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Abstract

A monotone game is a multistage game in which no player can lower her action in

any period below its previous level. A motivation for the monotone games of this paper

is dynamic voluntary contribution to a public project. Each player's utility is a strictly

concave function of the public good, and quasilinear in the private good. The main result is

a description of the limit points of (subgame perfect) equilibrium paths as the period length

shrinks. The limiting set of such pro�les is equal to the undercore of the underlying static

game � the set of pro�les that cannot be blocked by a coalition using a smaller pro�le.

A corollary is that the limiting set of achievable pro�les does not depend on whether the

players can move simultaneously or only in a round-robin fashion. The familiar core is

the ef�cient subset of the undercore; hence, some but not all pro�les that are ef�cient and

individually rational can be nearly achieved when the period length is small. As the period

length shrinks, any core pro�le can be achieved in a �twinkling of the eye� � neither real-

time gradualism nor inef�ciency are necessary.
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tion, gradualism
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1. Introduction

Amonotone game is a multistage game, with ordered stage game actions, in which no player can

ever choose an action lower than the one she chose in the previous period. This paper is about

a certain class of such games, in a setting with an in�nite horizon and discounted payoffs. The

goal is to characterize their pure strategy subgame perfect equilibrium outcomes and payoffs,

especially when the period length is small.

The irreversibility of a monotone game arises in many settings.1 An especially prominent

one is that of dynamic voluntary contribution, along the lines of Marx and Matthews (2000).

Agents in this scenario contribute amounts of a private good each period to a project, which

uses the total contribution accumulated to date as capital to produce public goods. Think of

a fund drive, or a never-ending sequence of fund drives, to �nance university buildings or a

charity. Each player's cumulative contribution can only increase over time, thereby generating

the monotonicity.

In keeping with this motivation, the stage game payoffs in this paper are those of a neoclas-

sical public goods model. They are quasilinear in private good consumption, and the valuation

functions for the total amount contributed are strictly concave and differentiable. Each player's

marginal valuation is low enough that she will never want to unilaterally increase her contribu-

tion, regardless of the level of past contributions. This prisoners' dilemma feature distinguishes

the setting from the literature in which the public good has a threshold provision point, as is

discussed below.

An equilibrium path is a nondecreasing sequence of action/contribution pro�les. Much of

this paper concerns the limits of (pure strategy subgame perfect) equilibrium paths, the �equi-

librium limit pro�les�. A path will spend all but a �nite number of periods near its limit, and so

the limiting pro�les have an important role when discounting is low.

The main result is that as the period length goes to zero, the set of equilibrium limit pro�les

expands and converges essentially to the �undercore� of the underlying coalitional game.2 The

undercore is de�ned like the familiar core, except that a contribution pro�le can only be blocked

1Consider, for example, �rms irrevocably making entry or standards-adoption decisions over time, as in Gale

(1995) or Ochs and Park (2004). Or countries negotiating treaties to progressively lower tariff or pollution levels, as

in Lockwood and Zissimos (2005).

2Technically, the set of equilibrium limit pro�les converges to the �strict undercore�, the closure of which is the

undercore. See Theorem 3.
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with a (component-wise) smaller pro�le. That is, a pro�le is �underblocked�, by a coalition

if there exists a smaller pro�le that each coalition member prefers, and which prescribes zero

contributions for the nonmembers. The undercore is the set of pro�les that are not underblocked.

This characterization has several consequences. First, it implies that some ef�cient pro�les

can be nearly achieved as equilibrium limit pro�les when the period length is small. This is

because the undercore contains the core, and any core pro�le is ef�cient. (The core is nonempty

here, containing, e.g., the Lindahl pro�le.)

Second, if the number of players is three or more, then generally some pro�les that are

ef�cient and individually rational cannot be achieved because they are not in the core. The

requirement that an equilibrium limit pro�le be in the undercore means that the ultimate con-

tributions of the players in an equilibrium cannot be too unbalanced � the total contribution of

any coalition is bounded.

Third, as the period length shrinks to zero, the set of equilibrium limit pro�les converges to

the same set regardless of the move structure of the game. The only assumption made about the

move structure is that it satis�es a weak cyclicity property, one that both the simultaneous-move

and the round-robin move structures satisfy. Hence, in this limiting sense, whether the players

can move simultaneously is irrelevant.

Fourth, as the period length shrinks, any undercore pro�le can be achieved in a negligible

amount of real time. In other words, given any neighborhood of any undercore pro�le, there

exists an equilibrium path that permanently enters the neighborhood in an amount of time that

goes to zero with the period length. Any equilibrium limit pro�le can thus be achieved without

signi�cant delay or real-time gradualism if the period length is small enough.

These properties of the set of equilibrium limit pro�les carry over to the set of equilibrium

payoffs. The payoff generated by any undercore (and hence core) pro�le is the limit of equilib-

rium payoffs as the period length vanishes. On the other hand, any ef�cient payoff that is not a

core payoff is not the limit of equilibrium payoffs. Therefore, in contrast to repeated game folk

theorems, in general not all feasible individually rational payoffs can be achieved.3

3The games herein are stochastic games, with the state equal to the stage game action pro�le. The folk theorem

of Dutta (1995) does not apply, however, because its �asymptotic state independence� assumptions (A1) and (A2)

are not satis�ed.
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1.1. Relationship to the Literature

The term �monotone game� is due to Gale (2001). He studies a broad class of them, in a

no-discounting setting in which each player's payoff from an equilibrium path is equal to the

utility of its limiting pro�le. (Assumptions are made so that all equilibrium paths converge.)

As in this paper, payoffs are assumed to satisfy a positive spillovers property: an increase in

one player's action bene�ts all the others. The key result is that any �strongly minimal positive

satiation point� is an equilibrium limit pro�le. In the terms of this paper, a strongly minimal

pro�le is one that is not weakly underblocked. It is a satiation point if, starting from it, no

player would want to unilaterally increase her contribution � in this paper, by assumption, all

pro�les are satiation points. The suf�ciency result of this paper, that any strict undercore pro�le

is an equilibrium limit pro�le if the discount factor is high enough, is thus a partial extension

of Gale's result to a particular class of games with discounting. The necessity result of this

paper, that any equilibrium limit pro�le is in the strict undercore, is not shown in Gale (2001),

although it does hold in many no-discounting games (fn. 8 below).

The literature on monotone games with discounting has focused on showing that dynamics

can alleviate the coordination/free-rider problem that plagues the corresponding static games.

For example, the no-contribution pro�le is the only equilibrium of the static version of some of

the contribution games studied in Marx and Matthews (2000). Nonetheless, the corresponding

dynamic games have equilibria in which the players contribute over time, and the limiting pro�le

is either ef�cient or approximately ef�cient if the discount factor is low. In these equilibria a

player is induced to bear the cost of contributing by the implicit promise that the others will then

contribute in the future. Contributions each period must often be small, and the convergence

may take many periods or even be asymptotic. This gradualism is required when a large current

contribution by one player would increase the incentives of the others to free ride in the future

by too much.4

The literature on monotone games with discounting has obtained full characterizations of

equilibria only for games that have a threshold provision point, which is a contribution level that

any player will want to unilaterally achieve, as a dominant strategy, once the total contribution

is suf�ciently large. This is the case, e.g., in games studied in Bagnoli and Lipman (1989),

Admati and Perry (1991), Gale (1995), Compte and Jehiel (2003), and Choi, Gale, and Kariv

4Strategic gradualism in related models is the focus of Lockwood and Thomas (2002), Compte and Jehiel (2004),

and Lockwood and Zissimos (2005).
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(2006). The threshold property implies, by backwards induction, that relatively few equilibria

exist, and the set of equilibrium limit pro�les is much smaller than the undercore. In contrast,

the games of this paper do not have the threshold property, and backwards induction cannot be

used to characterize their equilibria.

Monotone games with discounting that lack the threshold property are studied in Marx and

Matthews (2000), Lockwood and Thomas (2002), and Pitchford and Snyder (2004). The basic

result is that approximately ef�cient equilibria exist if discounting is close to zero. None of

of these papers attempts to characterize all equilibria. The latter two restrict attention to the

most ef�cient equilibria. They also consider only two-person games, in which case the set of

undercore payoffs and the set of feasible individually rational payoffs are the same. Lockwood

and Thomas (2002) obtain two results that are generalized in this paper. First, they show that if

payoffs are differentiable, then the limit of the most ef�cient symmetric equilibrium path is an

inef�cient pro�le. This result is extended to a broader class of games and equilibria in this paper.

Second, for the case of �linear kinked payoffs� they show that the most ef�cient symmetric

equilibrium payoff of the simultaneous move game can be attained also in the sequential move

game, in the limit as discounting is taken to zero. This foreshadows the result of this paper that

any core payoff is the limit of equilibrium payoffs, regardless of the move structure.

1.2. Organization

The class of monotone contribution games studied in this paper is presented in Section 2; Ap-

pendix A shows how such a game arises as a model of a fund drive. The underlying coalitional

game, i.e., the de�nitions and characterizations of the undercore and core, are presented in

Section 3, and Appendix B contains its longer proofs. The results characterizing the set of equi-

librium limit pro�les are in Section 4, with the longer proofs in Appendix C. Implications are

drawn in Section 5. Section 6 contains a concluding comment on extensions.

