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Abstract: This paper proposes an asymptotically optimal speci�cation test of single-
index models against alternatives that lead to inconsistent estimates of a covariate�s

average partial e¤ect. The proposed tests are relevant when a researcher is concerned

about a potential violation of the single-index restriction only to the extent that the

estimated average partial e¤ects su¤er from a nontrivial bias due to the misspeci�-

cation. Using a pseudo-norm of average partial e¤ects deviation and drawing on the

minimax approach, we �nd a nice characterization of the least favorable local alterna-

tives associated with misspeci�ed average partial e¤ects as a single direction of Pitman

local alternatives. Based on this characterization, we de�ne an asymptotic optimal test

to be a semiparametrically e¢ cient test that tests the signi�cance of the least favor-

able direction in an augmented regression formulation, and propose such a one that is

asymptotically distribution-free, with asymptotic critical values available from the �21
table. The testing procedure can be easily modi�ed when one wants to consider average

partial e¤ects with respect to binary covariates or multivariate average partial e¤ects.
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1 Introduction

Suppose that a researcher is interested in testing a conditional moment restriction

E [�(S;�)jX] = 0 for some � 2 B (1)

where S and X represent random vectors and �(s;�) is a function of s indexed by � 2 B with B
denoting a �nite or in�nite dimensional parameter space. A typical power analysis of a test involves

studying the asymptotic power against alternatives of the form:

En [�(S;�)jX] = an(X) for some � 2 B

for a sequence an of functions, where En denotes the expectation under the local alternatives. An

omnibus test is a test designed to have nontrivial power against essentially all the local alternatives

that represent the negation of the null in (1) and converge to the null hypothesis at a rate not too

fast. In particular, when an(x) = bna(x) for a �xed function a and a decreasing sequence bn ! 0;

the alternatives are often called Pitman local alternatives (e.g. Nikitin (1995)) and the function a

is referred to as the direction of the alternatives.

Although considering an omnibus test is naturally the �rst idea when there is no a priori

preference of alternatives that receive more attention than others, it is worth noting that there are

several known limitations of omnibus tests. Most notably, Janssen (2000) has shown that every

omnibus test of goodness-of-�t has a power envelope function that is almost �at except on a �nite

dimensional space of alternatives. The few directions that span this �nite dimensional space often

lack motivation in practice, and change dramatically, corresponding to an apparently innocuous

change of the test statistic. This �nding leads him to remark as follows:

A well-re�ected choice of tests requires some knowledge of preferences concerning alter-

natives which may come from the practical experiment. (Janssen (2000), p.240)

It appears that the idea of incorporating an a priori interest in a subset of alternatives into a

test of nonparametric or semiparametric models has not received much attention in the literature.

The literature on testing nonparametric or semiparametric restrictions is dominantly concerned

with the omnibus approach, and a few studies in the literature of nonparametric speci�cation tests

that deal with a single direction or several directions of Pitman local alternatives (e.g. Stute (1997))

often lack practical motivation for the speci�c choice of such directions.

This paper studies a concrete example of a semiparametric test with a focus on a subset of

alternatives that is speci�cally motivated by the interest of the model�s user. Suppose that a

researcher is interested in testing the single-index restriction:

E
�
Y � �(X 0�)jX

�
= 0;
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where � is a �nite dimensional parameter and � is an unknown function, but does not worry about

the violation of the restriction as long as the identi�cation of the average partial e¤ect of a covariate

of interest remains intact. This particular interest in a subset of alternatives seems natural when

one�s use of the single-index restriction is motivated by its facility in identifying average partial

e¤ects. This constitutes an interesting situation that marks departure from both the omnibus

approach and the directional approach that exist in the literature. In this situation, an omnibus

test may not be an optimal solution because the test will waste its power on alternatives that are of

no interest to the econometrician. The situation is also distinguished from that of the directional

approach in the literature because the set of alternatives of focus here have a clear, practical

motivation and are constituted by an in�nite number of directions, not just several of them.

This paper introduces a new notion of optimality of a test in a situation where a particular

interest in a subset of alternatives leads one to exclude those alternatives that satisfy a certain linear

functional equation. Here in the context of testing single-index restriction, the equation corresponds

to the equality between restricted and unrestricted average partial e¤ects. This new notion of

optimality is constituted by two steps. The �rst step involves excluding the set of uninteresting

alternatives that satisfy the linear functional equation by using an appropriate pseudo-norm which

is based on the linear functional. Then, drawing on the minimax approach (e.g. Ingster and Suslina

(2003)), we select from the remaining alternatives those that are least favorable, in other words, we

select those that are as closest as possible to the null hypothesis (here, of single-index restriction) in

terms of the L2-norm. The comparison of tests then can be made based on their asymptotic power

properties against this set of least favorable alternatives. In this context of testing a conditional

moment restriction with uninteresting alternatives identi�ed by a linear functional equation, we �nd

that the selected least favorable alternatives are characterized as Pitman local alternatives with a

single direction given by the Riesz Representation of the linear functional. Then, in the second

step, following Choi, Hall, and Schick (1996), we de�ne an optimal test to be a test that achieves

a semiparametric power envelope which is a hypothesis testing analogue of the semiparametric

e¢ ciency bound in estimation theory. More speci�cally, this optimal test is an asymptotically

uniformly most powerful test that is derived from the local asymptotic normality (LAN) of the

semiparametric model where experiments of local shifts encompass all the parametric submodels

that pass through the probabilities under the null hypothesis.

As mentioned before, the investigation is expedited by our �nding that the set of least favorable

directions in L2 distance after the exclusion of the uninteresting alternatives is characterized by a

single direction of Pitman local alternatives. This �nding reveals that in the conditional moment

tests, the elimination of alternatives that satisfy a linear functional equation renders the problem

of minimax rate optimality trivial with the parametric optimal rate n�1=2: (For minimax rate

optimality, see Horowitz and Spokoiny (2001) and Guerre and Lavergne (2002) and references

therein.)

We construct an asymptotic optimal test that is based on the series estimation. In order to

deal with the asymptotic properties of the test, we establish a general result of uniform asymptotic
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representation of empirical processes that involve a series-based conditional mean estimator (see

Lemma 1U in the appendix.) Here are the �ndings from the asymptotic theory. First, the estima-

tion of �0 is ancillary to the asymptotic optimality of the test. In other words, lack of knowledge

of �0 does not a¤ect the semiparametric power envelope. Second, the direction of Pitman local

alternatives that give the maximal local asymptotic power lies in the set of interesting alternatives

that give a misspeci�ed average partial e¤ect. Note that this is not necessarily ensured by usual

omnibus tests that disregard the particular focus on the interesting alternatives. Third, the space

of local alternatives against which the optimal test has nontrivial local asymptotic power does not

in general coincide with the space of interesting alternatives. This is due to the fact that the direc-

tion against which the test has no local asymptotic power due to the elimination of uninteresting

alternatives is "tilted" by the optimal incorporation of the information in the null hypothesis of

single-index restriction. This demonstrates that the notion of optimality crucially depends on the

formulation of the null hypothesis and the information it contains.

There have been a plethora of researches investigating inference in single-index models. Duan

and Li (1989), Powell, Stock and Stoker (1989), Härdle, Hall and Ichimura (1993), Ichimura (1993),

Klein and Spady (1993) or Hristache, Juditsky and Spokoiny (2001), among others, studied the

estimation problem. Newey and Stoker (1993) proposed an e¢ cient estimation of an average partial

e¤ect in a more general setting. See also Delecroix, Härdle and Hristache (2003). As compared

to estimation, the problem of testing single-index restrictions has received less attention in the

literature. Fan and Li (1996) and Aït-Sahalia, Bickel and Stoker (2001) proposed omnibus tests

based on a (weighted) residual sum of squares in the spirit of Härdle and Mammen (1993). Recently,

Stute and Zhu (2005) and Xia, Li, Tong and Zhang (2004) proposed bootstrap-based omnibus tests.

Our paper deviates from this omnibus approach, as it acknowledges priority of correct identi�cation

of average partial e¤ects in the speci�cation test.

The rest of the paper is organized as follows. In Section 2 we de�ne the basic environment

of hypothesis testing which is of focus in this paper. Section 3 introduces the notion of asymp-

totic optimality of the tests and presents asymptotically optimal tests. Section 4 is devoted to the

asymptotic theory of the proposed test. Section 5 discusses extensions including the cases of a

binary covariate and of multivariate average partial e¤ects. In Section 6, we conclude. Besides the

mathematical proofs of the results, the appendix also contains a brief review of semiparametric e¢ -

cient tests and a general uniform asymptotic representation of a semiparametric marked empirical

process that is of independent interest.

2 Testing Framework

2.1 Single-Index Restrictions: The Null Hypothesis

Let a random vector Z = (Y;X) in R1+dX follow a distribution P0; where Y and X are related by

Y = m0(X) + ";
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for some real-valued function m0(�); and a random variable " such that E["jX] = 0 almost surely
(a.s.). Here E[Y jX] indicates the conditional expectation of Y given X under the probability

measure P0: Throughout the paper, we assume that E[jjXjj] < 1 and E["2] < 1: The function
m0(�) is identi�ed as the conditional mean function E[Y jX = �]:

As opposed to the notation P0 which denotes the true data generating process behind (Y;X);

we use the notation P as a generic probability that serves as a potential distribution of (Y;X)

and has a well-de�ned conditional expectation mP (X) , EP [Y jX]. (We use the notation , for a

de�nitional relation.) Let L2(P ) be the space of square integrable random variables with respect to

P and let jj � jj2;P and jj � jj2 indicate the L2(P ) norm and the L2(P0) norm respectively. Finally, the
notation jj � jj denotes the Euclidean norm de�ned as jjajj ,

p
tr(a0a), for a 2 Rd; and the notation

jj � jj1; the sup norm : jjf jj1 , supv jf(v)j.
The null hypothesis of a single index restriction is written as

H0 : m0(X) = �(X 0�) a.s. for some � 2 � � Rd and some �(�) 2M;

where the parameter � is a vector in a compact subset of the Euclidean space, � � Rd; andM is

a space of measurable functions on R: Let us denote the vector of parameters � , (�; �); and for
the space of parameters, we introduce the notation B = � �M: Then, the class of probabilities

under H0 is

P0 = fP 2 P : 9(�; �) 2 B s.t. P
�
mP (X) = �(X 0�)

	
= 1g:

The alternatives are probabilities in P1 = PnP0:
The null hypothesis of a single index restriction may constitute identifying restrictions for

parameters � and � that may cease to hold under the alternatives. In this paper, we con�ne our

attention to the probability model P such that under each potential data generating process P 2 P,
a single parameter �P 2 � is identi�ed and has a

p
n-consistent estimator �̂: More speci�cally, we

assume that there is a unique solution:

�P , argmin
�2�

EP [
�
Y �EP [Y jX 0�]

�2
]; (2)

for each P 2 P. This identi�ed parameter �P may change as we move from one data generating

process to another within P and hence its dependence upon P is made explicit by its subscript.

Once �P is identi�ed, the function �P (�) is identi�ed as

�P (v) = EP
�
Y jX 0�P = v

�
: (3)

We simply write �0 , �P0 and �0 , �P0 : For simplicity, we assume that P is chosen such that for

all P 2 P, identi�ed parameters �P , (�P ; �P ) belong to B = ��M.
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2.2 Average Partial E¤ects: The Alternative Hypothesis

An omnibus test focuses on the whole space of alternatives P1: On the contrary, in this paper
we consider a situation where a researcher�s main interest lies in the estimation of average partial

e¤ects. For each P 2 P, the (nonparametric) average partial e¤ect with respect to X1 is de�ned
by4

EP

�
@

@x1
EP [Y jX = x]jx=X

�
;

provided the regression function mP (x) = EP [Y jX = x] is di¤erentiable5. For each P 2 P0; the
average partial e¤ect is equal to

EP

�
@

@x1
�P (x

0�P )jx=X
�
:

We aim to design a test that detects only those alternatives that are associated with divergence

between the restricted (i.e. model-based) and unrestricted (i.e. nonparametric) average partial

e¤ects. Therefore, uninteresting alternatives in this situation are those that satisfy the following

equality Z
@mP (x)

@x1
P (dx) =

Z
(
@�P
@x1

)(x0�P )P (dx): (4)

For each P 2 P, we de�ne a linear functional MP on DP , fg 2 L2(P ) : EP [j (@g=@x1) (X)j] <1g
by

MP g ,
Z �

@g

@x1

�
(x)P (dx); (5)

and de�ne

e(Z;�) , Y � �(X 0�) and rP (x) , EP [e(Z;�P )jX = x] :

Then, noting rP (x) = mP (x) � �P (x
0�P ) and assuming that rP 2 DP , one can see from (4)

that the alternatives that lead to a correct estimation of average partial e¤ects using the single-

index restrictions are those P�s such that MP rP = 0, whereas alternatives that lead to bias in

the estimation of average partial e¤ects are the ones with MP rP 6= 0: We de�ne a subset PM of

uninteresting alternatives in P1 by

PM , fP 2 P1 :MP rP = 0g: (6)

The subset PM of alternatives is uninteresting in the sense that the violation of the null hypothesis

due to P0 2 PM does not cause bias to the average partial e¤ects identi�ed under the null hypothesis.

The space of all the alternatives P1 is decomposed into PM [ PcM where PcM = P1nPM : The
4 In the article we mainly focus on the average partial e¤ect with respect to a single continuous covariate X1: For

multivariate extensions of our approach or extensions to a binary covariate, see Section 5.
5All the results of the paper can be applied similarly to non-di¤erentiable regressions m0(x) by changing the

operator M in (5) accordingly.
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alternative hypothesis is then written as

H1 : P0 2 PcM : (7)

This article develops a test that optimally concentrates its local asymptotic power on the subset

PcM of alternatives.

