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Abstract
For repeated games with noisy private monitoring and communi-

cation, we examine robustness of perfect public equilibrium/subgame
perfect equilibrium when private monitoring is �close�to some public
monitoring. Private monitoring is �close� to public monitoring if the
private signals can generate approximately the same public signal once
they are aggregated. Two key notions on private monitoring are in-
troduced: Informational Smallness and Distributional Variability. A
player is informationally small if she believes that her signal is likely
to have a small impact when private signals are aggregated to gener-
ate a public signal. Distributional variability measures the variation
in a player�s conditional beliefs over the generated public signal as her
private signal varies. When informational size is small relative to dis-
tributional variability (and private signals are su¢ ciently close to pub-
lic monitoring), a uniformly strict equilibrium with public monitoring
remains an equilibrium with private monitoring and communication.
To demonstrate that uniform strictness is not overly restrictive, we

prove a uniform folk theorem with public monitoring which, combined
with our robustness result, yields a new folk theorem for repeated
games with private monitoring and communication.
Keywords: Communication, Informational size, Perfect Public Equi-

librium, Private monitoring, Public monitoring, Repeated games, Ro-
bustness
JEL Classi�cations: C72, C73, D82
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1 Introduction

How groups e¤ect cooperation is one of the most important social phenom-
ena, and also one of the least understood. The theory of repeated games has
improved our understanding by showing how coordinated threats to punish
can prevent deviations from cooperative behavior, but much of the work in
repeated games rests on very restrictive assumptions about what is com-
monly known to the members of the group. It is typically assumed that all
agents involved in a long term relationship share the same public informa-
tion, either perfectly or imperfectly, through which each agent is monitored
by the other agents. For the case in which each agent can observe all other
agents�actions directly (perfect monitoring), Aumann and Shapley [5] and
Rubinstein [16] proved a folk theorem without discounting, and Fudenberg
and Maskin [9] proved a folk theorem with discounting. For the case in
which each agent observes a noisy public signal (imperfect public monitor-
ing), Abreu, Pearce and Stacchetti [1] characterized the set of pure strategy
sequential equilibrium payo¤s for a �xed discount factor, and Fudenberg,
Levine, and Maskin [10] proved a folk theorem with discounting.

A theory that rests on the assumption that there is common knowledge
of a su¢ cient statistic about all past behavior is, at best, incomplete. Such
a theory is of no help in understanding behavior in groups in which there
are idiosyncratic errors in individuals�observations of outcomes.1 For many
problems, it is more realistic to consider each agent as having only partial
information about the environment and, most importantly, agents may not
know what information other agents have. Players may communicate their
partial information to other players in order to build a �consensus�about
the current situation, which can be used to coordinate future behavior. In
this view, repeated games with public information can be thought of as
a reduced form of a more complex interaction involving the revelation of
agents�private information.

This point of view leads us to examine robustness of equilibria with pub-
lic monitoring when monitoring is private, but �close�to public monitoring
when communication is allowed. Through communication, private signals
are aggregated: Private monitoring is informationally close to public mon-
itoring if the private signals, in aggregate, can generate approximately the
same public signal distribution. One can think of this as a situation in
which information contained in the public signal is dispersed among agents

1For example, team production in which each individual observes the outcome with
error lies outside this framework.
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in the form of private signals. We ask whether an equilibrium with public
monitoring remains an equilibrium with respect to the public signal gener-
ated from private monitoring and communication; and whether (and how)
players can be induced to reveal their private information.

When private monitoring approximates public monitoring and private
signals are revealed truthfully, the game resembles a repeated game with
public monitoring, which we understand. Hence, our main focus is on play-
ers�truth-telling constraints. The revelation of private information can be
problematic, as can be seen in an equilibrium in which there is a simple
trigger strategy to support collusion. In a private monitoring setting with
communication, the trigger strategy is based on the announcements of all
players. It is clear that players will not want to reveal any private informa-
tion that may trigger mutual punishment.

In this paper, we provide a su¢ cient condition on the private monitor-
ing structure that assures that truthful revelation of private signals can be
induced. The condition is related to the concepts of informational size and
distributional variability introduced in McLean and Postlewaite [15] (here-
after, MP).

To illustrate these ideas, consider an imperfect public monitoring prob-
lem G and a private monitoring problem Ĝ. In G, each action pro�le a
generates a public signal y from a set Y with probability �(yja): In Ĝ, each
action pro�le a generates a private signal pro�le s = (s1; ::; sn) with proba-
bility P (sja): In our analysis of the private monitoring game Ĝ, we augment
the model with a �coordinating device�� that associates a (possibly ran-
dom) public signal in the set Y with each private message pro�le. In this
expanded game, players choose an action pro�le a, and then observe their
private signals. Upon observing their private signals, they make a public
announcement regarding these private signals. The publicly announced sig-
nal pro�le is then used in conjunction with � to generate a public signal.
Note that the generated public signal is common knowledge.2

Suppose that players truthfully reveal their private signals in the ex-
panded game with public announcements and coordinating device �: Then
each action pro�le a induces a distribution on Y where the public signal y
is chosen with probability ��(yja) :=

P
s2S �(yjs)p(sja). If for each action

vector a the resulting distribution on public signals ��(�ja) is close to the
distribution on public signals �(�ja) in the public monitoring problem G, we
say that the expanded private monitoring problem is �close� to the initial

2The announced signal pro�le ~s is also assumed to be common knowledge, but this can
be dropped without consequence.
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public monitoring problem G given the mapping �. Thus, if the players
can be induced to truthfully reveal their private signal vector s, players can
coordinate on the generated public signal as in the initial public monitoring
problem. Roughly speaking, player i is informationally small if her private
information is unlikely to have a large e¤ect on the distribution of the gener-
ated public signal. An implication of a player being informationally small is
that she will have little incentive to misreport her private signal to manipu-
late the other players�behavior to her advantage. Distributional variability
is an index that measures the variation in a player�s conditional beliefs over
the generated public signal as her private signal varies. When this index is
large, it is easier to statistically detect and punish a lie.

Players are naturally informationally small in many settings. Suppose,
for example, that there are many players who observe conditionally inde-
pendent and identically distributed noisy private signals of a hidden signal.
If � maps each vector of signals into the posterior distribution on public sig-
nals, each player is then informationally small by the law of large numbers.
Alternatively, with the same function �, agents receiving conditionally i.i.d.
signals about an underlying state of the world will be informationally small
if their signals are very precise even if the number of agents is small. When
a player�s informational size is small relative to the distributional variability,
it is possible to perturb � slightly to provide players the necessary incentives
to induce truthful revelation.

We will prove a robustness theorem that says, �roughly�, the follow-
ing. Consider a public monitoring problem and a related private monitoring
problem which is close given the mapping � as above, and a perfect pub-
lic equilibrium � of the public monitoring problem. Then if all players are
su¢ ciently informationally small relative to their distributional variability,
there exists public history dependent �h

t
(�js) ; which is a small perturbation

of � at each history ht; such that � remains an equilibrium with respect to
the public signals generated by �h

t
(�js) with some truth-telling strategy.

In short, under the conditions described, the equilibrium strategies for the
public monitoring problem can be supported as equilibria in the related pri-
vate monitoring problem if they can communicate. We say �roughly�in the
statement above because we prove this not for all equilibria of the public
monitoring problem, but only uniformly strict perfect public equilibria. A
uniformly strict perfect public equilibrium is an equilibrium in which each
player loses more than a �xed amount by deviating at any history. A trigger
strategy with strict incentive is one example of uniformly strict PPE. Such
equilibrium remains an equilibrium even when public signal distribution is
slightly perturbed, thus when private monitoring is enough close to public
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monitoring.
The intuition for the result is similar to that in MP [15], but there is one

complication which is particular to repeated games. When players are in-
formationally small, the necessary punishment to induce truthful reporting
is small. However, any punishment needs to be endogenously generated by
continuation payo¤s in repeated games rather than through side payments,
and it is not clear in general whether there exist su¢ ciently large punish-
ments to induce truth-telling after every history. We cannot use arbitrary
equilibria to create any punishment we like.