2. Monotone Contribution Games

The set of players is N D f1; : : : ; ng; and they interact over periods t D 1; 2; : : : : In period t

player i chooses x ti 2 RC; which is referred to variously as her action or her contribution. A

monotonicity constraint requires a player's action in any period to be no less than it was in the

previous period: x ti � x
t�1
i :
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The order of moves is speci�ed by a move structure, which is a sequence EN D fNtg1tD1 of

subsets of N : The players who are not in Nt cannot raise their actions in period t : x ti D x t�1i

for i =2 Nt :

An (action) pro�le is denoted x D .x1; : : : ; xn/:A feasible path is a sequence Ex D fx tg1tD0 of

pro�les which starts with x0 D 0; and is both monotone and consistent with the move structure:

for all t � 1; 5

x t � x t�1; and x ti D x
t�1
i for i =2 Nt :

A path Ex gives player i the payoff

Ui .Ex; �/ � .1� �/
1P
tD1
�t�1ui .x t/; (1)

where u : RnC ! Rn is the stage game payoff function and � 2 .0; 1/ is the players' common

discount factor.

Past actions are assumed to be publicly observed (but see Remark 2 below). This completes

the description of a monotone game to be denoted as 0.�; EN /: Its pure strategy subgame perfect

equilibria are henceforth referred to simply as �equilibria�. Of central interest are the limits of

equilibrium paths, the equilibrium limit pro�les. The move structure and the payoff assumptions

are the following.

2.1. Move Structure

Because of the discounting, future rewards to a player will matter only if they are not received

too far in the future. Accordingly, the interval between the times at which a player can move

should not grow too quickly as the game progresses. To ensure this, the move structure is

assumed to satisfy the following �cyclicity� property:

(CY) m > 0 exists such that i 2 N.nkCi/m for all i 2 N and k � 0:

This property requires player 1 to be able to move at date m; player 2 at date 2m; and so on

until the pattern repeats with player 1 able to move at date .n C 1/m: There are no restrictions

on who else can move at the dates that are multiples of m; nor on who can move at the other

dates. Both the simultaneous move structure de�ned by Nt � N ; and the round-robin structure

5The convention here regarding vector inequalities is the following: x � x 0 means xi � x 0i for all iI x > x 0

means x 6D x 0 and x � x 0I and x � x 0 means xi > x 0i for all i:
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de�ned by N Rt � ft mod ng; satisfy (CY) with m D 1: It will be clear that (CY) is stronger than

required, but it is simple and satis�ed by many move structures.

2.2. Payoffs

Payoffs take the following form: for all x 2 RnC and i 2 N ;

ui .x/ D vi .X/� xi ;

where X D
P
i2N xi : This allows xi to be interpreted as the amount of private good that player

i contributes to a project that uses the total of the contributions, X; to produce a public good

that gives a bene�t v j .X/ to each player j: A dynamic scenario behind this interpretation is

presented in Appendix A.

Each vi is continuous, normalized by vi .0/ D 0; and increasing. An increase in one player's

action therefore bene�ts all the others, so that the �positive spillovers� property holds:

(PS) ui .�/ increases in x j for all i 6D j 2 N :

Each vi is also assumed to be strictly concave, continuously differentiable, and to satisfy

v0i .0/ � 1: This ensures that a �prisoners' dilemma� property holds:

(PD) ui .�/ decreases in xi for all i 2 N :

Hence, in any stage game, a player's dominant strategy is to not raise her action above its

previous level. A player will raise her action in a period only if doing so is rewarded in the

future by other players raising their actions. Consequently, in no equilibrium is there a �nal

period in which actions are raised, and backwards induction cannot be used to �nd equilibria.

The �nal assumption is P
i2N
v0i .0/ > 1 > lim

X!1

P
i2N
v0i .X/: (2)

This ensures that
P
i2N vi .X/� X; the sum of the players' payoffs when they contribute a total

amount X; has a unique and positive maximizer.

3. The Coalitional Game

Underlying the dynamic game is a coalitional game de�ned by u: In this section its core, un-

dercore, and strict undercore are de�ned and characterized, as a prerequisite to characterizing

equilibrium limit pro�les in the next section.
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3.1. Core and Undercore

De�ne a coalition to be any nonempty subset of players. A coalition S is said to block a pro�le

x using a pro�le z if z�S D 0; and ui .z/ > ui .x/ for all i 2 S: The core, C; is the set of pro�les

that are not blocked. Any core pro�le is ef�cient (Pareto optimal), or else N would block it.6 It

is also individually rational, or else a singleton coalition would block it using the origin.

Blocking per se is not relevant for understanding the equilibrium limit pro�les of a monotone

game. Roughly speaking, it does not matter if a coalition prefers a pro�le z to a putative limit

pro�le x if z � x : The coalition members for whom zi > xi would need to somehow coordinate

upward deviations to obtain z: However, coordination is not required if z < x; as then each

coalition member has an individual incentive to deviate downwards, or rather, to not raise her

action once it reaches zi : Blocking by a lower pro�le is thus the relevant concept.

Refer to a pro�le x as underblocked if a coalition blocks it using a pro�le z < x : The

undercore, D; is then the set of pro�les that are not underblocked. Note that the undercore

contains the core, since an underblocked pro�le is blocked. An undercore pro�le is individually

rational, or else it would be underblocked by a singleton coalition using the origin. The origin

is itself in the undercore � it is not underblocked because no pro�le is below it.

The payoff assumptions of this paper imply a useful depiction of the undercore. For any

coalition S; refer to

fS.X/ �
X
i2S
vi .X/� X

as the surplus function of S: It is the sum of the coalition members' payoffs when their total

contribution is X; and the non-coalition players contribute nothing. Since fS is strictly concave,

(2) implies it has a unique maximizer � denote it as YS: De�ne the value of the coalition to be

its maximal surplus, V .S/ � fS.YS/:

Remark 1. This V defines a coalitional game with transferable utility. The actual coalitional

game here has nontransferable utility, due to the constraint x � 0: (For example, x is efficient

in the transferable utility game if and only if X D YN ; but here it is also efficient if X > YN and

xi D 0 for some i 2 N :/ The two games have the same core, as is shown below.

6A small argument is needed to prove that inef�cient pro�les are not in the core. If x is inef�cient, z exists

such that u.z/ > u.x/: Choose i such that ui .z/ > ui .x/: By (PS), raising zi slightly yields a pro�le Oz satisfying

u.Oz/� u.x/: So x is blocked by N using Oz; which proves that x is not in the core.
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A pro�le is underblocked if and only it requires some coalition to make too large a con-

tribution. For any coalition S and pro�le x; let X S denote the coalition's total contribution:

X S �
P
i2S xi : The proof of the following lemma is in Appendix B (as are all the proofs miss-

ing from this section).

Lemma 1. A profile x is underblocked by a coalition S only if

X S > max
�
YS;

P
i2S
vi .X/� V .S/

�
: (3)

Conversely, if (3) holds then x is underblocked by a coalition OS � S:

It is easy to see why (3) holds if S underblocks x :Half of it comes from the fact that S blocks

x; and so the sum of the coalition members' payoffs must be less than what they can achieve

on their own:
P
i2S vi .X/ � X S < V .S/: The other half, X S > YS; follows from the fact that

the blocking pro�le satis�es z < x :Why (3) implies x is underblocked is less straightforward.

The underblocking coalition is not S itself if xi is very small for some of its members, as then

they cannot be made better off by any nonnegative z < x : The coalition that underblocks x is

obtained by deleting these members.

Lemma 1 immediately yields a characterization of the undercore.

Proposition 1. For any profile x; x 2 D if and only if

X S � max
�
YS;

P
i2S
vi .X/� V .S/

�
for all coalitions S: (4)

Given a pro�le x; the corresponding coalition of contributing players is

N .x/ � fi 2 N j xi > 0g:

The following corollary shows that if x is an undercore pro�le, then the total contribution it

prescribes is no greater than that which maximizes the surplus of this coalition.

Corollary 1. Any nonzero x 2 D satisfies X � YN .x/:

Proof. Let S D N .x/: Since X D X S , (4) would imply V .S/ � fS.X/ if X > YS . This is

impossible, since fS is uniquely maximized by YS:

The next corollary relates the core to the undercore, and shows that the core is the same as

that of the related transferable utility game (see Remark 1).
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Corollary 2. C D Ca D Cb; where

(a) Ca � fx 2 D j X D YN g; and

(b) Cb � fx 2 RnC j X D YN ; and X S �
P
i2S vi .YN /� V .S/ 8 coalitions Sg:

Corollaries 1 and 2 together show that the core is equal to the intersection of the northeast

surface of the undercore with the simplex de�ned by X D YN :

Turning to payoffs, the set of individually rational feasible payoffs is

R � f Ou 2 u.RnC/ j Ou � 0g:

(Recall that u.0/ D 0:/ The set of ef�cient individually rational payoffs is

P �
�
Ou 2 R j Ou � u0 for any u0 2 R

	
:

Clearly, u.D/ � R and u.C/ � P: Since a pro�le with X � YN is ef�cient if and only if

X D YN ; Corollary 2 .a/ implies that

u.C/ D P \ u.D/: (5)

Typically, a coalition S 6D N exists such that v.S/ > 0:7 The next corollary shows that

then some individually rational feasible payoffs are not undercore payoffs, and some ef�cient

individually rational payoffs are not core payoffs.

