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Abstract

This paper investigates the problem of testing conditional independence of Y

and Z given λθ(X) for some unknown θ ∈ Θ ⊂ Rd, for a parametric function

λθ(·). For instance, such a problem is relevant in recent literatures of heteroge-

neous treatment effects and contract theory. First, this paper finds that using

Rosenblatt transforms in a certain way, we can construct a class of tests that

are asymptotically pivotal and asymptotically unbiased against
√
n-converging

Pitman local alternatives. The asymptotic pivotalness is convenient especially

because the asymptotic critical values remain invariant over different estimators

of the unknown parameter θ. Even when tests are asymptotically pivotal, how-

ever, it is often the case that simulation methods to obtain asymptotic critical

values are yet unavailable or complicated, and hence this paper suggests a simple

wild bootstrap procedure. A special case of the proposed testing framework is to

test the presence of quantile treatment effects in a program evaluation data set.

Using the JTPA training data set, we investigate the validity of nonexperimen-

tal procedures for inferences about quantile treatment effects of the job training

program.

Key words and Phrases: Conditional independence, asymptotic pivotal tests,

Rosenblatt transforms, wild bootstrap.
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1 Introduction

Suppose that Y and Z are random variables, and let λθ(X) be a real valued function of a

random vector X indexed by a parameter θ ∈ Θ. For example, we may consider λθ(X) =

h(X 0θ) for some known function h. This paper investigates the problem of testing conditional

independence of Y and Z given λθ(X) for some θ ∈ Θ :

Y ⊥ Z|λθ(X) for some θ ∈ Θ. (1)

The function λθ(·) is known up to a finite dimensional parameter θ ∈ Θ.

The conditional independence restriction is often used as part of the identifying restric-

tion of an econometric model. In the literature of program evaluations, testing conditional

independence of the observed outcome and the treatment decision given observable covari-

ates can serve as testing lack of average or quantile treatment effects under the assumption of

unconfoundedness (e.g. Rosenbaum and Rubin (1983) and Firpo (2006)), or serve as a means

to evaluate the assumptions of nonexperimental procedures when a good quality experimen-

tal data set is available (Heckman, Ichimura, and Todd (1997)). A conditional independence

restriction is, sometimes, a direct implication of an economic theory. For example, in the

literature of insurance, the presence of positive conditional dependence between coverage and

risk is known to be a direct consequence of adverse selection under information asymmetry.

(e.g. Chiappori and Salanié (2000)).

The literature of testing conditional independence for continuous variables appears rather

recent and includes relatively few researches as compared to that of other nonparametric or

semiparametric tests. Linton and Gozalo (1999) and Delgado and González Manteiga (2001)

proposed a bootstrap-based test of conditional independence. Su and White (2003a, 2003b,

2003c) studied several methods of testing conditional independence based on comparing

conditional densities, characteristic functions, and empirical likelihoods. Angrist and Kuer-

steiner (2004) suggested asymptotically pivotal tests of conditional independence when Z is

binary.

This paper’s framework of hypothesis testing is based on an unconditional-moment formu-

lation of the null hypothesis using test functions that run through an index space. The tests

in our framework have the usual local power properties that are shared by other empirical-

process based approaches such as Linton and Gozalo (1999), Delgado and González Manteiga

(2001), and Angrist and Kuersteiner (2004). In contrast with Linton and Gozalo (1999) and

Delgado and González Manteiga (2001), our tests are asymptotically pivotal (or asymptoti-

cally distribution free).3

3Although we can write the conditional independence restrictions as semiparametric conditional moment
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Asymptotic pivotal tests have asymptotic critical values that do not change as we move

from one data generating process to another within the null hypothesis. In general, the

limiting distribution of tests based on an unconditional-moment formulation of the null

hypothesis changes as we move from one specification of λθ(X) to another, or from one

estimator of θ to another. The main contribution of this paper is to propose a class of tests

that are asymptotically pivotal for a wide class of different specifications of λθ(X) and for

different estimators of θ even with different rates of convergence.

There are two important merits of using asymptotic pivotal tests. First, when the tests are

asymptotically pivotal and asymptotic critical values can be simulated, one can compute the

asymptotic critical values once and for all, and use them for a variety of different specifications

of λθ(X) or even different tests with the same limiting distribution without having to resort

to the resampling method. For example, we can use the existing tables of asymptotic critical

values in a special case when Z is binary (see Section 6). The asymptotic pivotal tests are

convenient in particular, when the data are large and testing procedure is complicated so

that the resampling procedure is cumbersome.

Second, even when the resampling procedure is a viable option, it is still better to use

asymptotic pivotal tests in many regular cases. In some cases, the asymptotic critical values

are hard to simulate even when the test is asymptotically pivotal. Furthermore, when one is

interested in performing multiple tests that have different limiting distributions, simulations

should be performed again every time one changes the test statistic, say, from a two-sided

test to a one-sided one. Hence a bootstrap procedure may still be an attractive option in this

situation. Then, it is well-known that in many regular cases, the bootstrap method applied

to asymptotic pivotal tests shows asymptotic refinement property, and hence in this case one

does better by using an asymptotic pivotal test in place of asymptotically nonpivotal one.

This paper suggests a simple wild bootstrap procedure based on the proposal of Delgado

and González Manteiga (2001). The proposed bootstrap procedure is simple and easy to

implement as it does not require the computation of nonparametric estimators for each

bootstrap sample.

The method we employ to obtain asymptotic pivotal tests is to apply a quantile transform

U = Fθ(λθ(X)) of λθ(X) and employ Rosenblatt transforms that are applied to (Y, U) and

restrictions, the procedure of Song (2007) to obtain asymptotic pivotal tests does not apply to these restric-
tions.
The property of asymptotic pivotalness is shared, in particular, by Angrist and Kuersteiner (2004) who

employed a martingale transform of Khmaladze (1993). However, they focus only on the case of Z being
equal to binary and P{Z = 1|X} is parametrically specified. Our framework does not require this restriction.
Several tests suggested by Su and White are also asymptotically pivotal, and consistent, but have different

asymptotic power properties. Their tests are asymptotically unbiased against Pitman local alternatives that
converge to the null at a rate slower than

√
n.
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(Z,U) when both Y and Z are continuous, and applied to Y when Z is binary. Since the

quantile transform and the conditional distribution functions in the Rosenblatt transform are

unknown, we replace them by nonparametric estimators. The use of the quantile transform

renders the test invariant to the estimation error of θ̂ in large samples, and the use of the

Rosenblatt transformmakes the test asymptotically pivotal. It is worth emphasizing that the

Rosenblatt transform causes almost no additional computational cost as compared to other

existing testing procedures of conditional independence. Most conditional independence

tests involve one or two incidences of nonparametric estimation, and so does the method of

Rosenblatt transform that we propose here.

As emphasized before, one of the most distinctive aspects of this paper’s proposal is that

the asymptotic pivotalness of the test is maintained even when we allow the conditioning

variable λθ(X) to depend on the unknown parameter θ. This is particularly important when

the dimension of the random vectorX is large relative to the sample size. In such a situation,

instead of testing

Y ⊥ Z|X,

it is reasonable to impose a single-index restriction upon X and test the hypothesis of the

form in (1).4 One can check the robustness of the result by varying the parametrization

used for the single-index λθ(X). It is worth noting that the single-index structure in the

conditioning variable, though it is set up as a parametric function, has a semiparametric

nature in itself. Indeed, for any strictly increasing function h(·), the null hypothesis of
Y ⊥ Z|λθ(X) and Y ⊥ Z|h(λθ(X)) are equivalent.
The finite sample performance of the tests proposed in the paper are compared via a

Monte Carlo simulation study. The tests we focus on are of two types: one using indicator

functions in the construction of tests as in Stute (1997) and the other using exponential func-

tions as in Bierens (1990). We investigate their performances under various data generating

processes.

As an illustration, this paper applies the proposed method of testing to the problem of

evaluating nonexperimental procedures. Since the seminal paper by LaLonde (1986), one

of the main questions addressed in the literatures of program evaluation has been whether

econometric methods applied to nonexperimental data set are reliable (see e.g. Heckman,

Ichimura, and Todd (1997, 1998), Dehejia and Wahba (1999), and Smith and Todd (2001,

2005) and references therein). To address this question in the context of LaLonde (1986),

Smith and Todd (2001, 2005), in particular, estimated treatment effects from the combined

4In general, Y⊥Z|X does not imply Y⊥Z|λθ(X). (See Phillips (1987) or Dawid (1979) for example.)
Hence the single-index restriction is an additional element that belongs to a model specification prior to the
conditional independence restriction.
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data set of the control group (from the randomized-out data) and the comparison group

(from the nonexperimental data) using various econometric methods, and checked if the

estimates are close to zero as they would if the nonexperimental procedures were valid.

In a similar spirit, we employ a data set from the Job Training Partnership Act (JTPA)

training program used by Heckman, Ichimura, Smith and Todd (1998) (from here on, HIST)

and evaluate the econometric methods of quantile treatment effects, yet from the perspec-

tive of hypothesis testing rather than that of estimation. This approach using the hypothesis

testing framework seems reasonable as compared to the use of estimators when the results

depend heavily on the specifics of the estimators used. Typically the questions addressed by

hypothesis testing are simpler than estimators, and often requires less assumptions accord-

ingly.

We first test whether the outcome variable of an untreated state is conditionally inde-

pendent from the receipt of treatment given the propensity score. The test fails to reject

the null of conditional independence. Second, we consider weaker implications needed for

identification of quantile treatment effects. We also fail to reject the implications using the

JTPA data. These results appear to be consistent with one part of the mixed results from

HIST where conditional mean independence tests are performed with adjustment for estima-

tion of the propensity score. With adjustment for estimation of the propensity score, their

test fails to reject the null of conditional mean independence, while without adjustment,

their test firmly rejects the null. However, they minimize the result with adjustment for

estimation because for lower percentile values of propensity scores, the bias estimates are

significantly different from zero. Our findings suggest that empirical evidence against the

unconfoundedness assumption or its implications still appears weak in the JTPA data.

This paper is organized as follows. In the next section, we introduce the testing frame-

work formally and discuss examples. In Section 3, we provide the first result that gives an

asymptotic representation of the empirical process constituting the test statistic. Section 4

deals with the case where Z is binary. In Section 5, a bootstrap procedure is suggested and

asymptotically justified. In Section 6, we propose a variant of the Rosenblatt-transform ap-

proach that utilizes the martingale transform of Khmaladze (1993). In Section 7, we present

and discuss the results from the Monte Carlo simulation study. Section 8 is devoted to an

empirical application that investigate the validity of nonexperimental procedures using the

JTPA training data. In Section 9, we conclude. The mathematical proofs are relegated to

the appendix.
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2 Testing Conditional Independence

2.1 The Null Hypothesis and the Rosenblatt transform

Suppose that we are given a random vector (Y, Z,X) distributed by P and an unknown real

valued function λθ(·) on RdX , θ ∈ Θ ⊂ Rd. We are interested in testing the null hypothesis

in (1). For example, we may consider λθ(X) = h(X 0θ) for a known function h. Hence a

special case is testing conditional independence of Y and Z given X 0θ for some θ ∈ Θ. We

assume the following for (Y, Z).

Assumption 1C : The random vector (Y, Z) is absolutely continuous with respect to the

Lebesgue measure on R2 with a continuous joint density function.

When either Y or Z is binary, the development of this paper’s thesis becomes simpler,

as we will see in a later section. The null hypothesis in (1) requires to check the conditional

independence of Y and Z given λθ(X) for all θ ∈ Θ until we find one θ that satisfies the

conditional independence restriction. The condition (ii)(a) in the following simplifies this

problem by making it suffice to focus on a specific θ0 in Θ.

Assumption 2C : (i) The parameter space Θ is compact in RdΘ.

(ii) There exists a parameter θ0 ∈ Θ and B(θ0, δ) , {θ ∈ Θ : ||θ− θ0|| < δ}, δ > 0, such that
(a) Y ⊥ Z|λθ0(X), whenever the null hypothesis of (1) holds,
(b) λθ(·), θ ∈ B(θ0, δ), is uniformly bounded and for any θ1, θ2 ∈ B(θ0, δ),

|λθ1(x)− λθ2(x)| ≤ C||θ1 − θ2||, for some C > 0,

(c) for each θ ∈ B(θ0, δ), λθ(X) is absolutely continuous with respect to the Lebesgue

measure and has a uniformly bounded density, and

(d) for each θ ∈ B(θ0, δ), there exists a σ-finite measure wθ that defines the condi-

tional density function fθ(y, z, x|λ̄1, λ̄) of (Y, Z,X) given (λθ(X), λ0(X)) = (λ̄1, λ̄) where

fθ(y, z, x|λ̄1, λ̄) is twice continuously differentiable in λ̄1 in the support of λθ(X), with

derivatives f (j)θ , j = 1, 2, satisfying supθ∈B(θ0,δ)
R
(f
(j)
θ )

2+δ0(y, z, x|λ̄1, λ̄)dwθ(y, z, x) < C for

some δ0, C > 0.

For example, the parameter θ0 in the above assumption can be defined as a unique

solution to the following problem

θ0 = argmin
θ∈Θ

sup
(y,z,λ̄)∈R3

¯̄
E
£
γz(Z)(γy(Y )−E

£
γy(Y )|λθ(X)

¤
)|λθ(X) = λ̄

¤¯̄
, (2)
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if the solution exists, where γy(·) and γz(·) are appropriate functions indexed by y ∈ R and

z ∈ R. For functions γy(·) and γz(·), one may take indicator functions γz(Z) = 1{Z ≤ z} and
γy(Y ) = 1{Y ≤ y}. The uniform boundedness condition in (ii)(b) for Λ is innocuous,

because by choosing a strictly increasing function Φ on [0, 1], we can redefine λ0θ = Φ ◦ λθ.
The Lipschitz continuity in (ii)(b) can be made to hold by choosing this Φ appropriately.

When λθ(X) = X 0θ and Φ is chosen to be the standard normal distribution function, the

condition (ii)(b) is satisfied. The absolute continuity condition in (c) is satisfied in particular

when λθ0(X) = h(X 0θ0) with a continuous function h and there exists a continuous random

variable Xj whose coefficient θj0 is not zero. The condition (d) does not require the random

vector X to be continuous. For example, the condition allows the σ-finite measure wθ to

have a marginal forX as a counting measure. Stute and Zhu (2005) use an analogous, weaker

condition.5

Briefly we write λ0(X) = λθ0(X) and let F0 be the distribution function of λ0(X). Also

let U , F0(λ0(X)). Then under Assumptions 1 and 2, we can write the null hypothesis as

(e.g. Theorem 9.2.1 in Chung (2001), p.322)

H0 : P
©
E(γy(Y )|U,Z) = E(γy(Y )|U), for all y ∈ [0, 1]

ª
= 1,

for an appropriate class of functions {γy(·) : y ∈ [0, 1]}. Let us define

Z̃ , FZ|U(Z|U) and Ỹ , FY |U(Y |U),

where FZ|U(·|U) and FY |U(·|U) are conditional distribution functions of Y and Z given U

respectively. Then (Z̃, U) is distributed as the joint distribution of two independent uniform

[0, 1] random variables, and so is (Ỹ , U). The transform of (Z,U) into (Z̃, U) is called the

Rosenblatt transform, due to Rosenblatt (1952). Under Assumption 2, we can write the null

hypothesis equivalently as :

H0 : P
n
E(γy(Ỹ )|U, Z̃) = E(γy(Ỹ )), for all y ∈ [0, 1]

o
= 1. (3)

The alternative hypothesis is given by the negation of the null:

H1 : P
n
E(γy(Ỹ )|U, Z̃) = E(γy(Ỹ )), for all y ∈ [0, 1]

o
< 1.