Although uniformly strict perfect public equilibrium is a special class of
perfect public equilibrium , we can prove a uniform folk theorem with it
building on the folk theorem by Fudenberg, Levine and Maskin [10]. More
precisely, for any smooth setW in the interior of the feasible and individually
rational payo¤ set, we can �nd � > 0 such that every payo¤ pro�le in W
is supported by (1� �) � uniformly strict perfect public equilibria for large
enough �:3 We then combine this uniformly strict folk theorem with our
robustness result to prove a folk theorem for repeated games with private
monitoring and communication. This folk theorem is not covered by the
existing folk theorems with private monitoring and communication.

Related Literature
Our approach is related to Ben-Porath and Kahneman [6]. They prove

a folk theorem when a player�s action is perfectly observed by at least two
other players. Although their focus is on the folk theorem rather than ro-
bustness of equilibria, their analysis is similar to ours. They �x a strategy
to support a payo¤ pro�le with perfect monitoring, and construct a similar
strategy augmented with an announcement strategy to support the same
payo¤ pro�le in the private monitoring setting. Their strategies employ
draconian punishments when a player�s announcement is inconsistent with
others�announcements (�shoot the deviator�). Our paper di¤ers from their
paper in many respects. First, since Ben-Porath and Kahneman [6] focused
on a folk theorem, they restrict attention to a particular class of strategy
pro�les, which are similar to the strategy pro�les employed in Fudenberg
and Maskin [9], while we focus on robustness of strategies in general. Sec-
ondly, our paper uses not only perfect monitoring but also imperfect public
monitoring as a benchmark. Finally, private signals are noisy in our paper.

Compte [7] and Kandori and Matsushima [11] also consider communi-
cation in repeated games with private monitoring. These papers provide

3A (1� �) � uniformly strict perfect public equilibrium is a perfect public equilibrium
in which every player loses at least (1� �) � by deviating at any history.
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su¢ cient conditions on the private monitoring structure for a folk theorem.
Compte [7] assumes that players�private signals are conditionally indepen-
dent, while Kandori and Matsushima [11] assume that player i0s deviation
and player j0s deviation can be statistically distinguished based on the pri-
vate signals of the rest of players. These conditions are not implied by the
condition we impose on the information structure.

Aoyagi [4] recently proved a Nash-threat folk theorem in a setting similar
to Ben-Porath and Kahneman [6], but with noisy private monitoring. In his
paper, each player is monitored by a subset of players. Private signals are
noisy and re�ect the action of the monitored player very accurately when
they are jointly evaluated. That is, private monitoring is jointly almost
perfect. In his paper, players have access to a more general coordination
device than ours, namely, mediated communication. On the other hand, his
result applies to the case with only two players, while many folk theorems,
including ours, require more than two players.

Mailath and Morris [13] is close in spirit to our paper. They also focus on
robustness of equilibrium when a public monitoring structure is perturbed,
but without communication. One of their assumptions is that private moni-
toring is almost public. When private monitoring is almost public, the space
of private signals for each player coincides with the space of public signals
and jPr (w = (y; :::; y) ja)� � (yja)j is small, where w is a private signal pro-
�le. In a subsequent paper [14], Mailath and Morris introduce a more general
notion of almost public monitoring, and refer to their previous notion of al-
most publicness as minimally almost public. In their new de�nition, almost
publicness, the space of private signals for each player can be larger than
the space of public signals. As in our paper, they consider a mapping from
private signal pro�les to public signals. Almost publicness in this general
sense implies our notion of closeness, but not informational smallness. Mini-
mally almost public monitoring implies informational smallness as well when
there are at least three players.4 We discuss this in more detail below. They
show that perfect public equilibria without bounded recall is generally not
robust to a perturbation of public monitoring without communication even
when private monitoring is almost public. Since there are many uniformly
strict equilibria without bounded recall, our result, together with their re-
sult, suggests that communication is essential for robustness of perfect public
equilibria.

4When there are only two players, both of them may not be informationally small even
when the monitoring is almost public. As usual, it is more di¢ cult to induce truthful
revelation of private information with two players.
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Fudenberg and Levine [8] prove a folk theorem for repeated games with
communication when the game has almost perfect messaging. This notion
also generalizes almost public monitoring from Mailath and Morris [13] by
allowing many irrelevant private signals. Their result also covers the case
with two players.

Anderlini and Laguno¤ [3] consider dynastic repeated games with com-
munication where short-lived players care about their o¤spring. As in our
paper, players may have an incentive to conceal bad information so that
future generations do not su¤er from mutual punishments. Their model is
based on perfect monitoring and their focus is on characterizing the equilib-
rium payo¤ set rather than robustness of equilibrium.

The model is described in Section 2 and the concepts of informational
smallness and informational variability are introduced in Section 3. Section
4 is devoted to an example to illustrate the idea of our main theorem. Section
5 states and proves our robustness result. In Section 6, we prove uniformly
strict folk theorem with imperfect public monitoring, and combine it with
our robustness result to prove a folk theorem with private monitoring and
communication. Section 7 concludes.

2 Preliminaries

2.1 Public Monitoring

The set of players is N = f1; :::; ng. Player i chooses an action from a �-
nite set Ai. An action pro�le is denoted by a = (a1; :::; an) 2 �iAi := A:
Actions are not observable, but players observe a stochastic public signal
from a �nite set Y (jY j = m) : The probability distribution on Y given a is
denoted by � (�ja) :We do not assume full support or common support, that
is, fy 2 Y j� (yja) > 0g can depend on a 2 A: This allows both perfect mon-
itoring (Y = A and � (yja) = 1 if y = a) and imperfect public monitoring.
The stage game payo¤ for player i is gi (a) : We assume that y is the only
available signal and players do not obtain any additional information from
their own payo¤s.5 We call this stage game G: We normalize the payo¤s so
that each player�s pure strategy minmax payo¤ is 0. The feasible payo¤ set
is V = co fg (a) ja 2 Ag and V � = fv 2 V jv � 0g denotes the individually
rational and feasible payo¤ set. Note that pure minmax is used here instead
of mixed minmax, which is usually smaller.

5This is satis�ed, for example, if we regard gi (a) as an expected payo¤ given by gi (a) =P
y ui (ai; y)� (yja) ; where ui (ai; y) is player i�s realized payo¤.
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Player i�s private history is hti =
�
a0i ; :::; a

t�1
i

�
2 Ht

i and a public history
is ht =

�
y0; :::; yt�1

�
2 Ht with H0

i = H0 = f;g: Player i0s pure strategy
is �i =

�
�ti
	1
t=0
, where �ti is a mapping from Ht

i [ Ht to Ai: A strategy
pro�le is � = f�igi2N 2 �. Player i0s discounted average payo¤ given �
is Vi (�; �) = (1� �)

P1
t=0 �

tE
�
gi
�
at
�
j�
�
: We denote this repeated game

associated with the stage game G by G1 (�) :
A strategy is public if it only depends on Ht. A pro�le of public strate-

gies constitute a perfect public equilibrium if, after every public history, the
continuation (public) strategy pro�le constitutes a Nash equilibrium (Fu-
denberg, Levine, Maskin[10]). Note that a perfect public equilibrium is a
subgame perfect equilibrium when the stage game is of perfect information.
Since we focus on perfect public equilibrium, we ignore private histories and
denote a strategy simply by �t

�
ht
�
instead of �t

�
hti; h

t
�
:6

We need to introduce the notion of uniformly strict perfect public equi-
librium for G1 (�). Let w�i

�
ht+1

�
be player i�s continuation payo¤ from

period t+ 1 at public history ht+1 =
�
ht; yt

�
given �:

De�nition 1 A pure strategy perfect public equilibrium � 2 � for G1 (�)
is ��uniformly strict if

(1� �) gi
�
�t
�
ht
��
+ �

X
y2Y

�
�
yj�t

�
ht
��
w�i
��
ht; y

��
� �

� (1� �) gi
�
a0i; �

t
�i
�
ht
��
+ �

X
y2Y

�
�
yja0i; �t�i

�
ht
��
w�i
��
ht; y

��
for all a0i 6= �ti

�
ht
�
; ht and i 2 N:

This means that any player loses by more than � if she deviates at any
history. It is a kind of robustness requirement, but is not as restrictive as
it may seem. We will show later that a folk theorem is obtained under
standard assumptions even within this class of PPE.

2.2 Imperfect Private Monitoring

Fix a stage game G with public monitoring. A corresponding stage game
Ĝ with private monitoring has the same set of players and the same action
sets. The stage game payo¤ for player i is denoted gpi (a) : Each player

6Thus we ignore private strategies. But this is without loss of generality for pure
strategies. A mixed private strategy can be sometimes bene�cial. See Kandori and Obara
[12].