Corollary 3. u.D/ is a proper subset of R; and u.C/ is a proper subset of P; if and only if

V .S/ > 0 for some coalition S 6D N :

3.2. Strict Undercore

A subset of the undercore plays a central role. It's de�nition relies on extending the underblock-

ing relation by using of weak preferences. Say a coalition S weakly underblocks a pro�le x if

z < x exists such that z�S D 0; and ui .z/ � ui .x/ for all i 2 S: Thus, an underblocked pro�le

is weakly underblocked, but not conversely. The strict undercore is de�ned by

Ds � f0g [
�
x 2 RnCnf0g j X < YN .x/ and x is not weakly underblocked

	
:

7This is not true, however, if n D 2; since we have V .fig/ D 0 for each i 2 N :
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The strict undercore thus consists of the origin together with all nonzero pro�les that are not

weakly underblocked, and are inef�cient for the coalitions they require to contribute. The un-

dercore contains the strict undercore.

Lemma 2 below establishes three properties of the strict undercore. First, it is nonempty

because it contains the line segment from the origin to the Lindahl pro�le de�ned by x Li �

v0i .YN /YN : Second, deleting the origin from it yields a relatively open set. Third, its closure is

the undercore � the difference between the undercore and the strict undercore is negligible.

Lemma 2. .i/ For every OX 2 [0; YN / ; Ds contains the profile defined by xi � v0i .YN / OX :

.i i/ Dsnf0g is relatively open in RnC: .i i i/ cl Ds D D:

4. Equilibrium Limit Pro�les

Recall that an equilibrium limit pro�le is the limit of an equilibrium path. (Equilibrium paths

will be shown to converge.) Let E.�; EN / be the set of equilibrium limit pro�les of 0.�; EN /: The

set of all pro�les that are equilibrium limit pro�les for some discount factor is then

E. EN / � [
�2.0;1/

E.�; EN /:

The main result of this section is that this set is equal to the strict undercore.

4.1. Preliminaries

Given any history, de�ne a player's passive strategy in the continuation game to be the one

requiring her to not raise her action at any node. Because of (PS), the worst conceivable punish-

ment the other players can impose upon a unilateral deviator is to play their passive strategies

thereafter. Because of (PD), the passive strategy pro�le is an equilibrium of any continuation

game. Consequently, any feasible path is an equilibrium path if and only if it is supported by

the passive strategies. That is, if Ex is an equilibrium path, then the strategy pro�le that requires

x t to be played in period t if .x1; : : : ; x t�1/ was played in the past, but otherwise requires the

previous period's pro�le to be played, is an equilibrium.

Remark 2. This argument does not need perfect monitoring. Suppose instead that the players

publicly observe only the aggregates, X t D
P
i2N x

t
i : Any unilateral deviation from a pure

strategy profile is then still publicly observed. Any sequential equilibrium path is hence the
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path of a perfect public equilibrium in which any unilateral deviation is punished by playing the

passive strategies.

By (PD), a player's best deviation in period t; given that it triggers the passive equilibrium,

is to play x t�1i : The resulting pro�le in each period s � t is then Ox s D .x t�1i ; x t�i /; and her

continuation payoff is

.1� �/
P
s�t
�s�tui . Ox s/ D ui .x t�1i ; x t�i /:

This deviation payoff cannot exceed the player's equilibrium continuation payoff. Hence, the

following condition is necessary and suf�cient for a feasible Ex to be an equilibrium path:

ui .x t�1i ; x t�i / � .1� �/
P
s�t
�s�tui .x s/ for all t � 1; i 2 Nt : (6)

The following lemma records these observations. In addition, it shows that the inequality in (6)

also holds for players i =2 Nt : (The rest of its proof is in Appendix C.)

Lemma 3. Let Ex be feasible for EN : Then condition (6) is necessary and sufficient for Ex to be

an equilibrium path. Furthermore, (6) is equivalent to

ui .x t�1i ; x t�i / � .1� �/
P
s�t
�s�tui .x s/ for all t � 1; i 2 N : (7)

A consequence of Lemma 3 is that any Ex that leaves the origin and converges in a �nite

number of periods is not an equilibrium path. To see why, let T be the date at which the path

stops, so that xT�1 < xT D x s for all s � T : Then, by (PD), a player i for whom xT�1i < xTi
would be better off if she did not raise her action at date T : That is, by Lemma 3, Ex is not an

equilibrium path because

ui .xT�1i ; xT�i / > ui .x
T / D .1� �/

P
s�T

�s�tui .x s/:

An equilibrium path may generate a non-monotonic sequence of stage game payoffs. Nonethe-

less, no payoff in the sequence is greater than its limit.

Lemma 4. If Ex is an equilibrium path with limit x; then u.x t/ � u.x/ for all t � 1:

Note that Lemma 4 immediately implies that for any equilibrium path Ex converging to a

pro�le x; the corresponding equilibrium payoff satis�es U .Ex; �/ � u.x/:

11



4.2. Necessity

Any equilibrium limit pro�le is now shown to be in the strict undercore.

Theorem 1. Every equilibrium limit profile x is .i/ not weakly underblocked,8 and .i i/ satisfies

x D 0 or X < YN .x/: That is, E. EN / � Ds :

The proof of .i/ (in Appendix C) proceeds by showing that if a coalition weakly underblocks

an equilibrium limit pro�le using a pro�le z; then the coalition member who is supposed to be

the last to raise her action above zi can do better by not doing so. The logic of the argument is

shown here by using it to prove the convergence of equilibrium paths.

Proof that equilibrium paths converge. Let Ex be a nonconvergent feasible path. It is thus

unbounded. This implies ui .x t/! �1 for some i 2 N .9 This player underblocks, using the

origin, each pro�le in the tail of the path: � � 1 exists such that ui .x��1/ > ui .x s/ for all s � � :

This prevents Ex from being an equilibrium path. For, if player i deviates at date � by staying at

x��1i ; her continuation payoff will be at least ui .x��1i ; x��i /; which weakly exceeds ui .x��1/ by

(PS). Hence, since ui .x��1/ > ui .x s/ for all s � � ; we have

ui .x��1i ; x��i / > .1� �/
P
s��
�s��ui .x s/:

Lemma 3 therefore implies that Ex is not an equilibrium path. �

The remainder of Theorem 1 follows directly from the following result.

Lemma 5. For all � < 1 and nonzero x 2 E.�; EN /;�
�

1� �

�� P
i2N .x/

v0i .X/� 1
�
� 1� max

i2N .x/
v0i .X/: (8)

To see that Lemma 5 proves part .i i/ of Theorem 1, note that the right side of (8) is positive

because X > 0: The left side is therefore positive, and this implies X < YN .x/ by concavity.10

8Theorem 1 .i/ holds for any u satisfying (PD) and (PS). Its proof does not use the assumed quasilinearity,

concavity, or perfect substitutability of the players' contributions. It also holds (and is proved more simply) if there

is no discounting, i.e., if limt!1 u.x t / is the payoff from a path Ex :

9Recall that fN .X/ is strictly concave and maximized at YN <1: This implies fN .X t /! �1 as X t !1:

Since fN .X/ D
P
i2N ui .x/; we thus have ui .x t /!�1 for some i 2 N :

10Lemma 5 also implies that for any coalition S; a nonzero equilibrium limit pro�le exists in which S is the

coalition of contributing players only if � � A=.A C B/; where A D 1 � maxi2S v0i .0/ and B D
P
i2S v

0
i .0/ � 1:
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The following is a heuristic argument for why (8) must hold. To a �rst-order approximation,

the equilibrium contribution C t D X t � X t�1 made at date t increases the present value of the

surplus of the contributing players in periods s � t C 1 by

MB �
�

�

1� �

�� P
i2N .x/

v0i .X
t�1/� 1

�
C t :

A player is willing to raise her contribution only if her share of this bene�t exceeds her current

net cost of contributing, which is approximately
�
1� v0i .X t�1/

�
.x ti�x

t�1
i /: So MB must exceed

the sum, over the contributing players, of these net costs. The lowest this total net cost can be is

its value if the entire contribution were to be made by the player who has the smallest net cost

per unit of contribution:

MC �
�
min
i2N .x/

�
1� v0i .X

t�1/
��
C t ;

Inequality (8) is obtained by setting MB � MC; deleting the factor C t ; and taking t !1.

Remark 3. Equilibrium limit profiles may be efficient if payoff functions are not differentiable.

Suppose each player’s marginal valuation v0i is positive until it drops to zero at an amount

X� that “completes” the project. If X� is the efficient total contribution and � is sufficiently

large, equilibrium paths may exist for which X t ! X�: See Marx and Matthews (2000) and

Lockwood and Thomas (2002).

4.3. Suf�ciency

Any strict undercore pro�le is now shown to be an equilibrium limit pro�le, provided the dis-

count factor is high enough.