The next subsection provides examples that demonstrate the relevancy of this testing prob-

lem in empirical researches.

5See Condition A(i) of Theorem 2.1 there.
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2.2 Examples

2.2.1 Heterogeneous Treatment Effects under Unconfoundedness Condition

In the literature of program evaluations, it is often of interest to see whether participating in

a certain program or treatment has an effect on an individual’s outcome. (See Rosenbaum

and Rubin (1983), HIST, Hirano, Imbens, and Ridder (2003) and references therein.) Let Y1
represent an outcome when the individual is treated and Y0 an outcome when not treated,

and Z denote a binary variable representing participation in the treatment. Let X be a

vector of covariates such that conditional independence

(Y0, Y1) ⊥ Z | X (4)

holds. Then it is well-known that (Rosenbaum and Rubin (1983)) when P (X) , P (Z = 1|X) ∈
(0, 1), (Y0, Y1) ⊥ Z | P (X). Consider testing the following restriction:

Y ⊥ Z | P (X), (5)

where Y = Y0(1−Z) + Y1Z represents an observed outcome. Under this restriction, for any

measurable function u,

E[u(Y0)− u(Y1)|P (X)]
= E[u(Y )|P (X), Z = 0]−E[u(Y )|P (X), Z = 1]
= E[u(Y )|P (X)]−E[u(Y )|P (X)] = 0.

Hence this implies that E[u(Y0) − u(Y1)|P (X)] = 0. When the conditional independence

restriction in (5) holds, there is no evidence not only of the (local) average treatment effect,

but also of the (conditional) quantile treatment effects. Therefore, we may be interested in

testing Y ⊥ Z | P (X; θ) where P (X; θ) is a parametrization of P (X).
In many cases, the condition in (4) is more restrictive than is needed for identifying

treatment effects parameters at hand. For example, to identify the mean effect of treatment

on the treated or its average version, it often suffices to assume that

Y0 ⊥ Z | P (X)

or that Y0 is conditionally mean independent of Z given P (X).(Heckman, Ichimura, and

Todd (1997)). We can test the above null hypothesis when experimental data are available.
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2.2.2 Testing Identifying Assumptions for Quantile Treatment Effects

As mentioned before, when experimental data are available, we can test a variety of identi-

fying assumptions that are used to estimate a variety of quantities representing treatment

effects. Among the examples are quantile treatment effects that we focus on here (e.g.

Abadie, Angrist, and Imbens (2002) and Firpo (2007)). Let q0τ and q1τ be the τ -th quantiles

of Y0 and Y1. Under the assumption that

1 {Y1 ≤ q1τ} ⊥ Z | X and 1 {Y0 ≤ q0τ} ⊥ Z | X, (6)

the quantile treatment effect ∆τ = q1τ − q0τ is identified as q1τ and q0τ are identified from

(Firpo (2007))

E

∙
Z

p(X)
1 {Y ≤ q1τ}

¸
= τ and E

∙
1− Z

1− p(X)
1 {Y ≤ q0τ}

¸
= τ .

Let F1 and F0 be distribution functions of Y1 and Y0. By a theorem of Rosenbaum and Rubin

(1983) and using a quantile transform Y1 and Y0 into F1(Y1) and F0(Y0), the restrictions in

(6) imply6

1 {F1(Y1) ≤ τ} ⊥ Z | P (X) and 1 {F0(Y0) ≤ τ} ⊥ Z | P (X),

if P (X) ∈ (0, 1). Using experimental data, we can test the conditional independence restric-
tions in the above.

The test can be used to test the identifying restrictions of conditional quantile treatment

effects. Let q0τ(X) and q1τ(X) be defined from the relation

τ = P {Y0 ≤ q0τ(X)|P (X)} and τ = P {Y1 ≤ q1τ(X)|P (X)} .

The conditional quantile treatment effect can be defined as ∆τ (X) = q0τ(X)− q1τ(X). Let

F1(Y1|P (X)) and F0(Y0|P (X)) be the conditional quantile transforms of Y1 and Y0, i.e., where
F1(·|P (X)) and F0(·|P (X)) are conditional distribution functions of Y1 given P (X) and Y0

given P (X). Then the identifying restrictions of conditional quantile treatment effects are

given by

1 {F1(Y1|P (X)) ≤ τ} ⊥ Z | X and 1 {F0(Y0|P (X)) ≤ τ} ⊥ Z | X. (7)

6For any random vector Y , a binary variable Z and random vector X such that P (X) = P{Z = 1|X} ∈
(0, 1), it can be shown that Y ⊥ Z | X always implies Y ⊥ Z|P (X) following steps in the proofs of Theorems
2 and 3 in Rosenbaum and Rubin (1983).
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Under these restrictions, we can identify q1τ(X) and q0τ(X) from

E

∙
Z

P (X)
1 {Y ≤ q1τ (X)} |X

¸
= τ and E

∙
1− Z

1− P (X)
1 {Y ≤ q0τ(X)} |X

¸
= τ .

The conditional independence restrictions in (7) imply the restrictions

1 {F1(Y1|P (X)) ≤ τ} ⊥ Z | P (X) and 1 {F0(Y0|P (X)) ≤ τ} ⊥ Z | P (X). (8)

It is interesting to observe that the nonparametric components F0(Y0|P (X)) and F1(Y1|P (X))
are identified as part of Rosenblatt transforms of (Y0, P (X)) and (Y1, P (X)). As we demon-

strate later, testing the restrictions in (8) is a special case of the testing framework that this

paper proposes.

2.2.3 Testing Identifying Assumptions for IV Quantile Treatment Effects

Conditional independence assumption is also used in the IV quantile treatment effects model

proposed by Chernozhukov and Hansen (2007). Suppose the conditional latent outcome Yd
given X = x is determined through

Yd(x) = q(d, x, Ud),

where Ud follows uniform over [0, 1]. One of the main conditions used by Chernozhukov and

Hansen (2005) is that for some random vector Z, Ud and Z are independent given X = x.

By Lemma 4.1 of Dawid (1979), this yields a testable implication that Yd(X) and Z are

independent given X = x. This implication is directly testable when an experimental data

set is available. Using the combined data set of randomized-out participants who applied for

the program and who did not apply for the program, we can test

Y0(X) ⊥ Z given X.

When X is a vector of large dimension relative to the size of the data set, we can employ a

single index restriction and test the null hypothesis of the form in (1).

2.2.4 Contract Theory

In the literature of contract theory, there has been an interest in testing the relevance of

asymmetric information in data. Under asymmetric information, it is known that the risk

is positively related to the coverage of the contract conditional on all publicly observed

10



variables. This fact motivated several researchers to investigate the presence of such a

relationship in various data sets.(See Cawley and Phillipson (1999), Chiappori and Salanié

(2000), Chiappori, Jullien, Salanié, and Salanié (2002) and references therein.)

In this situation, the null hypothesis is conditional independence of the risk and the

coverage, but the alternative hypothesis is restricted to positive dependence of the risk (or

probability of claims in the insurance data) and the coverage of the insurance contract

conditional on all observable variables. This paper’s framework can be used to deal with

this case of one-sided testing.

3 Asymptotic Representation of a Semiparametric Em-

pirical Process

3.1 Asymptotic Representation

The null hypothesis of (3) is a conditional moment restriction. In this paper, we take γz and

γy to be indicator functions:

γz(Z) = 1{Z ≤ z} and γy(Y ) = 1{Y ≤ y}

and write the null hypothesis as

H0 : E[βu(Ui){γz(Z̃i)− z}{γy(Ỹi)− y}] = 0, ∀(y, z, u) ∈ [0, 1]3 (9)

for an appropriate class of functions βu(·). The function βu can be any function that makes

the null hypotheses in (1) and (9) equivalent under Assumptions 1 and 2. For example, one

can take βu(U) = 1{U ≤ u} as in Stute (1997) and Andrews (1997), or βu(U) = exp(Uu) as
in Bierens (1990) and Bierens and Ploberger (1997). For a general discussion of the class of

functions for consistent tests, see Stinchcombe andWhite (1998). We introduce the following

assumption for βu(·).

Assumption 3 : The function βu(·), u ∈ [0, 1], is uniformly bounded in [0, 1] and for each
u ∈ [0, 1], βu(·) is of bounded variation.

Assumption 3 is satisfied by most functions used in the literature. In particular, the

indicator functions in Stute (1997) and the exponential functions in Bierens (1990) satisfy

the condition.

11



Corresponding to the equivalent formulation of the null hypothesis, a test statistic can

be constructed from the process:

νn(r) ,
1√
n

nX
i=1

βu(Ui)(γz(Z̃i)− z)(γy(Ỹi)− y), r = (y, z, u) ∈ [0, 1]3.

Since we do not know F0(·), FZ|U(·) and FY |U(·), we need to replace them by the estimators.
Let θ̂ be a consistent estimator of θ0. As for the data and the estimator θ̂, we assume the

following.

Assumption 4 : (i) (Yi, Zi,Xi)
n
i=1 is a random sample from P.

(ii) There exists an estimator θ̂ of θ0 in Assumption 2 such that ||θ̂ − θ0|| = oP (n
−1/4) both

under the null hypothesis and under the alternatives.

The estimator θ̂ in (ii) can be obtained from a sample version of the problem in (2). It is

worth noting that we do not require the moment conditions for (Y, Z,X). This is mainly due

to the fact that the functions indexing the process νn(r) are uniformly bounded. Consistency

of θ̂ can be obtained using the approach of Chen, Linton, and van Keilegom (2003). In most

cases, it can be shown that θ̂ is
√
n- or n1/3-consistent, satisfying the condition (ii).

As for the estimators of F0(·), FZ|U(·) and FY |U(·), we define

Ûi , Fn,θ̂,i(λθ̂(Xi)), Ẑi = F̂Z|U,i(Zi|Ûi) and Ŷi = F̂Y |U,i(Yi|Ûi)

where Fn,θ̂,i(·) denotes the empirical distribution function of {λθ̂(Xi)}ni=1 with the omission
of the i-th data point λθ̂(Xi), i.e., Fn,θ̂,i(λθ̂(Xi)) =

1
n−1

Pn
j=1,j 6=i 1 {λθ̂(Xj) ≤ λθ̂(Xi)} , and

F̂Y |U,i(y|u) and F̂Z|U,i(z|u) are kernel estimators of FY |U(y|u) and FZ|U(z|u).More specifically,

F̂Y |U,i(y|u) =
Pn

j=1,j 6=i 1 {Yj ≤ y}Kh(Ûj − u)Pn
j=1,j 6=iKh(Ûj − u)

(10)

where Kh(x) = K(x/h)/h, K(·) is a kernel function and h is the bandwidth parameter.7 We
similarly define F̂Z|U,i(z|u). As for the kernel and the bandwidth parameter, we assume the
following.

Assumption 5 : (i) K is a symmetric kernel with compact support, twice continuously

differentiable with
R
K = 1, and is nonincreasing on the positive real numbers. (ii) for an

arbitrarily small ε > 0, n−1/2+εh−2 + n1/2+εh4 → 0.
7Although we may use the true density function of the uniform random variate U in the denominator of

the estimator (e.g. Stute and Zhu (2005), finite sample performances seem better when we use the density
estimators.
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Assumption 5(i) is also used by Stute and Zhu (2005). The bandwidth condition in

(ii) requires bandwidths larger than those prescribed by Stute and Zhu (2005) who requires

n−1/2h−1 + n1/2h2 → 0.8 The main reason for this larger bandwidth is due to our method

of deriving asymptotics via linearization of the indicator functions γy and γz. The feasible

version of νn(r) is given by

ν̂n(r) ,
1√
n

nX
i=1

βu(Ûi)
n
γz(Ẑi)− z

on
γy(Ŷi)− y

o
.

Let l∞([0, 1]3) denote the space of functions on [0, 1]3 that are uniformly bounded, and we

endow l∞([0, 1]3) with a uniform norm ||·||∞ defined by ||f ||∞ =supu∈[0,1]3 |f(u)|. The notation
Ã denotes weak-convergence in l∞([0, 1]3) in the sense of Hoffman-Jorgensen (e.g. van der

Vaart and Wellner (1996)).

Theorem 1 : Suppose that Assumptions 1C—2C, 3-5 hold. Then the following holds.

(i) Both under H0 and under local alternatives Pn such that sup(z,y)∈[0,1]2 |F̃n,Z|Y (z|y)− z| =
O(n−1/2+ε1) as n →∞ for some ε1 ∈ (0, ε/2), where ε is the constant in Assumption 5(ii)

and F̃n,Z|Y (z|y) is the conditional distribution function of Z̃i given Ỹi = y under Pn,

supr∈[0,1]3 |ν̂n(r)− νn(r)| = oP (1). (11)

(ii)(a) Under the null hypothesis, ν̂n Ã ν in l∞([0, 1]3), where ν is a Gaussian process whose

covariance kernel is given by

c(r1; r2) =

½Z
βu1(u)βu2(u)du

¾
(z1 ∧ z2 − z1z2) (y1 ∧ y2 − y1y2) .

(b) Under the alternatives, n−1/2ν̂n(r)Ã E
h
βu(U)(γz(Z̃)− z)(γy(Ỹ )− y)

i
in l∞([0, 1]3).

The results of Theorem 1 lead to the asymptotic properties of tests based on the process

ν̂n(r). The asymptotic representation in (11) shows an interesting fact that the process

ν̂n(r) is asymptotically equivalent to its infeasible counterpart νn(r). Recall that such a phe-

nomenon is an exception rather than a norm in nonparametric tests. The local alternatives

in (i) include Pitman local alternatives that converge to the null hypothesis at the rate of
√
n. It is worth noting that the estimation error in λθ̂ does not play a role in determining

the limit behavior of the process ν̂n(r) even when the rate of convergence of θ̂ is slower

8In Stute and Zhu (2005), this is the condition corresponding to the case of X supported in a compact
set. (See Remark 2.5 there.)
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than n−1/2. In other words, the results of Theorem 1 do not change when we replace λθ̂ by

λ0. This phenomenon is discovered and analyzed by Stute and Zhu (2005) in the context

of testing single-index restrictions. See also Escanciano and Song (2007) for similar results

under series estimation. This convenient phenomenon is due to the use of the empirical

quantile transform of {λθ̂(Xi)}ni=1.
Based on the result in Theorem 1, we can construct a test statistic

Tn = Γν̂n (12)

by taking an appropriate continuous functional Γ. For example, in the case of two sided tests,

we may take

ΓKS ν̂n = sup
r∈[0,1]3

|ν̂n(r)| or ΓCM ν̂n =

µZ
[0,1]3

ν̂n(r)
2dr

¶1/2
. (13)

The first example is of Kolmogorov-Smirnov type and the second one is of Cramér-von Mises

type. In the case of one-sided tests in which we test the null of conditional independence

against conditional positive dependence, we may take

Γ+KS ν̂n = sup
r∈[0,1]3

ν̂n(r) or Γ+CM ν̂n =

µZ
[0,1]3

max{ν̂n(r), 0}2dr
¶1/2

.

The asymptotic properties of the tests based on Γν̂n follow from Theorem 1. Indeed, under

the null hypothesis,

Tn = Γν̂n →d Γν. (14)

The test is asymptotically pivotal, but in most cases other than the case of ν being a standard

Brownian sheet, it is not known how to simulate the Gaussian process ν. In a later section,

we suggest a bootstrap method.

4 The Case with Binary Zi

In some applications, either Y or Z is binary. We consider the case where Z is a binary

variable taking values in {0, 1}, and the variables Y and λ0(X) are continuous. In this case,

the null hypothesis becomes (after the Rosenblatt transform of Y )

E[βu(U){Z − p(U)}{γy(Ỹ )− y}] = 0 for all (y, u) ∈ [0, 1]2 (15)
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by the binary nature of Z. Here p(U) = P{Z = 1|U}. We assume the following in place of
Assumptions 1C-2C.