8



receives a private signal si from a �nite set Si instead of public signal.
Feasible payo¤ Vp and feasible and individually rational payo¤ set V �p is
similarly de�ned. A private signal pro�le is s = (s1; ::; sn) 2 �iSi = S: The
conditional distribution on S given a is p (sja) : We assume that marginal
distributions have full support, that is, p(sija) =

P
s�i

p (si; s�ija) > 0 for
all si 2 Si, a 2 A and i 2 N . Let p (s�ija; si) be the conditional probability
of s�i 2 S�i given (a; si) :

Players can communicate with each other every period. As suggested in
the introduction, we model communication as a way to aggregate players�
private signals to generate a public signal. Let � : S ! 4Y be a coordi-
nation device which converts players�messages to a public signal. With a
slight abuse of notation, we use � (yjs) to denote the probability of y given
s: This is a model of unmediated communication based on players�direct
message. Assuming truthful revelation of private signals of players j 6= i;
player i�s conditional distribution on Y generated by � given (ai; si) and her
announcement esi is given by p� (yja; si; esi) =Ps�i

p (s�ija; si)� (esi; s�i) (y) :
We often use p� (yja; si) for p� (yja; si; si) to economize on notation.

Let
�
ht;mt

�
=
�
y0; :::; yt�1; es0; :::; est�1� 2 Ht = Y t � St be a public

history and hti =
�
a0i ; ::; a

t�1
i ; s0i ; :::; s

t�1
i

�
2 Ht

i = Ati � Sti be player i�s
private history.7 Player i0s (pure) strategy consists of two components: �a;ti
(action) and �s;ti (message) ; t = 1; 2:::; where �a;ti : Ht

i � Ht �! Ai and
�s;ti : Ht

i �Ht�Ai�Si �! Si. Let �a = f�ai gi2N 2 �a and �s = f�sigi2N 2
�s:

A message strategy is truth-telling if each player reports her private sig-

nal truthfully on the equilibrium path (�s;ti
�
hti; h

t;mt; �a;ti
�
hti; h

t;mt
�
; sti

�
=

sti). A truth-telling message strategy is denoted by �
s�
i : Note that there are

many truth-telling strategies because we allow players to lie o¤ the equilib-
rium path.

We say that a strategy is public if �a;ti only depends on ht =
�
y0; :::; yt�1

�
and �s;ti on

�
y0; :::; yt�1

�
and

�
ati; s

t
i

�
: The set of public strategies is denoted

�aP : Note that a public strategy does not depend on the announced message
mt =

�es0; :::; est�1� even though it is public information.8 It only depends
on public signal ht =

�
y0; :::; yt�1

�
generated via �. This is to facilitate

comparison between an equilibrium with public monitoring and the corre-

7Whether a message pro�le can be observed publicly or not does not matter. Our equi-
librium, which depends on only y; remains an equilibrium whether it is publicly observable
or not. Thus we ignore such private message pro�les in the following.

8We do not use public messages in our construction. Indeed we don�t need to assume
that messages are publicly observable as long as y is publicly observable.

9



sponding equilibrium with private monitoring. Note that there is a natural
one to one relationship between public strategies with public monitoring
and public strategies with private monitoring. Since we focus on this class

of public strategies, we use �a;ti
�
ht
�
and �s;ti

�
ht; �a;ti

�
ht
�
; sti

�
rather than

�a;ti
�
hti; h

t;mt
�
and �s;ti

�
hti; h

t;mt; �a;ti
�
hti; h

t;mt
�
; sti

�
as before:

Player i�s discounted average payo¤ is V pi (�; �) = (1� �)
P1
t=0 �

tE
�
gpi
�
at
�
j�
�
:

We denote this repeated game with private monitoring by Ĝ1 (�). We ex-
tend the standard de�nition of perfect public equilibrium to the current
setting in a straightforward way. We call a strategy pro�le � = (�a; �s)
a perfect public equilibrium if � is a public strategy and the continuation
strategy pro�le at the beginning of each period constitutes a Nash equilib-
rium.9

2.3 Distance between G and Ĝ:

We �rst introduce a notion of closeness between p and �:

De�nition 2 p is an "�approximation of � if there exists a coordination
device � such that 


� (�ja)� p� (�ja)


 < " for all a 2 A:

When p is an "�approximation of �; we associate a default coordination
device � with p; which satis�es the above de�nition. This does not mean
that we always use such �: Later we construct another �0 based on � which
is still a good approximation of �.

The following example illustrates a possible choice of �. Suppose that,
given an action pro�le a; the joint distribution of s and y is de�ned by
q (sjy)� (yja) ; where q (sjy) is the conditional distribution of private signals
given y. We can interpret s as a noisy hidden signal of y. Note that y is
a su¢ cient statistic with respect to action pro�le a: Here, an example of �
would be as follows;10

� (s) = argmax
y2Y

q (sjy)

that is, � (s) is the conditional maximum likelihood estimate of y given s:

9This is called 1-public perfect equilibrium in Kandori and Matsushima.[11]
10 In this example (and several examples that follow), � is deterministic, mapping S into

Y rather 4Y:

10



We say G and Ĝ are "-close if p is an "�approximation of � and the
payo¤s di¤er by at most ".

De�nition 3 G and Ĝ are "-close if p is an "�approximation of � and
maxi;a jgi (a)� gpi (a)j � ":

3 Informational Size

In this section, we introduce several de�nitions related to the private mon-
itoring information structure. Let "� (a; si; s0i) be the minimum " � 0 such
that

Pr
�

� (si; ~s�i) (�)� � �s0i; ~s�i� (�)

 > "ja; si

�
� "

De�nition 4 Player i0s informational size v�i is de�ned as

v�i = maxa
max
si

max
s0i2Sinsi

"�
�
a; s0i; si

�
:

This means that the probability of a¤ecting � by more than v�i by mis-
representation is less than v�i . We say a player is informationally small when
her informational size is small.

The following is a simple example illustrating this idea.

Example 5 Law of Large Numbers
Consider a binary public signal y on Y = f0; 1g : It is equally likely that

y = 0 or y = 1: Player i observes only her private signal si 2 f0; 1g, which
agrees with y with probability 3

4 and di¤ers with probability
1
4 : The private

signals are conditionally independent. Suppose that � is given by majority
rule, that is, � takes the value which corresponds to the majority of messages.
When the number of players receiving a private signal goes to in�nity, each
player�s informational size goes to 0: Note that this example also serves as
an example of "�approximation of a public signal by private signals.

While each player�s informational size become negligible as the number
of the players increases in the above example, this is not always the case
for the best estimate of y given fsigi such as with � above. For example,
suppose that si = y with probability 3=4 for i = 1; :::; n�1; but sn = y with
probability 1. When es = (0; :::; 0; 1), the best estimate of y is 1 provided
that player n tells the truth. Thus � should depend solely on sn if � is
to be the best estimate of y: However, then player n is not informationally
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small: Consequently, although we lose some information, we may choose a
di¤erent � for which every player is informationally small and p� (�ja) is
still a good approximation of � (�ja) : In this example, one such � could
be constructed by generating a new signal bsn that adds noise to player
n0s message (bsn = esn with probability 3=4) and applying majority rule to
(es1; :::; esn�1; bsn) :

Remark. Almost publicness in Mailath and Morris [13] is related to
"-approximation and informational size. Suppose that private monitoring
is almost public, that is, jp ((y; :::; y) ja)� � (yja)j � 0 for all y 2 Y: De�ne
� (s) to be that value of y observed by the largest number of the players.
Then clearly p� approximates � well: Moreover players are informationally
small when there at least three players.

There is a more general notion of almost publicness in [14]. When mon-
itoring is almost public in this sense, a good approximation is implied by
almost publicness with the same �; but informational smallness is not. With
small probability, each player may observe some private signal for which in-
formational size is large.11

On the other hand, it is possible that private monitoring is close to public
monitoring in our sense, but not almost public in their sense (see the next
example).

The next example shows that a large number of players is not necessary
for informational smallness.