Theorem 2. For any x 2 Ds; there exists a path Ex converging to x; and a discount factor � < 1;

such that Ex is an equilibrium path if � > �:

Theorem 2 relies on the following lemma. Recall that the round-robin move structure is

de�ned by N Rt � ft mod ng:

Lemma 6. For any � 2 .0; 1/; E.�; EN R/ � E.�1=m; EN /: Hence, E. EN R/ � E. EN /:

This is proved by replacing N .x/ in (8) by S; and lowering X to 0: The inequality is maintained because the left

(right) side of (8) decreases (increases) with X:

13



Lemma 6 is proved by converting an equilibrium path of 0.�; EN R/ into a path that is feasible

for EN : This is where assumption (CY) is used. The new path is obtained by slowing down the

round-robin path: player 1 moves in period m instead of period 1; player 2 moves in period

2m instead of period 2; and so on. This results in a postponement of the future reward a player

receives for raising her contribution in the current period, but raising the discount factor to �1=m

increases its present value enough to restore incentives.

Consequently, Theorem 2 needs to be proved only for the round-robin structure. The logic

of its proof (in Appendix C) is described here, under the simplifying assumption that the strict

undercore pro�le is strictly positive: x � 0:

The construction of a path to x begins with the de�nition of a vector d by

di �
v0i .X/P
j2N v

0
j .X/

:

Then two pro�les are found, Ox D x � O�d and Nx D x � N�d; where 0 < O� < N�: The number
N� is chosen so that Nx � 0: The number O� is chosen small enough that Ox 2 DsI this can be

done by Lemma 2 .i i/; since x 2 Dsnf0g: These constructed pro�les satisfy Nx � Ox � x and

u. Nx/� u. Ox/� u.x/: The proof is completed in three steps.

In Step 1, a round-robin path starting at Nx and converging to x is found that is an equilibrium

path of the subgame starting at Nx; provided � exceeds some �0 < 1: For each player this path

is a geometric sequence with periodic gaps. The amount by which a contribution is raised in

any period is small enough that the other players' payoffs are bounded below the target payoff,

u.x/: This bound shrinks to zero as t ! 1; but slowly enough that for all suf�ciently high

discount factors and all dates t; a player's continuation utility on the path is close enough to

ui .x/ that she is induced to raise her contribution in the current period. This step makes use of

X < YN and the concavity of each vi :

Step 2, on the other hand, uses the fact that x; or rather, Ox; is not weakly underblocked.

Adapting an argument in Gale (2001), a �nite, decreasing round-robin path from Nx to the origin

is constructed, along which the players' payoffs never exceed u. Ox/: The construction starts

with player 1 lowering her contribution from Nx1 either all the way to 0; or to a point at which

the resulting pro�le gives her the same payoff as would Ox : This yields the �rst pro�le of the

sequence. The second pro�le is obtained next by having player 2 lower her contribution in the

same manner. Continuing in round-robin fashion yields a decreasing sequence of pro�les that

generate payoffs no greater than u. Ox/: The sequence converges, say to a pro�le z:Because Ox is in

14



the strict undercore, z D 0 : otherwise, the coalition N .z/ would be nonempty, and its members

would be indifferent between z and Ox; thereby weakly underblocking Ox : Since u.0/ � u. Ox/

(as Ox is not weakly underblocked by a singleton coalition), the convergence occurs in a �nite

number of steps: once the sequence is close enough to the origin, a player's contribution cannot

be lowered enough to make her indifferent between the resulting pro�le and Ox :

Step 3 puts together the paths obtained in Steps 1 and 2 to yield a path Ez that converges to

x and is feasible for EN R: At any date for which zt � Nx; Step 1 insures that the remainder of the

path is an equilibrium path of the continuation game if � > �0: At any date t for which zt < Nx;

u.zt/ is bounded strictly below u.x/; since u.zt/ � u. Ox/ � u.x/ by Step 2: This implies that

(7) holds for all � greater than some �t < 1: Hence, Ez is an equilibrium path of 0.�; EN R/ for all

� greater than �0 and each of the �nite number of �t 's.

5. Implications

Theorems 1 and 2 together show that the set of equilibrium limit pro�les expands with � and

converges to the strict undercore:

Theorem 3. E.�; EN / � E.�0; EN / for all � < �0; and

E. EN / D lim
�!1

E.�; EN / D Ds :

The set of equilibrium limit pro�les is observationally indistinguishable from its closure.

By Lemma 2, taking closures in Theorem 3 shows that the closure of the set of equilibrium

limit pro�les is the undercore:

cl E. EN / D D: (9)

This has implications for the necessity of gradualism, the nature of equilibrium payoffs, and the

role of the move structure.

5.1. Gradualism

Since an equilibrium path converging to a nonzero pro�le does so only asymptotically, equilib-

rium contributions must be raised gradually. This accords with gradualism results in, e.g., Marx

and Matthews (2000), Lockwood and Thomas (2002), and Compte and Jehiel (2004).

Real-time gradualism, however, is not necessary if the period length is short. To see why,

let 1 be the period length, and set � D e�r1: By Theorems 2 and 3, for any equilibrium limit
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pro�le x; a �xed path Ex converging to it exists that is an equilibrium path if1 is small. Given a

neighborhood of x; let T be the �nite number of periods it takes for Ex to permanently enter the

neighborhood. The amount of time the path takes to reach the neighborhood is then T1; which

goes to zero as1! 0: Every equilibrium limit pro�le, or rather, undercore pro�le, can thus be

reached instantaneously in the limit as the period length goes to zero.

5.2. Equilibrium Payoffs

Let W .�; EN / � Rn denote the set of equilibrium payoffs of 0.�; EN /: The set of limits of

equilibrium payoffs is then

W . EN / � closure
�
[

�2.0;1/
W .�; EN /

�
:

The payoff generated by an equilibrium path Ex is a weighted average of the stage game

payoffs u.x t/; and hence not determined solely by the corresponding equilibrium limit pro�le

x : However, raising � shifts weight to the tail of the path, and so U .Ex; �/ ! u.x/ as � ! 1:

Theorems 2 and 3 therefore imply that the payoff generated by any undercore pro�le is the limit

of equilibrium payoffs:

u.D/ � W . EN /: (10)

Since C � D; an implication of (10) is that core payoffs are limits of equilibrium payoffs.

The core payoffs are the only ef�cient payoffs for which this is true:

Corollary 4. If a limit of equilibrium payoffs is efficient, it is a core payoff.

Proof. Theorem 1 and Lemma 4 imply that any payoff in W .�; EN / is weakly dominated by

a strict undercore payoff. Thus, letting Ou 2 W . EN /; there exists x 2 D such that Ou � u.x/:

Assuming Ou is ef�cient, this implies Ou D u.x/: Hence, Ou 2 u.D/: Recalling from (5) that any

ef�cient undercore payoff is a core payoff, we now have Ou 2 u.C/:

Corollary 4, together with (5) and (10), implies that the set of ef�cient payoffs that are limits

of equilibrium payoffs is equal to the set of core payoffs:

P \W . EN / D u.C/: (11)

Recall from Corollary 3 that if V .S/ > 0 for some S 6D N ; then not all ef�cient individually

rational payoffs are core payoffs. In this case ef�cient individually rational payoffs exist that

are not limits of equilibrium payoffs: PnW . EN / 6D ?:
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5.3. Move Structure Relevance

A consequence of Theorem 3 is that all move structures give rise to the same equilibrium limit

pro�les: E. EN / does not depend on EN : In this sense the move structure is irrelevant. Note, how-

ever, that the lowest discount factor for which a given strict undercore pro�le is an equilibrium

limit pro�le may depend on EN : The round-robin structure typically requires a higher discount

factor than does the simultaneous structure to achieve a given pro�le.

Turning to payoffs, (11) shows that the set of ef�cient payoffs in in the limiting equilibrium

payoff set W . EN / is also independent of EN : Any ef�ciency advantage that the simultaneous

structure has over the round-robin structure disappears in the limit as the period length decreases

to zero.

By (10), W . EN / contains the (large) set u.D/ of undercore payoffs, which does not depend

on EN :Whether the remainder, W . EN /nu.D/; is also independent of EN is left for future work to

determine.11

6. Concluding Comment

A topic for the future is the extent to which the results hold for more general payoffs. For ex-

ample, consider the polar opposite of this paper's valuation functions, the discrete one de�ned,

given some X� > 0; by

vi .X/ D

8<: 0 for X < X�

Vi for X � X�:

A path Ex then generates a payoff of

Ui .Ex; �/ D .1� �/
1P
tD1
�t�1

�
vi .X t/� x ti

�
D �T .Ex/�1Vi �

1P
tD1
�t�1

�
x ti � x

t�1
i
�
;

where T .Ex/ is the �rst date at which X t � X�; if such a date exists, and othewise T .Ex/ D 1:

The interpretation is that player i contributes a private good amount x ti � x
t�1
i in period t;

bearing the cost immediately, and the project generates the bene�ts Vi once the total cumulative

contribution X t reaches X� (see Appendix A).