Assumption 1B : The random variable Y is absolutely continuous with respect to the

Lebesgue measure on R with a continuous joint density function.

Assumption 2B : (i) The parameter space Θ is compact in RdΘ.

(ii) There exists a parameter θ0 ∈ Θ and B(θ0, δ) , {θ ∈ Θ : ||θ − θ0|| < δ}, δ > 0, such

that conditions of Assumption 2C(a)-(c) hold and (d) for each θ ∈ B(θ0, δ), there exists

a σ-finite measure wθ that defines the conditional density function fθ(y, x|λ̄1, λ̄) of (Y,X)
given (λθ(X), λ0(X)) = (λ̄1, λ̄) where fθ(y, x|λ̄1, λ̄) is twice continuously differentiable in λ̄1

in the support of λθ(X), with the derivatives f
(j)
θ , j = 1, 2, satisfying

supθ∈B(θ0,δ)

Z
(f
(j)
θ )

2+δ0(y, x|λ̄1, λ̄)dwθ(y, x) < C

for some δ0, C > 0.

Let p̂(U) be a nonparametric estimator of p(U). For example, we may define

p̂(u) =

Pn
i=1 ZiKh(Ûi − u)Pn
i=1Kh(Ûi − u)

. (16)

We can alternatively use series estimation to obtain p̂(u). For the function p(u) and its

estimator p̂(u), we assume the following.

Assumption 6 : (i) For some ε > 0, p(u) ∈ (ε, 1− ε) for all u ∈ [0, 1].
(ii) As for the estimator p̂(U), supu∈[0,1] |p̂(u)− p(u)| = oP (1).

The conditions for the kernel and the bandwidths in (16) are subsumed in the condition

(ii) above. Lower level conditions can be found in the appendix (see Lemma B3 there.) We

suggest two step cross-validations for these bandwidths in a section devoted to simulation

studies.

We consider the following process

ν̄n(u, y) ,
1√
n

nX
i=1

βu(Ûi){Zi − p̂(Ûi)}{γy(Ŷi)− y}q
p̂(Ûi)− p̂(Ûi)2

, (17)

where Ŷi and Ûi are as defined before, and establish the asymptotic representation for this

process.
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Theorem 2 : Suppose that Assumptions 1B-2B, 3-6 hold. Then the following holds.

(i) Both under H0 and local alternatives Pn such that supy∈[0,1] |Pn{Zi = 1|Ỹi = y}−Pn{Zi =

1}| = O(n−1/2+ε1) for some ε1 ∈ (0, ε/2), where ε is the constant in Assumption 5(ii),

sup(u,y)∈[0,1]2

¯̄̄̄
¯ν̄n(u, y)− 1√

n

nX
i=1

βu(Ui){Zi − p(Ui)}p
p(Ui)− p(Ui)2

n
γy(Ỹi)− y

o¯̄̄̄¯ = oP (1).

(ii)(a) Under H0, ν̄n Ã ν̄ in l∞([0, 1]2), where ν̄ is a Gaussian process on [0, 1]2 whose

covariance kernel is given by

c(u1, y1;u2, y2) ,
½Z

βu1(u)βu2(u)du

¾
{y1 ∧ y2 − y1y2} .

(b) Under the alternatives,

n−1/2ν̄n(u, y)Ã E

"
βu(U) {Z − p(U)} {γy(Ỹ )− y}p

p(U)− p(U)2

#
in l∞([0, 1]2).

We can construct test statistics using appropriate functional Γ : T̄n = Γν̄n. For example,

ΓKS ν̄n = sup
(u,y)∈[0,1]2

|ν̄n(u, y)| or ΓCM ν̄n =

µZ
[0,1]2

ν̄n(u, y)
2d(u, y)

¶1/2
.

When the Gaussian process ν̄ can be simulated, the asymptotic critical values can be read

from the distribution of Γν̄. However, as emphasized before, often this is not the case in

general, in particular when βu is taken to be other than indicator functions.

5 Bootstrap Tests

The wild bootstrap method has been known to perform well in nonparametric and semipara-

metric tests. (Härdle and Mammen (1993), Stute, González and Presedo (1998), Whang

(2000), and Delgado and González Manteiga (2001).) It is also known that under certain

settings, the wild bootstrap method shows higher order improvement when the test statistic

is asymptotically pivotal (Liu (1988) and Mammen (1993)).

Let ({ωi,b}ni=1)Bb=1 be an i.i.d. sequence of random variables that are bounded, independent
of {Yi, Zi,Xi} and satisfy that E(ωi,b) = 0 and E(ω2i,b) = 1. For example, one can take ωi,b

to be a random variable with two-point distribution assigning masses (
√
5 + 1)/(2

√
5) and

(
√
5− 1)/(2

√
5) to the points −(

√
5− 1)/2 and (

√
5+1)/2. Then, we consider the following
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bootstrap empirical process:

ν∗n,b(r) =
1√
n

nX
i=1

ωi,bβu(Ûi)
n
γz(Ẑi)− z

on
γy(Ŷi)− y

o
, b = 1, · · ·, B.

The bootstrap empirical process ν∗n,b(r) is similar to those proposed by Delgado and González

Manteiga (2001). Given a functional Γ, we take bootstrap test statistics T ∗n,b = Γν∗n,b,

b = 1, ···, B. The critical values for the tests based on T ∗n,b are approximated by cα,n,B = inf{t :
B−1ΣB

b=11{T ∗n,b > t} ≥ 1−α}. Hence an α-level bootstrap test is obtained by 1{Tn > cα,n,B}
where Tn is as defined in (12).

When Zi is binary, we use the following bootstrap empirical process:

ν̄∗n,b(r) =
1√
n

nX
i=1

ωi,bβu(Ûi)
Zi − p̂(Ûi)q
p̂(Ûi)− p̂(Ûi)2

n
γy(Ŷi)− y

o
, b = 1, · · ·, B,

and construct the bootstrap test statistic T̄ ∗n,b = Γν̄∗n,b, b = 1, · · ·, B, using an appro-
priate functional Γ. An approximate critical value can be obtained by cα,n,B = inf{t :
B−1ΣB

b=11{T̄ ∗n,b > t} ≥ 1−α}, yielding an α-level bootstrap test: ϕ̄ , 1{T̄n > cα,n,B}, where
T̄n is as defined in Section 4. Let F ∗T∗n denote the conditional distribution of the bootstrap

test statistic T ∗n given the sample {Si}ni=1 and d be a distance metrizing weak convergence

on the real line.

Theorem 3: (i) Suppose that the conditions of Theorem 1 hold under H0. Then under H0,

d
¡
F ∗T∗n , FΓν

¢
→ 0 in P.

(ii) Suppose that the conditions of Theorem 2 hold under H0. Then under H0,

d
³
F ∗̄T∗n , FΓν̄

´
→ 0 in P.

The wild bootstrap procedure is easy to implement. In particular, it does not require

nonparametric estimation for each bootstrap sample.

6 The Method of Martingale Transforms

In this subsection, we develop a variant of the Rosenblatt-transformed test by applying

the method of martingale transforms. The resulting tests are still asymptotically pivotal

with different limiting distributions. More importantly, the martingale transform involved
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is extremely simple, adding no additional computational cost to the Rosenblatt-transform

based test proposed earlier. The asymptotic power properties of the martingale-transform

tests are different from the Rosenblatt-transformed test, and hence can be considered as an

alternative. Since the development of the tests along this line can be proceeded in the similar

manner as before, we summarize the results here.

First, suppose that Y and Z are continuous. Following Khmaladze (1993), we define K
as follows:9

γKy (Ỹ ) , γy(Ỹ ) + log(1− Ỹ ∧ y) and γKz (Z̃) , γz(Z̃) + log(1− Z̃ ∧ z). (18)

Such a transform K is called a martingale transform as the empirical process indexed by the

transformed functions weakly converges to a martingale in the univariate case. Using the

martingale transform, we can reformulate the null hypothesis as follows:

H0 : E[βu(Ui)γ
K
z (Z̃i)γ

K
y (Ỹi)] = 0, ∀(y, z, u) ∈ [0, 1]3.

The test statistic is based on the empirical version of the null hypothesis:

ν̂MT
n (r) , 1√

n

nX
i=1

βu(Ûi)γ
K
z (Ẑi)γ

K
y (Ŷi),

where Ẑi and Ŷi are estimated Rosenblatt-transforms as before. Observe that the compu-

tation of the empirical process ν̂MT
n (r) is no more complicated than the process ν̂n(r). The

asymptotic theory along the line of Theorem 1 tells us that10

ν̂MT
n Ã νMT in l∞([0, 1]× [0, 1)2)

where νMT is a Gaussian process with covariance kernel C(r1; r2) =
©R

βu1(u)βu2(u)du
ª
(z1∧

z1)(y1 ∧ y1). Observe that when βu(U) = 1{U ≤ u}, the Gaussian process νMT is a standard

Brownian sheet. The test statistic can be constructed as TMT
n = Γν̂MT

n using a known

functional Γ. The bootstrap procedure can be followed as analogously before by considering

9The martingale transform after the Rosenblatt-transform is a special case of a conditional martingale
transform proposed by Song (2007). Indeed, the martingale transform satisfies the properties of conditional
isometry and conditional orthogonality where the conditioning variable is Ui here.
10The domain of weak convergence is not [0, 1]3 but [0, 1] × [0, 1)2. This is because when z = y = 1, the

martingale transform is not defined. The proof of this weak convergence is available upon request.
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the following bootstrap empirical process:

ν∗MT
n,b (r) =

1√
n

nX
i=1

ωi,bβu(Ûi)γ
K
z (Ẑi)γ

K
y (Ŷi), b = 1, · · ·, B,

and taking the empirical critical values of the bootstrap test statistics TMT∗
n,b = Γν∗MT

n,b ,

b = 1, · · ·, B.
When Z is binary and Y is continuous, we may consider the following equivalent formu-

lation of the null hypothesis:

H0 : E[βu(Ui)(Z − p(U))γKy (Ỹi)] = 0, ∀(y, z, u) ∈ [0, 1]3

and the following martingale transformed process

ν̄MT
n (u, y) , 1√

n

nX
i=1

βu(Ûi)
n
Zi − p̂(Ûi)

o
γKy (Ŷi)q

p̂(Ûi)− p̂(Ûi)2

using the estimator p̂(Ûi) as before. Following the steps of the proof of Theorem 2, we can

show that

ν̄MT
n Ã ν̄MT in l∞([0, 1]× [0, 1))

where ν̄MT is a Gaussian process with covariance kernel C(r1; r2) =
©R

βu1(u)βu2(u)du
ª
(y1∧

y1). It is worth noting that when βu(U) = 1{U ≤ u}, the Gaussian process νMT is a

two-parameter standard Brownian sheet. The test statistic can be constructed as T̄MT
n =

Γν̄MT
n using a known functional Γ. In the case of Kolmogorov-Smirnov functional

Γν = sup(u,y)∈[0,1]×[0,1)ν(u, y)

and βu(U) = 1{U ≤ u}, the asymptotic critical values are available from the simulations of

Dr. Ray Brownrigg and can be found at his website: http://www.mcs.vuw.ac.nz/~ray/Brownian:

significance level 0.5 0.25 0.20 0.10 0.05 0.025 0.01

critical values 1.46 1.81 1.91 2.21 2.46 2.70 3.03

However, as mentioned before, the asymptotic critical values are not available in general
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for other choices of βu. Alternatively, one can use a bootstrap test that is obtained by using

ν̄∗MT
n,b (r) =

1√
n

nX
i=1

ωi,b

βu(Ûi)
n
Zi − p̂(Ûi)

o
γKy (Ŷi)q

p̂(Ûi)− p̂(Ûi)2
, b = 1, · · ·, B,

and taking the empirical critical values of the bootstrap test statistics T̄MT∗
n,b = Γ ν̄∗MT

n,b ,

b = 1, · · ·, B.

7 Simulation Studies

In this section, we present and discuss the results from simulation studies. We consider

testing conditional independence of Yi and Zi given Xi, where each variable is set to be real-

valued. The variable Xi is drawn from the uniform distribution on [−1, 1] and the errors ηi
and εi are independently drawn from N(0, 1). The variable Zi is binary taking zero or one

by the following rule:

Zi = 1{Xi + ηi > 0}

and the variable Yi is determined by

DGP 1 : Yi = 0.3Xi + κZi + εi, or

DGP 2 : Yi = sin(0.6Xi + κZi)× (εi − 0.2).

The DGP 1 represents a linear specification with additive errors and DGP 2 represents a

nonlinear specification with multiplicative errors. Note that κ = 0 corresponds to the null

hypothesis of conditional independence between Y and Z given X.

Under these specifications, we consider the following two kinds of null hypotheses:

Null Hypothesis 1: Y ⊥ Z | X and

Null Hypothesis 2: 1{Ỹ ≤ τ} ⊥ Z | X,

where Ỹ denotes the Rosenblatt transform of Y with respect to U , the quantile transform

of X. As we shall see in the next section, Null Hypothesis 2 can be viewed as an identifying

assumption for quantile treatment effects in program evaluations.

We consider two cases of βu(U) = exp(Uu) and βu(U) = 1{U ≤ u}. Nonparametric esti-
mations are done using kernel estimation using the kernelK(u) = (15/16)(1−u2)21{|u| ≤ 1}.
The number of Monte Carlo iterations and the number of bootstrap Monte Carlo iter-

ations are set to be 1000. The sample sizes are 100, 200, and 500. As for taking the
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Kolmogorov-Smirnov functional, we use the product of two sets of ten equally spaced grid

points, {0, 0.1, 0.2, · · ·, 0.9}2. The nominal size is set to be 0.05.
In choosing bandwidths, we perform cross-validations in two steps. We consider the

following cross-validation criterion for the bandwidth of p̂ :

CVZ(h) =
nX
i=1

{Zi − p̂h,i(Ûi)}2

where p̂h,i(u) is a leave-one-out kernel estimator of p(u) with bandwidth h. We choose h∗

such that minimizes CVZ(h) and define p̂i(Ûi) = p̂h∗,i(Ûi). As for the bandwidth for Ŷi, we

consider the following two cross-validation criteria:

(CV-KS) CV KS
Y (h) = supy∈R

¯̄̄̄
¯

nX
i=1

{Zi − p̂i(Ûi)}2{1{Yi ≤ y}− F̂Y |U,i,h(y|Ûi)}2

p̂i(Ûi)− p̂2i (Ûi)

¯̄̄̄
¯ and

(CV-CM) CV CM
Y (h) =

Z ¯̄̄̄
¯

nX
i=1

{Zi − p̂i(Ûi)}2{1{Yi ≤ y}− F̂Y |U,i,h(y|Ûi)}2

p̂i(Ûi)− p̂2i (Ûi)

¯̄̄̄
¯
2

dy,

where F̂Y |U,i,h(y|Ûi) is the estimator defined in (10) at the bandwidth h. Note that the

weighting reflects our normalization of the process to obtain asymptotically pivotal tests.

Then we choose h∗ that minimizes CV KS
Y (h) or CV CM

Y (h). As in Stute and Zhu (2005), we

choose h1 = h∗ × n1/5−2/9 as the bandwidth for F̂Y |U,i,h(y|Ûi) to fulfill the undersmoothing.

As the wild bootstrap method does not require nonparametric estimation for each set of

bootstrap samples, it suffices that we perform the cross-validations once and for all for the

original data set.

