying
our cubic trend polynomial. This is simply a normalization and does not affect the other parameters of
interest or the log-likelihood. We impose it because in our subsequent empirical work we have over 16,000
daily observations, in which case t3 can be very large, which might create numerical problems.

6Time-varying system matrices pose no problem for the Kalman filter.
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α1 ∼ N (a1, P1) where a1 = 0m×1 and P1 solves

(I − T ⊗ T ) vec (P1) = vec (RQR′) . (7)

Given a1 and P1, for t = 1, ..., T , we use the contemporaneous Kalman filtering equations,

which incorporate the computation of the state vector estimate and its associated covariance

matrix, denoted by at|t and Pt|t.
7 Denote {y1, ..., yt} by Yt for t = 1, ..., T . Then, given

at ≡ E (αt|Yt−1) and Pt = var (αt|Yt−1), the prediction equations that produce at+1 and

Pt+1 are

at|t = at + PtZ
′
tF
−1
t vt (8)

Pt|t = Pt − PtZ
′
tF
−1
t ZtP

′
t (9)

at+1 = Tat|t (10)

Pt+1 = TPt|tT
′ +RQR′, (11)

where

vt = yt − Ztat − Γtwt (12)

Ft = ZtPtZ
′
t +Ht. (13)

The Kalman smoother computes the conditional expectation of the state vector and

its covariance matrix using all the information in the data set, which we denote by α̂t ≡
E (αt|YT ) and Vt ≡ var (αt|YT ) for t = 1, ..., T . The Kalman smoother recursions start

from t = T and work backward. The vector rt is a weighted average of the innovations

vt that happen after period t with the variance matrix Nt. We initialize the smoother with

7We find that using this version of the filter improves the efficiency of the algorithm. See Durbin and
Koopman (2001) for details.
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rT = 0m×1 and NT = 0m×m, and for t = 1, ..., T -1 we use

Kt = TPZ ′tF
−1
t (14)

Lt = T −KtZt (15)

rt−1 = Z ′tF
−1
t vt + L′trt (16)

Nt−1 = Z ′tF
−1
t Zt + L′tNtLt (17)

α̂t = at + Ptrt−1 (18)

Vt = Pt − PtNt−1Pt, (19)

where we store the matrices {Ft, vt, at, Pt}Tt=1 from one run of the Kalman filter. We use the

appropriate element of the α̂t vector as the extracted factor and the corresponding diagonal

element of Vt as its standard error to compute confidence bands.

We now describe how we handle missing observations (that is, how the Kalman filter

optimally handles missing observations). If all elements of the vector yt are missing for

period t, we skip updating and the recursion becomes

at+1 = Tat (20)

Pt+1 = TPtT
′ +RQR. (21)

If some (but not all) elements of yt are missing, we replace the observation equation with

y∗t = Z∗t αt + Γtwt + ε∗t (22)

ε∗t ∼ N (0, H∗t ) , (23)

where y∗t are the elements of the yt vector that are observed.8 The two vectors are linked

by y∗t = Wtyt, where Wt is a matrix that carries the appropriate rows or IN×N , Z∗t = WtZt,

ε∗t = Wtεt and H∗t = WtHtW
′
t . The Kalman filter and smoother work exactly as described

above replacing yt, Zt and H with y∗t , Z
∗
t and H∗t for period t.

2.4 A Costless Generalization

Note that in the model as specified thus far, current observables depend only on the current

state vector. More generally, we might want to allow current observables to depend on both

8By construction, whenever there is an observation for a particular element of yt, there is a corresponding
element of wt.
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the present state vector and various of its leads or lags. This turns out to introduce signif-

icant complications in situations such as ours that involve temporal aggregation. Hence we

will not pursue it, with one notable exception: For daily variables we can easily accommo-

date dynamic interaction between observables and the state because there is no temporal

aggregation.a

In our subsequent empirical work, for example, we allow daily observables to depend on

a distributed lag of the state. To promote parsimony, we use a polynomial distributed lag

(PDL) specification. Specifically, the measurement equation for a daily variable is

yi
t = ci +β0

i xt +β1
i xt−1 + ...+βD̃

i xt−D̃ + δi1w
1
t + ...+ δikw

k
t + γi1y

i
t−1 + ...+ γiny

i
t−n + εi

t, (24)

where the elements of {βj
i }D̃j=0 follow a low-ordered polynomial given by

βj
i = ξ1

i + ξ2
i (j − c̄) + ξ3

i (j − c̄)2 + ..+ ξD̃+1
i (j − c̄)D̃, (25)

where c̄ is equal to k/2 if k is even and to (k − 1)/2 if k is odd.9 We shall use a third-order

polynomial.