Compte and Jehiel (2003) study this game, assuming there are two players; the move struc-

ture is alternating, with player 1 moving �rst; the values differ, V2 < V1I free riding is an

11A conjecture is that W . EN /nu.D/ D ? for all EN :
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issue, Vi < X�I and ef�ciency requires completion, V1 C V2 > X�: Their result is that for any

� 2 .�; 1/; where � D .K �V1/=V2; the equilibrium path is unique: x1 D 0; x2 D .0; X��V1/;

and x t D .V1; X� � V1/ for all t � 3:

The equilibrium limit pro�le, .V1; X� � V1/; is not in the strict undercore, as it is both

ef�cient and weakly underblocked (by player 1). But it is in the core and undercore, and so the

necessity result of Theorem 1 fails in a relatively minor way. Theorem 2, on the other hand,

fails more strikingly. The pro�les that are not weakly underblocked consist of the origin, which

is the only strict undercore pro�le, and the continuum of pro�les for which x1 C x2 D X� and

xi < Vi . None of these are equilibrium limit pro�les.

This example exhibits the threshold property discussed in the introduction. It may thus be

true that results like those of this paper hold whenever the threshold property is absent.
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Appendix A. Fund Drive Scenarios

The monotonicity restriction, and the time-separable payoff function shown in (1), are taken in

the text as de�ning features of the games of interest. However, they arise from natural primitive

assumptions in some scenarios. Such a scenario is described in this appendix, amplifying on

the model of a fund drive in Marx and Matthews (2000).

As noted in the introduction, fund drives, or rather, never-ending sequences of fund drives,

are used to �nance many public goods, like new university buildings or public television shows.

The contributions collected in these drives become the capital used to produce future bene�ts.

Participants can contribute any number of times, and are often informed of the total amounts

contributed to date. These features are consistent with a monotone contribution game (see

Remark 2). However, modeling a fund drive as a monotone contribution game requires plausible

assumptions to be made that yield monotonicity and a time-separable payoff function.

The key to obtaining monotonicity is to let x ti denote the cumulative contribution that player

i has made by date t: Thus, x ti�x
t�1
i is her incremental contribution in period t . The monotonic-

ity constraint, x ti � x
t�1
i ; is now the result of assuming contributions must be nonnegative.

Two assumptions imply that fund drive payoffs can be written as in (1). The �rst is that a

player's utility in a period is quasilinear in her incremental contribution that period. The second

is that the capital used by the project to produce public goods does not decay, so that the capital

available in period t to produce public goods is X t ; the total of all contributions made to date.

Given these assumptions, let bi .X t/ denote the rate at which player i bene�ts from public good

�ow in period t: Let her discount rate be r; and the period length be 1: Her payoff from a

sequence of contributions is then

U D
1X
tD0

�Z .tC1/1

t1
bi .X t/e�r�d� � .x ti � x

t�1
i /e�r t1

�

D
1X
tD0
�t
�
.1� �/r�1bi .X t/�

�
x ti � x

t�1
i
��
; (12)

where � D e�r1: This payoff is not written as a time-separable sum. However, its linearity in

the x ti terms allows it to be rewritten:12

U D .1� �/
1P
tD0
�t
�
r�1bi .X t/� x ti

�
: (13)

12Setting x�1i D 0 yields the identity
P1
tD0 �

t .x ti � x
t�1
i / D .1� �/

P1
tD0 �

t x ti :

19



Setting vi .X/ D r�1bi .X/ and ui .x/ D vi .X/� xi ; this payoff is as shown in (1).

Observe that this vi .X/ depends on the discount rate r . Taking � ! 1 corresponds to

1! 0; holding r �xed. Thus, if the motivation for studying the monotone game is a fund drive

scenario as described here, it is important to interpret �! 1 as the period length shrinking, not

the discount rate. Taking r ! 0 would be of little interest: it would cause r�1bi .X/ ! 1;

so that the discounted present value of public good bene�ts would overwhelm the bounded (by

YN / cost of contributing. The motivating free-rider problem would trivially vanish.

As a �nal observation, note that the transformation of (12) into (13) requires quasilinearity.

For example, consider the assumption of Admati and Perry (1991) that a player's cost of making

a contribution is wi .x ti � x
t�1
i /; where wi is strictly convex. In this case the player's payoff,

U D
1X
tD0
�t
�
.1� �/vi .X t/� wi .x ti � x

t�1
i /

�
;

cannot be written as a time-separable sum, and so a monotone game is not obtained. This is

clear economically. In a monotone game, a (non-equilibrium) path in which the players leap

immediately to an ef�cient pro�le in the �rst period and stay there forever is ef�cient. But in a

fund drive with strictly convex cost functions wi ; dynamic ef�ciency requires contributions to

be made incrementally.

Appendix B. Proofs of Undercore and Core Results

Proof of Lemma 1. Suppose S underblocks x : Since f .X S/ D
P
i2S
vi .X S/� X S and X S � X;

f .X S/ �
P
i2S
vi .X/� X S: (14)

Let z < x be the pro�le S uses to underblock x : Then z�S D 0 and, for all i 2 N ; vi .X/� xi <

vi .Z/� zi : Summing these inequalities yieldsP
i2S
vi .X/� X S < f .Z/ � V .S/: (15)

Hence, X S >
P
i2S vi .X/ � V .S/: From (14) and (15) we obtain f .X S/ < f .Z/: This and

Z � X S imply X S > YS; since fS is concave and maximized at YS: We now have the desired

inequality (3):

X S > max
�
YS;

P
i2S
vi .X/� V .S/

�
:

20



Now suppose x and S satisfy (3). Then v.X/ � v.X S/� v.YS/: Furthermore,

1 �
V .S/�

�P
i2S vi .X/� X S

�
jSj

> 0:

De�ne z 2 Rn by z�S D 0 and, for i 2 S;

zi � xi �1� vi .X/C vi .YS/:

Then zi < xi for all i 2 S: Summing zi over S yields Z D YS: Hence,

OS � fi 2 S j zi � 0g 6D ?:

De�ne Oz 2 RnC by Ozi � max.0; zi /: Then Oz� OS D 0 and Oz < x : Because OZ � Z D YS; for each

i 2 OS we have

vi . OZ/� zi � vi .YS/� zi D vi .X/� xi C1:

Since 1 > 0; this proves that OS underblocks x : �

Proof of Corollary 2. We prove C � Ca � Cb � C; in this order.

We know C � D; and hence x 2 C only if X � YN ; by Corollary 1. We also know core

pro�les are ef�cient. A pro�le for which X � YN is ef�cient only if X D YN : Thus, C � Ca:

Now let x 2 Ca: Let S be any coalition. Since YN � YS;

YS �
P
i2S
vi .YN /�

P
i2S
vi .YS/C YS

D
P
i2S
vi .YN /� V .S/:

Thus, since X D YN ; Proposition 1 implies X S �
P
i2S vi .YN /� V .S/: This proves Ca � Cb:

Now let x 2 Cb; and let z be any pro�le satisfying z�S D 0 for some coalition S: Note thatP
i2S ui .z/ D fS.Z/ � V .S/: Since x 2 Cb; we have

V .S/ �
P
i2S
vi .YN /� X S D

P
i2S
ui .x/:

This proves that x is unblocked, and hence Cb � C: �

Proof of Corollary 3 .)/: We prove this direction by assuming V .S/ D 0 for all coalitions

S 6D N ; and showing that then R � u.D/: This suf�ces, since it implies R D u.D/; and so

P D P \ u.D/ D u.C/:
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Let Ou 2 R and w �
P
i2N Oui : Then w � 0 D fN .0/: Since Ou D u. Ox/ for some Ox 2 RnC;

w D fN . Ox/ � V .N /: The intermediate value theorem thus implies that fN .X/ D w for some

X 2 [0; YN ] : De�ne x 2 Rn by xi � vi .X/� Oui : To complete the proof, we show that x 2 D:

This will prove Ou 2 u.D/; and hence R � u.D/:

We �rst show x 2 RnC: Let S D fi 2 N j xi � 0g: Because X � 0; S is not empty. Suppose

S 6D N : Then X S D X � XNnS > X; which impliesP
i2S
Oui D

P
i2S
vi .X/� X S

<
P
i2S
vi .X/� X � V .S/:

By assumption, V .S/ D 0; and hence Oui < 0 for some i 2 S: This contradiction of Ou 2 R

proves S D N ; and so x 2 RnC:

For any S0 6D N we have
P
i2S0 Oui � 0 D V .S0/; and so

X S0 D
P
i2S0
vi .X/�

P
i2S0

Oui �
P
i2S0
vi .X/� V .S0/:

For S0 D N ; we have X S0 � YN D YS0 : Proposition 1 now implies x 2 D: �

Proof of Corollary 3 .(/:We prove this direction assuming V .S/ > 0 for some S 6D N ; and

showing that then u.C/ is a proper subset of P: This also proves u.D/ is a proper subset of R;

since u.D/ D R would imply the contradiction u.C/ D P \ u.D/ D P:

Since S 6D N ; YS 6D YN : Thus
P
i2S vi .YN / � V .S/ < YN ; since YS uniquely maximizes

fS:We can thus choose an amount X S for S to contribute such thatP
i2S
vi .YN /� V .S/ < X S < min

�
YN ;

P
i2S
vi .YN /

�
: (16)

The second inequality implies that xS 2 RjSjC exists such that
P
i2S xi D X S and, for each i 2 S;

xi < vi .YN /: Observe that P
i =2S
vi .YN / D YN C V .N /�

P
i2S
vi .YN /

> YN C V .S/�
P
i2S
vi .YN /

> YN � X S;

where the �rst inequality follows from V .N / > V .S/, and the second follows from the �rst

inequality in (16). Thus, x�S 2 RjNnSjC exists such that
P
i =2S xi D YN � X S; and xi < vi .YN /
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for each i =2 S: We have thus found a pro�le, x D .xS; x�S/; that is individually rational and,

since X D YN ; ef�cient. This proves u.x/ 2 P: By the �rst inequality in (16), S blocks x; and

so x =2 C: Since S also blocks any Ox for which u. Ox/ D u.x/; we have u.x/ =2 u.C/: This proves

u.C/ is a proper subset of P: �

The following lemma, an analog to Proposition 1, characterizes the set of pro�les that are

not weakly underblocked. It is used below to prove Lemma 2.