[INCLUDE TABLES 1-4 HERE]

Tables 1 and 2 contain the empirical size and power of the tests using βu(U) = exp(Uu)

and βu(U) = 1{U ≤ u} under DGP 1 and DGP 2. Both tests show good size and power
properties. The empirical powers increase conspicuously as the sample size increases. Tables

3 and 4 present the results from Null Hypothesis 2 under DGP 1 and DGP 2. Comparing

the results from CV-KS and those from CV-CM, it appears that both methods of cross-

validation performs well in terms of size and power. Overall, the proposed methods of test

and cross-validation appears to work well.
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8 An Empirical Application : Evaluating the Evaluator

using the JTPA Training Data

In the literature of program evaluations, the availability of experimental data has proved

to be crucial in providing answers to questions that are often impossible to address using

only nonexperimental data. Since the seminal paper by LaLonde (1986), such experimental

data have been often used to evaluate the existing econometric methods that are applied

to nonexperimental data. See e.g. Dehejia and Wahba (1999) and Smith and Todd (2002,

2005). In particular, Heckman, Ichimura, and Todd (1997) and HIST performed an extensive

analysis of econometric models using the JTPA training data set.11 In the empirical study

we use the same data set and propensity scores from the JTPA training program as used

by HIST and test certain implications from the identifying assumptions for nonexperimental

procedures.

In this section, we assume the set-up of Section 2.2.1. The first test we focus on is the

following null hypothesis:

HCI
0 : Y0 ⊥ Z | P (X).

This is one implication from the unconfoundedness condition in (4). In a similar vein, HIST

performed testing conditional mean independence of Y0 and Z given P (X).

The second test we focus on is an identifying assumption for quantile treatment effects:

HQNT
0 : 1 {Y0 ≤ q0τ(U)} ⊥ Z |U,

where U = FP (X) the quantile transform of P (X), with FP (x) = P{P (X) ≤ P (x)}.
Let P̂ (X) be an estimator of P (X) after a certain parametric specification of P (X). This

estimator P̂ (X) corresponds to λθ̂(X) in our notations in the previous sections. We take the

empirical quantile transform of P̂ (Xi) to obtain Ûi =
1

n−1
Pn

j=1,j 6=i 1{P̂ (Xj) ≤ P̂ (Xi)}. Using
this Ûi, we obtain the estimator Ỹi of the Rosenblatt-transformed outcomes Ỹi and the

conditional distribution function p̂(Ûi) of p(Ui) = P{Z = 1|Ui}. We take the test statistic
to be T̄n = Γν̄n where ν̄n is the process defined in (17) and Γ is the Kolmogorov-Smirnov

functional.

We use the same data set used for Tables VIA and VIB in HIST. In particular, we employ

the same estimates for the propensity score as obtained by HIST. Unlike their conditional

mean independence tests, the tests constructed along the formulation of unconditional mo-

ment restrictions are not in general asymptotically invariant to the estimation error from

the propensity scores. So the adjustment for estimation error of propensity score in this

11See Orr, et. al. (1995) for the description of the data.
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case is not merely a matter of second order correction as is the case in HIST, but a matter

of first order asymptotics. However, the tests proposed by this paper are designed to be

asymptotically pivotal regardless of the estimation error in the propensity score estimation

as long as the estimation error is stochastically bounded. Hence the testing procedures in

this paper are asymptotically valid regardless of the estimation of the propensity score.

[INCLUDE TABLES 5-8 HERE]

The results from testing Null Hypothesis 1 are given in Tables 5-6 which contain p-values

from both the tests using βu(U) = exp(Uu) and βu(U) = 1{U ≤ u}. In both the cases
of testing for each quarter or testing jointly, the tests do not reject the null hypothesis

of conditional independence restriction at the significance level 5% for most quantiles and

quarters. Tables 7-8 contain results from testing Null Hypothesis 2.12 Across different

quantiles τ , the test does not reject the null of conditional independence either, except for a

few quarter-quantile pairs at quantiles around 0.6-0.7 in the case of βu(U) = 1{U ≤ u}.
Our findings appear to contradict one conclusion from HIST that the underlying assump-

tions of matching estimator, that is the assumption of unconfoundedness, do not seem to be

supported by the JTPA data. HIST obtained mixed results from testing conditional mean in-

dependence depending on the use of adjustment for estimation error in the propensity score,

and looked for evidence alternatively from pointwise bias estimates. They concluded that

the JTPA data did not support the assumption of conditional mean independence because

the bias estimates at various values for the propensity score were found to be significantly

different from zero at low values of the propensity score.

To look closely into this apparent conflict, note that the bias considered by HIST is

defined as

B(p) = E[Y0|P (X) = p, Z = 1]−E[Y0|P (X) = p, Z = 0].

Under HCI
0 , B(p) = 0 for all values of p. But HIST find that for low values of p, estimates of

B̂(p) are significantly different from zero, and conclude that the data do not support HCI
0 .

We can translate this conflict into that of testing conditional independence. The argument

of HIST is analogous to testing the null hypothesis

HPoint
0,p : Y0 ⊥ Z |P (X) = p

individually for each p and reject the stronger hypothesis, HCI
0 , based on the rejection of

HPoint
0,p at certain values of p. However, in general, when we reject the null hypothesis point-

wise, this does not support the rejection of the joint hypothesis by itself. In order to reject a

12Here we report only the results with CV-KS. We have obtained similar results using CV-CM.
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stronger null hypothesis, we need stronger evidence.13 In our context, since HCI
0 is stronger

than HPoint
0,p , in order to reject HCI

0 , we need evidence that is stronger than is just enough

to reject HPoint
0,p . Our findings suggest that such strong enough evidence against HCI

0 is not

yet discovered.14

9 Conclusion

A class of asymptotically pivotal tests of conditional independence have been proposed and

investigated. This paper demonstrate that one can obtain asymptotically pivotal tests by

using the Rosenblatt-transform in an appropriate manner. As it is often difficult to com-

pute asymptotic critical values even when the tests are asymptotically pivotal, we propose

bootstrap tests. The finite sample performances of the tests are affirmed by Monte Carlo

simulation studies. In an empirical application, using the JTPA training data set and the

propensity score specifications of HIST we test identifying assumptions for quantile treatment

effects. From our testing results, we find no evidence against such identifying assumptions.

10 Appendix: Mathematical Proofs

10.1 Main Results
In this section, we present the proofs of the main results. Throughout the proofs, the notation C denotes a
positive absolute constant that may assume different values in different contexts. For a class F of measurable
functions, N(ε,F , Lr(Q)) andN[](ε,F , Lr(Q)) denote the covering and bracketing numbers of F with respect
to the Lr(Q)-norm. (See van der Vaart and Wellner (1996) for their definitions.) Similarly we define
N(ε,F , || · ||∞) and N[](ε,F , || · ||∞) to be the covering and bracketing numbers with respect to || · ||∞. We
present two preliminary lemmas which are useful for many purposes.

Lemma A1 : Let Λn be a sequence of classes of measurable functions such that for each λ ∈ Λn, λ(X) is
absolutely continuous with respect to the Lebesgue measure and has a uniformly bounded density. Let T be a
class of uniformly bounded functions of bounded variation. Then for the class Gn = {τ ◦λ : (τ , λ) ∈ T ×Λn} of
measurable functions, it is satisfied that for any r ≥ 1, and any probability measure Q,

logN[](C2ε,Gn, Lr(Q)) ≤ logN(εr,Λn, || · ||∞) + C1/ε,

where C1 and C2 are positive constants depending only on r.

13This ssue is closely related to the classical issue of multiple tests. In the context of multiple hypothesis
testing, the p-values from the individual tests should be properly adjusted. See Lehman and Romano (2005)
and references therein.
14In terms of bias estimates, to compare the bias estimate and the result of conditional mean independence,

one must view B(p) as a bias function of p and consider a confidence band for its nonparametric estimator
uniformly over p, instead of pointwise confidence intervals.
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Proof of Lemma A1 : Let Fλ be the distribution function of λ(X). Then, observe that for any λ1, λ2 ∈ Λ,

supx |Fλ1(λ1(x))− Fλ2(λ2(x))| ≤ supx |Fλ1(λ1(x) +∆∞)− Fλ1(λ1(x)−∆∞)|
≤ C∆∞, where ∆∞ = ||λ1 − λ2||∞

because the density of λ(X) is uniformly bounded. From now on, we identify λ(x) with its quantile transform
Fλ(λ(x)) without loss of generality so that λ(X) is uniformly distributed on [0, 1]. Since a function of bounded
variation can be written as the difference of two monotone functions, we lose no generality by assuming that
each τ ∈ T is decreasing. Hence by the result of Birman and Solomjak (1967) (see also van der Vaart (1996)
for a more general result), for any r ≥ 1

logN[](ε, T , Lr(Q)) ≤
C2
ε
, (19)

for any probability measure Q and for a constant C2 > 0. Here the constant C2 does not depend on Q.
We choose {λ1, · · ·, λN1} such that for any λ ∈ Λn, there exists j ∈ {1, · · ·, N1} with kλj − λk∞ <

εr/2. Take a positive integer Mε ≤ 2/εr + 1 and choose a set {c1, · · ·, cMε} such that c1 = 0 and

cm+1 = cm + εr/2, m = 1, · · ·,Mε − 1

so that 0 = c1 ≤ c2 ≤ · · · ≤ cMε ≤ 1. Define λ̃j(x) as follows.

λ̃j(x) = cm when λj(x) ∈ [cm, cm+1), for some m ∈ {1, 2, · · ·,Mε − 1}.

For each j1 ∈ {1, ···,N1}, letQj1 be the distribution of λ̃j1(X) underQ. Then we choose {(τk,∆k)}N2(j1)
k=1 such

that for any τ ∈ T , there exists (τ j2 ,∆j2), j2 ∈ {1, · · ·, N2(j1)} such that |τ(λ̄) − τ j2(λ̄)| ≤ ∆j2(λ̄) withR
∆j2(λ̄)

rQj1(dλ̄) < εr. Now, take any g ∈ T such that g , τ ◦λ and choose λj1 such that kλj1 − λk∞ < εr/2

and, (τ j2 ,∆j2) such that |τ(λ̄)− τ j2(λ̄)| ≤ ∆j2(λ̄) with
R
∆j2(λ̄)

rQj1(dλ̄) < εr. We fix these j1 and j2. We
extend the definition of ∆j2 with its domain now equal to R by setting ∆j2(λ̄) = 0 for all λ̄ ∈ R\[0, 1].

Consider

|g(x)− (τ j2 ◦ λ̃j1)(x)| ≤ |(τ ◦ λ)(x)− (τ ◦ λ̃j1)(x)|+ |(τ ◦ λ̃j1)(x)− (τ j2 ◦ λ̃j1)(x)| (20)

≤ |(τ ◦ λ)(x)− (τ ◦ λ̃j1)(x)|+ (∆j2 ◦ λ̃j1)(x).

The range of λ̃j1 is finite and ||λ − λ̃j1 ||∞ ≤ ||λ − λj1 ||∞ + ||λj1 − λ̃j1 ||∞ ≤ εr/2 + εr/2 = εr. Hence
|(τ ◦ λ)(x)− (τ ◦ λ̃j1)(x)| is bounded by τ(λ̃j1(x)− εr)− τ(λ̃j1(x) + εr), or by

τ j2(λ̃j1(x)− εr)− τ j2(λ̃j1(x) + εr) +∆j2(λ̃j1(x)− εr) +∆j2(λ̃j1(x) + εr).

We analyze the difference τ j2(λ̃j1(x)−εr)−τ j2(λ̃j1(x)+εr) which is written as A1(x)+A2(x)+A3(x)+A4(x)
where

A1(x) = τ j2(λ̃j1(x)− εr)− τ j2(λ̃j1(x)− εr/2),

A2(x) = τ j2(λ̃j1(x)− εr/2)− τ j2(λ̃j1(x))

A3(x) = τ j2(λ̃j1(x))− τ j2(λ̃j1(x) + εr/2) and

A4(x) = τ j2(λ̃j1(x) + εr/2)− τ j2(λ̃j1(x) + εr).
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We write A1(x) as
Mε−1X
m=1

©
τUm(j2)− τLm(j2)

ª
× 1 {cm ≤ λj2(x) < cm+1} ,

where τUm(j2) = τ j2(cm−εr) and τLm(j2) = τ j2(cm−εr/2). Since τ j2 is decreasing, we have τLm(j2) ≤ τUm(j2),

and since cm+1 = cm + εr/2, we have

τUm+1 (j2) = τ j2(cm+1 − εr) = τ j2(cm − εr/2) = τLm(j2), m = 1, · · ·,Mε − 1.

Hence, we conclude

τLMε−1(j2) ≤ · · · ≤ τUm+1(j2) = τLm(j2) ≤ τUm(j2) = τLm−1(j2) ≤ · · · ≤ τU1 (j2).

Suppose that τU1 (j2) = τLMε−1(j2). Then A1(x) = 0 and hence the Lr(Q)-norm of A1 is trivially zero. Suppose
that τU1 (j2) > τLMε−1(j2). Note that since τ is uniformly bounded, we have τ

U
1 (j2)− τLMε−1(j2) < C <∞ for

an absolute constant C > 0. Define

∆̃j1,j2(x) ,
Mε−1X
m=1

τLm(j2)− τUm(j2)

τL1 (j2)− τUMε−1(j2)
× 1 {cm ≤ λj2(x) < cm+1} .

Let pm(j2) = P {cm ≤ λj2(x) < cm+1}. Since ∆̃j1,j2(x) ≤ 1, we have ∆̃r
j1,j2

(x) ≤ ∆̃j1,j2(x) so that

E∆̃r
j1,j2(X) ≤

Mε−1X
m=1

τLm(j2)− τUm(j2)

τL1 (j2)− τUMε−1(j2)
× pm(j2) = εr/2,

because pm(j2) = εr/2 for m ∈ {1, · · ·,Mε − 1}. Thus we conclude that the Lr(Q)-norm of A1 is bounded
by Cε. We can deal with the functions Aj(x), j = 2, 3, 4, precisely in the same manner.

From (20), we can bound |g(x)− (τ j2 ◦ λ̃j1)(x)| by

A1(x) +A2(x) +A3(x) +A4(x) + (∆j2 ◦ λ̃j1)(x) +∆j2(λ̃j1(x)− εr) +∆j2(λ̃j1(x) + εr) (21)

= ∆∗j1,j2(x), say.

Now, let us compute [E{∆∗j1,j2(X)}
r]1/r. The Lr(Q)-norm of the first four functions is bounded by Cε as we

proved before. By the choice of ∆j2 , E[∆
r
j2
(λ̃j1(X))] =

R
∆j(λ̄)

rQj2(dλ̄) < εr. Let us turn to the last two
terms in (21). Note that

E
h
∆r
j2(λ̃j1(X)− εr)

i
=

Mε−1X
m=1

∆r
j2(cm − εr)pm(j2) =

Mε−1X
m=1

∆r
j2(cm − εr)εr/2

=

Mε−3X
m=1

∆r
j2(cm)ε

r/2 ≤ E[∆r
j2(λ̃j1(X))] < εr.

The third equality is due to our setting ∆j2(c) = 0 for c ∈ R\[0, 1]. Similarly, E[∆r
j2
(λ̃j1(X) − εr)] < εr.

Combining these results, E[{∆∗j1,j2(X)}
r] ≤ Cr

1ε
r, for some constant C1 > 0, yielding the result that

logN[](C1ε,Gn, Lr(Q)) ≤ logN(εr,Λn, || · ||∞) + C2/ε.
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Let Fn,λ(λ̄) = 1
n

Pn
i=1 1

©
λ(Xi) ≤ λ̄

ª
, λ ∈ Λn. Then Lemma A1 immediately yields a bracketing en-

tropy bound for a class of functions in which βu (Fn,λ(λ(·))) realizes. In the case of an indicator function
βu(ū) = 1{u ≤ ū}, we cannot apply the framework of Chen, Linton and van Keilegom (2003) because the
nonparametric function Fn,λ(λ̄) is a step function and hence Lp uniform continuity with respect to the sup
norm fails.