2.5 Estimation

As is well-known, the Kalman filter supplies all of the ingredients needed for evaluating the

Gaussian pseudo log likelihood function via the prediction error decomposition,

logL = −1

2

T∑
t=1

[
N log 2π +

(
log |Ft|+ v′tF

−1
t vt

)]
(26)

In calculating the log likelihood, if all elements of yt are missing, the contribution of period t

to the likelihood is zero. When some elements of yt are observed, the contribution of period t

is
[
N∗ log 2π +

(
log |F ∗t |+ v∗′t F

∗−1
t v∗t

)]
where N∗ is the number of observed variables and the

other matrices and vectors are obtained using the Kalman filter recursions on the modified

system with y∗t .

Armed with the ability to evaluate the log likelihood for any given set of parameters,

we proceed with estimation using standard methods. In particular, we use a quasi-Newton

optimization routine with BFGS updating of the inverse Hessian.

9Because we assume that daily frequency is the highest available, we can treat flow and stock variables
identically when they are observed daily.
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We impose several constraints in our estimation. First, to impose stationarity of xt

we use a result of Barndorff-Nielsen and Schou (1973), who show that under stationarity

there is a one-to-one correspondence between the parameters of an AR(p) process and the

first p partial autocorrelations. Hence we can parameterize the likelihood in terms of the

relevant partial autocorrelations, which requires searching only over the unit interval. In our

subsequent empirical analysis, we use an AR(3) process for the factor, which allows for a rich

variety of dynamics. Denoting the AR(3) parameters by ρi and the partial autocorrelations

by πi, the Barndorff-Nielsen-Schou mapping between the two is

ρ1 = π1 − π1π2 − π3π2 (27)

ρ2 = π2 − π1π3 + π1π2π3 (28)

ρ3 = π3. (29)

We then optimize over πi ∈ [−1, 1].10

Second, we impose non-negativity of the variance terms in the diagonal elements of Q

and Ht matrices by estimating natural logarithms of these elements. Similarly, we restrict

the factor loadings on some of the variables to have a certain sign (e.g., positive for GDP

and negative for initial jobless claims) using the same transformation.

Searching for a global optimum in a parameter space with more than 30 dimensions is a

challenging problem. It is not intractable, however, if the iterations are initialized cleverly.

To do so, we exploit knowledge gained from a simulation study, to which we now turn.

3 A Simulation-Based Example

Here we illustrate our methods in a simulation. This allows us to assess their efficacy in

a controlled environment, and to gain insights of relevance to our subsequent fitting of the

model to real data. We work with an AR(1) real activity factor and three observed indicators,

which are driven by the factor and linear trend.11 We generate forty years of daily data, and

then we transform them to obtain the data observed by the econometrician. Specifically,

y1
t is a daily financial variable so we eliminate weekend observations, y2

t is a monthly stock

variable so we eliminate all observations except the last observation of each month, and y3
t

is a quarterly flow variable so we eliminate all observations except the last observation of

10We use a hyperbolic tangent function to search over πi, because for y ∈ R, x = tanh(y) ∈ [−1, 1] .
11For simplicity in the simulation, we do not use higher order trend terms, lagged dependent variables,

or polynomial distributed lags.
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the quarter, which we set equal to the sum of the intra-quarter daily observations. After

obtaining the observed data we estimate the model given in (6), with the system vectors and

matrices are defined as:

yt =

 ỹ1
t

ỹ2
t

ỹ3
t

 , αt =



xt

xt−1

xt−2

...

xt−q̄+1

xt−q̄


, wt =

[
1

t

]
, εt =

 u1
t

u2
t

u∗3t

 , vt = ηt, R =



1

0
...