We stress that the null hypothesis in this paper is not whether the equivalence of the restricted

and unrestricted average partial e¤ects holds (i.e. P0 2 PM ) but whether the single index restriction
holds (i.e., P0 2 P0). We may formulate a test that tests whether the restricted average partial
e¤ects and the unrestricted partial e¤ects are the same. In the case when this test is omnibus, the

alternative hypothesis is precisely the same as in (7). However, when one attempts to construct

an asymptotically optimal test in the sense that is adopted in this paper, it makes a di¤erence

in general how the null hypothesis (and of course, the alternative hypothesis) is formulated. For

details, see the discussion after Theorem 1 in Section 4.

3 Asymptotic Optimality of Semiparametric Tests

3.1 Characterizing the Alternatives of Focus

In this subsection, we provide a useful characterization of interesting alternatives. Recall that

for each P 2 P, we let mP (x) = EP [Y jX = x]: The hypothesis testing problem of single-index

restriction is written as

H0 : m0 2 GP0 and (8)eH1 : m0 =2 GP0

where GP , fm 2 DP : m(x) = �(x0�); (�; �) 2 ��Mg:
A minimax approach compares tests based on the local power at the least favorable alternatives

that give the maximum of Type II error over the space of alternatives. Since the least favorable

alternatives can be arbitrarily close to the null in the setup of (8), giving a trivial maximum Type

II error equal to one minus Type I error, it is often suggested to consider alternatives P 2 P1 such
that H1(rn) : infm2GP jjmP � mjj > rn; where rn ! 0 and jj � jj is a norm on GP : Clearly, the
notion of asymptotic optimality of nonparametric/semiparametric tests critically depends on the

norm jj � jj taken for the space GP . For example, one may consider an L2(P )-norm and proceed

with the notion of rate-optimality. (e.g. Ingster (1993), Horowitz and Spokoiny (2001), Guerre and

Lavergne (2002), Ingster and Suslina (2003)). Or using the Kolmogorov-Smirnov type functional or

Cramér-von Mises type functional on GP , one can consider asymptotic minimax tests (e.g. Ermakov
(1995)).

In view of our speci�c interest in average partial e¤ects, it is natural to equip the space GP with
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the following pseudo-norm:

jjmjjMP
, jMPmj =

����Z @m

@x1
(x)P (dx)

���� :
The distance between models is measured in terms of the deviation of their average partial e¤ects.

For each probability P 2 P, let us de�ne

G(P ; rn) , fm 2 GP : jjmP �mjjMP
� rng

for a decreasing sequence rn ! 0: The space G(P ; rn) represents a collection of maps m(x) = �(x0�)

that are deviated from the conditional mean function mP (x) of Y given X = x with respect to

P at least by rn: For each P 2 P1, there are many m�s with the same "distance" from mP with

respect to jj � jjMP
: Of primary interest among those m�s would be those that are closest to mP in

the L2(P ) norm, jj � jj2;P . De�ne the space of local alternatives:

P(rn) , arg min
P2P

inf
m2G(P ;rn)

jjmP �mjj2;P : (9)

The space P(rn) collects probabilities that attain the minimal value of infm2G(P ;rn) jjmP�mjj2;P and
hence are hardest to distinguish from the null among those that have the same average partial

e¤ects deviation in terms of jj � jjMP
. Our notion of optimality centers on the comparison of the

local asymptotic power properties of tests at the alternatives in P(rn):
We introduce a lemma that characterizes the space P(rn) as a sequence of Pitman local alterna-

tives. First, observe that under regularity conditions, the operator MP de�ned in (5) is a bounded

linear functional, and hence, the Riesz Representation Theorem tells us that there exists a unique

bP 2 DP such that
MPa = ha; bP i , EP [a(X)bP (X)]; (10)

for all a 2 DP : As a matter of fact, it can be shown that the bP satisfying (10) is given by

bP (�) = �
1

fX(�)
@fX
@x1

(�) (11)

where fX is the density function of X with respect to the Lebesgue measure. Hence, P 2 PcM if

and only if 6

EP [e(Z;�P )bP (X)] 6= 0;

which corresponds to the misspeci�cation of the average partial e¤ects. In other words, the subset

of uninteresting alternatives in (6) is represented by

PM = fP 2 P1 : EP [e(Z;�P )bP (X)] = 0g: (12)

6 In fact, for this equivalence to hold it is not necessary to assume that bP 2 DP . By integration by parts it is
enough to assume that rP is continuously di¤erentiable, with EP [j@rP =@x1(X)j] <1 and EP [jrP (X)bP (X)j] <1:

8



The following lemma shows that P(rn) is characterized as Pitman local alternatives with direction
bP :

Lemma 1 : P(rn) = fP 2 P : jjmP � ( ~mP + cnbP )jj2;P = 0g ; where ~mP (x) , �P (x
0�P ); (�P ; �P )

is as de�ned in (2) and (3), bP (x) is as de�ned in (11), and cn is equal to either rn=EP (b2P (X))

or �rn=EP (b2P (X)).

According to this lemma, as long as we con�ne our attention to P(rn) as the space of alternatives,
it su¢ ces for us to consider Pitman local alternatives of a single direction bP (x): This result has

two important consequences. First, the fastest possible rate rn that gives a test a nontrivial

power uniformly over P(rn) is n�1=2: Hence the rate-optimality property is trivially satis�ed with
rn = n�1=2 when we restrict the space of alternatives to P(rn): Second, this enables us to resort to
the notion of asymptotic optimality of tests via the semiparametric power envelope criteria (Choi,

Hall, and Schick (1996)). In the next subsection, we formally de�ne the notion of asymptotic

optimality, and introduce related terminologies.

3.2 De�nition of Asymptotic Optimality

By the result of Lemma 1, we con�ne our attention to the following space of probabilities:

P� ,
�
P 2 P : mP (x) = �P (x

0�P ) + cbP (x); P -a.s., c 2 R
	

(13)

The restriction of probabilities to P� is tantamount to considering the following regression model:

Y = �0(X
0�0) + cb0(X) + " (14)

where " is a random variable satisfying E["jX] = 0: Then the null hypothesis and the alternatives
are written as the following univariate two-sided test:

H�
0 : c = 0 against H

�
1 : c 6= 0: (15)

The parameter of interest is c and the nuisance parameters in the model are given by �0 =

(�00; �0(�); f"jX(�); fX(�))0; where f"jX(�) is the conditional density of " given X and fX(�) denotes
the density of X: We follow Choi, Hall, and Schick (1996) to de�ne asymptotic optimality of tests

in this environment.7

Let 0 = (0; �0) and  = (c; �) with � = (�
0; �(�); h"jX(�); hX)0 2 H , B�F"jX�FX : Here F"jX is

the set of all the potential conditional densities h"jX(�) of " given X such that
R
"h"jX(")d" = 0; a.s.,

and FX is the set of all the potential densities of X: Then we can parametrize P� = fP :  2 �g
where � , R�H.

7Note that although b0 is not known, we do not have to include it in our nuisance parameters. This is because
the parameter of interest is c = 0 and there is no role left for b0 in constructing a tangent space onto which the score
of c is projected. See the Appendix.
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We consider the local deviation of n(h) in the direction h from 0 = (0; �0) :

c(hc) , n�1=2hc + o(n
�1=2) and (16)

�n(h�) , �0 + n
�1=2h� + o(n

�1=2):

Note that h = (hc; h�) denotes the direction in which the local parameter n(h) , (cn(hc); �n(h�))
deviates from the point (0; �0): Fix the direction h1 = (h1c; h1�) and consider testing the simple

hypothesis 0� = n(h0) with h0 = (0; h0�) against 1� = n(h1) with h1 = (h1c; h1�): When we

take h0� to be �nite-dimensional, the model under  = n(h0) represents a parametric submodel

passing through 0 under the null hypothesis.

A sequence of tests  n that are equal to one if and only if the null is rejected is called asymptoti-

cally unbiased if lim supnEn(h0) n � lim infnEn(h1) n for every h0 = (0; h�0) and h1 = (h1c; h1�);
h1c 6= 0. A test  n is said to be of asymptotic level � at �0 if

limsupnEn(h0) n � � for every h0�:

The restriction of candidate tests to those of asymptotic level � plays the same role as considering

only regular estimators in the de�nition of semiparametric e¢ ciency in estimation. A test  n is

called asymptotically uniformly most powerful and asymptotically unbiased at �0 among asymptot-

ically unbiased tests (AUMPU(�; �0)) if it is asymptotically unbiased at �0 and is of asymptotic

level � at �0 and if for every other such test  
0
n and each n(h) with hc 6= 0,

lim inf
n
En(h) n � lim sup

n
En(h) 

0
n:

A semiparametric power envelope for tests of asymptotic level � at �0 is a function of local directions

h de�ned to be lim infnEn(h) n where  n is an AUMPU(�; �) test. When the optimal test does not

depend on �0; the test is asymptotically uniformly most powerful among asymptotically unbiased

tests that are asymptotic level of � (AUMPU(�)). We discuss the construction of a test that is

AUMPU(�) in the next subsection.

3.3 Construction of Asymptotically Optimal Tests

An asymptotically uniformly most powerful test can be characterized as a test that achieves a

semiparametric power envelope. Given the semiparametric model P� in the preceding section, the
de�nition of a semiparametric power envelope parallels that of semiparametric e¢ ciency bound

in estimation. We �rst �nd an asymptotic power envelope for the tests of an asymptotic level

� by focusing on the parametric submodels with local deviation 1� = n(h1) that passes through

0� = n(h0) with directions h0 and h1 �xed. Then, from the local asymptotic normality (LAN) of

the likelihood ratio, we �nd that the upper bound for the local asymptotic power is increasing in

the L2(P ) distance between the two directions h1 and h0. We obtain a least favorable direction by

choosing a parametric submodel Pn(h0) in the null hypothesis that minimizes this distance in h0�.
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The asymptotic power envelope obtained through this least favorable direction serves as a semi-

parametric power envelope and a test that achieves this bound is AUMPU(�; �0). However, such a

test depends on the nuisance parameter �0:When there exists a test statistic that is asymptotically

equivalent to an AUMPU(�; �0) test and does not depend on �0, such a test has the asymptotic

optimality property uniformly over �0 (i.e. AUMPU(�)). Choi, Hall, and Schick (1996) (hereafter

CHS) call this test statistic an e¢ cient test statistic.

The central step in constructing an asymptotically optimal test is to �nd the least favorable

direction. Paralleling the literature of semiparametric e¢ ciency, the least favorable direction is

found by projecting the score with respect to c at c = 0 in (13) onto the tangent space of the

nuisance parameter �0 under the null hypothesis (i.e. c = 0) (e.g. Begun, Hall, Huang, and Wellner

(1983), or Bickel, Klassen, Ritov, and Wellner (1993) (hereafter, BKRW)). An asymptotic optimal

test is constructed from a sample version of the L2-norm of the e¢ cient score obtained from this

projection. In the appendix, we compute the e¢ cient score as

`�1(z) ,
e(z; �0)b

�(x)

�2(x)
(17)

where b�(x) , (S�b0)(x) and S� is de�ned by

(S�a)(x) , a(x)� E[�
�2(X)a(X)jX 0�0 = x0�0]

E[��2(X)jX 0�0 = x0�0]
, (18)

and �2(x) , E["2jX = x]: Note that S� is an orthogonal projection in the L2-space with the inner

product

hf; gi� ,
Z
f(x)g(x)��2(x)P (dx): (19)

It is worth noting that when we know �0; the tangent space becomes smaller, but the projection

remains the same and so does the e¢ cient score in (17). Therefore, the estimation of �0 is ancillary

to the testing problem in the sense that the semiparametric power envelope does not change due

to the lack of the knowledge of �0: As we will see later, our optimal test achieves this ancillarity by

reparametrizing �(X 0�) into �(F�(X 0�)); where F� is the distribution function of X 0�:

An optimal test rejects the null hypothesis for large values of

T �n ,
(

1p
n�e

nX
i=1

`�1(Zi)

)2
=

(
1p
n�e

nX
i=1

e(Zi;�0)b
�(Xi)

�2(Xi)

)2
;

where �2e = E[��2(X)(b�)2(X)]: We obtain a feasible test statistic by replacing the unknown

components �0; �e; �; and b
� with their appropriate estimators:

Tn ,
(

1p
n�̂e

nX
i=1

e(Zi; �̂)b̂
�(Xi)

�̂2(Xi)

)2
;
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where �̂2(x) and �̂e are estimators of �2(x) and �2e; and b̂
�(x) is a nonparametric estimator for

b�(x) which is de�ned prior to (18). An estimator e(Zi; �̂) based on the sieves method is introduced

in the next section. The nonparametric estimators �̂, �̂e; and b̂� can be constructed using the

usual nonparametric estimation methods. A set of high-level conditions for these estimators and

discussions about their lower level conditions and references are provided in the next section.

The feasible and infeasible test statistics T �n and Tn are asymptotically equivalent under regu-

larity conditions as we discuss in a later section. Hence Tn is an e¢ cient test statistic and a test of

asymptotic level � based on Tn is AUMPU(�). Note also that the test is asymptotically pivotal.

Indeed, under these regularity conditions,

Tn ! �21 under the null hypothesis.