Example 6 Complementary Information
Public and private signals are again binary, Y = f0; 1g ; and Si = f0; 1g :

There are six players. When the true public signal is 1; the private signal
pro�le is such that three players receive the signal 0 and three players re-
ceive the signal 1: Each such pro�le of signals is equally likely. When the

11Almost publicness in Mailath and Morris [13] is also based on a mapping from
private signal pro�le to a public signal (they call their old notion of almost pub-
licness �minimally almost public�). Let fi : Si ! Y � f;g be such a map-
ping for player i: Note that some private signals may not be mapped to any pub-
lic signal. Then they say private monitoring is "-close to public monitoring if
there exists fi such that jPr (fi (si) = y; i = 1; :::n)� � (yja)j � " for any a; y and
Pr (fs�i : fj (sj) = y; j 6= ig ja; si) � 1� " for any a; si 2 f�1j (y) ; and i:
The reason why informational smallness fails is that there is no restricion on player i�s

conditional belief given si such that fi (si) = ;:
However, we believe that it is possible to relax our notion of informational smallness so

that almost public monitoring implies informational smallness without a¤ecting our main
results.

12



true public signal is 0; the private signal pro�le is either (1; 1; 1; 1; 1; 1) or
(0; 0; 0; 0; 0; 0) ; each with probability 12 : In this example, each player is equally
likely to receive the signal 0 or 1 for any realization of public signal, hence
her signal alone provides no information about the true public signal. But
when players� signals are aggregated, a private signal pro�le completely re-
veals the true public signal. Each player�s informational size is exactly 0
here.12 This information structure has the property that any single agent�s
private information is meaningful only when combined with the other agents�
information.

The following lemma follows immediately from the de�nition of informa-
tional size.

Lemma 7 1. E [k� (si; s�i) (�)� � (s0i; s�i) (�)k ja; si] �
�
1 +

p
2
�
v�i for

all a 2 A; si; s0i 2 Si:

2.
��p� (yja; si)� p� (yja; si; s0i)�� � 2v�i for all a 2 A; si; s0i 2 Si; y 2 Y

Proof. (1)

E
�

� (si; s�i) (�)� � �s0i; s�i� (�)

 ja; si� �

�
1� v�i

�
v�i + v

�
i

p
2

�
�
1 +

p
2
�
v�i

(2) ���p� (yja; si)� p� �yja; si; s0i���� �
�
1� v�i

�
v�i + v

�
i

� 2v�i

Next we introduce distributional variability.

De�nition 8 (Distributional Variability of player i)

��i = mina
min
si

min
s0i2Sinsi





 p� (�ja; si)
kp� (�ja; si)k

� p� (�ja; s0i)
kp� (�ja; s0i)k





2
12The function � maps vectors of private signals with all or all but one signal being the

same into y = 0; and all the other vectors into y = 1:
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This index measures the extent to which player i�s conditional belief
is a¤ected by her private signal. Note that ��i = 0 if private signals are
independent given some action pro�le. One implication of this is

��i �




 p� (�ja; si)
kp� (�ja; si)k

� p� (�ja; s0i)
kp� (�ja; s0i)k





2
= 2

�
1� p� (�ja; si) � p� (�ja; s0i)

kp� (�ja; si)k kp� (�ja; s0i)k

�
for any a; si; s0i:

Finally, let v� = maxi v
�
i and �

� = mini �
�
i :

4 An Example

The following example is meant to illustrate our approach behind the general
theorem in the next section. Consider the following game with the �law of
large numbers� information structure discussed in the last section. There
are 2n + 1 players and the stage game payo¤ (for both public monitoring
and private monitoring) is as follows:

a�i = C a�i 6= C
ai = C 1 -1
ai = D 2 0

where a�i = C means that all players j 6= i choose C: The distribution of
the public signal y is;

Prob (y =1ja) =
�

2
3 if a = C
1
3 if a 6= C

Thus 1 is more likely to occur when every player is cooperating, while 0 is
more likely when any player defects. We assume that si; i = 1; :::; 2n+1 are
conditionally independent given y and si = y with probability 3

4 as before.
Note that the stage game is de�ned so as to be essentially independent of
the number of players.

Suppose that a simple grim trigger strategy pro�le �trig is a strict equi-
librium for a �xed �.13 We show that �trig and a truth-telling strategy is
an equilibrium with respect to public signals generated by some � when the
number of the players is large.

13Note that this strict trigger strategy equilibrium is a uniformly strict PPE.
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Let � (s) be the number of 00s in message pro�le s and let Pr (y = 1ja = C; � (s) = �)
be the probability that the true public signal y is 1 given thatC is played and
players observe � 00s:Note that Pr (y = 0ja = C;� (s) = n0) > Pr (y = 1ja = C;� (s) = n0)
for n0 > n and Pr (y = 0ja = C;� (s) = n0) < Pr (y = 1ja = C;� (s) = n0)
for n0 � n: De�ne � : S ! f0; 1g as follows:

� (s) =

�
1 if � (s) � n
0 if � (s) > n

Of course, p� (�ja) is a good approximation of the original public signal
distribution if the number of the players is large and true private signals are
revealed.14 Thus �trig is incentive compatible as long as players announce
their private signals truthfully.15

Thus the question is whether we can induce players to tell the truth. Note
that � does not work as it is. No player has incentive to send a negative
signal (esi = 0) because the probability of the mutual punishment goes up.
Therefore we need to modify � to induce truthful revelation of players�
private signals, while still generating a good approximation of the original
public signal distribution. To be more speci�c, we �rst construct another
function �0 : S ! 4Y which is useful for punishing misrepresentation:
This �0 picks each player randomly and tests whether she is announcing
truthfully. Then we construct a new �� by taking a linear combination of
� and �0, with most of the weight put on �: One interpretation is that the
distribution of y is determined by � most of the time, but occasionally by �0.
In this example, each player�s incentive to send a false message to manipulate
public signal is bounded by her informational size. On the other hand, the
size of expected punishment to deter such misrepresentation is measured by
1
n�distributional variability. This

1
n comes from the fact that each player is

picked by �0 with equal probability. When n is large, the informational size
decreases exponentially with respect to n, thus the former e¤ect is dominated
by the latter e¤ect above some critical n: In our general theorem as well as
this example, the ratio of the �rst e¤ect and the second e¤ect plays a critical
role.
14Note also that the players are informationaly small with this �:
15We do not require players to tell the truth after deviating to a non-equilibrium action

within the period. In fact, it may not be optimal to announce a true private signal in
such a history. However, we know that such joint deviation in action and message is not
pro�table anyway when players are informationally small (it is not so di¤erent from a
simple deviation in action with truth-telling). Thus we ignore such deviations and do not
specify sequentially optimal announcement after a deviation within the period.
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In the following, we explicitly construct �0 and �� to induce truth-
telling. When � (es) = y 2 f0; 1g in the cooperative phase, �0 (es) is 1
with probability 1

2n+1

�P2n+1
j=1

p� (yjC;esj)
kp� (�jC;esj)k

�
and �0 (es) is 0 with probability

1� 1
2n+1

�P2n+1
j=1

p� (yjC;esj)
kp� (�jC;esj)k

�
:16 The jth term

p� (yjC;esj)
kp� (�jC;esj)k is tailored to pun-

ish player j when player j lies; the expected value of this term decreases
when player j lies:

Now let �� = (1� �)�+��0:We choose � small enough so that p�� (yja)
is still close to � (yja) and �trig is an equilibrium when private signals are
revealed truthfully. Given message pro�le es, players stay in the cooperative
phase with probability (1� �)� (es) + �

2n+1

�P2n+1
j=1

p� (�(es)jC;esj)
kp� (�jC;esj)k

�
: Since the

continuation payo¤ is 0 once mutual punishment starts, the continuation
payo¤ after the announcement es in the cooperative phase is simply8<:(1� �)� (es) + �

2n+ 1

0@2n+1X
j=1

p� (� (es) jC; esi)
kp� (�jC; esi)k

1A9=;4
where 4 > 0 is the continuation payo¤ from playing �trig.17

We �rst focus on the term p� (�(es)jC;esi)
kp� (�jC;esi)k for player i: Given that player i0s

true signal is si; the expected loss (the reduction of probability of y = 1)
from this term when lying is as follows.0@X

y=0;1

p� (yjC; si)
kp� (�jC; si)k

p� (yjC; si)�
X
y=0;1

p� (yjC; s0i)
kp� (�jC; s0i)k

p�
�
yjC; si; s0i

�1A
=

0B@
P
y=0;1

�
p� (yjC;si)
kp� (�jC;si)k �

p�(yjC;s0i)
kp�(�jC;s0i)k

�
p� (yjC; si)