0

0

0

0



Zt =



β1 β2 β3

0 0 β3

...
...

...

0 0 β3 or 0

0 0 β3 or 0

0 0 β3 or 0



′

, Γt =

 c1 δ1

c2 δ2

c∗3t δ∗3t

 , T =



ρ1 ρ2 ρ3 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

0 0 0 · · · 1 0


(30)

[
εt

vt

]
∼ N

([
03×1

0

]
,

[
Ht 0

0 Q

])
, Ht =

 σ2
1 0 0

0 σ2
2 0

0 0 σ∗23t

 , Q = 1

where q̄ is the maximum number of days in a quarter. For convenience, in our notation we

treat q, the number of days in a quarter (the counterpart of Di in the previous section), as

fixed. In our implementation, however, we make the necessary adjustments to account for

the exact number of days in a quarter, which is either 90, 91 or 92, depending on the quarter

and whether or not the year is a leap year. All of the relevant matrices and vectors allow

for the largest possible value, q̄, and we adjust the matrices Zt, Γt and Ht every quarter as

follows.12 Each quarter, if q < q̄, we first set the first q elements of the third row of Zt to β3

and we set the remaining elements to zero. Next, we use D = q in the formulas derived in

the appendix that map our original parameters c3 and δ3 into c∗3t and δ∗3t, and we substitute

in Γt. Finally, we set the third diagonal element of Ht to σ∗23t = qσ2
3. All of the adjustments

follow from the discussion in the previous section. First, the quarterly flow variable requires

12Note that the third rows of Zt, Γt and Ht are only relevant when ỹ3
t is observed. For all other days, the

contents of the third rows of these matrices do not affect any calculations. When there is an observation for
ỹ3

t we look at the number of days in that particular quarter, q, and make the adjustments.
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summing the factors over the quarter, and our adjustment of the third row of Zt ensures that

we sum only the relevant factors. Second, the adjustment of the elements of Γt is obvious.

Finally, because ε∗3t is the sum of q iid normal innovations each with variance σ2
3, its variance

is qσ2
3.

We use a multi-step estimation procedure that helps us obtain accurate startup values

for certain of the model parameters, after which we estimate all parameters simultaneously.

This approach is of course most helpful in higher-dimensional systems than the simple one

at hand, but we illustrate it here because we use it in our subsequent (higher-dimensional)

empirical work.

Specifically, we first use only the first two variables, estimating the model using naive

startup values and experimenting with them to make sure we reach the global maxima.

Because we exclude the quarterly flow variable from this model, the system estimated is

small and the cost of experimentation is low. Once the model is estimated, we use the

Kalman smoother to extract the factor, x̂t. Then we obtain startup values for the third

equation via least-squares estimation of the auxiliary model,

ỹ3
t =

q−1∑
j=0

[a+ d (t− j)] + b (x̂t + x̂t−1 + ...+ x̂t−q) + et. (31)

We then estimate the full model using the estimates of a, b, d and var (et) /q̄ obtained

from this auxiliary regression as startup values for the third equation’s parameters, and the

originally-estimated parameters of the first and second equations as startup values for those

equations’ parameters.

To illustrate the performance of our methodology we compare the true and smoothed

factor and indicators. To obtain the ”smoothed indicators,” we run the smoothed factor

through equation (2). In Figure 1 we plot the true and smoothed versions of the factor,

and the high-frequency (true), observed and smoothed versions of two indicators (the daily

financial variable and the monthly stock variable) over a 6-month period in the sample. The

first panel shows the very close relationship between the smoothed and the true factor. In

fact, over the full sample the correlation between the two is greater than 0.96. In the second

panel, the observed and high-frequency (true) indicators are identical except for weekends,

and the smoothed signal tries to fill in the missing values in the observed indicator by using

the information from other variables. Finally, in the third panel, the observed indicator is

represented by dots, which are the end-of-month-values of the true signal. Our smoothed

signal tries to fill in the remaining values and performs quite well. Over the full sample,
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the correlations between the smoothed and true indicators for both Y 1 and Y 2 are 0.997.