Lemma A1. Any x 2 RnC is not weakly underblocked if and only if, for all coalitions S;

X � YS or X S <
P
i2S
vi .X/� V .S/: (17)

Proof. (The proof is like that of Lemma 1.) Suppose x is not weakly underblocked, but (17)

does not hold for a coalition S: Hence,

X > YS and X S �
P
i2S
vi .X/� V .S/:

Then v.X/� v.YS/ and1 �
�
V .S/�

P
i2S vi .X/C X S

�
= jSj � 0:De�ne z 2 Rn by z�S D 0

and, for i 2 S;

zi � xi �1� vi .X/C vi .YS/:

Then zi < xi for all i 2 S: Summing zi over S yields Z D YS � 0: Hence,

OS � fi 2 S j zi � 0g 6D ?:

De�ne Oz 2 RnC by Ozi � max.0; zi /: Then Oz� OS D 0 and Oz < x : Because OZ � Z D YS; for each

i 2 OS we have

vi . OZ/� zi � vi .YS/� zi D vi .X/� xi C1:

Since 1 � 0; we conclude that OS weakly underblocks x using Oz: Therefore, if x is not weakly

underblocked, (17) holds for all coalitions S:

Now suppose x is weakly underblocked, say by a coalition S using z < x : Then z�S D 0

and, for all i 2 N ; vi .X/� xi � vi .Z/� zi : Summing these inequalities yieldsP
i2S
vi .X/� X S � f .Z/: (18)

Hence, since f .Z/ � V .S/;

X S �
P
i2S
vi .X/� V .S/: (19)
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We have Z � X S: If Z D X S; then (18) would imply
P
i2S vi .X/ �

P
i2S vi .Z/; and so

X � Z ; contrary to z < x : hence, Z < X S: Since f .X S/ �
P
i2S vi .X/ � X S; (18) implies

f .X S/ � f .Z/: This and Z < X S imply X S > YS; since fS is strictly concave and maximized

at YS: This and (19) show that (17) does not hold for S: Thus, x is not weakly underblocked if

(17) holds for all coalitions. �

Proof of Lemma 2 .i/. We have X D OX ; since
P
i2N v

0
i .YN / D 1: Since N .x/ D N ; we also

have X < YN .x/: Thus, by Lemma A1, we show x 2 Ds by showing that
P
i2S vi .X/ � X S >

V .S/ for any coalition S for which X > YS: Letting S be such a coalition, the proof is completed

thusly:13

P
i2S
vi .X/� X S >

P
i2S

�
vi .YS/C v0i .X/.X � YS/

�
� X S

>
P
i2S

�
vi .YS/C v0i .YN /.X � YS/

�
� X S

D
P
i2S
vi .YS/� YS

P
i2S
v0i .YN /

�
P
i2S
vi .YS/� YS

D V .S/: �

Proof of Lemma 2 .i i/. Let x 2 Dsnf0g: Let B �
�
x 0 2 RnC j

x 0 � x < "	 ; where " > 0 is
so small that all x 0 2 B satisfy x 0i > 0 if xi > 0 for i 2 N ; and for any S;

X 0 7 YS if X 7 YS (20)

and

X 0S 7
P
i2S
vi .X 0/� V .S/ if X S 7

P
i2S
vi .X/� V .S/: (21)

Letting x 0 2 B; we must prove x 0 2 Dsnf0g:We have x 0 6D 0; since x 6D 0: Since x 2 Dsnf0g;

we have X < YN .x/; and so (20) implies X 0 < YN .x/: We also have N .x/ � N .x 0/; and so

YN .x/ � YN .x 0/: Thus, X 0 < YN .x 0/: It remains only to show that x 0 is not weakly blocked.

Letting S be a coalition, we verify that X 0 and S satisfy (17). They do if X 0 � YS; so suppose

X 0 > YS:We must prove

X 0S <
P
i2S
vi .X 0/� V .S/: (22)

13This chain follows from the strict concavity of each vi I X 2 .YS; YN /I XS D
P
i2S v

0
i .YN /XI andP

i2S v
0
i .YN / � 1:
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Since X 0 > YS; (20) implies X � YS: If X > YS; then (17) holding for X and S implies

X S <
P
i2S vi .X/ � V .S/: This and (21) yield (22). On the other hand, if X D YS; then

S 6D N .x/ because X < YN .x/: Thus, X S < X; and so

X S < X D YS D
P
i2S
vi .YS/� V .S/:

From this and (21), we again obtain (22). �

Proof of Lemma 2 .i i i/. Proposition 1 implies D is closed, and so cl Ds � D: To show the

reverse, let x 2 D: Since x 2 Ds if x D 0; we can assume x 6D 0: Choose OX 2 .0; X/ such that
OX > YS for all coalitions S for which X > YS: Then de�ne Ox by Oxi D v0i .YN / OX : By part .i/;

Ox 2 Ds : De�ne x� � �x C .1 � �/ Ox : Suppose X� > YS for some coalition S and � 2 .0; 1/:

This implies X > YS and OX > YS: Because X > YS;P
i2S
vi .X/� V .S/ >

P
i2S
vi .YS/� V .S/ D YS:

Hence, applying Proposition 1 to x 2 D yields

X S �
P
i2S
vi .X/� V .S/:

Because OX > YS; applying Lemma A1 to Ox 2 Ds yields

OX S <
P
i2S
vi . OX/� V .S/:

Thus, since X�S D �X S C .1� �/ OX S; the concavity of each vi implies

X�S <
P
i2S
vi .X�/� V .S/:

Lemma A1 now implies x� is not weakly underblocked. We also have X� < YN .x�/; since the

strict positivity of Ox implies N .x�/ D N ; and X� < X � YN .x/ � YN : Therefore, x� 2 Ds :

Taking �! 1 proves x is a limit point of Ds : �

Appendix C. Proofs of Equilibrium Limit Pro�le Results

This appendix contains the proofs of results in Section 4.

Proof of Lemma 3. Condition (6) was shown in the text to be necessary and suf�cient for Ex to

be an equilibrium path of 0.�; EN /: Since (6) obviously holds if (7) does, we must now show the
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reverse. Assuming Ex satis�es (6), and �xing t � 1 and i 2 N ; we must prove

.1� �/
P
s�t
�s�tui .x s/ � ui .x t�1i ; x t�i /: (23)

We can assume i =2 Nt ; else (23) follows directly from (6). Let � be the �rst date greater than t

such that i 2 N� : Since Ex is feasible for EN ; we have x si D x
t�1
i for s D t; : : : ; � � 1: Thus,

.1� �/
P
s�t
�s�tui .x s/ D .1� �/

��1P
sDt
�s�tui .x t�1i ; x s�i /C �

��t.1� �/
P
s��
�s��ui .x s/

� .1� �/
��1P
sDt
�s�tui .x t�1i ; x t�i /C �

��tui .x��1i ; x��i /

D .1� ���t/ui .x t�1i ; x t�i /C �
��tui .x t�1i ; x��i /

� .1� ���t/ui .x t�1i ; x t�i /C �
��tui .x t�1i ; x t�i /

D ui .x t�1i ; x t�i /:

The �rst of these inequalities follows from (PS), x s�i � x t�i ; and (6) applied to date � I the

second follows from (PS) and x��i � x t�i : This proves (23). �

Proof of Lemma 4. Let t � 0: Since Ex satis�es (7), and ui .x t/ � ui .x ti ; x
tC1
�i / by (PS), we have

ui .x t/ � .1� �/
P
s�tC1

�s�t�1ui .x s/:

The right side of this inequality is a convex combination of fui .x s/gs>t : Hence, there exists

s > t such that ui .x t/ � ui .x s/: Repeating the argument recursively yields a subsequence

fskg1kD1 of dates such that sk ! 1 as k ! 1; and ui .x t/ � ui .x sk / � ui .x skC1/: Since

fui .x sk /g converges to ui .x/; we conclude that u.x t/ � ui .x/: �

Proof of Theorem 1 .i/: Let � 2 .0; 1/ and x 2 E.�; EN /: Assume x is weakly underblocked.