The asymptotic pivotalness comes as a by-product of con�ning our attention to the interesting

alternatives, discarding the omnibus approach. It is worth noting that many omnibus semipara-

metric tests are known to be asymptotically nonpivotal (e.g. Nikitin (1995), Stute (1997), Andrews

(1997), Bierens and Ploberger (1997)). We delineate the conditions for the results discussed here

in the next section.

4 Asymptotic Properties of the Tests

In this subsection, we delineate the technical conditions for the asymptotic properties of the test

based on Tn: Given a random sample of size n; (Zi)ni=1; a test of a single index restriction can be

analyzed through the asymptotic analysis of the following function-parametric marked empirical

process

Rn(w; �0) ,
1p
n

nX
i=1

w(Xi)e(Zi;�0);

where w(�) denotes a member of an appropriate function space W0 � L2(PX): Here PX denotes

the distribution of X under P0 and L2(PX), the space of L2-bounded measurable functions with

respect to jj � jj2;PX where jjf jj2;PX = f
R
f2dPXg1=2:

In the omnibus test, a test statistic is constructed as a functional of Rn(�; �0) and W0 is chosen

to be a space of functions whose linear span is dense in L2(PX) in weak topology (Stinchcombe

and White (1998)). Examples of such function spaces W0 are W0 = fw(x) = 1(x � t) : t 2 RdXg
(e.g. Andrews (1997) and Stute (1997)) andW0 = fw(x) = exp(it0x) : t 2 RdX ; i =

p
�1g (Bierens

(1990)). See Escanciano (2006) for other interesting choices of W0: For a general characterization

of W0 required for omnibus tests of conditional mean models, see Stinchcombe and White (1998).

The result of Lemma 1 and our preceding development of an optimal test suggest that we choose

W0 = fb�=�2g.
The function b�=�2 and the parameter �0 = (�0; �0) are in general unknown, and we assume

that consistent estimators b̂�=�̂2 and �̂ = (�̂; �̂) with a certain rate of convergence are available. To

keep the exposition simple, we provide high-level conditions for b̂�=�̂2 and �̂ suppressing the details

12



about their estimation method, but delineate the estimation procedure of �̂ and the accompanying

conditions.

Let us de�ne the following feasible residual-marked empirical process,

R1;n(w) ,
1p
n

nX
i=1

w(Xi)e(Zi; �̂): (20)

In particular, we can obtain an estimator �̂ for �0 2 � that is
p
n-consistent (see Powell, Stock,

and Stoker (1989)). Using this estimator we can construct an estimator �̂(X 0
i�̂) for �0(X

0
i�0) where

�̂(�) denotes a nonparametric estimator of �0: Our optimal test is based on the test statistic

Tn =

(
R1;n(b̂

�=�̂2)

�̂e

)2
:

Suppose that we are given with a
p
n-consistent estimator �̂ of �0; and consider the following

procedure to obtain e(Zi; �̂): It is convenient for our purpose to normalize the conditioning variable

by taking a quantile transform of X 0�. De�ne

Un;�;i , Fn;�;i(X
0
i�) ,

1

n

nX
j=1;j 6=i

1fX 0
j� � X 0

i�g and U�;i , F�(X
0
i�);

where F�(�) is the cdf of X 0� and Fn;�;i is the empirical cdf which is implicitly de�ned above. We

simply write Ui , U�0;i and U , F�0(X
0�0): In this paper, we consider a series estimator as follows.

First, we introduce a vector of basis functions:

pK(u) , (p1K(u); � � �; pKK(u))0; u 2 [0; 1]: (21)

Using these basis functions, we approximate g(u; �0) = E[Y jU = u] by pK(u)0� for an appropriate

vector �: De�ne a series estimator ĝ as

ĝ(u; �) , pK(u)0�n(�); (22)

where �n(�) = [P 0n(�)Pn(�)]
�1P 0n(�)an;

an ,

2664
Y1
...

Yn

3775 and Pn(�) ,

2664
pK(Fn;�;1(X

0
1�))

0

...

pK(Fn;�;n(X
0
n�))

0

3775 : (23)

Then, we obtain residuals

e(Zi; �̂) , Yi � ĝ(Fn;�̂(X
0
i�̂); �̂); 1 � i � n: (24)
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Conditions for basis functions and others needed for the nonparametric estimation in e(Zi; �̂) are

mostly subsumed into a high-level condition in Assumption 3(i)(c) below and its lower-level condi-

tions are relegated to Appendix C. We introduce a set of regularity assumptions.

Assumption 1: (i) �0(v) is continuously di¤erentiable in v with a uniformly bounded derivative
_�0: (ii) E[e

4(Z;�0)] <1 and EjjXjj4 <1: (iii) There exists a neighborhood B of �0 such that (a)

for all � 2 B; X 0� is continuous, (b)

sup
�2B

sup
v2supp(X0�)

jF�(v + �)� F�(v � �)j < C� for all � > 0

where supp(X 0�) denotes the support of X 0�; and (c) the conditional density function f�(y; xju) of
(Y;X) given F�(X 0�) = u satis�es that for all (y; x) in the support of (Y;X) and for all u 2 [0; 1];

sup
u12[0;1]:ju�u1j<�

jfu(y; xju)� fu(y; xju1)j � 'u(y; x)�

where 'u(y; x) is a real valued function such that
R
y'u(y; x)dy < C and

R
'u(y; x)dx < CfY (y)

with fY (y) denoting the density of Y and C denoting an absolute constant.

Assumption 2 : The conditional density f("jX) of " givenX in (14) satis�es that (a)
R
"f("jX)d" =

0 and
R
"2f("jX)d" <1; PX -a.s., (b) f("jX) is continuously di¤erentiable in " with the derivative

_f("jX) satisfying
R
ff("jX)>0gf _f("jX)=f("jX)g

2f("jX)d" <1; PX -a.s.

Conditions in Assumption 1 are used to resort to Lemma 1U, a general result that ensures

Assumption 3(i)(c) below. Conditions in Assumption 2 are made to ensure the regularity of the

parametric model indexed by c 2 R (see Proposition 3.4.1 of BKRW).8 For a function w 2 W with

E[jw(X)j] <1; we de�ne
gw(u) , E[w(X)jU = u]:

In order to obtain the uniform behavior of an empirical process indexed by W, we need an appro-
priate device to control the size of the space W. Let Lp(P ); p � 1; be the space of Lp-bounded

functions: jjf jjp;P , f
R
jf(x)jpP (dx)g1=p <1; and for a space of functions F � Lp(P ) for p � 1; let

N[](";F ; jj � jjp;P ); the bracketing number of F with respect to the norm jj � jjp;P , to be the smallest
number r such that there exist f1; � � �; fr and �1; � � �;�r 2 Lp(P ) such that jj�ijjp;P < " and for all

f 2 F , there exists i � r with jjfi � f jjp;P < �i: The logarithm of the bracketing number is called

bracketing entropy. We introduce additional assumptions.

Assumption 3 : (i) The function b�=�2 in (18) satis�es 0 < E[(b�4=�8)(X)] < 1: Furthermore,
there exists a class W such that (a) b�=�2 2 W, Pfb̂�=�̂2 2 Wg ! 1 as n ! 1 and jjb̂�=�̂2 �

8 In particular, the needed condition that the semiparametric e¢ ciency bound for c being bounded below from
zero is implied by Assumption 3(i) below.
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b�=�2jj1 = oP (n
�1=4), (b) for some C > 0 and c 2 [0; 2); logN[](";W; jj � jj1) � C"�c; (c)

sup
w2W

�����R1;n(w)� 1p
n

nX
i=1

fw(Xi)� gw(Ui)gfYi �E[YijUi]g
����� = oP (1); (25)

and (d) �̂2e !p �
2
e > 0: (ii) The estimator ĝ(�) de�ned in (24) satis�es jjĝ� gjj1 = oP (n

�1=4) where

g(u) = E[Y jU = u] has the �rst order derivative _g 2 L2(PX) satisfying supu2[0;1] _g(u) < 1, (iii)
The estimators �̂ and �̂e satisfy jj�̂ � �0jj = OP (n

�1=2) and supx j�̂e(x)� �e(x)j = oP (1):

The above conditions are high-level conditions. Condition (i)(a) follows from certain smoothness

properties of f and its estimator f̂ along with appropriate trimming factors (e.g. see Powell, Stock,

and Stoker (1989)). Condition (i)(b) is satis�ed when b� belongs to a class of smooth functions

with a certain order of di¤erentiability. For example, when b� has a uniformly bounded partial

derivatives up to the order bhc; the greatest integer smaller than h; and its highest derivatives are
of Lipschitz order h � bhc; then Assumption 3(i)(b) is satis�ed with c = dX=h (e.g. see Theorem

2.7.1 in van der Vaart and Wellner (1996) and also see Andrews (1994).) Uniform consistency can

be obtained, for example, by using Newey (1997) or Song (2006) in the case of series estimator,

and Andrews (1995) in the case of kernel estimators. The condition Pfb̂�=�̂2 2 Wg ! 1 is weaker

than the condition Pfb̂�=�̂2 2 Wg = 1 from some su¢ ciently large n on. This latter condition

is satis�ed when b̂�=�̂2 satis�es the aforementioned smoothness conditions, as can be ful�lled by

choosing kernels or basis functions satisfying the smoothness conditions. For details, see Andrews

(1994).

Condition (i)(c) contains an asymptotic representation in (25) of the feasible empirical process

R1;n(w): One can prove (25) by using a more general result established in Appendix C. In Appendix

C we delineate low-level conditions for basis functions, the spaceW, and other regularity conditions
under which we obtain an asymptotic representation of the form in (25). This result is also of

independent interest; for example it can be used to establish the asymptotic distribution of omnibus

tests. In the case of kernel estimation, a similar but pointwise result (i.e. with �xed w 2 W) was
obtained by Stute and Zhu (2005).

Theorem 1 : Suppose Assumptions 1-3 hold. Then the following are satis�ed.
(i) Under the null hypothesis of single index restriction,

Tn !d �
2
1;

and under the local alternatives such that

Yi = a(Xi)=
p
n+ �0(X

0
i�0) + "i (26)
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with E["ijXi] = 0 and E[ja(Xi)j] <1,

Tn !p �
2
1

�
ha; S�b0i2�
jjS�b0jj2�

�
;

where h�; �i� is as de�ned in (19) and jj � jj2� is de�ned as jjbjj2� , hb; bi�:
(ii) For each � 2 (0; 1); the test  n = 1fTn > c�g with c� being determined to deliver an asymptotic
level � is AUMPU(�) for testing H�

0 against H
�
1 in (15).

The result (i) determines the asymptotic properties of the test Tn: The result is established via

the asymptotic equivalence of T �n and Tn both under the null hypothesis and under the alternatives.

The test is asymptotically pivotal, having a �21 distribution under the null hypothesis. Under the

local alternatives of the form in (26), the test statistic has a limiting noncentral �21 distribution.

Let us discuss the implications from the result of the local power properties in (i). We con�ne

our attention to local alternatives with the directions a(x) such that jja2jj� = 1 and a = S�a as a

normalization.9 For such directions a; the noncentrality parameter becomes

ha; S�b0i2�
jjS�b0jj2�

=
hS�a; b0i2�
jjS�b0jj2�

=
ha; b0i2�
jjS�b0jj2�

:

Therefore, the test has a maximal power when a is in the direction of b0; and the test has no power

when a is orthogonal to b0 with respect to h�; �i�:
Recall that the demarcation of interesting alternatives PcM and uninteresting alternatives PM was

made in terms of whether a is orthogonal to b0 with respect to h�; �i or not. The directions a against
which the test has no power are not necessarily the directions that represent uninteresting alterna-

tives, being orthogonal to b0 with respect to h�; �i; but are "tilted" ones. This tilting is due to the
optimal incorporation of the information in the conditional moment restriction E["jX] = 0: Hence,
a consequence of this tilting is that the space of alternatives against which the test has nontrivial

local asymptotic power does not in general coincide with that of interesting alternatives PcM : In
fact, the coincidence arises only when the demarcation between the interesting and uninteresting

alternatives is made in terms of a weighted average partial e¤ect where the weight is given by

��2(x):

We stress that our minimax-based notion of optimality crucially depends on the formulation

of the null hypothesis. To illustrate this point, consider the situation in which one is interested

in testing the null of P0 2 PM and against alternatives P0 2 PcM : This test is a test of whether
the restricted average partial e¤ects coincide with the unrestricted average partial e¤ects. In this

situation, the notion of optimality of tests changes accordingly. More speci�cally, one might consider

9Note that a(x) = (S�a)(x) + fa(X) � (S�a)(X)g: The second part fa(X) � (S�a)(X)g cannot be identi�ed
separately from �0(X

0�0) in the regression formulation in (26), and hence the "e¤ective" direction is the remaining
(S�a)(x):
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constructing a test based on the moment restriction (e.g. Newey (1985) and Tauchen (1985))

E[e(Z;�0)b0(X)] = 0:

The restriction suggests that we use the semiparametric empirical process R1;n(b0) to construct a

test statistic. Indeed, the test statistic can be constructed as

Tn;2 ,
(
R1;n(b̂)

�̂b

)2
:

where �̂b is an estimator of E
�
(Sb0)(X)e(Z;�0)

2
�
: Here S is a linear operator de�ned by (Sa)(x) ,

a(x)� E [a(X)jX 0�0 = x0�0] : Then we can show that under similar conditions for Theorem 1, the

test statistic Tn;2 has the limiting distribution of �21 under the null hypothesis, whereas under the

local alternatives of the form in (26),

Tn;2 !d �
2
1

�
ha; Sb0i2
jjSb0jj22

�
:

Among the alternatives such that jjajj2 = 1 and a = Sa; the maximal power is achieved when

a = b0=jjb0jj22; and the test has no power when ha; b0i = 0: Therefore, the space of local alternatives
against which the test based on Tn;2 has nontrivial local asymptotic power coincides with the space

of interesting alternatives PcM : Since in this situation of testing P0 2 PM ; the conditional moment
restriction E["jX] = 0 is not needed in the formulation of the null hypothesis, the optimal test

should be de�ned di¤erently depending on the information that is contained in the null hypothesis.