Overall, this example shows that our methodology is well-suited to extract the factor in an

environment with missing data and/or time aggregation issues.

4 Empirical Analysis

Now we apply our framework to real data. First, we describe the data, and then we discuss

our empirical results

4.1 Data

Our analysis covers the period from April 1, 1962 through February 20, 2007, which is over

45 years of daily data. Because it is not realistic to assume that economic activity stops

over the weekends is not realistic, we use a seven-day week instead of using only business

days. We use four variables in our analysis. Below we list these variables and describe how

we handle missing data and time-aggregation issues.13

• Yield curve term premium defined as the difference between the yield of the ten-year

and the three-month Treasury yields. This is a daily variable with missing values for

weekends and holidays and no time-aggregation issues.

• Initial claims for unemployment insurance. This is a weekly flow variable covering the

saven-day period from Sunday through Saturday. The value for Saturdays is the sum

of the daily values for the previous seven days and other days have missing values.

• Employees on nonagricultural payrolls. This is a monthly stock variable, observed on

the last day of the month, with missing values for other days.

• Real GDP. This is a quarterly flow variable. The value for the last day of the quarter

is the sum of the daily values for all the days in the quarter, other days have missing

values.

4.2 Model

The state variable xt follows an AR(3) process and we also assume AR(3) structures for

the observed variables at their observation frequency. For weekly initial claims, monthly

13For numerical stability we adjust the units of some of our observed variables. (e.g. we divide employment
by 10,000 and initial jobless claims by 1,000)
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employment and quarterly GDP, this simply means that the lagged values of these variables

are elements of the wt vector. We denote these by ỹ2
t−iW , ỹ

3
t−iM and ỹ4

t−iq for i = 1, 2, 3, where

W denotes the number of days in a week, M denotes the number of days in a month and q

denotes the number of days in a quarter.14 For the term premium, on the other hand, we

choose to model the autocorrelation structure using an AR(3) process for the measurement

equation innovation, u1
t , instead of adding three lags of the term premium in wt. We choose

to follow this route because of the missing term premium observations due to non-business

days. If we used the lagged term premium as an element of wt this would yield only two

valid observations for each week and it would make the analysis less reliable.15

The matrices that define the model are given by

yt =


ỹ1

t

ỹ2
t

ỹ3
t

ỹ4
t

 , αt =



xt

xt−1

...

xt−q̄−1

xt−q̄

u1
t

u1
t−1

u1
t−2


, wt =



1

t

t2

t3

ỹ2
t−W

ỹ2
t−2W

ỹ2
t−3W

ỹ3
t−M

ỹ3
t−2M

ỹ3
t−3M

ỹ4
t−q

ỹ4
t−2q

ỹ4
t−3q



, εt =


0

u∗2t

u3
t

u∗4t

 , vt =

[
ηt

ζt

]
, R =



1 0

0 0
...

...

0 0

0 0

0 1

0 0

0 0



14Once again, the notation in the paper assumes M and q are constant over time but in the implementation
we adjust them according to the number of days in the relevant month or quarter. The number of days in a
week is always seven.

15Alternatively we could have used AR(3) measurement errors for all variables. But this persistence in
the daily frequency would essentially disappear when we aggregate the variables to the monthly or quarterly
frequency.
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Zt =



β0
1 β2 β3 β4

β1
1 β2 0 β4

...
...

...
...

β6
1 β2 0 β4

β7
1 0 0 β4

...
...

...
...

β q̄−2
1 0 0 β4 or 0

β q̄−1
1 0 0 β4 or 0

β q̄
1 0 0 β4 or 0

1 0 0 0

0 0 0 0

0 0 0 0



′

, Γt =



c1 c∗2t c3 c∗4t

δ11 δ∗21t δ31 δ∗41t

δ12 δ∗22t δ32 δ∗42t

δ13 δ∗23t δ33 δ∗43t

0 γ21 0 0

0 γ22 0 0

0 γ23 0 0

0 0 γ31 0

0 0 γ32 0

0 0 γ33 0

0 0 0 γ41

0 0 0 γ42

0 0 0 γ43



′

(32)