Then a coalition S and pro�le z < x exist such that z�S D 0; and

ui .z/ � ui .x/ for all i 2 S: (24)

If zi D xi for some i 2 S; then z < x would imply z�i < x�i ; and so (PS) would yield

ui .z/ D ui .xi ; z�i / < ui .x/. As this is impossible by (24), we have zS � xS:

Let Ex be an equilibrium path of 0.�; EN / that converges to x : De�ne a set of dates,

T � ft � 1 j x ti � zi for all i 2 Sg:
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Since zS � xS; T 6D ?: Let � be the smallest date in T . Then j 2 S exists such that

x��1j < z j � x�j : Since � 2 T and z�S D 0; z� j � x�� j : Hence, by (PS),

u j .z j ; x�� j / � u j .z/: (25)

Because x��1j < z j ; (PD) implies

u j .x��1j ; x�� j / > u j .z j ; x
�
� j /: (26)

From .24/� .26/ we obtain

u j .x��1j ; x�� j / > u j .x/: (27)

On the other hand, Lemmas 3 and 4 imply

u j .x��1j ; x�� j / � .1� �/
P
s��
�s��u j .x s/

� .1� �/
P
s��
�s��u j .x/ D u j .x/:

This contradiction of (27) proves x is not weakly blocked. �

Proof of Lemma 5. Let Ex be an equilibrium path of 0.�; EN / that converges to x : Fix i 2 N and

t � 1: From Lemma 3 we have

P
s�t
�s�t

�
ui .x s/� ui .x t�1i ; x t�i /

�
D
P
s�t
�s�tui .x s/� .1� �/�1ui .x t�1i ; x t�i / � 0:

Using the assumed form of ui ; and letting QX t � X t � x ti C x
t�1
i ; we obtain

P
s�t
�s�t

h
vi .X s/� vi . QX t/� .x si � x

t�1
i /

i
� 0: (28)

Because vi is concave and differentiable,

v0i . QX
t/.X s � QX t/ � vi .X s/� vi . QX t/:

For s � t; the left side of this inequality is not lowered by replacing v0i . QX t/ by v0i .X t�1/; since

X t�1 � QX t and X s � QX t � 0: Hence, for s � t;

v0i .X
t�1/.X s � QX t/ � vi .X s/� vi . QX t/:

This and (28) yield

P
s�t
�s�t

h
v0i .X

t�1/.X s � QX t/� .x si � x
t�1
i /

i
� 0:
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Summing over i 2 N .x/ and replacing QX t by X t � x ti C x
t�1
i gives

P
s�t
�s�t

(
.X s � X t/

P
i2N .x/

v0i .X
t�1/C

P
i2N .x/

�
v0i .X

t�1/.x ti � x
t�1
i /� .x si � x

t�1
i /

�)
� 0:

Using
P
i2N .x/.x

s
i � x ti / D X s � X t ; this can be written as

P
s�t
�s�t

(
.X s � X t/B C

P
i2N .x/

�
v0i .X

t�1/� 1
�
.x ti � x

t�1
i /

)
� 0;

where B �
P
i2N .x/ v

0
i .X t�1/� 1: This rearranges, upon multiplying by 1� �; to

B
�
.1� �/

P
s�t
�s�t.X s � X t/

�
C

P
i2N .x/

�
v0i .X

t�1/� 1
�
.x ti � x

t�1
i / � 0:

Using the identity .1� �/
P
s�t �

s�t.X s � X t/ D �
P
s�t �

s�t.X sC1 � X s/; we obtain

�B
�P
s�t
�s�t.X sC1 � X s/

�
C

P
i2N .x/

�
v0i .X

t�1/� 1
�
.x ti � x

t�1
i / � 0: (29)

Since X > 0; we have v0i .X/ < 1 for all i: Choose a number b satisfying

max
i2N .x/

v0i .X/ < b < 1:

Let T be a date such that b > v0i .X t�1/ for any t � T and i 2 N .x/: Hence, considering (29)

for t � T; we can replace each v0i .X t�1/ in its last term by b to get

�B
�P
s�t
�s�t.X sC1 � X s/

�
C .b � 1/.X t � X t�1/ � 0: (30)

Because Ex does not converge in a �nite number of periods, X t�1 < X: Since x is not weakly

underblocked by Theorem 1 .i/, we have x 2 D: This implies X � YN .x/; by Corollary 1.

Hence, X t�1 < YN .x/; and the concavity of each vi implies B > 0: Inequality (30) is thus

preserved when divided by B: Doing so, and using

max
s�t
.X sC1 � X s/ � .1� �/

P
s�t
�s�t.X sC1 � X s/

and the de�nition of B; yields

max
s�t
.X sC1 � X s/ � .X t � X t�1/Qt ; (31)

where

Qt �
�
1� �
�

�"
1� bP

i2N .x/ v
0
i .X t�1/� 1

#
:

28



Since Qt is nondecreasing in t; Qt � 1 would imply Qs � 1 for all s � t: But then a recursive

application of (31) would prove that fX tg diverges, contrary to X t ! X: Hence, Qt < 1 for all

large t; and taking the limit yields�
1� �
�

�"
1� bP

i2N .x/ v
0
i .X/� 1

#
� 1:

From this, (8) is obtained by taking b! maxi2N .x/ v0i .X/: �

Proof of Lemma 6. Let x 2 E.�; EN R/; and let Ex be an equilibrium path of 0.�; EN R/ converging

to x : Let m be the parameter given in (CY). De�ne a path Ez by letting the players move as in Ex;

but only at dates that are multiples of m: That is, let zt D 0 for t D 0; : : : ;m� 1; and for t � m

let zt D xnkCi ; where k and i are the unique integers satisfying k � 0; i 2 N ; and

.nk C i/m � t < .nk C i C 1/m:

In Ez player i moves only at dates .nkC i/m; since in Ex she moves only at dates nkC i: The path

Ez is feasible for EN ; since i 2 N.nkCi/m :

Let O� D �1=m :We show Ez is an equilibrium path of 0.O�; EN / by showing that it and O� satisfy

(7) for any given i 2 N and t � 1: This is true trivially, by (PS), if zsi D z
t�1
i for all s � t: So

we can assume � � t exists such that zt�1i D z��1i < z�i : It is a multiple of m; say � D pm:

Furthermore, z� D x p and z��1 D zt�1 D x p�1: Observe that

.1� O�/
P
s�t
O�
s�t
ui .zs/ D .1� O�/

��1P
sDt
O�
s�t
ui .zt�1i ; zs�i /C O�

��t
.1� O�/

P
s��
O�
s��
ui .zs/

� .1� O�
��t
/ui .zt�1i ; zt�i /C O�

��t
.1� O�/

P
s��
O�
s��
ui .zs/;

where the inequality follows from ui .zt�1i ; zs�i / � ui .z
t�1
i ; zt�i / for each s D t; : : : ; � � 1: (The

overall inequality holds trivially if � D t:/ Hence, (7) holds if

.1� O�/
P
s��
O�
s��
ui .zs/ � ui .zt�1i ; zt�i /; (32)

which we now show. The de�nitions of Ez and O� imply

.1� O�/
P
s��
O�
s��
ui .zs/ D .1� O�/

1P
kD0

�C.kC1/m�1P
sD�Ckm

O�
s��
ui .zs/

D .1� O�/
1P
kD0
O�
km
ui .x pCk/

�C.kC1/m�1P
sD�Ckm

O�
s���km

D .1� O�
m
/
1P
kD0
O�
km
ui .x pCk/

D .1� �/
1P
kD0
�kui .x pCk/:
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Because Ex satis�es (7) at date p; we have

.1� �/
1P
kD0
�kui .x pCk/ D .1� �/

P
s�p
�s�pui .x s/

� ui .x p�1i ; x p�i /

D ui .zt�1i ; z��i /:

The two previous displays, and ui .zt�1i ; z��i / � ui .z
t�1
i ; zt�i /; imply (32). �

The proof of Theorem 2 uses the following lemma.

Lemma A2. A feasible Ex converging to a pro�le x is an equilibrium path if and only if the

path Ez de�ned by zt D .x ti /i2N .x/ for all t � 0 is an equilibrium path of the game obtained by

deleting the players i =2 N .x/:

Proof. If Ex is an equilibrium path, it satis�es (7). This implies Ez satis�es (7), with N replaced

by N .x/: Lemma 3 thus implies Ez is an equilibrium path when the set of players is N .x/:

Conversely, suppose Ez is an equilibrium path when the set of players is N .x/: Then (7) holds

for i 2 N .x/: For i =2 N .x/; we have, for any s � t;

ui .x t�1i ; x t�i / D ui .0; x
t
�i / � ui .0; x

s
�i / D ui .x

s/;

and hence ui .x t�1i ; x t�i / � .1 � �/
P
s�t �

s�tui .x s/: This shows that (7) holds for all i 2 N ;

proving by Lemma 3 that Ex is an equilibrium path for N : �

Proof of Theorem 2. By Lemma 6, it suf�ces to prove the result for EN D EN R: Since the origin

is always an equilibrium limit pro�le, we may assume x 6D 0:We construct a feasible path for
EN R that converges to x; and which is an equilibrium path for large �: By Lemma A2, we may

assume N .x/ D N ; i.e., x � 0:

De�ne a vector d 2 RnC by

di �
v0i .X/P
j2N v

0
j .X/

for all i 2 N :

Note that 0 < di < v0i .X/ for all i 2 N ; since X < YN implies
P

j2N v
0
j .X/ > 1: Let

Nx � x � N�d;where N� > 0 is small enough that Nx � 0: De�ne another pro�le Ox � x � O�d;where
O� 2 .0; N�/ is so small that Ox 2 Ds : (Lemma 2 .i i/ implies this can be done, since x 2 Dsnf0g:/
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Since

@

@�
ui .x � �d/

����
�D0

D
@

@�
[vi .X � �/� xi C �di ]

����
�D0

D v0i .X/� di

< 0;

we have u. Nx/� u. Ox/� u.x/; as well as 0 � Nx � Ox � x :

De�ne a sequence fx tg1kD0 to be a round-robin path if for each t > 0 and i D t .mod n/;

x t�i D x
t�1
�i : The rest of the proof consists of three steps.