5 Further Extensions

5.1 Average Partial E¤ects of a Binary Covariate

The development has so far relied on the assumption that the covariate X1 is a continuous variable.

In many cases, the variable of interest is a binary variable. For example, the covariate can be a

dummy variable representing the qualitative information about a certain state. In this case, we

need to consider a di¤erent test statistic because the direction b0(x) computed in (11) is based on

the continuity of the random variable X1: This section is devoted to analyzing the case when the co-

variate X1 of interest is a binary variable. As it turns out, the direction in the Riesz Representation

of the linear functional is fully known in this case, leading to a simpler test statistic.

Suppose X = (X1; X
0
2)
0 where X1 2 f0; 1g and X2 2 RdX2 : The average partial e¤ect of X1 is

de�ned as

E [E[Y jX1 = 1; X2]�E[Y jX1 = 0; X2]] :
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Under the single index restriction, the average partial e¤ect becomes

E
�
�0(�1 +X

0
2�2)� �0(X 0

2�2)
�
:

Let us de�ne the state space of covariates to be X , f0; 1g �RdX2 : We de�ne a linear functional
M on DP0 as follows. For any h : X ! R in L2(PX); de�ne

Mh , E [h(1; X2)� h(0; X2)] =
Z
[h(1; x2)� h(0; x2)] f(x2)dx2;

where f(x2) denotes the density of X2: Then Mh is an average partial e¤ect of h(X1; X2) with

respect to X1: Since
R
h(x)2P (dx) <1, the functional M is bounded. The uninteresting alterna-

tives are those with (Mr) = 0 where r(X1; X2) = E [Y � �(X1�1 +X 0
2�2)jX1; X2] : By the Riesz

Representation Theorem, there exists b0 2 L2(PX) such that Mh = hh; b0i: It is straightforward to
�nd b0 :

b0(x1; x2) = (�1)x1+1:

Note that b is fully known and there is no need to estimate it. Therefore, the suboptimal test

statistic that is analogue of Tn;2 in the previous section can be constructed as

TBn;2 ,

0@ 1q
n�̂2eB

nX
i=1

(�1)Xi1+1(Yi � �̂(Xi1�̂i1 +X 0
i2�̂2))

1A2 ; (27)

where �̂2eB is computed as follows. First, note that

E [b0(X1; X2)jU ] = P fX1 = 1jUg � P fX1 = 0jUg

= 2P fX1 = 1jUg � 1

so that by using the fact that b0(x1; x2) 2 f�1; 1g; we deduce

E[(b0(X1; X2)�E [b0(X1; X2)jU ])2 jU ] = 1� f2P fX1 = 1jUg � 1g2

= 4P fX1 = 1jUgP fX1 = 0jUg :

Therefore, we can estimate �2eB as

�̂2eB ,
4

n

nX
i=1

P̂ fXi1 = 1jUig P̂ fXi1 = 0jUig :

where P̂ fXi1 = 1jUig is a consistent estimator for P fX1i = 1jUig : Our test statistic is �nally
obtained by plugging this into (27). Note that the derivation of the asymptotic properties can be

performed by modifying Theorem 1. In particular, the null limiting distribution of the test can

be shown to be �21: The analysis of power under the Pitman local alternatives can be performed
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similarly as before.

Following the previous development, we construct an asymptotically e¢ cient test in this case

of a binary covariate. The formulation of the score and a tangent space can be proceeded similarly,

so that we have the e¢ cient score

`�1(z) , e(z; �0)�
�2(x)b�(x)

where

b�(x) , (�1)x1+1 � E[�
�2(X)(�1)X1+1jX 0�0 = x0�0]

E[��2(X)jX 0�0 = x0�0]
:

As developed in previous sections, a nonparametric estimator for b� can be used to construct a

feasible test.

5.2 Multivariate Average Partial E¤ects

We can extend the framework to multivariate average partial e¤ects. Suppose we are interested in

the joint average partial e¤ect of d1 number of covariates and write it as a column vector

E

�
@

@x1
E[Y jX = x]jx=X

�
in Rd1 ; whose k-th element is E [(@=@x1;k)E[Y jX = x]jx=X ] with the obvious individual derivative
notation of @=@x1;k: We de�ne the functions bk by bk(�) = �(1=f(�))(@=@x1;k)f(�) as in (11) and
collect these into a column vector b: Suppose that uninteresting alternatives in this setting are

those that make no di¤erence to the joint average partial e¤ects by introducing the single index

restriction. The space of these alternatives can be de�ned in the same way as (12).

The test becomes a J-test in the standard GMM problem (Hansen (1982)). More speci�cally,

an analogue of Tn;2 is constructed as a quadratic form of a vector process:

TMn;2 ,
(
1p
n

nX
i=1

b̂(Xi)e(Zi; �̂)

)0
V �1n

(
1p
n

nX
i=1

b̂(Xi)e(Zi; �̂)

)
(28)

where Vn is a consistent weighting matrix for V , E [(Sb)(Xi)(Sb)(Xi)
0e(Zi;�0)] : Using similar

arguments used to prove Theorem 1, we can show that under the null hypothesis, TMn;2 !d �d1 :

Asymptotically e¢ cient tests can be constructed analogously as before, but are in need of further

restrictions on the notion of asymptotic optimality. In view of the hypothesis testing theory in the

Euclidean space, the most natural way is to con�ne candidate tests to those with asymptotically
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invariant property as done by CHS.10 We �rst adopt the regression formulation as follows:

e(Z;�) = c0b0(X) + "; E["jX] = 0;

and then the testing problem is mapped into testing H�
0 : c = 0 against H

�
1 : c 6= 0: The tangent

space for the nuisance parameters does not change when c becomes multivariate. The e¢ cient score

b� is obtained as a coordinate-wise projection onto this tangent space. Details are omitted.

6 Conclusion

This paper considers a situation of testing a single-index restriction where uninteresting alternatives

are characterized by a linear functional equation that represents the coincidence of a restricted

average partial e¤ect with its unrestricted version. A new notion of asymptotic optimality of tests

suited to this situation is suggested in which the set of uninteresting alternatives are eliminated

and after that, an exclusive focus is drawn on a set of least favorable alternatives. We �nd that the

least favorable set is characterized as a single direction of Pitman local alternatives, and building on

this, we de�ne an optimal test to be one that achieves the semiparametric power envelope, following

CHS.

We suggest an asymptotically distribution free test that is optimal in the sense de�ned pre-

viously. Based on a general result of semiparametric empirical processes involving series-based

conditional mean estimators, we explore the asymptotic properties of the test, with a particular

interest in the behavior of local asymptotic powers. The proposed optimal test has maximal local

power against alternatives in the interesting subset of alternatives.

We want to emphasize that our framework can be applied to other linear functionals and

the basic idea suggested in the paper does not con�ne itself to single index restrictions either.

For example, one could consider a conditional moment restriction in general combined with a

demarcated subspace of alternatives given by a linear functional. However, the asymptotic theory

required will depend on the speci�c context.

Finally, the contribution of this paper can be viewed as a step toward unifying the inference

procedure of speci�cation test and estimation in a single decision theoretic framework. The main

thesis of this paper is to design a speci�cation test that envisions its eventual use in the estimation.

The natural, ultimate question in this context would concern how the uncertainty due to the lack

of information about the speci�cation can be properly incorporated in the subsequent estimation

procedure. We believe that this remains a very interesting research agenda, may be, a challenging

10A test 'n is asymptotically invariant if the limit test ' is rotationally invariant '(u) = '(Ru) for all u 2 Rd for
any orthogonal matrix R : R0R = I: Note that the limit test ' is de�ned to be a measurable map such that

lim
n!1

En(h)'n =

Z
'(u)d�(u�B�1=2hc)

for all h in a certain hyperplane under the local alternatives in (16). Here � denotes the standard normal distribution
function and B� the e¢ cient information for c: For details, see CHS.
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one.11

7 Appendix

7.1 Appendix A: Semiparametric E¢ cient Tests

We provide a review of semiparametric e¢ cient tests based on CHS. In order to characterize the

space of alternatives, we focus on the following class of local alternatives. First for each (hc; h�) 2
R�H, de�ne two sequences

cn(hc) , n�1=2hc + o(n
�1=2) and (29)

�n(h�) , �0 + n
�1=2h� + o(n

�1=2):

The vector h , (hc; h�)0 denotes directions in which the local parameter n(h) , (cn(hc); �n(h�))
deviates from the point (0; �0): Let R�H be a Hilbert space equipped with inner product h�; �i: It
is convenient to introduce the local asymptotic normality (LAN) of the likelihood ratio process:

Ln(h) , log
dPn;n(h)

dPn;0
= Snh�

1

2
�2(h) + rn(h)

where Sn = (Snc; Sn�)
0 is a random linear functional which is asymptotically centered Gaussian

with kernel B under the null hypothesis, and rn(h) = oP (1) for every h under the null hypothesis.

Hence the variance �2(h) of Snh is equal to hh;Bhi: The LAN property follows when the local

alternatives are Hellinger di¤erentiable with respect to parameters, and is useful for investigating

the asymptotic behavior of the test statistic under the local alternatives by using Le Cam�s third

lemma (See Begun, Hall, Huang, and Wellner (1983) or BKRW for details.)

Consider a test  n taking values in f0; 1g depending on the rejection and acceptance of the null
hypothesis. For the moment, let us consider the one-sided test of

H0 : c = 0 against H1 : c > 0:

Then using the LAN property, we can write

En(h) n = E0 n exp (Ln(h)) + o(1)

= E0 n exp

�
Snh�

1

2
�2(h) + rn(h)

�
+ o(1):

Fix h1 = (h1c; h1�) and consider testing the simple hypothesis h0 = (0; h0�) against h1: Then

the Neyman-Pearson lemma gives an optimal test 'n of asymptotic level � in the following form:

'n = 1 if

Sn(h1 � h0)�
1

2
f�2(h1)� �2(h0)g+ rn(h1)� rn(h0) > cn

11See Leeb and Pötcher (2005) and references therein for issues of post-model selection inferences.
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and 'n = 0 otherwise. And for this test, it is a straightforward matter to obtain the following

bound for the power of the test

lim supEn(h1)'n � 1� �(z� � �(h1 � h0)) (30)

where z� is the upper �-quantile of the standard normal distribution function �:

Now, we aim to devise a test that is uniformly most powerful at each point of h0� 2 H.
The bound for the power of the test is attained by an optimal test against a simple alternative

corresponding to the least favorable direction. Let (Bij)i;j=1;2 denote the partition of B such that

B11 is the information for c; B22 is the information for �, and B12 and B21 are coinformations.

Obviously from (30), the least favorable direction is obtained by minimizing �(h1 � h0) in h0� and
is found to be h1� �h�0� where h�0� = h1� +B

�1
22 B21h1c: Hence the point (0; h

�
0�) is the projection of

h1 onto the local null space under the inner product induced by B; namely, hh; giB = hh;Bgi; h; g 2
H: By plugging in this least favorable direction, we obtain

lim supEn(h1) n � 1� �(z� � �(B
�1=2h1c))

where B� = B11 � B12B
�1
22 B21 is what is called e¢ cient information. Let us de�ne the e¢ cient

score S�n as S
�
na = Snca � Sn�B

�1
22 B21a; a 2 R. Since c is a scalar, so are Snc and S�n: Note

that S�n depends on �0 and we write S
�
n(�0) explicitly. Now, an optimal test is obtained by taking

'n = 1
�
B��1=2S�n(�0) � z�

	
: The resulting test 'n does not depend on h1 = (h1c; h1�): Hence the

test is asymptotically uniformly most powerful (AUMP(�; �0)) at the level � and at the nuisance

parameter �0:

The procedure easily applies to a two-sided test. A test  n is asymptotically unbiased at �0 if

lim supnEn(h0) n � lim infnEn(h1) n for every h0 = (0; h0�) and h1 = (h1c; h1�) with h1c 6= 0:

Then Theorem 2 of CHS gives the following bound for the local power:

lim supEn(h) n � �(jB
�1=2hcj � z�=2) + �(�jB�1=2hcj � z�=2)

for all h = (hc; h�) 2 R�H. The two-sided test that is AUMPU(�; �0) among the asymptotically
unbiased tests is given by

'n , 1
n
jB��1=2S�n(�0)j � z�=2

o
:

To apply this framework to our context of testing single index restrictions, we need to compute

the e¢ cient score and the e¢ cient information. To this end, we need to �nd a tangent space of the

nuisance parameters. First �x P0 2 P0 where 0 = (0; �0) and introduce

P1 , fP(c;�0) 2 P
� : c 2 Rg and P2 , fP(0;�) 2 P�0 : � 2 Hg:

The space P1 contains alternatives (i.e., c 6= 0) with the nuisance parameter � �xed at � = �0: The

space P2 contains probabilities that satisfy the null hypothesis (i.e., c = 0) with � running in H.
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Fix P0 2 P1 and let f"jX and fX be the conditional density of " given X and the density of X

under P0: The log-likelihood in the regression setup is given by

log fY (y; c; �0) = log f"jX(y � �0(x0�0)� cb0(x)) + log fX(x):