T =



ρ1 ρ2 ρ3 0 · · · 0 0 0 0 0

1 0 0 0 · · · 0 0 0 0 0

0 1 0 0 · · · 0 0 0 0 0

0 0 1 0 · · · 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 · · · 0 0 0 0 0

0 0 0 0 · · · 1 0 0 0 0

0 0 0 0 · · · 0 0 γ11 γ12 γ13

0 0 0 0 · · · 0 0 1 0 0

0 0 0 0 · · · 0 0 0 1 0


[
εt

vt

]
∼ N

([
04×1

02×1

]
,

[
Ht 0

0 Q

])
, Ht =


0 0 0 0

0 σ∗22t 0 0

0 0 σ2
3 0

0 0 0 σ∗24t

 , Q =

[
1 0

0 σ2
1

]

where the matrices and vectors correspond to the system in Section 2.2 and we have N = 4,

k = 13, m = 95, p = 3 and r = 2. We use the current and 91 lags of the factor in our

state vector because the maximum of days possible in a quarter is 92, which we denote by

q̄.16 As we did in the simulation example, we use the transformation given in the appendix

16If there are q days in a quarter, on the last day of the quarter, we need the current and the q − 1 lags

16



to convert the coefficients with “∗” to those without. Also in every quarter, we adjust the

number of non-zero elements in the fourth row of the Zt matrix to reflect the number of days

in that quarter. When estimating this system, we restrict β3 and β4 to be positive and β2

to be negative to reflect our expectation of the relationship between these variables and the

common factor.17

4.3 Results

4.3.1 Estimation

It is worth emphasizing the size of this model. We have 16,397 daily observations, 95 state

variables and 42 coefficients. Using a fairly efficiently programmed Kalman filter routine in

MATLAB, one evaluation of the log-likelihood takes about 25 seconds. As such, one iteration

(including the calculation of the Jacobian) takes a minimum of eighteen minutes. Clearly,

it is very costly to look over an “irrelevant” part of the parameter space as it may take

the estimation routine many hours or days to find the “right” path, if at all. To tackle this

problem, we follow the algorithm outlined earlier: We start by a smaller system, one that has

only the term premium and employment. Once we estimate this system we get the smoothed

factor and estimate the auxiliary regression for real GDP. Using the estimated values from

the smaller system and the auxiliary regression as the starting guesses, we estimate the

system with real GDP. We repeat this for initial claims.

4.3.2 Factor

First we focus on the factor and its properties. In Figure 2 we plot the smoothed factor from

the estimation along with 95% confidence bands, with NBER recessions shaded. Because

the NBER provides only months of the turning points, we assume recessions start on the

first day of the month and end on the last day of the month. We can make a few impor-

tant observations. First, the smoothed factor declines sharply around the recession start

dates announced by the NBER. Although the beginning of recessions and the decline of the

smoothed factor do not always coincide, the factor shows the same sharp decline pattern at

the start of each of the six recessions in the sample. Second, recoveries do not all have the

same pattern. For the recessions in 1974, 1980 and 1982 the recoveries coincide with as sharp

of the factor for the measurement equation of GDP.
17In our experience with smaller systems, when we do not impose a sign restriction the estimation may

yield a factor which is negatively correlated with GDP. Imposing the sign restriction reverses the correlation
with virtually no change in the likelihood.
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reversals in the factor as the recessions. For the three remaining recessions, as well as the

1961 recession which ends just before our sample starts, the factor is more sluggish during

the recoveries, especially so for the 1990 recession as is well-known. We will turn to this in

more detail when we zoom in around turning points below. Finally, there seem to be few, if

any, “false positives” where our factor shows patterns similar to recessions in a period which

is not a recession. Overall, we conclude that our smoothed factor tracks the U.S. business

cycle well.