Corollary A1 : Let Λn be a class of functions as in Lemma A1 and let {βu(·)}u∈[0,1] be a class of functions
satisfying Assumption 3. Then, there exists a class of functions Gn such that

P {βu (Fn,λ(λ(·))) ∈ Gn, for all (λ, u) ∈ Λn × [0, 1]} = 1

and for any r ≥ 1, and any probability measure Q, logN[](C2ε,Gn, Lr(Q)) ≤ logN(εr,Λn, || · ||∞) +
C1/ε, where C1 and C2 are positive constants depending only on r.

The following lemma is useful to establish the bracketing entropy bound of a function space in which
conditional distribution function estimators realize in. See the proof of Lemma A3. Note that the framework
of Andrews (1994) does not directly apply when the realized functions are discontinuous. The lemma can
be used conveniently in particular when the conditional distribution function estimators contain unknown
finite dimensional or infinite dimensional parameters in the conditioning variable.

Lemma A2 : We introduce three classes of functions. First, let Fn be a sequence of classes of uniformly
bounded functions φ(·, ·) : R×S → [0, 1], such that for each v ∈ S, φ(·, v) is monotone, and for each ε > 0,

sup(y,v)∈R×Ssupη∈[0,ε] |φ(y, v + η)− φ(y, v − η)| < Mnε (22)

for some sequence Mn > 1, where S is a totally bounded subset of the real line. Second, let G be a class of
measurable functions G : RdX → S. Lastly let J G

n = {φ(·, G(·)) : (φ,G) ∈ Fn × G}.
Then for any probability measure P and for any p > 1,

logN[](ε,J G
n , Lp(P )) ≤ CM2/(p−1)

n /εp/(p−1) − C log(ε) + logN[](Cε/Mn,G, Lp(P ))

for some C > 0.

Proof of Lemma A2 : Fix ε > 0 and let Nε(v) = N(ε,Fn(v), Lp(Qv)), where Fn(v) = {φ(·, v) : φ ∈ Fn}
and Qv denotes the conditional measure of Y given V = v. Take a partition S = ∪Jεk=1B(bk) where B(bk)
is a set contained in an ε-interval centered at bk and Jε ≤ Cε−dX . For each bk, take {(fk,j ,∆k,j)}Nε(bk)

j=1

such that for any f ∈ Fn(bk), there exists j ∈ {1, · · ·, Nε(bk)} such that |f(y) − fk,j(y)| ≤ ∆k,j(y) andR
|∆k,j(y)|pP (dy) ≤ εp. Given φ ∈ Fn, we let f̃j(y, v) =

PJε−1
k=1 fk,j(y, bk)1 {v ∈ Bε(bk)} where fk,j(y, bk) is

such that |φ(y, bk) − fk,j(y)| ≤ ∆k,j(y) and
R
|∆k,j(y)|pP (dy) ≤ εp. By the result of Birman and Solomjak
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(1967), the smallest number of such j’s are bounded by exp(C/ε)/ε. Then

¯̄̄
φ(y, v)− f̃j(y, v)

¯̄̄
=

¯̄̄̄
¯
Jε−1X
k=1

{φ(y, v)− fk,j(y, bk)} 1 {v ∈ Bε(bk)}
¯̄̄̄
¯ (23)

≤
¯̄̄̄
¯
Jε−1X
k=1

{φ(y, v)− φ(y, bk)} 1 {v ∈ Bε(bk)}
¯̄̄̄
¯

+

¯̄̄̄
¯
Jε−1X
k=1

{φ(y, bk)− fk,j(y, bk)} 1 {v ∈ Bε(bk)}
¯̄̄̄
¯ .

The last term is bounded by
PJε−1

k=1 ∆k,j(y, bk)1 {v ∈ Bε(bk)} . Since

{φ(y, v)− φ(y, bk)} 1 {v ∈ Bε(bk)} ≤ CMnε1 {v ∈ Bε(bk)}

we can bound the second to the last term in (23) by CMnε. Hence,
¯̄̄
φ(y, v)− f̃j(y, v)

¯̄̄
≤ ∆̄j(y) where

∆̄j(y) =

Jε−1X
k=1

∆k,j(y, bk)1 {v ∈ Bε(bk)}+ CMnε.

Take q = (1− 1/p)−1. By Hölder inequality,

Ã
Jε−1X
k=1

∆k,j(y)1 {v ∈ Bε(bk)}
!p

≤
(
Jε−1X
k=1

∆p
k,j(y, bk)

)(
Jε−1X
k=1

1 {v ∈ Bε(bk)}
)p/q

=

Jε−1X
k=1

∆p
k,j(y, bk).

Now, note that
R
∆̄p
j (y)P (dy, dv) is bounded by

C

Jε−1X
k=1

Z
∆p
k,j(y, bk))P (dy) + CMp

nε
p ≤ CJεε

p + CMp
nε

p ≤ Cεp−1 + CMp
nε

p ≤ CMp
nε

p−1,

yielding the inequality: logN[](CMnε
(p−1)/p,Fn, Lp(P )) ≤ C/ε− C log(ε).

Now, take (Gk,∆k)
N1

k=1 such that for any G ∈ G, there exists (Gj ,∆j) such that |G − Gj | ≤ ∆j

and EP∆
p
j (X) < εp. For each j ∈ {1, · · ·, N1}, let Qj be the distribution of (Y,Gj(X)) under P. Take

(φk, ∆̃k)
N2(j)
k=1 such that for any φ ∈ Jn, there exists (φk, ∆̃k) such that |φ(y, v) − φk(y, v)| < ∆̃k(y, v) andR

∆̃p
k(y, v)Qj(dy, dv) < εp. Now,

|φ(y,G(x))− φk(y,Gj(x))| ≤ |φ(y,G(x))− φ(y,Gj(x))|+ |φ(y,Gj(x))− φk(y,Gj(x))|
≤ Mn∆j(x) + ∆̃k(y,Gj(x)) = ∆̄j,k(y, x), say.

Since E∆̄p
j,k(Y,X) ≤ C(Mn + C)pεp ≤ CMp

nε
p, we conclude that

logN[]

¡
CMnε,J G

n , Lp(P )
¢
≤ C logN[](ε,Fn, Lp(P )) + C logN[](ε,G, Lp(P ))
≤ C(Mn/ε)

p/(p−1) + C log(Mn/ε) + C logN[](ε,G, Lp(P )).

By redefining ε0 = CMnε, we obtain the wanted result.
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Proof of Theorem 1 : Let Gn be a class of functions such that

P {βu(Fn,θ,i(λθ(·))) ∈ Gn for all (u, θ) ∈ [0, 1]×B(θ0, δ)} = 1

and satisfies that logN[](ε,Gn, || · ||r) < C/ε and let Λn , {λθ : θ ∈ B(θ0, Cn
−1/4)}. The existence of such

Gn is guaranteed by Corollary A1 above, combined with the fact that logN(ε,Λn, || · ||r) < C log ε. This
inequality follows from the assumption that λθ is Lipschitz continuous in θ and Θ is compact in RdΘ (c.f.
Assumption 2(i), (ii)(b)). Since 1

nh

Pn
j=1,j 6=iKh(Ûj − Ûi) > η, for a small η ∈ (0, 1), with probability

approaching one (Lemma B3), we confine our attention to such an event.

(i) Let ε be the constant in Assumption 5(ii) and ε1 the constant in the condition for local alternatives. Choose
δn = n−ε/2. Then, observe that nε1δn → 0, (n−1/2+ε/2h−1+nε/2h2)δ−1n → 0 and

√
n(n−1/2h−1+h2)2δ−1n =¡

n−1/2+ε/2h−2 + n1/2+ε/2h4
¢
→ 0. Let γz,δn(v) = Φ((z− v)/δn) and γ0z,δn(v) = −φ((z− v)/δn)/δn where Φ

and φ are a standard normal distribution function and its density function. Likewise we define γy,δn(·) and
γ0y,δn(·). The oP (1) terms in the following are uniform over (r, β) ∈ [0, 1]3 ×Gn. Let γ⊥z,δn(Z̃i) = γz,δn(Z̃i)−
µδn(z) and γ

⊥
y,δn

(Ỹi) = γy,δn(Ỹi)−µδn(y), where µδn(z) = E[γz,δn(Z̃i)] and µδn(y) = E[γy,δn(Ỹi)]. Similarly
define γ⊥z,δn(Ẑi) = γz,δn(Ẑi)− µδn(z) and γ⊥y,δn(Ŷi) = γy,δn(Ŷi)− µδn(y).

We write 1√
n

Pn
i=1 β(Xi)γ

⊥
z (Ẑi)γ

⊥
y (Ŷi) as

1√
n

nX
i=1

β(Xi)
n
γ⊥z (Ẑi)γ

⊥
y (Ŷi)− γ⊥z,δn(Ẑi)γ

⊥
y,δn(Ŷi)

o
+

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Ẑi)γ

⊥
y,δn(Ŷi). (24)

By Lemma A3 below, the first sum is asymptotically equivalent to

1√
n

nX
i=1

n
βu(Ui)∆z,y,n(Z̃i, Ỹi)−E

h
βu(Ui)∆z,y,n(Z̃i, Ỹi)

io
+
√
nE

h
βu(Ui)∆z,y,n(Z̃i, Ỹi)

i

where ∆z,y,n(Z̃i, Ỹi) = γ⊥z (Z̃i)γ
⊥
y (Ỹi)− γ⊥z,δn(Z̃i)γ

⊥
y,δn

(Ỹi).We can easily show that the first sum is oP (1) by
using the usual stochastic equicontinuity arguments. The last term is 0 under the null hypothesis and o(1)

under the local alternatives. Therefore, it suffices to establish the asymptotic representation in the theorem
for the last sum in (24). The asymptotic representation follows immediately once we show the following three
claims.

Claim 1 : 1√
n

Pn
i=1 β(Xi){γy,δn(Ŷi)− γy,δn(Ỹi)}µδn(z) = −

1√
n

Pn
i=1 βu(Ui)γ

⊥
y,δn

(Ỹi)µδn(z) + oP (1).

Claim 2 :

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Ẑi){γy,δn(Ŷi)− γy,δn(Ỹi)} = oP (1), and

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Z̃i){γy,δn(Ŷi)− γy,δn(Ỹi)} = oP (1),

Claim 3 : 1√
n

Pn
i=1 βu,δn(Un,θ,i)γ

⊥
z,δn

(Z̃i)γ
⊥
y,δn

(Ỹi) =
1√
n

Pn
i=1 βu(Ui)γ

⊥
z,δn

(Z̃i)γ
⊥
y,δn

(Ỹi) + oP (1).
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Similarly as in the proof of Claim 1, we can show that

1√
n

nX
i=1

β(Xi){γz,δn(Ẑi)− γz,δn(Z̃i)}µδn(y) = −
1√
n

nX
i=1

βu(Ui)γ
⊥
z,δn(Z̃i)µδn(y) + oP (1). (25)

Let us see how the three claims lead to the wanted result of the theorem. First, write

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Ẑi)γ

⊥
y,δn(Ŷi) =

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Ẑi)

n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
+
1√
n

nX
i=1

β(Xi)
n
γz,δn(Ẑi)− γy,δn(Z̃i)

o
γ⊥y,δn(Ỹi) +

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi).

By applying Claim 2 and (25), we reduce the above sums to

1√
n

nX
i=1

β(Xi)γ
⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi) + oP (1).

The proof is complete by Claim 3 and the fact that

1√
n

nX
i=1

βu(Ui)γ
⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi) =

1√
n

nX
i=1

βu(Ui)γ
⊥
z (Z̃i)γ

⊥
y (Ỹi) + oP (1),

as can be shown using arguments similar to the proof of Lemma A3 below.

Proof of Claim 1: Let γ00z,δn denote the second order derivative of γz,δn . Take M to be a positive integer
greater than 1/(2ε)− 1 where ε is the constant in Assumption 5(ii). By Taylor expansion,

1√
n

nX
i=1

β(Xi)µδn(z){γy,δn(Ŷi)− γy,δn(Ỹi)} (26)

=
1√
n

nX
i=1

β(Xi)µδn(z)γ
0
y,δn(Ỹi)

n
Ŷi − Ỹi

o
+

M−1X
m=2

1

m!
√
n

nX
i=1

β(Xi)µδn(z)γ
(m)
y,δn

(Ỹi)
n
Ŷi − Ỹi

om
+
1

M !

1√
n

nX
i=1

β(Xi)µδn(z)γ
(M)
y,δn

(Ỹ ∗i )
n
Ŷi − Ỹi

oM
where Ỹ ∗i lies on the line segment between Ŷi and Ỹi. Note that max1≤i≤n{Ẑi − Z̃i}m = OP (n

−m/2h−m +
h2m) by Lemma B3 below. We analyze the second sum. Let FY,n be the class of functions that contain
F̂Y |U (·|Fn,θ̂,i(·)) with probability one and have uniform distance from FY |U (·|F0(·)) bounded by Cn−1/4. By
Lemmas A1 and A2 above, we can take such classes to satisfy

logN[](ε,FY,n, Lp(P )) ≤ C(h−2ε−1)p/(p−1).

As for the second sum in (26), we consider the following process

1√
n

nX
i=1

β(Xi)µδn(z)γ
(m)
y,δn

(Ỹi)
n
FY (Yi,Xi)− Ỹi

om−1 n
Ŷi − Ỹi

o
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indexed by (β, FY ) ∈ G̃n ×FY,n and (y, z, u) ∈ [0, 1]3. By Lemma B1 below, the above sum is equal to

1√
n

nX
i=1

E

∙
β(Xi)µδn(z)γ

(m)
y,δn

(Ỹi)
n
FY (Yi,Xi)− Ỹi

om−1 n
γy(Ỹi)− Ỹi

o
|Ui
¸
y=Ỹi

+ oP (1).

Using Fubini Theorem, we can check that the leading sum above is a mean zero process. Note that
supFY ∈FY,nsup(y,x)|FY (y, x) − FY |U (y|F0(x))| = OP (n

−1/4) by the construction of FY,n. Hence the second
sum in (26) is oP (1). The third sum in (26) is readily shown to beOP (δ

−(M+1)
n n1/2{n−1/2h−1+h2}M ) = oP (1)

by the choice of δn and M.

Now, we turn to the first sum in (26). By Lemma B1, the sum is asymptotically equivalent to

1√
n

nX
i=1

βu(Ui)E
h
µδn(z)γ

0
y,δn(Ỹi)

n
γy(Ỹi)− Ỹi

o
|Ui
i
z=Z̃i

.

The proof is complete by noting that

E
h
µδn(z)γ

0
y,δn(Ỹi)

n
1{y ≤ Ỹi}− Ỹi

o
|Ui
i
y=Ỹi

= µδn(z)

Z
γ0y,δn(ȳ)

n
1{Ỹi ≤ ȳ}− ȳ

o
dȳ,

where by integration by parts, the last term is equal to −µδn(z)
n
γy,δn(Ỹi)− µδn(y)

o
. The equality uses the

fact that Ỹi is independent of Ui.

Proof of Claim 2 : We deal with only the first statement. Note that

1√
n

nX
i=1

β(Xi)γz,δn(Ẑi)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
(27)

=
1√
n

nX
i=1

β(Xi)γz,δn(Z̃i)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
+
1√
n

nX
i=1

β(Xi)
n
γz,δn(Ẑi)− γz,δn(Z̃i)

on
γy,δn(Ŷi)− γy,δn(Ỹi)

o
.