+
P
y=0;1

p�(yjC;s0i)
kp�(�jC;s0i)k

fp� (yjC; si)� p� (yjC; si; s0i)g

1CA4
Note that

P
y=0;1

p�(yjC;s0i)
kp�(�jC;s0i)k

fp� (yjC; si; si)� p� (yjC; si; s0i)g is bounded

16This probability is well de�ned because
p�(y0jC;esj)
kp�(�jC;esj)k � 1:

17More precisely, 4 depends on n with private monitoring, but we omit that dependence
because it converges to the original trigger strategy equilibrium payo¤ (only approximately
because of �) as n!1:
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below by � 2v�

kp�(�jC;s0i)k
(Lemma 7). Thus the expected loss is at least

X
y=0;1

�
p� (yjC; si)
kp� (�jC; si)k

� p� (yjC; s0i)
kp� (�jC; s0i)k

�
p� (yjC; si; si)�

2v�

kp� (�jC; s0i)k

= kp� (�jC; si)k
�
1� p� (�jC; si) � p� (�jC; s0i)

kp� (�jC; si)k kp� (�jC; s0i)k

�
� 2v�

kp� (�jC; s0i)k

� 1

2
p
2
�� � 2

p
2v�

On the other hand, the expected future gain by lying from the other
terms such as (1� �)� (es) and p� (�(es)jC;esj)

kp� (�jC;esj)k ; j 6= i can be shown to be at most

(1� �) 2v� and
�
1 +

p
2
�
v� respectively (which also follows from Lemma 7).

Hence all the truth-telling constraints are satis�ed if the following condition
is satis�ed.

(1� �) 2v� + � 2n

2n+ 1

�
1 +

p
2
�
v� � �

2n+ 1

�
1

2
p
2
�� � 2

p
2v�

�
:

We show that this condition is satis�ed as n !1 by deriving approxi-
mate values of �� and v� as n!1:

First, the conditional distribution of the generated public signal is ap-
proximately the same as the conditional distribution of the true public signal
for large n, thus �� is approximately a constant and given bys�

1

7

�2
+

�
6

7

�2s�3
5

�2
+

�
2

5

�2
�
�
1

7
;
6

7

��
3

5
;
2

5

�
> 0:

Next we compute v�: Since player i0s announcement can change the
value of � only when she is pivotal (� (es�i) = n) ; her informational size is
v� = Prob (� (es�i) = njC; si), which can be computed as follows;18

Prob (� (es�i) = njC; si)

= Prob (y = sijsi)
�
2n

n

��
3

4

�n�1
4

�n
+Prob (y 6= sijsi)

�
2n

n

��
3

4

�n�1
4

�n
=

(2n)!

n!n!

�
3

4

�n�1
4

�n
:

18Note that the formula is independent of the choice of si (and a as well) for this
example.
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Since n! s nn+
1
2 e�n

p
2� for large n by Sterling�s formula, we obtain

Pr (� (s�i) = njsi = 1) s
(2n)2n+

1
2 e�2n

p
2��

nn+
1
2 e�n

p
2�
�2 �34

�n�1
4

�n

=
1p
n�

�
3

4

�n
:

Therefore informational size converges to 0 at least at an exponential rate.
This implies that, while the lower bound of the expected loss by lying

( �
2n+1

�
1
2
p
2
�� � 2

p
2v�

�
) is converging to 0 at the rate of 1n ; the bound of the

expected gain from the other terms
�
= (1� �) 2v� + � 2n

2n+1

�
1 +

p
2
�
v�
�
is

converging to 0 at a much faster rate.
Therefore, if n is large enough, truth-telling constraints are satis�ed.

Then �� approximates the original public signal distribution well for a small
�, thus �trig remains an equilibrium when the public signal is generated by
��.

5 Robustness Result

We �rst introduce the formal notion of robustness of perfect public equilibria.
Our requirement is that an equilibrium public strategy for G1 (�) remains
an equilibrium of Ĝ1 (�) when combined with some truth-telling strategy if
Ĝ is "-close to G:

De�nition 9 A perfect public equilibrium � of G1 (�) is "�robust if, for
every "-close Ĝ; there exists a coordination device �h

t
: S !4Y for each ht

such that �0 = (�; �s�) is a perfect public equilibrium of Ĝ1 (�) with some
truth-telling strategy �s�:

We prove that every ��uniformly strict equilibrium is "�robust if infor-
mational size is relatively small compared to distributional variability. The
proof is a generalization the proof in the previous example. The main dif-
�culty arises when the continuation payo¤s of a target PPE does not have
enough variability to be used as a device for punishment.

When informational size is small, no player has an incentive to deviate
from the equilibrium action when other players tell the truth. This is because
the target equilibrium is a uniformly strict equilibrium, and stage game
payo¤s and continuation payo¤s with private monitoring become uniformly
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close to the ones with public monitoring when Ĝ is "-close to G: Joint
deviation in action and message within a period is not pro�table either
(footnote 13). Thus we only need to check whether players have incentive
to reveal their private signals truthfully on the equilibrium path.

At each history, we use � with high probability to ensure that the gen-
erated public signal distribution is close to the original public signal distri-
bution, but we use punishment schemes tailored for each player with small
probability to provide players with an incentive to reveal their private sig-
nals truthfully on the equilibrium path. When punishment schemes are
used, each player is picked with equal probability as in the previous exam-
ple. We would like to de�ne a punishment scheme �0i for player i which has
the following properties: (1) it generates public signals which correspond to
either the largest expected continuation payo¤ for player i or the smallest
expected continuation payo¤ for player i and (2) the probability of the for-
mer is maximized by revealing her private signal truthfully. This generalizes
our previous construction. In the previous example, the largest continuation
payo¤ corresponds to the equilibrium continuation payo¤ in the cooperative
phase and the smallest continuation payo¤ corresponds to the stage-game
Nash equilibrium payo¤.

However, there is one di¢ culty with such a generalization. In the exam-
ple, the stage game Nash equilibrium payo¤ is always 0 and the equilibrium
continuation payo¤ in the cooperative phase is a distinct positive number
if the probability � to use punishment schemes is set small. Thus which
public signal leads to a better continuation payo¤ is clear and we were able
to create an endogenous punishment by adjusting the probability of public
signal leading to these continuation payo¤s. This is not so straightforward
in general case. Note that each player�s expected continuation payo¤ at
period t depends on how punishment schemes are constructed from period
t + 1 on. Thus whether a particular signal in one period is a good signal
or bad signal may depend on the choice of punishment schemes in the fu-
ture. If there is a uniform lower bound on the di¤erence between the largest
continuation payo¤ and the smallest continuation payo¤ over all public his-
tories in the original PPE, then we can choose � small enough so that this
wedge can be always used to induce truth-telling as before. But it could be
the case that this wedge may not be uniformly bounded below. This is not
necessarily a pathological case. For example, such a wedge is not needed if
a stage game Nash equilibrium is played in the current period. Then the
choice of punishment scheme at period t is intrinsically related to the choice
of punishment schemes from period t + 1 on. This de�nes mapping from
an in�nite sequence of punishment scheme to itself. Thus we need to �nd a
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�xed point in in�nite dimensional space. We apply Glicksberg �xed point
theorem to address this problem.

Once such punishment schemes at each history are constructed, the rest
of the proof is exactly the same as before. If player i lies on the equilib-
rium path, then she is punished by a higher probability of bad public signal.
This expected loss from lying is a function of informational variability of �:
On the other hand, player i might gain from either when the punishment
schemes are not used (� is used) or the punishment schemes for the other
players are used: But the expected future gain from such terms is bounded
by her informational size with respect to �. Thus if player i�s informational
variability is large compared to her informational size, the �rst e¤ect dom-
inates the second e¤ect, hence each player has incentive to announce her
message truthfully on the equilibrium path.

A detailed proof of the following theorem is in the appendix.

Theorem 10 Fix � and G: For any � > 0; there exists 
; " > 0 such that
if v� 5 
��; then every ��uniformly strict pure strategy perfect public equi-
librium of G1 (�) is "�robust

Note that 
 and " are taken with respect to all ��uniformly strict pure
strategy perfect public equilibria. On the other hand, the coordination de-
vice for supporting each equilibrium can vary by de�nition of "�robustness.