Therefore, its score _̀1 with respect to c at c = 0 is equal to

_̀
1(z) =

@

@c
log f"jX(e(z; �0)� cb0(x)jx)jc=0 = �b0(x)s0(z);

where s0(z) = _f"jX(y��0(x0�0)jx)=f"jX(y��0(x0�0)jx) and _f"jX(�jx) is the derivative as in Assump-
tion 2(i). The e¢ cient score at P0 2 P1 \ P2 is computed as the orthogonal complement from the

projection of this score _̀1 onto the tangent space _P2 at P0 of P1\P2 (e.g. BKRW, p.70). The tan-
gent space _P2 is the closed linear span of the tangent spaces for the regular parametric submodels in
P2: Let us construct the parametric submodels in P2. De�ne �t = (�t; �t(�); f"jX;t(�); fX;t(�)); t 2 R
and Pt = P�t ; where at t = 0; it is satis�ed that �t = �0; and hence �0 is the parameter correspond-

ing to P0: Note that �t(�) is determined by

�t(v) , Et[Y jX 0�t = v] = �0(v) + �t(v); say, (31)

where the conditional expectation is with respect to Pt: We de�ne a class of submodels P2;S =
fPt : Et[Y � �t(X 0�t)jX] = 0; t 2 Rg � P2, where the conditional expectation operator Et(�jX) is
with respect to the conditional density f"jX;t(�): Then by applying the implicit function theorem to

Et[Y � �t(X 0�t)jX] = 0; t 2 R, and using (31), we deduce

0 =
@Et[Y � �0(X 0�0)jX]

@t
jt=0 �

@

@t
�t(X

0�t)jt=0 (32)

= E0[e(Z;�0)S�0(Z)jX]�
@

@v
�0(X

0�0)X
0 _�0 �

@

@v
�0(X

0�0)X
0 _�0 � _�0(X 0�0);

where (@=@v)�0(�) denotes the �rst order derivative of �0(v) and the functions with dots represent
derivatives with respect to t at t = 0 and S�0(z) is the score de�ned by S�0(z) , @ log f"jX;t(y �
�0(x

0�0))=@tjt=0: Therefore,

E0[e(Z;�0)S�0(Z)jX] = E0
h
e(Z;�0)S�0(Z)jX

0 _�0; X
0�0
i
. (33)

By de�ning g0(x) , fXjX0 _�0;X0�0
(xjx0 _�0; x0�0)=fXjX0�0(xjx0�0); we write the above equality as

E[e(Z;�0)s0(Z)jX] = E[e(Z;�0)s0(Z)g0(X)jX 0�0]: (34)

Hence we conjecture that the tangent space _P2 at P0 2 P1 \ P2 is given by

_P2 = fs 2 ~L2(P0) : E[e(Z;�0)s(Z)jX] = E[e(Z;�0)s(Z)g(X)jX 0�0] a.s., for some g 2 �L2(P0)g
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where ~L2(P0) = fs 2 L2(P0) : E [s(Z)] = 0g and �L2(P0) = fg 2 L2(P0) : E [g(X)jX 0�0] = 1g: In
the following we show that _P2 is indeed the tangent space and compute the projection �[ _̀1j _P2]:
Let us de�ne

Rh(X) , E[e(Z;�0)h(Z)jX]�
E[��2(X)e(Z;�0)h(Z)jX 0�0]

E[��2(X)jX 0�0]
:

Then we have the following.

Lemma A1 : Suppose Assumptions 1(iii) and 3 hold. Then
(i) _P2 is the tangent space.
(ii) �[hj _P2](Z) = h(Z)�E[h(Z)]� e(Z;�0)��2(X)Rh(X) for h 2 L2(P0):

Proof of Lemma A1: (i) We follow the procedure in Example 3.2.3 of BKRW. Let _T be the

tangent space. Since any s 2 _T satis�es (33), we have _T � _P2:
It su¢ ces to show that for any s 2 _P2, we can construct a parametric submodel in P2 with a score

s: We �x an arbitrary s 2 _P2 that satis�es the equation (34) for some g such that E [g(X)jX 0�0] =

1: De�ne

 (Z) , e(Z;�0)
�
1� fg(X)fzjX0�0(ZjX

0�0)=fzjX(ZjX)g
�
:

The function  satis�es E [s(Z) (Z)jX] = 0; since s 2 _P2: We take �(Z) , E
�
 (Z)2jX

��1
 (Z)

so that E [ (Z)�(Z)jX] = 1 and E [s(Z)�(Z)jX] = 0: De�ne

ft;�(zjx) ,
f0(zjx)� (��(z) + ts(z))R

f0(zjx)� (��(z) + ts(z)) d�(z)

with �(u) = 2(1+e�2u)�1 and f0 is the density of the distribution P0 in P2 so that EP0 [e(Z;�0)jX =

x] = 0: Here � denotes the dominating measure of PZ ; the distribution of Z. Then we can easily

check that

@

@t
log ft;�(zjx) = s(z),

@

@�
log ft;�(zjx) = �(z) andq

ft;�(zjx)�
p
f0(zjx) = St;�(z) + o(�) + o(t);

where St;�(z) , (��(z) + ts(z))=2; and that

Et;�[e(Z;�0)jX]�EP0 [e(Z;�0)jX] = EP0 [e(Z;�0)fft;�(ZjX)� f0(ZjX)g=f0(ZjX)jX]

= EP0 [e(Z;�0)St;�(z)jX] + o(�) + o(t):

The notation Et;�(�jX) indicates the conditional expectation with respect to ft;�(zjx): Choose a
path �t = (�t; �t) such that

�t(X
0�t) = EP0

�
St;�(Z)e(Z;�0)g(X)jX 0�0

�
;
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so that we have

EP0 [e(Z;�t)jX]�EP0 [e(Z;�0)jX] = �EP0
�
St;�(Z)e(Z;�0)g(X)jX 0�0

�
= EP0 [St;�(Z) ( (Z)� e(Z;�0)) jX] :

Then, from this choice, it follows that Et;�[e(Z;�t)jX] is equal to

EP0 [e(Z;�0)jX] +Et;�[e(Z;�t)jX]�EP0 [e(Z;�0)jX]

= Et;�[e(Z;�0)jX]�EP0 [e(Z;�0)jX] +EP0 [e(Z;�t)jX]�EP0 [e(Z;�0)jX] + o(t)

= EP0 [e(Z;�0)St;�(Z)jX] +EP0 [St;�(Z) ( (Z)� e(Z;�0)) jX] + o(�) + o(t)

= EP0 [ (Z)St;�jX] + o(�) + o(t) = (1=2)EP0 [ (Z)(��(Z) + ts(Z))jX] + o(�) + o(t):

However, by the choice of  ;

EP0 [ (Z)(��(Z) + ts(Z))jX] = (1=2)� + o(�) + o(t):

The equation Et;�[e(Z;�t)jX] = 0 has a root at � = �(t) with � = o(t): This implies that

EP0
�
St;�(t)(Z)e(Z;�0)jX

�
= EP0

�
St;�(t)(Z)e(Z;�0)g(X)jX 0�0

�
+ o(t):

Therefore, for small jtj; fft;�(t)g is a submodel in P2 with the required tangent s: Since this implies
_P2 � _T ; we conclude _T = _P2 = _P2:

(ii) It su¢ ces to show that (a) �[hj _P2] 2 _P2 and (b) h � �[hj _P2] ? _P2: To show (a), notice that
using the null restriction E[e(Z;�0)jX] = 0; we have E(�[hj _P2]) = 0; and also by the de�nition of
Rh(X);

E[e(Z;�0)�[hj _P2]jX] = E[e(Z;�0)h(Z)jX]�Rh(X)

=
E[��2(X)e(Z;�0)h(Z)jX 0�0]

E[��2(X)jX 0�0]

whereas

E[e(Z;�0)�[hj _P2]g(X)jX 0�0] = E[e(Z;�0)h(Z)g(X)jX 0�0]�E[Rh(X)g(X)jX 0�0]

=
E[g(X)jX 0�0]E[��2(X)e(Z;�0)h(Z)jX 0�0]

E[��2(X)jX 0�0]
:

Hence using E[g(X)jX 0�0] = 1; we obtain (a).

To show (b), notice that E[��2(X)Rh(X)jX 0�0] = 0: Therefore, for s 2 _P2

E[(h��[hj _P2])s(Z)] = E[e(Z;�0)��2(X)Rh(X)s(Z)] = E[��2(X)Rh(X)E [e(Z;�0)s(Z)jX]]

= E
�
��2(X)Rh(X)E[e(Z;�0)s(Z)g(X)jX 0�0]

�
= 0:
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�

Notice that since for each x 2 RdX ; lim
j"j!1

"f"jX("jx) = 0; E[e(Z;�0)s0(Z)jX] = �1: This

provides the expression for the e¢ cient score as

`�1(z) = _̀
1 ��[ _̀1j _P2] = e(z; �0)�

�2(x)b�(x)

where b�(x) = Rb0(x):

It is worth noting that when we know �0; the tangent space becomes

_P2 = fs 2 ~L2(P ) : E[e(Z;�0)s(Z)jX] = E[e(Z;�0)s(Z)jX 0�0] a.s.g;

which is smaller than the previous one when we do not know �0: However, the projection remains

the same. Therefore, the estimation of �0 is ancillary to the testing problem in the sense that

the semiparametric e¢ ciency bound for c = 0 does not change due to the lack of the knowledge

of �0: As mentioned in the main text, our test statistic achieves this e¢ ciency bound via the

reparametrization of �(X 0�) into �(F�(X 0�)). (See Bickel (1982) and Cox and Reid (1987).)

7.2 Appendix B: Mathematical Proofs of the Main Results

In this subsection, we provide the proofs of the main results. The notations are as in the main

text. For this section and Appendix C below, we use the notation C to denote an absolute constant

which can take di¤erent values in di¤erent places. Recall that Sb(x) = b(x)�E[b(X)jX 0�0 = x0�0]:

For an estimator b̂ of b; the notation Sb̂(x) means Sb(x) with b replaced by b̂: Hence the randomness

of b̂(�) does not interfere with the conditional expectation in the operator of S:

Proof of Lemma 1: By (2) and (3), it su¢ ces to consider ~mP (x) , �P (x
0�P ) for m�s in G(P ; rn):

Consider the following alternatives Pn 2 P(rn) such that

mPn(x) = ~mPn(x) + wPn(x)

where jjwPn jjMPn
= rn and hence mPn 2 G(Pn; rn); and we can decompose

wPn(x) = c1nbPn(x) + c2nw1Pn(x)

where EPn [bPn(X)w1Pn(X)] = 0 and EPn [w
2
1Pn
(X)] > 0 and c1n and c2n are constants. Note that

by (10),

jjwPn jjMPn
= jc1njjMPnbPn j = jc1njEPn [b2Pn(X)]:

This implies that jc1nj = rn=EPn [b
2
Pn
(X)] and that jjmPn � ~mPn jjMPn

= jc1njEPn [b2Pn(X)]:
For the proof of Lemma 1, it su¢ ces to show that c2n = 0: To the contrary, suppose that

jc2nj > 0: Choose P 0n such that mP 0n(x) = ~mP 0n(x) + c1nbP 0n(x) where ~mP 0n(x) = �P 0n(x
0�P 0n) and

26



EP 0n [b
2
P 0n
(X)] = EPn [b

2
Pn
(X)]: For example, we can choose P 0n under which it holds that

Y = �P 0n(X
0�P 0n) + c1nbP 0n(X) + "

where EP 0n ["jX] = 0 and the marginal distribution ofX under P 0n is the same as that under Pn: Then

~mP 0n 2 G(P
0
n; rn) because

jjmP 0n � ~mP 0n jjMP 0n
= jc1njjMP 0nbP 0n j = jc1njEP 0n [b

2
P 0n
(X)] = jc1njEPn [b2Pn(X)] = rn:

Hence

jjmP 0n � ~mP 0n jj2;P 0n = jc1njEP 0n [b
2
P 0n
(X)] = jc1njEPn [b2Pn(X)]

< jc1njEPn [b2Pn(X)] + jc2njEPn [w
2
1Pn(X)] = jjmPn � ~mPn jj2;Pn :

Therefore, Pn =2 P(rn) leading to a contradiction.�

Proof of Theorem 1 : (i) De�ne Wn to be a shrinking neighborhood of b�=�2 in W such that

Wn =

(
~b 2 W : sup

x2RdX

���� b�(x)�2(x)
� ~b�(x)

���� < �n

)
;

with �n = Cn�1=4 ! 0 and P
n
b̂�=�̂2 2 Wn

o
! 1 as n!1: By Assumption 3(i), it follows that

P

(����� 1pn
nX
i=1

e(Zi; �̂)b̂
�(Xi)

�̂2(Xi)
� 1p

n

nX
i=1

e(Zi;�0)S

 
b̂�

�̂2

!
(Xi)

����� > "

)

� P

(����� 1pn
nX
i=1

e(Zi; �̂)b̂
�(Xi)

�̂2(Xi)
� 1p

n

nX
i=1

e(Zi;�0)S

 
b̂�

�̂2

!
(Xi)

����� > ";
b̂�

�̂2
2 Wn

)
+ P

(
b̂�

�̂2
=2 Wn

)

� P

(
sup
~b2Wn

����� 1pn
nX
i=1

e(Zi; �̂)~b(Xi)�
1p
n

nX
i=1

e(Zi;�0)S
~b(Xi)

����� > "

)
+ o(1):

Now, by Lemma 1U below, the �rst probability is o(1): On the other hand, the process

Vn(~b) ,
1p
n

nX
i=1

e(Zi;�0)S
~b(Xi)

is mean-zero under the null hypothesis since E [e(Zi;�0)jXi] = 0. We claim that the process Vn(~b)

is stochastically equicontinuous in ~b 2 Wn: (See e.g. Andrews (1994)). In order to see this, we need

only to observe that the class SWn ,
n
S~b : ~b 2 Wn

o
has a �nite bracketing integral entropy with

a square integrable envelope. This latter condition follows due to the bracketing integral entropy

condition for the class Wn because the operator S is a linear operator and for the envelope Bn of

Wn, 2Bn is an envelope of SWn: Therefore, we have
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����� 1pn
nX
i=1

e(Zi;�0)
n
S
�
(b̂�=�̂2)(Xi)

�
� S

�
(b�=�2)(Xi)

�o����� = oP (1):

By the central limit theorem, the process 1p
n

Pn
i=1 e(Zi;�0)S((b

�=�2)(Xi)) converges in distribution

to a centered normal variable with variance �2eb: The result of (i) under the null hypothesis now

follows by noting that �̂2eb = �2eb + oP (1):

Consider the case of local alternatives. From the previous development, we have

Tn =

0@ 1q
n�2eb

nX
i=1

e(Zi;�0)S� (b
�(Xi))

1A2 + oP (1):
Note that the derivation of the above did not rest on whether we are under the null hypothesis or

not. Now, under the local alternatives, we have

1q
n�2eb

nX
i=1

e(Zi;�0)(S�b
�)(Xi) =

1q
n�2eb

nX
i=1

(Yi � �0(X 0
i�0))(S�b

�)(Xi)

=
1

n�eb

nX
i=1

a(Xi)(S�b
�)(Xi) +

1q
n�2eb

nX
i=1

"i(S�b
�)(Xi):

Since we can apply the law of large numbers and the central limit theorem, the above is asymptot-

ically normal with mean equal to E [a(X)S�b�(X)] =�eb and variance one. The expectation in the

mean is equal to hS�a; b0i�:12 By the assumption of the consistency of �̂2eb and Slutsky�s lemma,
we obtain the wanted result.