The first sum is equal to (by expanding the terms and following the same steps in the proof of Claim 1)

1√
n

nX
i=1

β(Xi)γz,δn(Z̃i)γ
0
y,δn(Ỹi)

n
Ŷi − Ỹi

o
+ oP (1).

By Lemma B1 and the stochastic equicontinuity arguments as in the proof of Claim 1, the sum above is
asymptotically equivalent to

1√
n

nX
i=1

E
h
cn(Si; r)

n
1{y0 ≤ Yi}− Ỹi

o
|Ui
i
y0=Yi

, (28)
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where cn(Si; r) = βu(Ui)γz,δn(Z̃i)γ
0
y,δn

(Ỹi). Now, write E
h
cn(Si; r)

n
1{y0 ≤ Yi}− Ỹi

o
|Ui
i
y0=Yi

as

βu(Ui)µδn(z)E
h
γ0y,δn(Ỹi)

n
1{y0 ≤ Ỹi}− Ỹi

o
|Ui
i
y0=Ỹi

(29)

+βu(Ui)E
h
{E
h
γz,δn(Z̃i)|Ui, Ỹi

i
− µδn(z)}γ

0
y,δn(Ỹi)

n
1{y0 ≤ Ỹi}− Ỹi

o
|Ui
i
y0=Ỹi

.

Because Ỹi is independent of Ui, the expectation in the first term is written asZ 1

Ỹi

γ0y,δn(u)du−
Z 1

0

γ0y,δn(u)udu = −{γy,δn(Ỹi)− µδn(y)}.

We turn to the last term in (29). Let µδn(Ui, z|y) = E
h
γz,δn(Z̃i)|Ui, Ỹi = y

i
and write

E
h
{µδn(Ui, z|y)− µδn(z)}γ

0
y,δn(Ỹi)

n
1{y0 ≤ Ỹi}− Ỹi

o
|Ui
i
y0=Ỹi

=

Z 1

0

Z y/δn

−y/δn
{µδn(Ui, z|y)− µδn(z)}φ (ȳ)

n
1{Ỹi ≤ y + δnȳ}− (y + δnȳ)

o
f(z̄, y + δnȳ|Ui)dz̄dȳ

=

Z 1

0

Z ∞
−∞
{µδn(Ui, z|y)− µδn(z)}

n
1{Ỹi ≤ y + δnȳ}− (y + δnȳ)

o
f(z̄, y|Ui)dz̄dȳ +OP (n

−1/2+ε1δn),

where f(z̄, ȳ|Ui) denotes the conditional density of (Z̃i, Ỹi) given Ui. The last equality can be seen to follow
easily by the continuity of the joint distribution of Ỹi and Z̃i (see Assumption 1). The term OP (n

−1/2+ε1δn)
is due to the chosen local alternatives. Note that f(z̄, y|Ui) = f(z̄|y, Ui) so that the above is equal toZ ∞

−∞
E
h
{µδn(Ui, z|y)− µδn(z)}

n
1{y0 ≤ Ỹi + δnȳ}− (Ỹi + δnȳ)

o
|Ui, Ỹi = y

i
y0=Ỹi

dȳ

=

Z ∞
−∞

n
1{Ỹi ≤ y + δnȳ}− (y + δnȳ)

o
{µδn(Ui, z|y)− µδn(z)}dȳ.

Hence

1√
n

nX
i=1

E
h
{µδn(Ui, z|y)− µδn(z)}γ

0
y,δn(Ỹi)

n
1{y0 ≤ Ỹi}− Ỹi

o
|Ui
i
y0=Ỹi

=

Z ∞
−∞

1√
n

nX
i=1

n
1{Ỹi ≤ y + δnȳ}− (y + δnȳ)

o
{µδn(Ui, z|y)− µδn(z)}dȳ +OP (n

ε1δn).

Note that leading sum is mean zero, and under the null and local alternatives it is oP (1). Therefore, the first
sum in (27) becomes − 1√

n

Pn
i=1 βu(Ui)µδn(z)

n
γy,δn(Ỹi)− µδn(y)

o
+ oP (1).

Let us turn to the second term in (27). Expanding the term similarly as before, we observe that the
term is asymptotically equivalent to

1√
n

nX
i=1

β(Xi)γ
0
z,δn(Z̃i)γ

0
y,δn(Ỹi)

n
Ẑi − Z̃i

on
Ŷi − Ỹi

o
1i,δn(r).

By Lemma B3 below and Assumption 5(ii), we find that sup1≤i≤n|Ẑi − Z̃i| = oP (n
−1/4) and sup1≤i≤n|Ŷi −

Ỹi| = oP (n
−1/4). Hence the above sum is equal to oP (1).
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Proof of Claim 3 : Let G̃n be the class Gn in Corollary A1 with βu2(u1) = u1 with Λn as defined at
the beginning of the proof of this theorem. Let G0n = {G ∈ G̃n : ||G − F0 ◦ λ0||∞ ≤ Cεn} where εn is a
decreasing sequence εn = o(n−1/4). Without loss of generality, we assume that βu(·) is increasing. Define
du,G(x) = βu(G(Xi))− βu(G0(Xi)) where G(·) ∈ G0n. We consider the following:

1√
n

nX
i=1

du,G(Xi)γ
⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi) (30)

=
1√
n

nX
i=1

n
du,G(Xi)γ

⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi)−E[du,G(Xi)γ

⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi)]

o
+
√
nE[du,G(Xi)γ

⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi)].

Note that E[d2u,G(Xi)] ≤ E[{βu(Ui + Cεn) − βu(Ui − Cεn)}2] = o(1). By Lemma A1 and checking the
bracketing entropy for the class

{du,G(·)γz,δn(·){γy,δn(·)− µδn(y)} : (G, r) ∈ G
0
n × [0, 1]3},

we can show that the first process is stochastically equicontinuous in (G, r) ∈ G0n × [0, 1]3 and hence it is
oP (1). The last term in (30) is equal to

√
nE[{βu(Un,θ,i)− βu(Ui)}E[γ⊥z,δn(Z̃i)γ

⊥
y,δn(Ỹi)|Uθ,i, Ui]|(Yk,Xk, Zk)

n
k=1,k 6=i = (yk, xk, zk)

n
k=1,k 6=i],

where (yk, xk, zk)nk=1,k 6=i constitute the function G. Hence the above is bounded by

√
nE

h
{βu(Ui + Cεn)− βu(Ui − Cεn)}|E[γ⊥z,δn(Z̃i)γ

⊥
y,δn(Ỹi)|Uθ,i, Ui]|

i
. (31)

Under the null hypothesis or the local alternatives in the theorem,¯̄̄
E[γ⊥z,δn(Z̃i)γ

⊥
y,δn(Ỹi)|Uθ,i, Ui]

¯̄̄
=

¯̄̄
E[γ⊥z,δn(Z̃i)γ

⊥
y,δn(Ỹi)|Uθ,i, Ui]−E[γ

⊥
z,δn(Z̃i)γ

⊥
y,δn(Ỹi)|Ui]

¯̄̄
+ o(n−1/4).

By applying Assumption 2 (ii)(d) to Lemma A2(ii) of Song (2006), we deduce that the leading term is
o(n−1/4). Hence the last term in (30) is o(1).

(ii) Since the products of the indicator functions constitute P -Donsker classes, the weak convergence result
immediately follows. The local shift result follows from the uniform law of large numbers.

Lemma A3 : 1√
n

Pn
i=1 β(Xi)

n
γ⊥z (Ẑi)γ⊥y (Ŷi)− γ⊥z,δn(Ẑi)γ

⊥
y,δn

(Ŷi)
o
= 1√

n

Pn
i=1 βu(Ui)∆z,y,n(Z̃i, Ỹi) +

oP (1) uniformly over (β, r) ∈ Gn × (0, 1]2 × [0, 1].

Proof of Lemma A3 : Let ηn = n−1/2h−1+h2. For some sufficiently largeM > 0, let 1n = 1{max1≤i≤n|Ŷi−
Ỹi| < Mηn,max1≤i≤n|Ẑi − Z̃i| < Mηn}. Then, since by Lemma B3 F̂Y |U (·|·) converges uniformly to
FY |U (·|·) at the rate of OP (ηn), we obtain P {1n = 1} < ε by choosing arbitrarily large M. Hence it suffices
to consider only the event 1n = 1 which we assume throughout the proof. First we show that

1√
n

nX
i=1

β(Xi)
n
γ⊥z (Ẑi)γ

⊥
y (Ŷi)− γ⊥z,δn(Ẑi)γ

⊥
y,δn(Ŷi)

o
=

1√
n

nX
i=1

β(Xi)∆z,y,n(Z̃i, Ỹi) + oP (1), (32)
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uniformly over (β, r) ∈ Gn × [0, 1]3. We write

1√
n

nX
i=1

β(Xi)
n
γ⊥z (Ẑi)γ

⊥
y (Ŷi)− γ⊥z,δn(Ẑi)γ

⊥
y,δn(Ŷi)−∆z,y,n(Z̃i, Ỹi)

o
=

1√
n

nX
i=1

β(Xi)
n
γy(Ŷi)− γy(Ỹi)

o
γ⊥z (Ẑi)−

1√
n

nX
i=1

β(Xi)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
γ⊥z,δn(Ẑi)

+
1√
n

nX
i=1

β(Xi)
n
γz(Ẑi)− γz(Z̃i)

o
γ⊥y (Ỹi)−

1√
n

nX
i=1

β(Xi)
n
γz,δn(Ẑi)− γz,δn(Z̃i)

o
γ⊥y,δn(Ỹi).

We focus only on the first difference of two sums which we write

1√
n

nX
i=1

β(Xi)
n
ηy,δn(Ŷi)− ηy,δn(Ỹi)

o
γ⊥z (Ẑi) +

1√
n

nX
i=1

β(Xi)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
ηz,δn(Ẑi), (33)

where ηy,δn(·) = γy(·)− γy,δn(·). Write
1√
n

Pn
i=1 β(Xi)

n
ηy,δn(Ŷi)− ηy,δn(Ỹi)

o
γ⊥z (Ẑi) as

1√
n

nX
i=1

β(Xi)
n
ηy,δn(Ŷi)− ηy,δn(Ỹi)

o
γ⊥z (Ẑi)1

n
|Ỹi − y| ≤ ηn

o
+
1√
n

nX
i=1

β(Xi)
n
ηy,δn(Ŷi)− ηy,δn(Ỹi)

o
γ⊥z (Ẑi)1

n
|Ỹi − y| > ηn

o
.

Observe that for any u, y ∈ [0, 1], we can write
¯̄
ηy,δn(u)− ηy,δn(u

0)
¯̄
1 {|u− y| ≤ ηn} as¯̄̄̄

1− Φ
µ
y − u

δn

¶
− γy(u

0) +Φ
µ
y − u0

δn

¶¯̄̄̄
1 {y < u ≤ y + ηn}

+

¯̄̄̄
−Φ

µ
y − u

δn

¶
− γy(u

0) +Φ
µ
y − u0

δn

¶¯̄̄̄
1 {y − ηn ≤ u ≤ y}

≤
½
Φ

µ
y − u+ ηn

δn

¶
− Φ

µ
y − u

δn

¶¾
1 {y < u ≤ y + ηn}

+

½
Φ

µ
y − u− ηn

δn

¶
− Φ

µ
y − u

δn

¶¾
1 {y − ηn ≤ u ≤ y} .

The inequality can be checked by drawing the graph of ηy,δn(u). Taking integral and applying change of
variables, the first term becomes

δn

Z 0

−ηn/δn

½
Φ

µ
u+

ηn
δn

¶
− Φ (u)

¾
du = O

¡
δn{exp(0)− exp(−(ηn/δn)2

¢
}) ≤ Cη3n/δ

2
n.

We deal with the second term similarly to deduce that these last two terms are bounded by C ηn
δn
1 {|u− y| ≤ ηn} . Therefore,¯̄̄̄

¯ 1√n
nX
i=1

β(Xi)
n
ηy,δn(Ŷi)− ηy,δn(Ỹi)

o
γ⊥z (Ẑi)1

n
|Ỹi − y| ≤ ηn

o¯̄̄̄¯
≤ Cη2n

δ2n

(
1√
n

nX
i=1

³
1
n¯̄̄
Ỹi − y

¯̄̄
≤ ηn

o
−E1

n¯̄̄
Ỹi − y

¯̄̄
≤ ηn

o´)
+

Cη3n
√
n

δ2n
= oP (1).
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Now note that 1 {u > y + ηn}
¯̄
ηy,δn(u)− ηy,δn(u

0)
¯̄
is bounded by

1 {u > y + ηn}
¯̄
ηy,δn(u)− ηy,δn(u− ηn)

¯̄
≤ 1 {u > y + ηn}

½
Φ

µ
y − u

δn
+

ηn
δn

¶
− Φ

µ
y − u

δn

¶¾
.

Reasoning similarly with 1 {u < y − ηn}
¯̄
ηy,δn(u)− ηy,δn(u

0)
¯̄
, we deduce that¯̄̄̄

¯ 1√n
nX
i=1

β(Xi)
n
ηy,δn(Ŷi)− ηy,δn(Ỹi)

o
γ⊥z (Ẑi)1

n
|Ỹi − y| > ηn

o¯̄̄̄¯ (34)

≤ 1√
n

nX
i=1

1
n
Ỹi > y + ηn

o ¯̄̄
ηy,δn(Ỹi − ηn)− ηy,δn(Ỹi)

¯̄̄
+

1√
n

nX
i=1

1
n
Ỹi < y − ηn

o ¯̄̄
ηy,δn(Ỹi)− ηy,δn(Ỹi + ηn)

¯̄̄
.

Write the first sum as

1√
n

nX
i=1

³
1
n
Ỹi > y + ηn

o ¯̄̄
ηy,δn(Ỹi − ηn)− ηy,δn(Ỹi)

¯̄̄
−E

h
1
n
Ỹi > y + ηn

o ¯̄̄
ηy,δn(Ỹi − ηn)− ηy,δn(Ỹi)

¯̄̄i´
+
√
nE

h
1
n
Ỹi > y + ηn

o ¯̄̄
ηy,δn(Ỹi − ηn)− ηy,δn(Ỹi)

¯̄̄i
Since ηn/δn → 0, we can show that the first term is oP (1) using the usual arguments of stochastic equicon-
tinuity. The second sum is equal to

√
nE

"
1
n
Ỹi > y + ηn

o(
Φ

Ã
y − Ỹi
δn

+
ηn
δn

!
− Φ

Ã
y − Ỹi
δn

!)#

=
√
n

Z 1

y+ηn

½
Φ

µ
y − u

δn
+

ηn
δn

¶
− Φ

µ
y − u

δn

¶¾
du = δn

√
n

Z (1−y)/δn

ηn/δn

½
Φ

µ
−u+ ηn

δn

¶
− Φ (−u)

¾
du

= O
¡√

nδn
©
exp(0)− exp(−η2n/δ2n)

ª¢
= O

Ã
√
n

µ
ηn
δn

¶2
δn

!
= O

µ√
nη2n
δn

¶
= o(1).

The last equality is due to the fact that
√
n(n−1/2h−1+h2)2δ−1n → 0. Similarly, we can show that the second

term in (34) is oP (1). Hence we conclude that the first sum in (33) is oP (1). We turn to the second sum
there. First, write the sum as

1√
n

nX
i=1

β(Xi)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

on
ηz,δn(Ẑi)− ηz,δn(Z̃i)

o
(35)

+
1√
n

nX
i=1

β(Xi)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
ηz,δn(Z̃i).