4.3.3 Smoothed Indicators, Smoothed Factor, and Turning Points

One of the most powerful aspects of our framework is its ability to produce high frequency

measures of indicators that are observed in much lower frequencies. To demonstrate this, and

to investigate how our indicators behave around turning points, we compute the smoothed

daily signals for our four indicators. To do this, we use the relationship given by (2) for all

non-daily variables and by (24) for term premium. Given the presence of lagged terms, we

initialize each variable by the mean implied by the steady state of signal equation. To avoid

small-sample problems with this initialization, we drop about 4.5 years’ worth of data and

use the daily indicators starting from 01/01/1969.18

As a first task, we want to verify that the daily smoothed versions of the indicators are

consistent with their lower frequency counterparts. For a stock variable such as employment,

the daily observation at the end of the observation period (month in this case) will be

comparable with the observed value. On the other hand, for a flow variable such as initial

claims, we use the appropriate temporal aggregation (adding over the days of the week

in this case). In Figure 3 we plot the actual and smoothed term premium. Perhaps not

surprisingly, because the term premium is observed on all business days, there is a very close

match between the two and the correlation is over 0.99. In Figure 4 we plot the seven-day

sum of the daily smoothed initial claims (dark circles) versus the actual weekly initial claims

(light circles) and the correlation here is 0.76. It seems that the smoothed version is, by its

nature, not as extreme as the actual series but the match between the two is very high. In the

first panel of Figure 5 we plot the actual monthly (circles) and the smoothed daily (solid line)

employment. Because the non-stationary nature of the variable can be deceiving, we also

plot the detrended versions of the two series, where we detrend using cubic polynomials in

trend. The correlations are over 0.99 in both cases. In Figure 6 we plot the actual quarterly

18Because the number of days in a quarter is not fixed, we assume this number is 91 in (2) for GDP and
in the temporal aggregation for Figure 6 below. We also start from 01/01/1975 for GDP because it is less
frequently observed and hence more time is needed to remove the effects of initialization.
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(light circles) and the smoothed quarterly (dark circles) GDP both as level and as deviation

from a cubic trend. The match between the two are weaker compared to the other variables

with a correlation of 0.31. This is because GDP is very infrequently observed compared to

the other variables with only 128 observations. Overall, we conclude that the smoothed daily

indicators that we obtain are very reliable.

Next we zoom in around the turning points of the six business cycles that are in our

sample, as determined by the NBER.19 We consider a window that starts twelve months

before the month of the peak and ends twelve months after the month of the trough. First,

we look at the smoothed daily factor in the six windows, which we plot in Figure 7, where

we superimpose NBER Recession dates. Two things that are of interest is how the turning

points of the daily factor compare with the official turning points and the behavior of the

factor during recessions. We should keep in mind that neither matching the NBER dates

is a success, nor not matching them is a failure, at least because there might be some

discrepancy due to the lower frequency (monthly) the NBER uses. Generally speaking our

factor is decreasing during most of the recessions but there is quite a bit of disagreement

about the turning points, especially the peaks. In all recessions except for the 1973-1975

recession, our factor reaches its peak and starts falling at least five months before the official

peak of the expansion. For the 1980 recession, the peak of the factor seems to be beyond

our twelve-month window. As for the troughs, in all but the last two recessions our factor

has already picked up before the trough of the recession even though the difference is at

most three months. For the last two recessions, the turning point of the factor seems to

exactly match the official end of the recession. In Figure 8 we plot daily smoothed initial

claims in the same six windows. We see that initial claims are either relatively flat (i.e.

non-decreasing) or increasing even a year before the official start of a recession in all the six

episodes. Moreover, the increase in initial claims that is sustained during all the recessions

starts to slow down or get reversed either exactly at the trough or shortly thereafter in all six

episodes. In Figure 9 we plot daily smoothed employment in the six windows. The cyclical

behavior of employment over the business cycle is very clearly visible in the figures. In the

first three recessions, employment reaches its peak after the economy falls in to recession

while in the latter three recessions the peak of employment coincides with the peak of the

business cycle. As for the troughs, the trough of employment coincides with the trough of

the business cycle for the first four episodes while it significantly lags the business cycle for

19These are December 1969-November 1970, November 1973-March 1975, January 1980-July 1980, July
1981-November 1982, July 1990-March 1991 and March 2001-November 2001.
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the latter two episodes. This finding reinforces the “jobless recovery” description commonly

attributed to the 1990-1991 recession. Moreover it is an indication that the 2001 recession

is similar to the 1990-1991 recession and these two episodes are different from the previous

recessions in the US. In fact, comparing the lower two panels of Figures 7-9 with the other

panels, this observation is very apparent. Finally, in Figure 10 we plot daily smoothed GDP

over the last four recessions in our sample. Except for the 1980 recession, GDP starts to

decline right about the same time as the official peak date and continues the decline past

the official trough. In fact, the trough of GDP for these three recessions are all beyond our

twelve-month window. Despite a slowdown during the 1980 recession, GDP does not start

to decline until the peak of the 1981-1982 recession.