(ii) The result follows by Lemma A1 above and Corollary 2 of CHS.�

7.3 Appendix C: A Uniform Representation of Empirical Processes involving a
Conditional Mean Estimator

In this subsection, we present a general uniform representation of empirical processes that contain a

series-based conditional mean estimator. The result immediately implies the uniform representation

in Assumption 3(i)(c). Notations introduced here are self-contained for this subsection and have

no association with those in the main text unless otherwise stated. Let (Si)ni=1 , (Yi; Xi; Zi)
n
i=1

be an i.i.d. random sample of (possibly overlapping) vectors from P: Let � be a class of real-

valued functions whose generic element we denote by �: Let F�(�) and F0(�) be the distribution
functions of �(Xi) and �0(Xi), and let Fn;�;i and Fn;i be the empirical distribution functions

12To see this, observe that

ha; S(b�=�2)i = hSa; b�=�2i = hSa; b�i� = hSa; S�b0i� = hS�Sa; b0i� = hS�a; b0i�:

For the above derivation, we used the fact that S� and S are self-adjoint with respect to h�; �i� and h�; �i respectively.

28



of f�(Xj)gnj=1;j 6=i and f�0(Xj)gnj=1;j 6=i; i.e., Fn;�;i(��) , 1
n

Pn
j=1;j 6=i 1f�(Xj) � ��g and Fn;i(��) ,

1
n

Pn
j=1;j 6=i 1f�0(Xj) � ��g:
We introduce quantile transforms

Ui , F0(�0(Xi)); Un;i , Fn;i(�0(Xi)); and Un;�;i , Fn;�;i(�(Xi)); � 2 �;

and de�ne

g�(u) , E(�(Yi)jUi = u) and gw(u) , E(w(Xi)jUi = u)

where � and w belong to sets K and W of real-valued functions on RdY and RdX respectively: For

a vector � of nonnegative integers, we de�ne j � j� : jgj� = sup��� supz jD�g(z)j; where D�g(z) =

(@j�j=@z
�1
1 � � � @z�dzd )g(z) with dz denoting the dimension of z: We approximate g�(u) by pK(u)0��

using certain vectors pK(u) and ��: We have in mind the situation where �0 is not observed and is

replaced by a uniformly consistent estimator �̂ such that Pf�̂ 2 �g ! 1: For this, we introduce a

series-based estimator indexed by � 2 � as follows.

ĝ�;�(u) , pK(u)0�̂�;�; � 2 K, � 2 �;

where �̂�;� = [P 0�P�]
�1P 0�y�;n with y�;n and P� de�ned by

y�;n ,

2664
�(Y1)
...

�(Yn)

3775 and P� ,

2664
pK(Un;�;1)

0

...

pK(Un;�;n)
0

3775 :
Let ĝ�;�;i(u) be ĝ�;�(u) constructed without using the i-th data, (�(Yi); Un;�;i): We are interested

in the asymptotic representation of the process

1p
n

nX
i=1

w(Zi) f�(Yi)� ĝ�;�;i(Un;�;i)g ; (w; �; �) 2 W �K � �n

that is uniform over (w; �; �) 2 W �K � �n; where �n is speci�ed below.
Without loss of generality, we assume that �(x) 2 [0; 1]; � 2 �:13 Let l1(RdX ) be the space

of uniformly bounded real functions on RdX : For a given basis function vector pK ; we de�ne

��;K , jpK j� : We introduce a sup norm jj � jj1 on �: jj�� �0jj1 = supx j�(x)� �0(x)j ; and choose
a neighborhood �n of �0 by �n = f� 2 � : jj� � �0jj1 � Cn�bg for b 2 (1=4; 1=2] and for some
constant C > 0: In applications, we may consider �̂ 2 �n with probability approaching one. The
neighborhood �n is allowed to shrink at a rate slower than n�1=2; and hence it allows for the case

when �̂ is a nonparametric estimator.

Assumption 1U : (i) (Yi; Xi; Zi)ni=1 is a random sample from P: (ii) For classes K, �, and W,
13Otherwise, this is full�lled by rede�ning �H(X) , H(�(X)) for a strictly increasing transform H : R ! [0; 1]

and following the proof in the same manner. Note that Un;�;i and Ui remains intact after this transform.
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there exist b1; b2 and b3 such that b1; b3 2 [0; 2); b2 2 [0; 1); and b1(1� 1=p) < 1; p � 4;

logN[](";K; jj � jjp;P ) < C"�b1 ; logN[](";�; jj � jj1) < C"�b2 ; and

logN[](";W; jj � jjp;P ) < C"�b3 ;

and envelopes ~� and ~w for K and W satisfy that E[j~�(Y )jpjX] < 1 and E[j ~w(Z)jpjX] < 1;
PX -a.s., for some " > 0:

(ii)(a) For each � 2 �n; �(X) is a continuous random variable and (b) for some C > 0;

sup�2�nsup��2[0;1]
��F�(��+ �)� F�(��� �)�� < C�; for all � > 0:

(iii) There exists C > 0 such that for each u 2 U , fF� � � : � 2 �ng; the conditional density
function fu(y; xj�u) of (Y;X) given u(X) = �u satis�es that for all (y; x) 2 RdY +dX and for all

�u 2 [0; 1];
sup

�u12[0;1]:j�u��u1j<�
jfu(y; xj�u)� fu(y; xj�u1)j � 'u(y; x)�;

where 'u(�; �) is a real function that satis�es supx2SX
R
j~�(y)j'u(y; x)dy < C and

R
'u(y; x)dx <

CfY (y) with fY (�) denoting the density of Y:

Assumption 2U : For every K; there is a nonsingular constant matrix B such that for PK(u) ,
BpK(u) the following is satis�ed.

(i) There exists C1 > 0 such that from a su¢ ciently large n on,

0 < C1 < �min

�Z 1

0
PK(u)PK(u)0du

�
.

(ii) There exist d1 and d2 > 0 such that (a) there exist classes of vectors in RK ; f�� : � 2 Kg and
f�w : w 2 Wg; such that for each (w; �) 2 W �K,

sup
(�;�u)2K�[0;1]

��PK(�u)0�� � g�(�u)�� = O(K�d1) and

sup
(w;�u)2W�[0;1]

��PK(�u)0�w � gw(�u)�� = O(K�d2);

and (b) for each �u 2 [0; 1] there exist classes of vectors in RK ; f�g;�u : g 2 G�ug; G�u , fD1g�(�)1f�u �
�g : � 2 Kg; such that

sup
(�;�u)2K�[0;1]

sup
g2G�;�u

�Z 1

0

��PK(u)0�g;�u � g(u)��p du�1=p = O(K�d1):

(iii) For d1 and d2 in (ii),
p
n�20;KK

�d1 = o(1) and
p
nK�d2 = o(1):
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(iv) For b in the de�nition of �n and p in Assumption 1U(ii),

n1=2�2b�30;K�2;K = o(1); n�1=2+1=pK1�1=p�20;K = o(1) and

n�b�0;Kf
q
�0;K�2;K + �1;Kg = o(1):

We de�ne processes �̂1n(w; �; �) and �2n(w; �) as follows.

�̂1n(w; �; �) , 1p
n

nX
i=1

w(Zi) f�(Yi)� ĝ�;�;i(Un;�;i)g ; and

�2n(w; �) , 1p
n

nX
i=1

fw(Zi)� gw(Ui)gf�(Yi)� g�(Ui)g:

The following lemma establishes the uniform asymptotic equivalence of �̂1n(w; �; �) and �2n(w; �):

Lemma 1U : Suppose that Assumptions 1U-2U. Then we have

sup
(w;�;�)2W�K��n

j�̂1n(w; �; �)��2n(w; �)j = oP (1):

It is worth noting that when we replace � in �̂1n(w; �; �) by �0 so that the supremum is only

over (w; �) 2 W � K; we obtain the same result. This implies that the estimation error in �̂

plays no role in determining the uniform representation. This is because we use F�(�(X)) as a

conditioning variable, rather than �(X). By doing so, the estimation error of �̂ is cancelled out

by the estimation error additionally introduced by the normalization of �(X) by F�(�): This is a
generalization of a point made by Stute and Zhu (2005) who found this phenomenon in the context

of kernel estimation.

Now, we show how (25) in Assumption 3(i)(c) can be derived from this result. The notations

Xi and X 0
i�0 there correspond to Zi and �0(Xi) in Lemma 1U respectively. Under the lower-level

assumptions in Lemma 1U translated into the environment in Assumption 3(i)(c), we can write

1p
n

nX
i=1

w(Xi)(Yi � ĝ(Fn;�(X 0
i�̂); �̂)) =

1p
n

nX
i=1

(w(Xi)�E[w(Xi)jUi]) (Yi �E[YijUi]) + oP (1)

uniformly over � such that jj� � �0jj = O(n�1=2) and over w 2 W in Assumption 1U(i).

Note that under the local alternatives, we replace Yi with a(Xi)=
p
n + �0(X

0
i�0) + "i: From

�0(X
0
i�0)�E [�0(X 0

i�0)jUi] = 0; we �nd that the statement follows once we show that the sum

1

n

nX
i=1

(w(Xi)�E[w(Xi)jUi])E[a(Xi)jUi]

is uniformly oP (1) over w 2 W. Since the sum is a mean-zero process, it su¢ ces to show that the

functions in the summand as indexed by w 2 W belong to a Glivenko-Cantelli class. This latter
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fact immediately follows from the bracketing entropy condition for the class W.

Proof of Lemma 1U : Fix an arbitrarily small number � > 0 and de�ne M� , 1=�: As in Song
(2006), we rotate the vector pK by a matrix. De�ne the matrix BK(b) , pK(ub)p

K(ub)
0 where ub

achieves the supremum of fb0fpK(�u)pK(�u)0gM�b : �u 2 [0; 1]g and let b� be a maximizer of b0BM�
K (b)b

over b 2 SK ; where SK , fb 2 RK : jjbjj = 1g; and apply the spectral decomposition to the matrix

BM�
K (b�) + C1I = ~BK
 ~B

0
K ;

for some C1 > 0 and �nally rotate pK to obtain PK , ~B0Kp
K=f�max(
)g

1
2M� ; but we use the same

notation pK for this rotated vector PK :

We introduce some notations. Let

Q̂n;� , P 0n;�Pn;�=n; Q ,
Z 1

0
pK(u)pK(u)0du;

Q̂n , 1

n

nX
i=1

pK(Un;i)p
K(Un;i)

0; and Q̂ , 1

n

nX
i=1

pK(Ui)p
K(Ui)

0:

For brevity, de�ne

pKi , pK(Ui); p
K
n;i , pK(Un;i); p

K
n;�;i , pK(Un;�;i); wi , w(Zi), �i , �(Yi);

gw;i , gw(Ui); gw;n;i , gw;n(Un;i); g�;i , g�(Ui); and g�;n;i , g�;n(Un;i);

where g�;n(u) , E [�(Yi)jUn;i = u] and gw;n(u) , E [w(Zi)jUn;i = u] :

Note that jjF� � �� F�0 � �0jj1 is bounded by

F�0(�0(x) + 2jj�� �0jj1)� F�0(�0(x)� 2jj�� �0jj1) � Cjj�� �0jj1 (35)

by Assumption 1U(ii)(a). This implies that

logN[](C";U ; jj � jj1) � logN[](";�; jj � jj1): (36)

where U is as de�ned in Assumption 1U(iii). Also observe that sup�2� jjFn;��F�jj1 = OP (n
�1=2): The
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last statement follows because � is P -Donsker by Assumption 1U(i).14 Furthermore, observe that15

P

�
inf
�2�n

�min(Q̂n;�) > C1=2

�
! 1;

which makes it su¢ ce to deal with every term multiplied by 1n , 1finf�2�n �min(Q̂n;�) > C1=2g:
For simplicity, we suppress this from the notations.