Similarly as before, we can show that the first sum is oP (1). Take a sequence η̃n such that η̃n/δn →∞ and
η̃n → 0. Then write

ηy,δn(u) = 1 {u ≤ y}
½
1− Φ

µ
y − u

δn

¶¾
− 1 {u > y}Φ

µ
y − u

δn

¶
= 1 {y − η̃n < u ≤ y}

½
1− Φ

µ
y − u

δn

¶¾
− 1 {u > y + η̃n}Φ

µ
y − u

δn

¶
+1 {u ≤ y − η̃n}

½
1− Φ

µ
y − u

δn

¶¾
− 1 {y + η̃n ≥ u > y}Φ

µ
y − u

δn

¶
.
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From this we deduce that

|ηy,δn(u)| ≤ 1 {y − η̃n < u ≤ y + η̃n} /2 + 1 {u > y + η̃n}Φ
µ
− η̃n
δn

¶
+ 1 {u ≤ y − η̃n}

½
1− Φ

µ
η̃n
δn

¶¾
.

Hence the L2-norm of ηy,δn(u) with respect the uniform distribution [0, 1] vanishes as n goes to infinity.
Using this fact and following the steps of the proof of Claim 2, we can show that the second sum in (35) is
oP (1).

Now, for the completion of the proof, it suffices to show that

1√
n

nX
i=1

{β(Xi)− βu(Ui)}∆z,y,n(Z̃i, Ỹi) = oP (1).

The proof can be proceeded exactly in the same manner as in the proof of Claim 3. We omit the details.

Proof of Theorem 2 : (i) Let G0n be as in the proof of Lemma A2 and let e(p; z) = (z − p)/
p
p− p2. For

a fixed sequence Dn,i = {(zk, uk)}nk=1,k 6=i, define

pn(u;Dn,i) =

Pn
j=1,j 6=i zjKh(uj − u)Pn
j=1,j 6=iKh(uj − u)

.

Let Dn be the set of sequences {(zk, uk)}nk=1,k 6=i ∈ {0, 1}n−1 × [0, 1]n−1 such that

inf
u∈[0,1]

1

nh

nX
j=1,j 6=i

Kh(uj − u) > η

for a small η ∈ (0, 1) and ||pn(·; {(zk, uk)}nk=1,k 6=i)−p(·)||∞ ≤ εn for a sequence εn decreasing at a slower rate
than the convergence rate of p̂. Let Pn = {pn(·;Dn) : Dn ∈ Dn} and PGn = {pn(G(·);Dn) : (Dn,G) ∈ Dn ×
G0n}. Since by Lemma B3, p̂(·) converges uniformly to p(·) at the rate of oP (n−1/4) and 1

nh

Pn
j=1,j 6=iKh(Ûj−

u) is uniformly consistent for f(u) = 1, the probability P
©
p̂ ∈ PGn

ª
is bounded by

P
©
p̂ ∈ PGn

ª
+ P

⎧⎨⎩ 1

nh

nX
j=1,j 6=i

Kh(Ûj − u) < η

⎫⎬⎭→ 1 as n→∞.

Let us compute the bracketing entropies of Pn and PGn . Since |pn(u − ε) − p(u + ε)| ≤ Ch−2ε, Lemma A2
and Lemma A1 above gives

logN[](ε,Pn, Lp(P )) ≤ −C log(h)− C log(ε).

logN[](ε,PGn , Lp(P )) ≤ logN[]((h
−2ε)p,Λn, || · ||∞) + C1h

−2/ε.

Now, consider for (β, p̃) ∈ Gn ×PGn ,

1√
n

nX
i=1

β(Xi)e(p̃(Xi);Zi)
n
γy,δn(Ŷi)− µδn(y)

o
(36)

=
1√
n

nX
i=1

β(Xi)e(p̃(Xi);Zi)
n
γy,δn(Ŷi)− γy,δn(Ỹi)

o
+

1√
n

nX
i=1

β(Xi)e(p̃(Xi);Zi)
n
γy,δn(Ỹi)− µδn(y)

o
.
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Similarly as in the proof of Claim 2, the leading sum in the second line is equal to

− 1√
n

nX
i=1

βu(Ui)E [e(p(Ui);Zi)|Ui]
n
γy,δn(Ỹi)− µδn(y)

o
+ oP (1) = oP (1)

leaving us to deal with the last sum in (36). Using similar arguments in the proof of Claim 3 along with the
fact that e(p; z) is infinitely differentiable in p on (ε, 1− ε) with uniformly bounded derivatives, we can show
that

1√
n

nX
i=1

βu(G(X)) {e(p̄(G(X));Zi)− e(p(Ui);Zi)}
n
γy,δn(Ỹi)− y

o
= oP (1),

where p̄ ∈ Pn. The proof is complete.

(ii) The proof is similar to that of Theorem 1(ii) and is omitted.

Proof of Theorem 3 : We consider only the case of

ν̄∗n,b(r) =
1√
n

nX
i=1

ωi,bβu(Ûi)
Zi − p̂(Ui)p
p̂(Ui)− p̂(Ui)2

n
γy(Ŷi)− y

o
.

The other case can be dealt with similarly given the result of Theorem 1. Following the proof of Theorem
2, we can show that

1√
n

nX
i=1

ωi,bβu(Ûi)
Zi − p̂(Ui)p
p̂(Ui)− p̂(Ui)2

n
γy(Ŷi)− y

o
(37)

=
1√
n

nX
i=1

ωi,bβu(Ui)
Zi − p(Ui)p
p(Ui)− p(Ui)2

n
γy(Ỹi)− y

o
+ oP (1)

in probability. The weak convergence of the above process follows by the almost sure conditional multiplier
central limit theorem of Ledoux and Talagrand (1988) (e.g. see Theorem 2.9.7 of van der Vaart and Wellner
(1996), p.183) and it is easy to see that the covariance function of the above is equal to that of

1√
n

nX
i=1

βu(Ui)
Zi − p(Ui)p
p(Ui)− p(Ui)2

n
γy(Ỹi)− y

o
,

under the null hypothesis, because ωi is centered, i.i.d., bounded, independent of (Xi, Yi, Zi)
n
i=1 and Eω

2
i = 1.

10.2 UniformAsymptotic Representation of a Semiparametric Em-
pirical Process

Let Ψn and Φn be classes of functions ψ : RdS → R and ϕ : RdW ×RdW → R that satisfy Assumptions B1
and B2 below. Then we introduce a kernel estimator of gϕ(u,w) = E [ϕ(W,w)|U = u] as follows:

ĝϕ,θ,i(u,w) =
1

n−1
Pn

j=1,j 6=i ϕ(Wj , w)Kh (Un,θ,j − u)
1

n−1
Pn

j=1,j 6=iKh (Un,θ,j − u)
. (38)

Let us define a shrinking neighborhood of θ0 : Θn = {θ ∈ Θ : ||θ − θ0|| ≤ Cn−1/4} for a fixed constant C.
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Assumption B1 : The functions gϕ,θ(u,w) are twice continuously differentiable in u with the derivatives
g
(1)
ϕ,θ(u,w) and g

(2)
ϕ,θ(u,w) satisfying E[supϕ∈Φ, θ∈Θ|g

(1)
ϕ,θ(Ui,Wi)|2+δ] and E[supϕ∈Φ, θ∈Θ|g(2)ϕ,θ(Ui,Wi)|2+δ] <

∞ for some δ > 0.

Assumption B2 : For classes Φn and Ψn, there exist bΦ, bΨ ∈ [0, 2) and sequences bn and dn such that
bΨ ∨ bΦ ∈ [ p

p−1+pδ ,
2

1+2δ ) for some δ > 0, p > 2, and

logN[](ε,Φn, || · ||p) < bnε
−bΦ , logN[](ε,Ψn, || · ||p) < dnε

−bΨ

and envelopes ϕ̃ and ψ̃ for Φn andΨn satisfy thatE[supw∈RdW |ϕ̃(W,w)|p|X] <∞,E[supw∈RdW |ϕ̃(w,W )|p|X] <
∞, and E[|ψ̃(S)|p|X] <∞, a.s., for some ε > 0.

Assumption B3 : (i) As for the kernel K, suppose that Assumption 5(i) holds. (ii) For δ in Assumption
B2 and for arbitrarily small ε > 0, h→ 0,

n
− 1
bΨ∨bΦ+δ+

1
2 (bn ∨ dn)

1
2 → 0, and n−1/2+εh−1 → 0.

We establish that under these conditions, the processes ∆̂n(θ, ϕ, ψ) and ∆n(θ, ϕ, ψ), (θ, ϕ, ψ) ∈ Θn ×
Φn ×Ψn defined by

∆̂n(θ, ϕ, ψ) =
1√
n

nX
i=1

ψ(Si) {ĝϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)}

are asymptotically equivalent uniformly over (θ, ϕ, ψ) ∈ Θn × Φn ×Ψn. Similar results in the case of series
estimation can be found in Lemma 1U of Escanciano and Song (2007) and Lemma 1U of Song (2007). A
related, nonuniform result was also obtained by Stute and Zhu (2005) (SZ hereafter).15

Lemma B1 : Suppose that Assumption 5 holds for the kernel and the bandwidth and Assumptions B1-B2
hold. Then

sup
(θ,ϕ,ψ)∈Θn×Φn×Ψn

¯̄̄̄
¯∆̂n(θ, ϕ, ψ)−

1√
n

nX
i=1

bψ,ϕ(Wi, Ui)

¯̄̄̄
¯ = oP (1),

where bψ,ϕ(w, u) = E [ψ(Si){ϕ(w,Wi)− gϕ(Ui,Wi)}|Ui = u] .

Proof of Lemma B1 : Define

ρ̂ϕ,θ,i(u,w) =
1

n− 1

nX
j=1,j 6=i

Kh(Un,θ,j − u)ϕ(Wj , w)

and write ĝϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi) as

ρ̂ϕ,θ,i(Un,θ,i,Wi)/f̂θ,i(Un,θ,i)− ρϕ(Ui,Wi)/f0(Ui)

=
h
ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)f̂θ,i(Un,θ,i)

in
1 + δ̃n,θ,i

o
/fθ(Un,θ,i)

=
h
ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)f̂θ,i(Un,θ,i)

in
1 + δ̃n,θ,i

o
,

15Note that we do not need the condition n1/2h2 → ∞ used by SZ. This condition was used to prove
Lemma 4.3 there. The formulation of our lemma is different and does not require a counterpart of Lemma
4.3.
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where δ̃n,θ,i = δn,θ,i + δ2n,θ,i(1− δn,θ,i)
−1 and δn,θ,i = f0(Ui)− f̂θ,i(Un,θ,i) and f0 and fθ are the density of a

uniform random variate. Let ∆n =max1≤i≤nsupθ∈Θn |f0(Ui)− f̂θ,i(Un,θ,i)|. Since f0(u) = 1, we have

∆n = max1≤i≤nsupθ∈Θn |f0(Un,θ,i)− f̂θ,i(Un,θ,i)| ≤ max1≤i≤nsupθ∈Θnsupu∈[0,1]
¯̄̄
f0(u)− f̂θ,i(u)

¯̄̄
= oP (1)

by Lemma B3 below, so that max1≤i≤nsupθ∈Θn
¯̄̄
δ̃n,θ,i

¯̄̄
≤ ∆n +∆

2
n/(1 −∆n) = oP (1). Hence it suffices to

show that

1√
n

nX
i=1

ψ(Si)
h
ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)f̂θ,i(Un,θ,i)

i
=

1√
n

nX
i=1

bψ,ϕ(Wi, Ui) + oP (1).

Since f0(·) = 1, we can write ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)f̂θ,i(Un,θ,i) as

ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi) + gϕ(Ui,Wi)
h
f0(Ui)− f̂θ,i(Un,θ,i)

i
.

As for the first difference, observe that

1√
n

nX
i=1

ψ(Si)
£
ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)

¤
=

1

(n− 1)√n

nX
i=1

nX
j=1,j 6=i

ψ(Si) [ϕ(Wj ,Wi)Kh(Un,θ,j − Un,θ,i)− gϕ(Ui,Wi)]

=
1

(n− 1)
√
n

nX
i=1

nX
j=1,j 6=i

ψ(Si) {ϕ(Wj ,Wi)− gϕ(Ui,Wi)}Kh(Un,θ,j − Un,θ,i)

− 1√
n

nX
i=1

ψ(Si)gϕ(Ui,Wi)
h
f0(Ui)− f̂θ,i(Un,θ,i)

i
.

Therefore, 1√
n

Pn
i=1 ψ(Si)

h
ρ̂ϕ,θ,i(Un,θ,i,Wi)− gϕ(Ui,Wi)f̂θ,i(Un,θ,i)

i
is equal to

1

(n− 1)
√
n

nX
i=1

nX
j=1,j 6=i

ψ(Si)∆ϕ,ijKh(Un,θ,j − Un,θ,i) + oP (1).

where ∆ϕ,ij = ϕ(Wj,Wi)− gϕ(Ui,Wi). Now, write the double sum as

1

(n− 1)√n

nX
i=1

nX
j=1,j 6=i

ψ(Si)∆ϕ,ij {Kh(Un,θ,j − Un,θ,i)−Kh(Uj − Ui)}

+
1

(n− 1)
√
n

nX
i=1

nX
j=1,j 6=i

ψ(Si)∆ϕ,ijKh(Uj − Ui) = A1n +A2n, say.
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Let us consider A1n first. Following the steps in the proof of Lemma 4.7 in SZ, we can write it as

1

(n− 1)nh2
nX
i=1

nX
j=1,j 6=i

ψ(Si)∆ϕ,ijK
0
µ
Uj − Ui

h

¶√
n {Un,j − Uj − (Un,i − Ui)}

+
1

(n− 1)
√
nh2

nX
i=1

nX
j=1,j 6=i

ψ(Si)∆ϕ,ijK
0
µ
Uj − Ui

h

¶
{Uθ,j − Uj − (Uθ,i − Ui)}+ oP (1)

= B1n +B2n, say.

Due to Lemma The derivation requires the counterparts of Lemmas 4.1 and 4.2 in SZ which are proved in
Lemmas B3 and B4 below. The term B2n corresponds to (4.13) in SZ and can be shown to be oP (1) in a
similar manner as there, leaving us to deal with B1n.

We turn to B1n which we write as

1

(n− 1)√n

nX
i=1

nX
j=1,j 6=i

qn(Sj , Si;π) + oP (1)

where qn(Sj , Si;π) = ψ(Si)∆ϕ,ij
1
h2K

0
³
Uj−Ui

h

´
{G1(Uj)− Uj −G2(Ui) + Ui} , with π = (ψ,ϕ,G1, G2) ∈

Ψn × Φn × G̃n × G̃n and G̃n is the class Gn in Corollary A1 with βu2(u1) = u1 such that for all G ∈ G̃n,
supu∈[0,1] |G(u)− u| < Cn−1/2+ε, and Λn being a singleton of F0 ◦ λ0. Observe that by the uniform central
limit theorem, Fn,j(u), Fn,i(u) ∈ G̃n with probability approaching one. The leading sum in the preceding
display is a U-process with a kernel depending on n. Let

q̄n(Sj , Si;π) = E [qn(Sj , Si;π)|Sj ] +E [qn(Sj , Si;π)|Si]− 2E [qn(Sj , Si;π)] and
un(Sj , Si;π) = qn(Sj , Si;π)− q̄n

and write the above double sum as

1

(n− 1)
√
n

nX
i=1

nX
j=1,j 6=i

q̄n(Sj , Si;π) +
1

(n− 1)
√
n

nX
i=1

nX
j=1,j 6=i

un(Sj , Si;π). (39)

First note thatE [qn(Sj , Si;π)|Si] = 0 becauseE [∆ϕ,ij |Si, Uj ] = 0. Hence the first double sum above becomes

1√
n

nX
j=1,j 6=i

E [qn(Sj , Si;π)|Sj] ,

which is equal to(after change of variables)

1√
n

nX
j=1,j 6=i

Z
bψ,ϕ(Wj , Uj + hv)

1

h
K0 (v) {G1(Uj)− Uj −G2(Uj + hv) + Uj + hv} dv.