6 Folk Theorem

We can use our robustness result to obtain a new folk theorem with private
monitoring and communication. As we noted, there exist several folk the-
orems with private monitoring. However, the available su¢ cient conditions
on information structure are not necessarily satis�ed in some interesting
cases.

Kandori and Matsushima [11] assume that player i0s deviation and player
j0s deviation are distinguishable by the rest of players. More precisely, they
assumed that for all a 2 A; i 6= j;

co
��
p
�
s�i;j ja0i; a�i

�
ja0i 6= ai

	�
\co

��
p
�
s�i;j ja00j ; a�j

�
ja00j 6= aj

	�
= fp (s�i;j ja)g :

In our example in Section 4, each player�s deviation has the same e¤ect on
the distribution of the public signal, hence the distribution of the private
signals. Thus deviations by two di¤erent players are not distinguishable in
this sense.
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Compte [7] assumes that players�private signals are conditionally inde-
pendent, that is, for all a 2 A; i; si;

p (s�ija; si) = p (s�ija) :

This condition is not satis�ed in our example, either. Each player�s private
signal is correlated with the public signal, hence players� private signals
are correlated. Finally, it is clear that our example is not almost public
monitoring in the sense of Mailath and Morris [13].

In order to apply our robustness result, we �rst prove a folk theorem
based on uniformly strict perfect public equilibria for repeated games with
imperfect public monitoring.19 The proof of this extension of the Fudenberg,
Levine and Maskin ( [10]) folk theorem is left to the appendix. We should
note here that we use pure minmax payo¤ instead of the mixed one.

Let E (�; �) be the set of ��uniformly strict pure perfect public equilib-
rium payo¤s given �: We borrow the following standard assumptions from
Fudenberg, Levine, and Maskin ([10]);20

Assumption A

� All pure action pro�les have pairwise full rank.21

� The dimension of V � is n:

With this assumption , the following uniform folk theorem is obtained.

Theorem 11 (Uniform Folk Theorem) Suppose that Assumption A holds.
Then, for any smooth set W in the interior of V �; there exists � 2 (0; 1) and
� > 0 such that W 2 E (�; (1� �) �) for any � 2 (�; 1) :

Proof. See the appendix.

Combining this folk theorem with uniformly strict equilibrium, our ro-
bustness result implies the following folk theorem.
19 It is relatively straightforward to prove a uniform folk theorem (with respect to pure

strategy minmax) for repeated games with perfect information following the construction
of Fundenberg and Maskin [9].
20This assumption is for convenience and can be replaced with weaker assumptions.
21A pure action pro�le a has pairwise full rank if the distributions of y given a,

(a0i; a�i) ; a
0
i 6= ai and

�
a0j ; a�j

�
; a0j 6= aj have the maximal dimension for all i; j 6= i.

That is, for all i; j 6= i

rank
��
�
�
�j
�
a0i; a�i

��
ja0i 2 Ai

	
;
�
�
�
�j
�
a0j ; a�j

��
ja0j 2 Aj

	�
= jAij+ jAj j � 1
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Theorem 12 Fix Ĝ; w 2 intV � and � > 0: Suppose that there exists G that
is 0-close to Ĝ and satis�es Assumption A. Then there exists � 2 (0; 1) such
that, for any � 2 (�; 1) ; there exists 
 for which a perfect public equilibrium
�� of Ĝ1 (�) exists and satis�es

kw � V p (��; �)k < �

if v� 5 
��:

Proof. Pick a � (1� �)-uniformly strict PPE of G1 (�) such that its
payo¤ is w: Such a PPE exists for every � above some critical value � 2 (0; 1)
by Theorem 11: For each � 2 (�; 1) ; we can �nd 
 such that if v� 5 
��, then
this PPE is robust. Moreover, the probability of using punishment schemes
becomes negligible for small 
; thus the equilibrium payo¤ will be within �

2
of w if 
 is chosen small enough. Therefore this PPE (combined with some
truth-telling strategy) generates a payo¤ within � of w for Ĝ1 (�) :

Remark. 0-closeness cannot be replaced by "-closeness because the
choice of " depends on the choice of � in our robustness result. As � ! 1;
" needs to converge to 0: If " is bounded away from 0 as � ! 1, then
continuation payo¤s with private monitoring can be very di¤erent from the
payo¤s with public monitoring because error can accumulate in the long
run. Thus, " needs to be set to 0 to obtain a uniform result with respect to
�:

Note that 
 depends on �: Since we need to approximate the original
public distribution more and more closely as � ! 1; the probability of pun-
ishment schemes (�) as well as " needs to converge to 0 as � ! 1. This
requires 
 to be also very small, indeed converging to 0 as � ! 1 and �! 0.

7 Conclusion

As soon as we depart from the assumption of public monitoring, coordi-
nation among the players becomes a nontrivial problem even when public
monitoring is only slightly perturbed since we lose a common knowledge
history on which players can coordinate. The main idea in this paper is to
allow players to communicate with each other each period to build a public
history on which they can coordinate. After the actions have been taken in
a given round and players have received their private signals, they announce
those signals. The coordinating device � maps the announcements into a
distribution on the set of public signals Y . If the public signal �(yja) is de-
terministic, there will exist a deterministic � that aggregates private signals
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in a way that approximates the public signal. In this case, � is unnecessary
as the players can as easily coordinate on the vector of announced signals s
as on �(s). When �(yja) is nondegenerate, � serves as a public randomizing
device, which could be replaced by jointly controlled lotteries.22

Once there exists at least the possibility of aggregating private private
signals to approximate the public signal, we investigate the question of ro-
bustness of perfect public equilibria in such close private monitoring set-
tings. We identify a su¢ cient condition on informational size relative to
distributional variation under which any ��uniformly strict perfect public
equilibrium is robust with respect to such perturbation. How one induces
truth-telling is the most critical issue for robustness. When each player is
informationally small relative to distributional variability, we can modify the
coordination device slightly to induce all players to reveal their true private
information, while still generating a public signal that is close to the original
public signal. In other words, the vector of private signals can be truthfully
elicited, and the players can use the vector of private signals to coordinate
similar to the way they coordinate in the perfect public equilibrium.

The robustness of perfect public equilibria holds for any discount factor,
but only for uniformlly strict perfect public equilibria. We show, however,
that the robustness for even for this restricted class of perfect public equi-
libria is enough to establish a folk theorem.

8 Appendix

8.1 Proof of Proposition 10

� Step 1: Upper Bound of Continuation Payo¤Variations with
Private Monitoring

Assume that players always send their true private signals. We �rst
prove that if p is an "�approximation of � with �ht at each history, then
any action strategy � 2 � generates almost the same continuation payo¤ for
G1 (�) and Ĝ1 (�) after the same public history for small ":

Take any � 2 � and let w�i
�
ht
�
and w�i;p

�
ht
�
be player i�s continuation

payo¤ after ht for G1 (�) and Ĝ1 (�) respectively given �;
n
�h

t
o
ht2[1t=0Ht

;

and any truth-telling strategy pro�le �s� 2 �s. LetM = supi;ht;�

���w�i �ht�� w�i;p �ht���� :
22See, e.g., Aumann, Maschler and Stearns (1968).