Write 1p
n

Pn
i=1wiĝ�;�;i(Un;�;i) as

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
n;�;iQ̂

�1
n;�p

K
n;�;j�j = tr

8<: 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�jp
K
n;�;jp

K0
n;�;iQ̂

�1
n;�

9=; :

For the term on the right-hand side, we show the following:

(UA) : supw;�;�
��� 1
n
p
n

Pn
i=1

Pn
j=1;j 6=iwi�jtr(fpKn;�;jpK0n;�;iQ̂

�1
n;� � pKn;jpK0n;iQ̂�1n g)

��� = oP (1):

Then, observe that 1p
n

Pn
i=1wi(ĝ�;�;i(Un;�;i)� g�;i) is equal to

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
n;iQ̂

�1
n pKn;j�j �

1p
n

nX
i=1

wig�;i + oP (1)

=
1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
n;iQ̂

�1
n pKn;j(�j � g�;j)

+
1p
n

nX
i=1

wi

8<:pK0n;i 1n
nX

j=1;j 6=i
Q̂�1n pKn;jg�;j � g�;i

9=;+ oP (1)
= A1n(w; �; �) +A2n(w; �; �); say.

For the second term, we show the following:

(UB) : supw;�;� jA2n(w; �; �)j = oP (1);

14This immediately follows from the fact that the class I , f1f�(�) � ��g : (�; ��) 2 �� [0; 1]g is P -Donsker. This
latter fact follows from the local uniform L2-continuity of the functions in the class, i.e.,(

E

"
sup

�;��:jj���1jj1<�;j�����1j<�

��1f�1(�) � ��1g � 1f�(�) � ��g
��2#)1=2

� C�1=2:

The above implies that for all " > 0;

logN[]("; I; jj � jj2) � logN[]((C")
2;�; jj � jj1) + logN[]((C")

2; [0; 1]; jj � jj) � C"�2b2 :

That I is P -Donsker follows by the condition b2 < 1 in Assumption 1U(i).
15Note that����min(Q̂n;�)� �min(Q)��� � sup

b2SK

���b0(Q̂n;� �Q)b��� � �0;K�1;K jjFn;� � F�jj1 = OP (n
�1=2�0;K�1;K):

The last term is oP (1) by Assumption 2U(iv).
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leaving us with A1n(w; �; �) to deal with. For this term, we show the following.

(UC) : supw;�;�
���A1n(w; �; �)� 1p

n

Pn
i=1 gw;i(�i � g�;i)

��� = oP (1):

By collecting the results of (UB) and (UC), we conclude that

1p
n

nX
i=1

wi(ĝ�;�(Un;�;i)� g�;i) =
1p
n

nX
i=1

gw;i(�i � g�;i) + oP (1):

This result implies that

1p
n

nX
i=1

wi f�i � ĝ�;�(Un;�;i)g =
1p
n

nX
i=1

wi f�i � g�;ig+
1p
n

nX
i=1

wi fg�;i � ĝ�;�(Un;�;i)g

=
1p
n

nX
i=1

wi f�i � g�;ig �
1p
n

nX
i=1

gw;i(�i � g�;i) + oP (1)

=
1p
n

nX
i=1

fwi � gw;ig f�i � g�;ig+ oP (1);

completing the proof.

(Proof of UA) : Write tr
n

1
n
p
n

Pn
i=1

Pn
j=1;j 6=iwi�j

�
pKn;�;jp

K0
n;�;iQ̂

�1
n;� � pKn;jpK0n;iQ̂�1n

�o
as

tr

8<: 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�jp
K
n;�;jp

K0
n;�;i(Q̂

�1
n;� � Q̂

�1
n )

9=; (37)

+tr

8<: 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�j
�
pKn;�;jp

K0
n;�;i � pKn;jpK0n;i

�
Q̂�1n

9=; :

Consider the leading term in the above, which we write as

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�jp
K0
n;�;iQ̂

�1
n;�(Q̂n � Q̂n;�)Q̂

�1
n pKn;�;j

�
�20;K
n
p
n

nX
i=1

nX
j=1;j 6=i

jwijj�j jb0n;�;i(Q̂n � Q̂n;�)bn;�;j ; where bn;�;j , Q̂�1n pKn;�;j=
Q̂�1n pKn;�;j

 ;
�

�20;K
n2

nX
i=1

nX
j=1;j 6=i

jwijj�j j sup
(b;�)2SK��n

����� 1pn
nX
k=1

�
(b0pK(Un;k))

2 � (b0pK(Un;�;k))2
	����� :

Then we show that

(UA1) : sup(b;�)2SK��n
��� 1pnPn

k=1

�
(b0pK(Un;k))

2 � (b0pK(Un;�;k))2
	��� = oP (�

�2
0;K)

Since supw;� 1
n2
Pn
i=1

Pn
j=1;j 6=i jwijj�j j � 1

n2
Pn
i=1

Pn
j=1;j 6=i j ~w(Zi)jj~�(Yj)j = OP (1); by the law

of large numbers, we deduce that the �rst term in (37) is equal to oP (1):
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Now, let us deal with the second term in (37), which we bound by

sup
b2SK

0@ 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�jb
0 �pKn;�;jpK0n;�;i � pKn;jpK0n;i� b

1A tr
�
Q̂�1n

�
:

The double sum in the above is written as

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�jb
0 �fpKn;�;j � pKn;jgpK0n;�;i� b+ 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�jb
0 �pKn;jfpK0n;�;i � pK0n;ig� b

, B1n(w; �; �) +B2n(w; �; �) say.

De�ne  1b(u1; u2) , b0pK(u1)D1pK(u2)
0b and  2b(u1; u2) , b0pK(u1)D2pK(u2)

0b: The �rst term is

expanded as

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�j 1b(Ui; Uj)fUn;�;j � Un;jg+ r0n(w; �; �) + r1n(w; �; �) (38)

where

r0n(w; �; �) , 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�j f 1b(Un;�;i; Un;j)�  1b(Ui; Uj)g fUn;�;j � Un;jg

r1n(w; �; �) , 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi�j 2b(Un;�;i; U
�
n;�;j)fUn;�;j � Un;jg2; and

U�n;�;j lies on the line segment between Un;j and Un;�;j : Let us investigate r1n(w; �; �): We can deal

with r0n(w; �; �) similarly by expanding  1b(Un;�;i; Un;j)�  1b(Ui; Uj) around (Ui; Uj): Note that

jr1n(w; �; �)j �
�2;K�0;K
n
p
n

nX
i=1

nX
j=1;j 6=i

j ~w(Zi)jj~�(Yj)j (Un;�;j � U�;j � (Un;j � Uj) + U�;j � Uj)2

= OP (n
1=2�2b�0;K�2;K) = oP (�

�2
0;K)

by (35) and Assumption 2U(iv).

By Lemma UA below, the �rst term in (38) is written as

1p
n

nX
i=1

wib
0pKi E

�
f�j � g�;jgD1pKj fU�;j � Ujg

�
+ oP (K

�1) (39)

=

 
1

n

nX
i=1

wib
0pKi

!
E
�
f�j � g�;jgD1pKj U�;j

�
+ oP (K

�1)
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Now, by Lemma A2(ii) of Song (2006),

supx2SX
��E �D1pKj �j jUj = F�0(�0(x))

�
�E

�
D1pKj �j jU�;j = F�(�(x))

��� � C�1;K jjF����F�0��0jj1;
(40)

Hence
���E hf�j � g�;jgD1pKj U�;j

i��� is equal to
��E ��E �D1pKj �j jU�;j

�
�E

�
E
�
D1pKj �j jUj

�
jU�;j

�	
U�;j

���
=

��E ��E �E �D1pKj �j jU�;j
�
�E

�
D1pKj �j jUj

�
jU�;j

�	
U�;j

��� � C�1;K jj�� �0jj1 = OP (n
�b�1;K);

using (40) and (35). The last term is oP (K�1) by Assumption 2U(iv). As for the term 1
n

Pn
i=1wib

0pKi
in (39), let J1 , fw(�)b0pK(�) : (w; b) 2 W � SKg and de�ne

J1(z; u) , ~w(z)
h
tr
�
fpK(u)pK(u)gM�=2

�i1=M�

:

Then as in the proof of Theorem 1L in Song (2006) (see the proof of (B)), we have jjJ1jj2;P � CK�=2

and hence by using the maximal inequality (e.g. Pollard (1989)16) and using Lemma UB below.

E

"
sup

(w;b)2W�SK

����� 1n
nX
i=1

wib
0pKi

�����
#
� 1p

n

Z CK�=2

0

q
1 + logN[](";J1; jj � jj2;P )d"

� n�1=2
�
K(1�b3=2)(�=2) +

q
K log(K�=2)

�
= oP (1):

Hence we conclude supw;�;� jB1n(w; �; �)j = oP (1): We can similarly write B2n(w; �; �) as

1p
n

nX
i=1

�ib
0pKj E

�
fwi � gw;igD1pKi fU�;i � Uig

�
+ oP (1)

and show that it is oP (1) exactly in the same manner as before.

(Proof of UB) : First write 1
n
p
n

Pn
i=1

Pn
j=1;j 6=iwip

K0
n;iQ̂

�1
n pKn;jg�;j � 1p

n

Pn
i=1wig�;i as

1p
n

nX
i=1

wip
K0
n;iQ̂

�1
n

8<: 1n
nX

j=1;j 6=i
pKn;jg�;j �

1

n

nX
j=1;j 6=i

pK0n;jp
K0
n;j��

9=; (41)

+
1p
n

nX
i=1

wi
�
pK0n;i�� � g�;i

	
+ oP (1):

16The maximal inequality and its proof there are replicated in van der Vaart (1996), Theorem A.2, p.2136.
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By the mean-value expansion, the �rst term is written as

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
n;iQ̂

�1
n pKn;jD

1g�(Un;j)(Uj � Un;j) (42)

+
1p
n

nX
i=1

wip
K0
n;iQ̂

�1
n

8<: 1n
nX

j=1;j 6=i
pKn;jfg�(Un;j)� pK0n;j��g

9=;+ oP (1);
following steps in the proof of (UA2). The second term in the above is bounded by0@ 1

n
p
n

nX
i=1

nX
j=1;j 6=i

j ~w(Zi)j
���pK0n;iQ̂�1n pKn;j

���
1Ag� � pK0��1 :

It is not hard to show that the double sum in the parenthesis is OP (
p
n�20;K): Hence the second

term in (42) is OP (
p
n�20;KK

�d1) = oP (1) by Assumption 2U(iii). Similarly the second term in

(41) is equal to

� 1p
n

nX
i=1

wiD
1g�(Un;i)(Ui � Un;i) +

1p
n

nX
i=1

wifpK0n;i�� � g�(Un;i)g+ oP (1)

and again, the second term is oP (1):

Hence the �rst two sums in (41) is equal to

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
n;iQ̂

�1
n pKn;jD

1g�(Un;j)(Uj � Un;j) (43)

� 1p
n

nX
i=1

wiD
1g�(Un;i)(Ui � Un;i) + oP (1)

=
1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
i Q�1pKj D

1g�(Uj)(Uj � Un;j)�
1p
n

nX
i=1

wiD
1g�(Ui)(Ui � Un;i) + oP (1):

The last equality is obtained by expanding terms around Ui and Uj and applying Assumption

2U(iv). We de�ne qK(Uj ; Uk;�; b) , b0pK(Uj)D1g�(Uj)fUj � 1fUk � Ujgg and bound the absolute
value of the leading term by

1

n

nX
i=1

wijjpK0i Q�1jj

0@ sup
(�;b)2K�SK

������ 1

n
p
n

nX
j=1;j 6=i

nX
k=1;k 6=j;i

qK(Uj ; Uk;�; b)

������
1A :

We analyze the double sum in the parenthesis. First note that E [qK(Uj ; Uk;�; b)jUj ] = 0: Applying
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Hoe¤ding�s decomposition to the double sum above, we write it as

1

n
p
n

nX
i=1

nX
k=1;k 6=j;i

E [qK(Uj ; Uk;�; b)jUk] + r2n(w; �)

where r2n(w; �) , 1
n
p
n

Pn
i=1

Pn
k=1;k 6=j;i (qK(Uj ; Uk;�; b)�E [qK(Uj ; Uk;�; b)jUk]) is a degenerate

U -process. For this we show the following:

(UB1) : supw;� jr2n(w; �)j = oP (�
�1
0;K):

We can deal with the last term in (43) similarly, so that the terms in (43) are written as

1

n
p
n

nX
i=1

nX
k=1;k 6=j;i

wi
�
pK0i Q�1E

�
pKj
�
D1g�(Uj)f1fUk � Ujg � Ujg � pK0j �(Uk)

�
jUk
�	
(44)

+
1

n
p
n

nX
i=1

nX
k=1;k 6=j;i

E
�
wi
�
pK0i �(Uk)�D1g�(Ui)f1fUk � Uig � Uig

�
jUk
�
+ oP (1):

By Cauchy-Schwarz inequality,
���E hb0pKj �D1g�(Uj)f1fUk � Ujg � Ujg � pK0j �(Uk)

�
jUk
i��� is bounded

by

r
E
h
b0pKj p

K0
j bjUk

is
E

����D1g�(Uj)f1fUk � Ujg � Ujg � pK0j �(Uk)
���2 jUk� = O(K�d1)

Hence the �rst term of (44) is OP (
p
n�0;KK

�d1) = oP (1). Similarly, we can show that the second

term of (44) is OP (
p
nK�d1) = oP (1): The proof is complete.