Step 1. There exists a nondecreasing round-robin path fx tg1tD0; and a discount factor �
0 < 1;

such that x0 D Nx; x t ! x; and the following holds for all t > 0; i D t .mod n/; and � � �0 :

ui .x t�1i ; x t�i / � .1� �/
P
s�t
�s�tui .x s/: (33)

Proof of Step 1. Since di < v0i .X/ for all i 2 N ; we can �nd positive numbers a and " such

that
.1C "/di
v0i .X/

< a < 1 (34)

for all i 2 N : De�ne fx tg1tD0 by x0 � Nx and, for t > 0;

x ti �

8<: ax t�1i C .1� a/xi if i D t .mod n/

x t�1i otherwise.
(35)

This fx tg1tD0 is a round-robin path that starts at Nx and converges to x : Fix t > 0; and let i D t

.mod n/: Let q � 0 be the integer for which t D i C qn: At the end of period t � 1; players

j D 1; : : : ; i � 1 have raised their actions q C 1 times, and players j D i; : : : ; n have raised

theirs just q times. Hence, since x � Nx D N�d;

x t�1j D

8<: x j � N�aqC1d j for 1 � j < i

x j � N�aqd j for i � j � n:
(36)

This implies

X t�1 D X � N�aq
"
a
i�1P
jD1
d j C

nP
jDi
d j

#
: (37)

Similarly, for any k � 1;

x tC.k�1/nj D

8<: x j � N�aqCkd j for 1 � j � i

x j � N�aqCk�1d j for i < j � n
(38)
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and

X tC.k�1/n D X � N�aqCk�1
"
a

iP
jD1
d j C

nP
jDiC1

d j

#
: (39)

Turning to the desired inequality (33), note that it is equivalent to

A �
P
s�t
�s�t

�
ui .x s/� ui .x t�1i ; x t�i /

�
� 0:

Observe that A D
P1
kD1 �

.k�1/nAk; where

Ak �
tCkn�1P

sDtC.k�1/n
�s�t�.k�1/n

�
ui .x s/� ui .x t�1i ; x t�i /

�
:

Each Ak is a sum over n consecutive dates, and player i moves only at the �rst of them, tC .k�

1/n. Hence, for each of these dates s; x si D x
tC.k�1/n
i . This implies that

Ak D
tCkn�1P

sDtC.k�1/n
�s�t�.k�1/n

h
vi .X s/� vi .X t�1/�

�
x tC.k�1/ni � x t�1i

�i
�

tCkn�1P
sDtC.k�1/n

�s�t�.k�1/n
h
vi .X tC.k�1/n/� vi .X t�1/�

�
x tC.k�1/ni � x t�1i

�i
D

�
1� �n

1� �

�h
vi .X tC.k�1/n/� vi .X t�1/�

�
x tC.k�1/ni � x t�1i

�i
;

where the inequality follows from X s � X tC.k�1/n for s � tC.k�1/n:Using now the concavity

of vi and X t�1 < X tC.k�1/n < X; we obtain

Ak �
�
1� �n

1� �

�h
v0i .X/

�
X tC.k�1/n � X t�1

�
�
�
x tC.k�1/ni � x t�1i

�i
:

This expression can be bounded from below. From (37) and (39) we have

X tC.k�1/n � X t�1 D N�aq
"
a
i�1P
jD1
d j C

nP
jDi
d j

#
� N�aqCk�1

"
a

iP
jD1
d j C

nP
jDiC1

d j

#

D N�aq
"
a.1� ak�1/

i�1P
jD1
d j C .1� ak/di C .1� ak�1/

nP
jDiC1

d j

#
:

From this, 1� ak > a.1� ak�1/; and 1� ak�1 > a.1� ak�1/, we obtain

X tC.k�1/n � X t�1 � N�aq
"
a.1� ak�1/

i�1P
jD1
d j C a.1� ak�1/di C a.1� ak�1/

nP
jDiC1

d j

#

D N�aqC1.1� ak�1/
nP
jD1
d j

D N�aqC1.1� ak�1/:
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From (36) and (38), x tC.k�1/ni � x t�1i D N�aq
�
1� ak

�
di : Consequently,

Ak � N�aq
�
1� �n

1� �

� �
v0i .X/a.1� a

k�1/�
�
1� ak

�
di
�
:

This and (34) imply

Ak � N�aqdi
�
1� �n

1� �

� �
" � ak�1.1C " � a/

�
:

Therefore,

A � N�aqdi
�
1� �n

1� �

�
1P
kD1
�.k�1/n

�
" � ak�1.1C " � a/

�
D N�aqdi

�
1� �n

1� �

��
"
1P
kD1
.�n/k�1 � .1C " � a/

1P
kD1
.a�n/k�1

�
D

� N�aqdi
1� �

��
" �

�
1� �n

1� a�n

�
.1C " � a/

�
:

Thus, A � 0 for � � �0 � .1C "/�1=n: As �0 does not depend on t; Step 1 is proved. �

Step 2. There exists a �nite, nonincreasing round-robin path fxkgKkD0 such that x0 D Nx; xK D 0;

and u.xk/ � u. Ox/ for each k D 0; : : : ; K :

Proof of Step 2. Let x0 � Nx : To de�ne x1; let x1�1 D x0�1: Let x11 D 0 if u1.0; x0�1/ � u1. Ox/:

Otherwise, let x11 be the Qx1 for which u1. Qx1; x0�1/ D u1. Ox/I this equation has a unique solution,

and it is in the interval .0; x01/; since u1.�; x0�1/ is monotonic and u1.x0/ < u1. Ox/ < u1.0; x0�1/:

Note that 0 � x1 � x0; u1.x1/ � u1. Ox/; and by (PS), u j .x1/ < u j . Ox/ for j 6D i:

Now suppose that for some k � 1; pro�les x0; : : : ; xk have been de�ned, and they satisfy

0 � xk � xk�1 and u.xk/ � u. Ox/: Let i D k C 1 .mod n/: De�ne xkC1�i � xk�i : Let x
kC1
i D 0

if ui .0; xk�1/ � ui . Ox/: Otherwise, let x
kC1
i be the unique Qxi 2

�
0; xki

�
for which ui . Qxi ; xk�i / D

ui . Ox/: By (PS), we have u.xkC1/ � u. Ox/:

This de�nes a nonincreasing and bounded round-robin path fxkg1kD0: Let z be its limit. We

have z � xk for all k > 0; and u.z/ � u. Ox/:

Assume z > 0: In addition, assume ui .z/ < ui . Ox/ for some i 2 N .z/: By continuity,

Qxi 2 .0; zi / exists such that ui . Qxi ; z�i / < ui . Ox/: Since xk ! z; there exists k 0 such that

ui . Qxi ; xk�i / < ui . Ox/ for all k > k 0: But then, the construction of the path implies that for any

k > k 0 such that i D k C 1 .mod n/; xkC1i < Qxi < zi : This contradicts zi � xkC1i : Thus,

ui .z/ D ui . Ox/ for all i 2 N .z/: Since z < Ox; this shows that N .z/ weakly underblocks Ox : This

contradicts Ox 2 Ds :We conclude that z D 0:
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As Ox 2 Ds; no singleton weakly underblocks Ox : Since 0 � Ox; this implies u.0/ � u. Ox/:

Thus, K 0 exists such that ui .0; xk�i / < u. Ox/ for all k � K 0 and i 2 N : Therefore, by the

construction of the path, K � K 0 C n exists such that xK D 0: �

Step 3. There exists � < 1 such that for all � 2 .�; 1/; x 2 E.�; EN R/:

Proof of Step 3. Reverse the round-robin path obtained in Step 2, and add enough copies of

0 to its beginning and Nx to its end to obtain a �nite, nondecreasing round-robin path, fztgTtD0;

from z0 D 0 to zT D Nx; that has player 1 moving �rst .z1�1 D 0/; and player n moving last

.zT�1�n D Nx�n/: To the end of fztgTtD0 add the round-robin path obtained in Step 1: zTCs D x s for

all integers s � 0: This yields a path Ez D fztg1tD0 that is feasible for EN R and converges to x :

Let t � 1 and i 2 N Rt ; so that i D t .mod n/: If t > T; then by Step 1,

ui .zt�1i ; zt�i / � .1� �/
P
s�t
�s�tui .zs/ (40)

for � > �0: If t � T; then by Step 2,

ui .zt�1i ; zt�i / � ui .z
t/ � ui . Ox/ < ui .x/:

Therefore, since .1� �/
P
s�t �

s�tui .zs/! ui .x/ as � ! 1; there exists �t < 1 such that (40)

holds for � > �t : We thus have (40) for all t � 1, i 2 N Rt ; and � > � � max.�0; �1; : : : ; �T /.

Lemma 3 now implies x 2 E.�; EN R/ if � 2 .�; 1/: �
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