5 Summary and Concluding Remarks

We have constructed a framework for measuring macroeconomic activity in real time, using

a variety of stock and flow data observed at mixed frequencies, including ultra-high frequen-

cies. Specifically, we have proposed a dynamic factor model that permits exactly optimal

extraction of the latent state of macroeconomic activity, and we have illustrated it both in

simulation environments and in a sequence of progressively richer empirical examples. We

also provided some examples of the applications of the framework which yield useful insights

for understanding comovements of variables over the business cycle.

We look forward to a variety of variations and extensions of our basic theme, including

but not limited to:

(1) Incorporation of indicators beyond macroeconomic and financial data. In particular,

it will be of interest to attempt inclusion of qualitative information such as headline news.

(2) Construction of a real time composite leading index (CLI). Thus far we have focused

only on construction of a composite coincident index (CCI), which is the more fundamental

problem, because a CLI is simply a forecast of a CCI. Explicit construction of a leading

index will nevertheless be of interest.

(3) Allowance for nonlinear regime-switching dynamics. The linear methods used in this

paper provide only a partial (linear) statistical distillation of the rich business cycle literature.

A more complete approach would incorporate the insight that expansions and contractions

may be probabilistically different regimes, separated by the “turning points” corresponding

to peaks and troughs, as emphasized for many decades in the business cycle literature and

rigorously embodied Hamilton’s (1989) Markov-switching model. Diebold and Rudebusch
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(1996) and Kim and Nelson (1998) show that the linear and nonlinear traditions can be nat-

urally joined via dynamic factor modeling with a regime-switching factor. Such an approach

could be productively implemented in the present context, particularly if interest centers on

turning points, which are intrinsically well-defined only in regime-switching environments.

(4) Comparative assessment of experiences and results from “small data” approaches,

such as ours, vs. “big data” approaches. Although much professional attention has recently

turned to big data approaches, as for example in Forni, Hallin, Lippi and Reichlin (2000) and

Stock and Watson (2002), recent theoretical work by Boivin and Ng (2006) shows that bigger

is not necessarily better. The matter is ultimately empirical, requiring detailed comparative

assessment. It would be of great interest, for example, to compare results from our approach

to those from the Altissimo et al.(2002) EuroCOIN approach, for the same economy and

time period. Such comparisons are very difficult, of course, because the “true” state of the

economy is never known, even ex post.
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Appendix

A The Mapping for Third-Order Trend Polynomial Co-

efficients

Here we establish the mapping between two sets of parameters. On the one hand, we have

D−1∑
j=0

[
c+ δ1

(
t− j
1000

)
+ δ2

(
t− j
1000

)2

+ δ3

(
t− j
1000

)3
]
,

and on the other hand we have

c∗ + δ∗1

(
t

1000

)
+ δ∗2

(
t

1000

)2

+ δ∗3

(
t

1000

)3

.

We want to establish the mapping between (c, δ1, δ2, δ3) and (c∗, δ∗1, δ
∗
2, δ
∗
3) . We have
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= Dc− δ1

D−1∑
j=0

(
j

1000

)
+ δ2

D−1∑
j=0

(
j

1000

)2

− δ3

D−1∑
j=0

(
j

1000

)3

+
t

1000

[
Dδ1 − 2δ2

D−1∑
j=0

j

1000
+ 3δ3

D−1∑
j=0

(
j

1000

)2
]

+

(
t

1000

)2
[
Dδ2 − 3δ3

D−1∑
j=0

(
j

1000

)]

+

(
t

1000

)3

(Dδ3) .