(Proof of UC) : First we show that

(UC1) : 1
n
p
n

Pn
i=1

Pn
j=1;j 6=iwifpK0n;iQ̂�1n pKn;j � pK0i Q�1pKj g(�j � g�;j) = oP (1):

Then, note that

E
�
wip

K0
i Q�1pKj (�j � g�;j)jSi

�
= wip

K0
i Q�1E

�
pKj (�j � g�;j)jSi

�
= wip

K0
i Q�1E

�
pKj (�j � g�;j)

�
= wip

K0
i Q�1E

�
E
�
pKj (�j � g�;j)jUj

��
= 0:

Therefore, by Hoe¤ding�s decomposition

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K0
i Q�1pKj (�j � g�;j) =

1p
n

nX
j=1;j 6=i

E
�
wip

K0
i Q�1

�
pKj (�j � g�;j) + r3n(�); (45)

where r3n(�) , 1
n
p
n

Pn
i=1

Pn
j=1;j 6=iwip

K0
i Q�1pKj (�j � g�;j) � 1p

n

Pn
j=1;j 6=iE

�
wip

K0
i Q�1

�
pKj (�j �

g�;j) is a degenerate U -process. Following steps in the proof of UB1, we can show that sup� jr3n(�)j =
oP (1):
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As for the leading term on the right-hand side of (45), observe that it is equal to

1p
n

nX
j=1;j 6=i

�0wE
�
pKi p

K0
i Q�1

�
pKj (�j � g�;j) + oP (1) =

1p
n

nX
j=1;j 6=i

�0wp
K
j (�j � g�;j) + oP (1)

=
1p
n

nX
j=1;j 6=i

gw;j(�j � g�;j) + oP (1);

by a repeated application of Assumptions 2U(ii)(a) and 2U(iii). This completes the proof.

Proof of (UA1) : We can expand 1p
n

Pn
k=1

�
(b0pK(Un;k))

2 � (b0pK(Un;�;k))2
	
as

2p
n

nX
k=1

b0D1pK(U�n;�;k)p
K(U�n;�;k)

0b(Un;k � Un;�;k)

=
2p
n

nX
k=1

b0D1pK(Uk)p
K(Uk)

0b(Un;k � Un;�;k)

+
2p
n

nX
k=1

�
b0D1pK(U�n;�;k)p

K(U�n;�;k)
0b� b0D1pK(Uk)p

K(Uk)
0b
	
(Un;k � Un;�;k):

We can show that the second term is OP (n�2bf�0;K�2;K+�21;Kg): By Lemma UA below, the leading
term is OP (n1=2�2b�0;K�1;K): Therefore, the result follows by Assumption 2U(iv).

Proof of (UB1) : Let J2 , fqK(�; �;�; b)=(�0;K jD1g~�(�)j) : (�; b) 2 K � SKg. Then r2n(w; �) is a
degenerate U -process indexed by uniformly bounded J2: We apply Proposition 1 of Turki-Moalla
(p.877) to obtain that (using Lemma UB below)

E

24 sup
'2J2

������n
1� 1

p

n2

nX
j=1

nX
k=1;k 6=j

f'(Uj ; Uk)�E ['(Uj ; Uk)jUk]g

������
35

� C

Z �
1 + logN[](";J2; jj � jjp

	1� 1
p d" � C

Z
f"�b1 +K log(")g1�

1
pd" � CK

1� 1
p ;

since b1(1� 1=p) < 1: Observe that

E

�
sup
w;�

jr2n(w; �)j
�
� CE

24 sup
'2J2

������ �0;Kn
p
n

nX
j=1

nX
k=1;k 6=j

f'(Uj ; Uk)�E ['(Uj ; Uk)jUk]g

������
35

= O(n
� 1
2
+ 1
pK

1� 1
p �0;K) = o(��10;K)

by Assumption 2U(iv).
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Proof of (UC1) : Write 1
n
p
n

Pn
i=1

Pn
j=1;j 6=iwifpK0n;iQ̂�1n pKn;j � pK0i Q�1pKj g(�j � g�;j) as

tr

8<:Q̂�1n 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi(p
K
n;jp

K0
n;i � pKj pK0i )(�j � g�;j)

9=;
+tr

8<:(Q̂�1n �Q�1) 1

n
p
n

nX
i=1

nX
j=1;j 6=i

wip
K
j p

K0
i (�j � g�;j)

9=; :

By applying the mean-value expansion to the terms in the double sum of the leading term, we write

the double sum as

1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi
�
D1pK(Uj)p

K(Ui)(Un;j � Uj)(�j � g�;j)
	

(46)

+
1

n
p
n

nX
i=1

nX
j=1;j 6=i

wi
�
D1pK(Ui)p

K(Uj)(Un;i � Ui)(�j � g�;j)
	

+oP (1):

The �rst term on the right-hand side is equal to

1

n

nX
i=1

wip
K(Ui)

0

0@ 1

n
p
n

nX
j=1;j 6=i

nX
k=1;k 6=j;i

�
D1pK(Uj)(1fUk � Ujg � Uj)(�j � g�;j)

	1A : (47)

However, note that E
�
D1pK(Uj)(1fUk � Ujg � Uj)(�j � g�;j)jSj

�
= 0 and

E
�
D1pK(Uj)(1fUk � Ujg � Uj)(�j � g�;j)jSk

�
= E

�
D1pK(Uj)(1fUk � Ujg � Uj)E [�j � g�;j jSk; Uj ] jSk

�
= E

�
D1pK(Uj)(1fUk � Ujg � Uj)E [�j � g�;j jUj ] jSk

�
= 0:

Hence the double sum in (47) is a degenerate U -process and similarly as before, we can show that

it is oP (�
�1
0;K): The last term in (46) is written as

1p
n

0@ 1

n
p
n

nX
i=1

nX
k=1;k 6=i

wiD
1pK(Ui)(1fUk � Uig � Ui)

1A0@ 1p
n

nX
j=1;j 6=i

pK(Uj)
0(�j � g�;j)

1A+ oP (1):
(48)

Then,

sup
�2K

 1pn
nX

j=1;j 6=i
pK(Uj)

0(�j � g�;j)

 � sup
(�;b)2K�SK

�0;K

 1pn
nX

j=1;j 6=i
pK(Uj)

0b(�j � g�;j)

 :
It is not hard to see that the last term is OP (�0;K); using the maximal inequality and Lemma A1(ii)
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of Song (2006). For the double sum in the �rst parenthesis of (48), note that

E
�
wiD

1pK(Ui)(1fUk � Uig � Ui)jSi
�
= 0:

Hence we write the double sum as

1

n
p
n

nX
i=1

nX
k=1;k 6=i

E
�
wiD

1pK(Ui)(1fUk � Uig � Ui)jUk
�
+ r4n(w)

where

r4n(w) ,
1

n
p
n

nX
i=1

nX
k=1;k 6=i

�
wiD

1pK(Ui)(1fUk � Uig � Ui)�E
�
wiD

1pK(Ui)(1fUk � Uig � Ui)jUk
�	
:

Similarly as before, we can show that supw jr4n(w)j = oP (1): Hence the leading term in (48) is

equal to OP (n�1=2�0;K�1;K) = oP (1) by Assumption 2U(iv).�

Lemma UA : Let f n;�(y; x)gn�1 be a sequence of real-valued functions onRdS indexed by � 2 K,
where the class Jn , f n;�(�) : � 2 Kg has an envelope � n with jj� njj2;P < 1 and satis�es that

logN[](";Jn; jj � jj2;P ) � C"�c with c 2 [0; 2): Suppose further that the conditional density f(sju) of
Si given Ui = u satis�es Assumption 1U(iii). Then we have

8<:E
24 sup
(�;�)2K��n

������ 1pn
nX
j=1

 n;�(Yj ; Xj)(Un;�;j � Un;j)�
p
nE [�n;�(Yi; Xi)(U�;i � Ui)]

������
2359=;

1=2

= O(n1=2�2bjj� njj2;P );

where �n;�(Yi; Xi) ,  n;�(Yi; Xi)�E
�
 n;�(Yi; Xi)jUi

�
:

Proof of Lemma UA : Write Wi , (Yi; Xi): Note that 1p
n

Pn
j=1;j 6=i  n;�(Wj)(Un;�;j � Un;j) is

equal to

1p
n

nX
j=1;j 6=i

�
 n;�(Wj)(Un;�;j � Un;j)�E

�
 n;�(Wj)(Un;�;j � Un;j)

�	
+
p
nE
�
 n;�(Wj)(Un;�;j � Un;j)

�
(49)

Write the �rst sum as

1

n
p
n

nX
j=1;j 6=i

nX
k=1

fr�;�(Wk;Wj)�E [r�;�(Wk;Wj)]g ; (50)

where r�;�(Wk;Wj) ,  n;�(Wj)(1f�(Xk) � �(Xj)g � 1f�0(Xk) � �0(Xj)g): Now, the class V 0 ,
fv�(�; �) : � 2 �ng; v�(x1; x2) , 1f�(x1) � �(x2)g can be shown to be P -Donsker similarly by using
local uniform L2-continuity of its members (see the �rst footnote in the proof of Lemma 1U), and

so can the class V 00 , f n;�(�)[v�(�; �) � v�0(�; �)] : (�; �) 2 K � �ng. By using standard arguments
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of U -processes and Theorem 2.14.5 of van der Vaart and Wellner (1996) that provides the bound

for the L2(P ) norm of empirical processes in terms of L1(P ) norm of empirical processes, we can

show that the sum in (50) is OP (n1=2�2bjj� njj2;P ):
We turn to the second term in (49). We write the term as

p
nE
�
 n;�(Wj)(1fU�;i � U�;jg � 1fUi � Ujg)

�
: (51)

=
p
nE
�
 n;�(Wj)(1fU�;i � U�;jg � 1fU�;i � Ujg)

�
+
p
nE
�
 n;�(Wj)(1fU�;i � Ujg � 1fUi � Ujg)

�
:

The �rst term above is equal to

p
nE
�
 n;�(Wj)(1fU�;i � U�;jg � 1fU�;i � Ujg)

�
(52)

=
p
nE
�
 n;�(Wj)E [1fU�;i � U�;jg � 1fU�;i � UjgjWj ]

�
=

p
nE
�
 n;�(Wj)(U�;j � Uj)

�
:

For the second term, note that

p
nE
�
 n;�(Wj)(1fU�;i � Ujg � 1fUi � Ujg)

�
(53)

= �
p
nE
�
 n;�(Wj)(1fUj � U�;ig � 1fUj � Uig)

�
= �

p
nE
�
E
�
 n;�(Wj)jUj ; Xi

�
(1fUj � U�;ig � 1fUj � Uig)

�
= �

p
nE
�
E
�
E
�
 n;�(Wj)jUj

�
(1fUj � U�;ig � 1fUj � Uig)jXi

��
= �

p
nE

�Z U�;i

Ui

E
�
 n;�(Wj)jUj = u

�
du

�
:

By applying the mean-value expansion using Assumption 1U(iii) and the condition that � 2 �n,
the last term becomes

�
p
nE
�
E
�
 n;�(Wi)jUi

�
(U�;i � Ui)

�
+OP (n

1=2�2bjj� njj2;P ):

Combining this with (52), we obtain the wanted result.�

Lemma UB : As for the classes J1 and J2 de�ned by

J1 , fw(�)b0pK(�) : (w; b) 2 W � SKg

J2 , fqK(�; �;�; b)=f�0;K jD1g~�(�)jg : (�; b) 2 K � SKg;

where qK(u1; u2;�; b) , D1g�(u1)b
0pK(u1)fu1 � 1fu2 � u1gg; it is satis�ed that

logN[](";J1; jj � jj2;P ) � Cf"�b3 +K log("=K�=2)g;

logN[](";J2; jj � jj2;P ) � Cf"�b1 +K log(")g:
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Proof of Lemma UB : First consider J1:We take f(wj ;�j)gN1j=1 such that f[wj��j ; wj+�j ]g
N1
j=1

form "-brackets that coverW and choose fbkgN2k=1, the centers of 2"=K�=2-balls that cover SK : Take

�jk , �j
p
bkpKpK0bk+ ~w

�
tr
�
fpKpK0gM�=2

�	1=M� . As in the proof of Theorem 1L in Song (2006),

we note that

jj
p
bkpKpK0bkjj2;P � C and jj

n
tr
�
fpKpK0gM�=2

�o1=M�

jj2;P � CK�=2:

These bounds are obtained due to the rotation of pK performed in the beginning of the proof

of Lemma 1U. Then it is easy to check that the set f[wjb0kpK � �jk; wjb0kpK + �jk]g
N1
j=1 forms

C"-brackets that cover J1: Hence

logN[](";J1; jj � jj2;P ) � logN[]("=C;W; jj � jj2;P ) + logN("=K�=2; SK ; jj � jj)

� C"�b3 + CK log("=K�=2):

Let us turn to J2: Note that��D1g�1(u)�D1g�2(u)
�� =

��� lim
v!0

fE (�1(Y )� �2(Y )jU = u+ v)�E (�1(Y )� �2(Y )jU = u� v)g =(2v)
���

� lim
v!0

Z
j�1(y)� �2(y)j

jf(yju+ v)� f(yju� v)j
2v

dy � Cjj�1 � �2jj2;P

by Assumption 1U(iii). Hence similarly as before,

logN[](";J2; jj � jj2;P ) � logN[]("=C;K; jj � jj2;P ) + logN("; SK ; jj � jj):

�
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