The sum above is a mean zero process with its variance bounded by C(h−1n−1/2+ε)2 → 0. The convergence
uniform over (ψ,ϕ,G1, G2) ∈ Ψn ×Φn × G̃n × G̃n can be obtained using the usual stochastic equicontinuity
arguments. Later we show that the second sum in (39) vanishes in probability. Thus we conclude that
A1n = oP (1).

Now let us turn to A2n for which we let q∗n(Sj , Si;π) = ψ(Si)∆ϕ,ij
1
hK

³
Uj−Ui

h

´
and consider the following
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Hoeffding decomposition:

√
n

n− 1

nX
j=1,j 6=i

E [E [q∗n(Sj , Si;π)|Ui, Sj ] |Sj ] =
√
n

n− 1

nX
j=1,j 6=i

Z
bψ,ϕ(Wj , u)

1

h
K

µ
Uj − u

h

¶
du

=

√
n

n− 1

nX
j=1,j 6=i

Z
bψ,ϕ(Wj , Uj − u0h)K (u0) du0 =

√
n

n− 1

nX
j=1,j 6=i

bψ,ϕ(Wj , Uj).

We are left with the last sum in (39) which is a degenerate U-process. Let us define Jn = {qn(·, ·;π) :
π ∈ Πn}, Πn = Θn × Φn × [0, 1]. Using the bracketing entropy bound for Jn in Lemma B2 below, we can
apply Theorem 1 (i) in Turki-Moalla (1998), p. 878, to obtain 16

sup
π∈Φn×B×Λ

°°°°°° 1

(n− 1)√n

nX
i=1

nX
j=1,j 6=i

un(Sj , Si;π))

°°°°°° = oa.s(n
− 1
bΨ∨bΦ+δ+

1
2 (bn ∨ dn)

1
2 ) = oa.s(1)

by Assumption B2.

Lemma B2 : For the class Jn defined in the proof of Lemma B1, the following holds:

logN[](ε,Jn, || · ||p) ≤ Cε−(bΨ∨bΦ)(bn ∨ dn),

where C is a constant.

Proof of Lemma B2 : Define κh(u1, u2) = Kh (u1 − u2) and write

Jn =
n
ψ(·)κh(·, ·) {ϕ(·)− gϕ(·)} {G1(·)−G2(·)} : (ψ,ϕ,G1, G2) ∈ Ψn ×Φn × G̃n × G̃n

o
.

We can take its envelope as J̄n(Si, Sj) = 2ψ̄(Si)κh(Ui, Uj)ϕ̄(·). From tedious calculations,

logN[](ε,Jn, || · ||p) ≤ logN[](Cε/||J̄n||2p,Ψn, || · ||2p) + logN[](Cε/||J̄n||2p,Φn, || · ||2p)

≤ C(bn ∨ dn)
©
ε/||J̄n||2p

ª−(bΨ∨bΦ)
.

Since ||κh||2p is a constant uniformly over h > 0 by assumptions, we obtain the wanted result.

Lemma B3 : Let SW be the support of W and suppose that Φ0n = {ϕ(·, w); (ϕ,w) ∈ Φn × SW } satisfies
the same bracketing entropy condition as that for Φn in Assumption B2. Then

max1≤i≤nsup(ϕ,θ)∈Φn×Θnsup(u,w)∈[0,1]×RdW |ĝϕ,θ,i(u,w)− gϕ(u,w)| = OP (n
−1/2h−1b1/2n ) +OP (h

−2).

Proof of Lemma B3 : Let ρ̂ϕ,θ,i(u) be as defined in the proof of Lemma B1. Note that it suffices to show
that

max1≤i≤nsup(ϕ,θ)∈Φn×Θnsupu∈[0,1]
¯̄
ρ̂ϕ,θ,i(u,w)− gϕ(u,w)

¯̄
= oP (1)

because by putting ϕ = 1, the above implies the uniform consistency of the density estimator f̂θ,i(u), so
that the above leads to the wanted result of the lemma. (Recall the arguments in the beginning of the proof

16In Theorem 1(i) in Turki-Moalla (1998), we take λ = 1
bΦ∨bΨ − δ for δ in Assumption B2 and apply

Lemma B2.
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of Lemma B1.) Let G̃n be the class Gn in Corollary A1 with βu2(u1) = u1 and Λn = {λθ : θ ∈ Θn}. Let
ϕw(·) = ϕ(Wi, w). For each G ∈ G̃n, write

ρ̂ϕ,θ,i(u)− gϕ(u) =
1

n

nX
i=1

{Kh (G(Xi)− u)ϕ(Wi, w)−E [Kh (G(Xi)− u)ϕ(Wi, w)]}

+
1

n

nX
i=1

{E [Kh (G(Xi)− u)ϕ(Wi, w)]− gϕ(u,w)}

= Vn(G,u) +Bn(G,u) say.

We consider Vn first. Note thatK(u) is absolutely integrable and has Fourier transform K̃(r) = (2π)
R
eiruK(u)du

that satisfies
R
|K̃(r)|dr < ∞. Let us consider the variance part first. Following Parzen (1962), we can

bound max1≤i≤nsup(ϕ,θ)∈Φn×Θnsup(u,w)∈[0,1]×RdW

¯̄
ρ̂ϕ,θ,i(u)− gϕ(u)

¯̄
by

sup
G∈G̃n

sup
u∈[0,1]

Z ¯̄̄
e−iru/h

¯̄̄ ¯̄̄̄¯̄ 1nh
nX
j=1

n
e−irG(Xj)/hϕ(Wi, w)−E[e−irG(Xj)/hϕ(Wi, w)]

o¯̄̄̄¯̄ K̃(r)dr (40)

≤
Z
sup
G∈G̃n

¯̄̄̄
¯̄ 1n

nX
j=1

n
e−irG(Xj)ϕ(Wi, w)−E[e−irG(Xj)ϕ(Wi, w)]

o¯̄̄̄¯̄ K̃(hr)dr.
We define Ψn(r) = E

h
supG∈G̃n

¯̄̄
1
n

Pn
j=1

©
e−irG(Xj)ϕ(Wi, w)−E[e−irG(Xj)ϕ(Wi, w)]

ª¯̄̄i
. Then the L1 norm

of the last term in (40) is bounded by h−1
R
Ψn(r)|K̃(r)|dr. Later we will establish that

sup
r∈[−π,π]

Ψn(r) = O(n−1/2b1/2n ), (41)

from which we deduce that

max1≤i≤nsup(ϕ,θ)∈Φn×Θnsupu∈[0,1]
¯̄
ρ̂ϕ,θ,i(u)− gϕ(u)

¯̄
= Op(n

−1/2h−1b1/2n ). (42)

For the bias part Bn, we use Corollary A1 and follow the steps in (A.17) and (A.18) in Andrews (1995),
p.591, to show that

supG∈G̃nsupu∈[0,1] |Bn(G,u)| = Op(h
−2).

We turn to the statement in (41). Define Vn = {exp(−irG(·))ϕ(·) : (r,G,ϕ) ∈ [0, 1]× G̃n × Φ0n × SW }.
Note that |e−ir1G(x) − e−ir2G(x)| ≤ |r1 − r2| and

| exp[−irG1(x)]− exp[−irG2(x)]| ≤ |G1(x)−G2(x)|.

By Theorem 2.7.11. of Van der Vaart and Wellner (1996), p.164, and by applying Corollary A1 above,

logN[](Cε,Vn, || · ||p) ≤ logN(ε, G̃n, || · ||2p) + logN(ε,Φn, || · ||2p)
≤ logN(ε,Λn, || · ||2p) + logN(ε,Φn, || · ||2p) + C/ε

≤ −C log(ε) + bnε
−bΦ + C/ε.

We obtain (41) by using Assumption B2 and the maximal inequality (Pollard (1989)).
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Lemma B4 : (i) max1≤i≤nsupθ:θ∈Θn |Uθ,i − Ui| = oP (n
−1/4).

(ii) supθ:θ∈Θnsupx |Fn,θ,i(λθ(x))− Fθ(λθ(x))− {Fn,i(λ0(x))− F0(λ0(x))}| = oP
¡
n−3/4

¢
.

Proof of Lemma B4 : (i) Let ∆n =supθ∈Θn ||λθ − λ0||∞. Note that

|Fθ(λθ(Xi))− Ui| ≤ |E [1 {λθ(Xj) ≤ λθ(Xi)}− 1 {λ0(Xj) ≤ λ0(Xi)} |Xi]|
≤ |E [1 {λ0(Xi)− 2∆n ≤ λ0(Xj) ≤ λ0(Xi) + 2∆n} |Xi]| ≤ C∆n

because the density of λ0(Xi) is uniformly bounded. Since ∆n = oP (n
−1/4), we obtain the wanted result.

(ii) The LHS term is bounded by

supθ:θ∈Θnsupλ̄∈Ssupv∈[−δn,δn]

¯̄̄̄
¯̄ 1n

nX
j=1

£
∆θ(Xj ; λ̄, v)−E∆θ(Xj ; λ̄, v)

¤¯̄̄̄¯̄
where ∆θ(Xj ; λ̄, v) = 1

©
λθ(Xj) ≤ λ̄+ v

ª
− 1

©
λ0(Xj) ≤ λ̄

ª
. Observe that for each (θ1, λ̄1, v1) ∈ Θn × S ×

[−δn, δn],n
E
h
supθ2∈Θn:||θ1−θ2||<δsupλ̄2∈S:|λ̄1−λ̄2|<δsupv2∈[−δn,δn]:|v1−v2|<δ

¯̄
∆θ1(Xj ; λ̄1, v1)−∆θ2(Xj ; λ̄2, v2)

¯̄2io1/2
≤

©
2E
£
1
©
λ̄1 + v1 − 2δ ≤ λ0(Xj) ≤ λ̄1 + v1 + 2δ

ª¤ª1/2 ≤ Cδ1/2.

Therefore, for H =
©
∆θ(·; λ̄, v) : (θ, λ̄, v) ∈ Θn × S × [−δn, δn]

ª
, where δn = o(n−1/4),

logN[](ε,H, || · ||2) ≤ logN[](Cε
2,Θn × S × [−δn, δn], || · ||(1))

≤ logN(Cε2,Θn, || · ||) + logN(Cε2,S, | · |) + logN(Cε2, [−δn, δn], | · |) ≤ C log ε.

where ||(θ1, λ̄1, v1)−(θ2, λ̄2, v2)||(1) = ||θ1−θ2||+|λ̄1−λ̄2|+|v1−v2|. Hence H is of polynomial discrimination
(Pollard (1984)) and hence P -Donsker. This implies that

supθ:θ∈Θnsupλ̄∈Ssupv∈[−δn,δn]

¯̄̄̄
¯̄ 1n

nX
j=1

£
∆θ(Xj ; λ̄, v)−E∆θ(Xj; λ̄, v)

¤¯̄̄̄¯̄
= OP

µ
n−1/2

°°°°nE hsup(θ,λ̄,v)∈Θn×S×[−δn,δn]∆2θ1(Xj ; λ̄1, v1)
io1/2°°°°¶ = oP

³
n−3/4

´
.
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Table 1: Empirical Size and Power of Tests using Simulated Data and CV-KS

Exp Ind.

DGP κ n = 100 n = 300 n = 100 n = 300

DGP 1 0 0.062 0.049 0.060 0.048

0.5 0.432 0.885 0.395 0.875

DGP 2 0 0.082 0.056 0.084 0.052

0.5 0.339 0.874 0.344 0.786

Table 2: Empirical Size and Power of Tests using Simulated Data and CV-CM

Exp Ind.

DGP κ n = 100 n = 300 n = 100 n = 300

DGP 1 0 0.057 0.057 0.057 0.062

0.5 0.430 0.881 0.405 0.894

DGP 2 0 0.079 0.047 0.072 0.038

0.5 0.328 0.862 0.300 0.766
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Table 3: Empirical Size and Power of Tests from Simulated Data for Quantile Treatment

Effects via CV-KS

Exp Ind

DGP κ quantile n = 100 n = 300 n = 100 n = 300

0.2 0.080 0.063 0.087 0.051

0 0.5 0.093 0.068 0.084 0.063

DGP 1 0.8 0.083 0.069 0.077 0.071

0.2 0.297 0.700 0.366 0.730

0.5 0.5 0.422 0.832 0.431 0.833

0.8 0.383 0.745 0.353 0.725

0.2 0.090 0.059 0.080 0.058

0 0.5 0.088 0.057 0.088 0.063

DGP 2 0.8 0.088 0.069 0.089 0.070

0.2 0.509 0.936 0.416 0.872

0.5 0.5 0.234 0.408 0.306 0.572

0.8 0.187 0.405 0.141 0.374

Table 4: Empirical Size and Power of Tests from Simulated Data for Quantile Treatment

Effects via CV-CM

Exp Ind

DGP κ quantile n = 100 n = 300 n = 100 n = 300

0.2 0.081 0.049 0.080 0.052

0 0.5 0.088 0.055 0.910 0.046

DGP 1 0.8 0.074 0.057 0.086 0.054

0.2 0.282 0.698 0.359 0.742

0.5 0.5 0.405 0.816 0.403 0.842

0.8 0.349 0.746 0.320 0.735

0.2 0.078 0.067 0.073 0.068

0 0.5 0.079 0.062 0.064 0.064

DGP 2 0.8 0.067 0.076 0.085 0.055

0.2 0.527 0.959 0.388 0.908

0.5 0.5 0.214 0.455 0.294 0.623

0.8 0.145 0.388 0.109 0.349
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Table 5: The p-values from Testing Y0 ⊥ Z |p(X) using the JTPA data via CV-KS

Quarters Exp Ind

1 0.843 0.129

2 0.657 0.402

3 0.480 0.536

4 0.931 0.524

5 0.750 0.128

6 0.712 0.162

Joint 0.903 0.338

Table 6: The p-values from Testing Y0 ⊥ Z |p(X) using the JTPA data via CV-CM

Quarters Exp Ind

1 0.877 0.099

2 0.596 0.262

3 0.567 0.187

4 0.976 0.340

5 0.480 0.230

6 0.723 0.242

Joint 0.778 0.262
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Table 7 : The p-values from Testing 1{Y0 ≤ q0τ(X)} ⊥ Z | p(X) using the JTPA data with
βu(U) = exp(Uu) and CV-KS

Quarters\Quantiles 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.764 0.634 0.318 0.480 0.779 0.461 0.526 0.922 0.171

2 0.680 0.589 0.890 0.837 0.564 0.118 0.106 0.950 0.962

3 0.715 0.733 0.518 0.858 0.886 0.205 0.152 0.109 0.213

4 0.744 0.726 0.392 0.427 0.782 0.594 0.403 0.670 0.683

5 0.753 0.740 0.708 0.395 0.709 0.521 0.504 0.832 0.663

6 0.685 0.733 0.930 0.312 0.385 0.744 0.531 0.248 0.073

Table 8 : The p-values from Testing 1{Y0 ≤ q0τ(X)} ⊥ Z | p(X) using the JTPA data with
βu(U) = 1{U ≤ u} and CV-KS.

Quarters\Quantiles 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.986 0.345 0.111 0.111 0.099 0.034 0.127 0.687 0.509

2 0.975 0.316 0.675 0.226 0.195 0.015 0.099 0.755 0.926

3 0.991 0.986 0.745 0.338 0.441 0.158 0.109 0.126 0.365

4 0.995 0.981 0.709 0.794 0.412 0.228 0.170 0.590 0.445

5 0.995 0.995 0.644 0.351 0.296 0.027 0.293 0.230 0.562

6 0.969 0.987 0.667 0.533 0.344 0.033 0.022 0.087 0.060
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