Now, note that

D−1∑
j=0

j =
D (D − 1)

2

D−1∑
j=0

j2 =
D (D − 1) [2 (D − 1) + 1]

6
=
D (D − 1) (2D − 1)

6

D−1∑
j=0

j3 =

[
D (D − 1)

2

]2

.

Hence we obtain

c∗ = Dc− δ1D (D − 1)

2000
+
δ2D (D − 1) (2D − 1)

6× 106
− δ3 [D (D − 1)]2

4× 109

δ∗1 = Dδ1 −
δ2D (D − 1)

1000
+
δ3D (D − 1) (2D − 1)

2× 106

δ∗2 = Dδ2 −
3δ3D (D − 1)

2000
δ∗3 = Dδ3.
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Figure 1 – Simulation: Smoothed Factors and Indicators 
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Notes: The first panel shows the true and smoothed values of the latent real activity factor.  The 
second panel shows the high-frequency ("daily") values of indicator Y1, the observed values of 
Y1, and the "smoothed" daily values of Y1 obtained by running the smoothed values of the 
factor through equation (2) for Y1.  The third panel shows the high-frequency ("daily") values of 
indicator Y2, the observed values of Y2, and the "smoothed" daily values of Y2 obtained by 
running the smoothed values of the factor through equation (2) for Y2.  See text for details. 



Figure 2 – Smoothed U.S. Real Activity Factor 
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Notes: We show the smoothed factor together with ninety-five percent confidence bands (dashed 
lines).  The shaded bars denote NBER recessions.  See text for details.  



Figure 3 – Smoothed Indicators I: Term Premium 
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Notes: We show the observed and “smoothed” daily term premium.  We obtain the smoothed 
daily term premium by running the smoothed values of the factor through equation (24) for the 
term premium.  See text for details.  



Figure 4 – Smoothed Indicators II: Initial Jobless Claims 
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Notes: We show the observed and “smoothed” weekly initial jobless claims.  We obtain the 
smoothed daily initial claims by running the smoothed values of the factor through equation (2) 
for initial claims.  We obtain smoothed weekly initial claims (Saturdays) by summing daily 
smoothed initial claims over the last seven days.  See text for details.  

 



Figure 5 – Smoothed Indicators III: Employment 
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Notes: We show observed (monthly) and “smoothed” (daily) employment. The top panel shows 
observed and smoothed values of total employment, and the bottom panel shows observed and 
smoothed values of detrended employment.  We obtain smoothed daily employment by running 
smoothed values of the factor through equation (2) for employment.  See text for details.  

 
 
 



Figure 6 – Smoothed Indicators IV: GDP 
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Notes: We show observed (monthly) and “smoothed” quarterly GDP.  We obtain the smoothed 
daily GDP by running the smoothed values of the factor through equation (2) for GDP.  We 
obtain smoothed quarterly GDP by summing daily smoothed GDP over the last 91 days.  The top 
panel shows observed and smoothed values of GDP, and the bottom panel shows observed and 
smoothed values of detrended GDP.  See text for details.  



Figure 7 – Smoothed Factor During Recessions 

0

10

20

30

40

50

1969 1970 1971

1969-1970 Recession

-40

-30

-20

-10

0

10

20

30

40

50

1973 1974 1975

1973-1975 Recession

-30

-20

-10

0

10

20

30

40

1979 1980 1981

1980 Recession

-80

-60

-40

-20

0

20

1981 1982 1983

1981-1982 Recession

-80

-70

-60

-50

-40

-30

-20

1990 1991

1990-1991 Recession

-30

-20

-10

0

10

20

30

2000 2001 2002

2001 Recession

 
Notes: We show the smoothed daily real activity factor during and near the six NBER recessions 
in our sample.  See text for details.  



Figure 8 – Smoothed Initial Claims During Recessions 
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Notes: We show the smoothed daily initial claims during and near the six NBER recessions in 
our sample.  See text for details.  



Figure 9 – Smoothed Employment During Recessions 
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Notes: We show the smoothed daily employment during and near the six NBER recessions in 
our sample.  See text for details. 



Figure 10 – Smoothed GDP During Recessions 
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Notes: We show the smoothed daily GDP during and near the six NBER recessions in our 
sample.  See text for details. 
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