23



Then, ��w�i �ht�� w�i;p �ht���
= �

������
X
y2Y

w�i
��
ht; y

��
�
�
yj�

�
ht
��
�
X
y2Y

w�i;p
��
ht; y

��
p�

ht �
yj�

�
ht
��������

5 �

������
X
y2Y

w�i
��
ht; y

���
�
�
yj�

�
ht
��
� p�h

t �
yj�

�
ht
���������

+�

������
X
y2Y

�
w�i
��
ht; y

��
� w�i;p

��
ht; y

��	
p�

ht �
yj�

�
ht
��������

� �"g + �M

Taking the supremum of the left hand side, we obtain

M � �"g + �M

m

M � �"g

1� � :

This implies that continuation payo¤s on and o¤ the equilibrium path are
almost the same at each history for G1 and Ĝ1 if Ĝ1 is "-close to G1. This
implies the following: for a given � > 0 and � 2 (0; 1) ; take any ��uniformly
strict PPE �i in G1; then there is no incentive to deviate from �i in "-close
Ĝ1 if " > 0 is small enough and players announce their private signals
truthfully.
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� Step 2: Truth-Telling (on the equilibrium path)

We construct �h
t
: S ! 4Y for each ht 2 Ht; each of which is close

to � and induces the players to reveal their private signals truthfully at
each history on the equilibrium path (that is, after the equilibrium action is
taken). In the following, we construct �h

t0 : S ! 4Y for each ht to induce
truthful revelation of private information of all the players and de�ne �h

t
as

(1� �)� + ��h
t0: Note that, since G is " close to Ĝ, p is 2"-approximation

of � with (1� �)�+ ��0 for any �0 : S !4Y if � is set small enough.
First, de�ne the following functions  i : A� S ! (0; 1) using �

 i (a; s) =
X
y2Y

p� (yja; si)
kp� (�ja; si)k

� � (yjs)

Next pick a ��strictly uniform perfect public equilibrium �� for G1 (�) and
de�ne �h

t0
i : S !4Y for each ht and i as follows;

�h
t0
i (s) =  i (a

�; s) � �i
�
ht
�
+ (1�  i (a�; s))�i

�
ht
�

(1)

where both �i
�
ht
�
and �

i

�
ht
�
are distributions on Y and a� = ��t

�
ht
�
:

Let Z be the set of all such collection of distributions
�
�i
�
ht
�
; �
i

�
ht
��
on

4Y �4Y for ht 2 [1t=0Ht and i = 1; :::; n:
Consider the following correspondence from Z to itself. For each z =n�
�i
�
ht
�
; �
i

�
ht
��o

ht2[1t=0Ht;i2N
2 Z; compute the expected average con-

tinuation payo¤ V zi
�
ht
�
for each player i at every public history based onn

�h
t0
i (s)

o
ht2[1t=0Ht;i2N

de�ned in (1), assuming that every player plays ac-

cording to �� and announces her private signal truthfully. Then, for each z;

assign the set of z0 =
n�
�0i
�
ht
�
; �0
i

�
ht
��o

ht2[1t=0Ht;i2N
2 Z which satis�es

the following property:

�0i
�
ht
�
(y)

�
� 0 if V zi

�
ht; y

�
� V zi

�
ht; y0

�
for all y0 6= y

= 0 otherwise

�0
i

�
ht
�
(y)

�
� 0 if V zi

�
ht; y

�
� V zi

�
ht; y0

�
for all y0 6= y

= 0 otherwise

That is, �0i
�
ht
�
puts all mass on the y that maximizes V zi

�
ht; y

�
and �0

i

�
ht
�

has all mass on y that minimizes V zi
�
ht; y

�
.
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Since Z is a compact convex subset of a locally convex space (= <1) and
the above correspondence is nonempty, convex-valued, and closed-graph (in
product topology), we can apply Glicksberg Fixed Point Theorem (Theorem

16.51 [?]) to obtain z� =
n�
��i
�
ht
�
; ��
i

�
ht
��o

ht2[1t=0Ht;i2I
to satisfy

��i
�
ht
�
(y)

�
� 0 if V z�i

�
ht; y

�
� V z

�
i

�
ht; y0

�
for all y0 6= y

= 0 otherwise

��
i

�
ht
�
(y)

�
� 0 if V z�i

�
ht; y

�
� V z

�
i

�
ht; y0

�
for all y0 6= y

= 0 otherwise

De�ne �h
t�
i by (1) using

n�
��i
�
ht
�
; ��
i

�
ht
��o

ht2[1t=0Ht
: Let �h

t
= (1� �)�+

��h
t0 where �h

t0 = 1
n

Pn
i=1 �

ht�
i : This means that � is used to interpret a

pro�le of message with probability 1 � � and, when � is not used, each
�h

t�
i is used with equal probability. When �h

t�
i is used, ��i

�
ht
�
is used with

probability  i (a
�; s) and ��

i

�
ht
�
with probability 1�  i (a�; s) :

We show that the players do not have incentive to lie on the equilibrium

path with such
n
�h

t
o
ht2[1t=0Ht

; if the informational size is su¢ ciently small

relative to the distributional variability with respect to �: Since player i�s
expected average continuation payo¤ associated with the term �h

t�
i given s

is

 i (a
�; s)

X
y2Y

��i
�
ht
�
(y)V z�i

�
ht; y

�
+ (1�  i (a�; s))

X
y2Y

��
i

�
ht
�
(y)V z�i

�
ht; y

�
=  i (a

�; s)

�
max
y2Y

V z�i
�
ht; y

�
�min
y2Y

V z�i
�
ht; y

��
+min
y2Y

V z�i
�
ht; y

�
, player i0s expected future loss from this term by lying is obtained as follows
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4

8<: X
s�i2S�i

�
 i (a

�; s)�  i
�
a�; s0i; s�i

��
� p (s�ija�; si)

9=;
= 4

X
s�i2S�i

8><>:
P
y2Y

p�(yja�;si)
kp�(�ja�;si)k � � (yjs)

�
P
y2Y

p�(yja�;s0i)
kp�(�ja�;s0i)k

� � (yjs0i; s�i)

9>=>; p (s�ija�; si)

= 4

8<:X
y2Y

p� (yja�; si)
kp� (�ja�; si)k

� p� (yja�; si)�
X
y2Y

p� (yja�; s0i)
kp� (�ja�; s0i)k

� p�
�
yja�; si; s0i

�9=;
= 4

8><>:
P
y2Y

�
p�(yja�;si)
kp�(�ja�;si)k �

p�(yja�;s0i)
kp�(�ja�;s0i)k

�
p� (yja�; si)

+
P
y2Y

p�(yja�;s0i)
kp�(�ja�;s0i)k

�
p� (yja�; si)� p� (yja�; si; s0i)

�
9>=>;

where 4 = maxy2Y V
z�
i

�
ht; y

�
�miny2Y V z�i

�
ht; y

�
� 0:

Since p� (yja�; si)�p� (yja�; si; s0i) is bounded below by �2v� (by Lemma
7); this is at least

4

8<:X
y2Y

�
p� (yja�; si)
kp� (�ja�; si)k

� p� (yja�; s0i)
kp� (�ja�; s0i)k

�
p (yja�; si)�

2

kp� (�ja�; s0i)k
v�

9=;
= 4

�


p� (�ja�; si)


�1� p� (yja�; si) � p� (yja�; s0i)
kp� (�ja�; si)k kp� (�ja�; s0i)k

�
� 2

kp� (�ja�; s0i)k
v�
�

� 4
�

1

2
p
m
�� � 2

p
mv�

�
assuming �� > 4mv�:

Player i might gain from the other terms
�
= (1� �)�+ �

n

P
j 6=i �

ht�
j

�
by lying. We can compute a bound on the gain from the �rst term (= �).
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Let Y 0 be the subset of Y such that p� (yja�; si; s0i)� p� (yja�; si) > 0. Then

X
s�i2S�i

24X
y2Y

�
�
�
yjsi; s0�i

�
� � (yjs)

	
V z�i

�
ht; y

�35 p (s�ija�; si)
=

X
y2Y

�
p�
�
yja�; si; s0i

�
� p� (yja�; si)

�
V z�i

�
ht; y

�
�

X
y2Y 0

�
p�
�
yja�; si; s0i

�
� p� (yja�; si)

�
max
y2Y

V z�i
�
ht; y

�
+

X
y2Y=Y 0

�
p�
�
yja�; si; s0i

�
� p� (yja�; si)

�
min
y2Y

V z�i
�
ht; y

�
�

X
y2Y 0

�
p�
�
yja�; si; s0i

�
� p� (yja�; si)

�
4

� mv�4

As for the gain from �h
t�
j ; it should be at most

4
X

s�i2S�i

24X
y2Y

p� (yja�; sj)
kp� (�ja�; sj)k

�
�
�
yjs0i; s�i

�
� � (yjs)

�35 p (s�ija�; si)
� 4

X
s�i2S�i

�



 p� (�ja�; sj)
kp� (�ja�; sj)k







� �s0i; s�i�� � (s)

� p (s�ija�; si)
= 4E

�

� �a; s0i; s�i�� � (a; s)

 ja�; si�
� 4

�
1 +

p
2
�
v� (By Lemma 7):

Therefore, player i0s expected gain by lying from such terms is bounded by
4
�
(1� �)mv� +

�
1 +

p
2
�
�n�1n v�

	
. Thus all the truth-telling constraints

are satis�ed if the following condition holds:�
(1� �)m+

�
1 +

p
2
�
�
n� 1
n

�
v� � �

n

�
1

2
p
m
�� � 2

p
mv�

�
:

Note that this condition is independent of the equilibrium we pick although
the de�nition of �0 depends on the particular equilibrium. This condition is
satis�ed if 
 is chosen so that 0 < 
 < �

2(1��)m
3
2 n+2(1+

p
2)�

p
m(n�1)+4�m

:

� Step 3:

28



For any � > 0 and � 2 (0; 1) ; we can choose " and � small enough
so that any ��uniformly strict perfect public equilibrium of G1 (�)
is a perfect public equilibrium of Ĝ1 (�) given truth-telling by Step1.
Fix such " and �: Then we can choose 
 as in Step 2 to guarantee
truth-telling (on the equilibrium path). Then there is no incentive for
one shot deviation with respect to both action and announcement. Fi-
nally, as we discussed in the example, any joint deviation with respect
to action and announcement within a period is not pro�table if the in-
formational size of each player is small enough because of ��uniform
strictness. 
 can be chosen to satisfy this requirement as well. Then,
by the principle of optimality, any ��uniformly strict perfect public
equilibrium of G1 (�) is a perfect public equilibrium of Ĝ1 (�) com-
bined with some truth-telling strategy �s�: This completes the proof.�
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8.2 Proof of Theorem 11 (Uniform Folk Theorem)

We need the following de�nitions.

De�nition 13 Given �; a 2 A is ��enforceable with respect to W � <n if
there exists a function w : Y ! W such that, for all i; player i loses more
than � > 0 by playing a0i 6= ai.

De�nition 14 v is ��generated byW if there exists a 2 A which is ��enforceable
with w : Y ! W and v = (1� �) g (�) + �E [wja] : The set of values
��generated by W for a given � is denoted by B (�;W; �) :

De�nition 15 H (�; k) = fx 2 <nj� � x � kg for � 2 <n; k 2 <:

Let us �rst prove the following lemma:

Lemma 16 If C � B (�;W; �)\W for a convex setW; then C � B
�
�0;W;

�
1� �0

�
�
�

for �0 2 (�; 1) :

Proof. Suppose that v 2 C: Then, there exists a which is ��enforceable
with respect to W and generates v with w�(y): Fix �0 > �: Now de�ne
w�0 : Y !W as the following linear combination of v and w�,

w�0(y) =
�0 � �

�0 (1� �)v +
�
�
1� �0

�
�0 (1� �)w�(y) 2W:

Then, it is easily con�rmed that a is 1��
0

1�� ��enforceable (thus
�
1� �0

�
��enforceable)

with respect to W and generates v with w�0(y) for �
0:

Remark 17 1. Note that kv � w�0(y)k =
�(1��0)
�0(1��) kv � w�(y)k

2. Suppose that v is ��generated with (a;w) : It is useful to express w in
the following way:

w�(y) = w� + x�(y)

where w� = E [w�(y)ja] satis�es v = (1� �) g (a)+ �w�: By de�nition,
E [x�(y)ja] = 0: Then, w�0(y) can be expressed as

w�0(y) = w�0 +
�
�
1� �0

�
�0 (1� �) x�(y)

where w�0 2 <n satis�es v =
�
1� �0

�
g (a) + �0w�0.
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Now we return to the proof of the theorem.

Proof. Step 1: Self Generation Implies Equilibrium: For a bounded
W � <n;W � B (�;W; �))W � E (�; �) :

The proof is similar to the proof in Abreu, Pearce and Stacchetti [1] and
is omitted.

Step2: Local uniform strictness is enough.
By step 1 and by Lemma 16, we only need to show that any smooth W

in the interior of V � is included in B (�;W; �) for some (�; �) 2 (0; 1)�(0;1)
to prove the theorem. As in Fudenberg, Levine, and Maskin [10], we show
that it is enough to verify a local property because of the compactness of
W:

Suppose that for each v 2 W; there exist �v 2 (0; 1) and an open neigh-
borhood Uv of v such that

Uv \W � B (�v;W; �v) (2)

for some �v > 0: Since W is a compact set, we can take a �nite subcover
fUvig

K
i=1 of W: De�ne � = maxi=1;:::;K f�vig and � = mini=1;:::;K

�
�vi
	
:

Then, by the above lemma, Uvi \W � B
�
�;W; (1� �) �

�
for i = 1; :::;K:

Hence, [Ki=1 (Uvi \W ) =W � B
�
�;W; (1� �) �

�
:

Step3: Local ��enforceability
We focus on showing local ��enforceability ((2)) at each boundary point

of W as the same proof applies to any interior point as well.. Take any
v 2 @W . Then, there exists unique outward normal vector � (k�k 6= 0).
First we show that v is ��enforceable with respect to a half space tangent
to the hyperplane at v for some � > 0: There are two cases.

Case 1: There are at least two components of � which are nonzero.

Fix any � 2 (0; 1) : It follows from Fudenberg, Maskin and Levine [10]
that (1) v can be ��generated with respect to the tangent hyperplane at v for
some � > 0 with some (a;w�(y)), and moreover, (2) v is

�
1� �0

�
��generated

with respect to the same hyperplane with (a;w�0(y)) for any �
0 2 (�; 1) and

kv � w�0(y)k converges to 0 at the rate of
�
1� �0

�
as �0 ! 1 by Lemma 16

and the above remark.

Case 2: 9i 2 I such that �j = 0 for any j 6= i:
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Suppose that �i > 0 (�i < 0 can be treated in a similar way). Fix any
� 2 (0; 1) : Pick a 2 A such that � � g (a) > � � v and player i is playing
the best response at a. Since the individual full rank condition is satis�ed
(which is weaker than pairwise full rank), we can �nd w�;j satisfying (1)
and (2) above for any j 6= i. However, it is not straightforward to �nd such
w�;i for player i. This is because w�;i is picked from the tangent hyperplane
in the above construction, which requires xi to be constant. Then if ai is
not a strict best response in the stage game, player i does not have a strict
incentive to play a.

Nonetheless we can show that a is �� enforceable for some � > 0 with
respect to the half space H

�
�; � �

�
1
2w� +

1
2v
��
(� H (�; � � w�)), while gen-

erating v with some w�;i = w� + xi: As �j = 0 for j 6= i; we only need to
show that xi can be chosen so that �i � (w�;i + xi (y)) � �i �

�
1
2w�;i +

1
2vi
�
;

that is, xi (y) � 1
2 (vi � w�;i) (> 0) for every y 2 Y: This can be easily

done by �nding xi to satisfy E [xija] = 0 > E [xija0i; a�i] and multiply-
ing it by some su¢ ciently small positive number. Note that player i�s
incentive constraint holds strictly because player i is playing a best re-
sponse action at a: Then, following Lemma 16 and the above remark, we
can de�ne w�0(y) as before so that v is be

�
1� �0

�
��generated with re-

spect to H
�
�; �i �

�
w�0 +

�(1��0)
�0(1��) �

vi�w�;i
2

��
for some � > 0 for �0 2 (�; 1) :

Note that w�0(y) and H
�
�; �i �

�
w�0 +

�(1��0)
�0(1��) �

vi�w�;i
2

��
converge to v and

H (�; � � v) respectively at the rate of 1� �0 as �0 ! 1:

In either case, the distance between w�0(y) and v is converging to 0 at
the same speed as

�
1� �0

�
: Thus we can take a nested sequence of open

balls B�0 (v) around v for each �
0 so that its radius is proportional to 1� �0

and w�0(y) is contained in B�0 (v). Pick any point in H (�; � � v) \ B�0 (v)
but outside of W: Since W is smooth, such points converge to the tangent
hyperplane at v at the rate of as

�
1� �0

�2
: On the other hand, all w�0(y) are

separated away from the tangent hyperplane at v by the order of
�
1� �0

�
:

Since Y is �nite, this implies that there exists �00 such that w�v(y) 2 int (W )
for any �v 2

�
�00; 1

�
: Thus v can be

�
1� �0

�
��generated with respect to W

for large enough �:
Now pick any such �v and take r 2 (0; 1) so that w�v(y) + h 2 int (W )

for all khk < r
�v
: Since the incentive constraints are not a¤ected even when

a small constant vector is added to the continuation payo¤ pro�le, a is still
(1� �v) ��enforceable with respect to W with w�v(y) + h and generates
v+�vh; which implies that Br (v)\W � B (�v;W; �v) where �v = (1� �v) �:
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