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Abstract

Are variations in the success rate of searches by race informative

about racial bias if police are motivated by crime minimization rather

than success-rate maximization? We show that the basic idea of ex-

tracting information from hit rates may still be valid, provided one
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can verify some simple restrictions on the joint distribution of crim-

inality by race. We also extend these results to the case where the

police minimize the rate of unpunished crime.

1 Introduction

Tests for racial discrimination in the US courts tend to ignore the potential

role of behavioral models as a tool for identifying bias against minorities. In

the case of discretionary searches of motor vehicles, the typical procedure is

to attempt to compute search rates by race of the motorist, and then ar-

gue from search-rate disparities to racial bias. Two fundamental di¢ culties

in this approach are measuring the composition of the population at risk of

search and distinguishing the e¤ects of race from those of other variables cor-

related with race. These issues are sometimes referred to as �the denominator

problem�and the �omitted-variables problem�, respectively.

A recent paper by Knowles, Persico, and Todd (KPT, 2001) circumvents

these di¢ culties by shifting attention from the analysis of search rates to

that of the success rates of search, in the spirit of Becker (1957). Rather

than measuring the size of policing disparities, KPT propose a test that

distinguishes disparities due to racial bias from those that can be explained

by the maximization of the success rate of searches (also known as �hit rates�

or ��nd rates�) via statistical discrimination. If valid, this test is vastly more

convenient than the standard approach of comparing search rates, because

it does not require knowledge of the underlying population composition, and

it is not invalidated by the possible correlation of race with other predictors
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of criminality.

Empirically, the KPT model with unbiased policing predicts police will

search high-crime-propensity groups with higher probability, and that hit

rates will be equated across all observed attributes. Several empirical analy-

ses in addition to KPT have found hit rate di¤erentials by race that are not

di¤erent from zero at conventional levels of statistical signi�cance.1 Where

hit rates di¤er, and especially when the di¤erences are statistically signif-

icant, they are almost always lower among the groups that appear to be

searched with higher probability�that is, among African-American and His-

panic motorists. Examples from the past few years include Missouri and

Florida, where state-wide hit rates on Hispanic motorists were about half

that of white motorists; Minneapolis, where these searches were just over

one-third as successful; and Pennsylvania, where these searches were less

than two-thirds as successful. Less extreme, but still substantial, disparities

are found when comparing searches of African American motorists to those

of white motorists in these jurisdictions.2 Under the KPT model, the inter-

pretation of such hit-rate disparities is very clear: the police appear to be

biased against African-American and Hispanic motorists.

A fundamental issue in the KPT approach is the motivation of unbi-

1Some of these studies are summarized in the web page of Lamberth Consulting, under

the heading �racial pro�ling doesn�t work�(www.lamberthconsulting.com.).
2The Missouri report for 2001, available at the web page of the Attorney-General�s

o¢ ce, reveals hit rates of 22% for whites, 15% for blacks, and 11% for Hispanics. In

Florida, summarized in Anwar and Fang (2004), the corresponding hit rates are 25%,

21%, and 12%. For Minneapolis, hits rates among discretionary searches are reported to

be 13%, 11%, and 5%, respectively. For Pennsylvania, the �gures are 29%, 21%, and 17%,

as reported in Engle et al. (2004).
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ased police. Is their objective really the maximization of the success rate of

searches? It is this assumption that generates equality of hit rates in their

model, and hence the validity of the test would seem to be linked to the

plausibility of this hit-rate maximization (HRM) hypothesis. It is easy to

sympathize with those who do not readily accept this assumption, such as

Harcourt (2004) and Manski (2005), as the minimization of crime would seem

to a more desirable goal, from the point of view of social welfare, than the

maximization of arrests. It is would be reassuring if the optimal behavior

of police agents motivated by crime-rate minimization (CRM) was approxi-

mately the same as under CRM, but in fact Persico (2002) shows that search

policies that are optimal under HRM can actually lead to maximization of

crime.

One might be tempted to turn to the extensive literature on policing for

help. Unfortunately the nature of the police objective function does not seem

to play an important role in empirical studies of police behavior. A recent

report by the National Research Council (Skogan and Frydl, 2004), despite

devoting two large chapters to the determinants of police behavior, never

explicitly considers the goals of the police o¢ cers themselves. While it seems

to be generally agreed that crime minimization should be one of the main

goals of the police (see for instance, diIulio, 1993), this does not rule out the

possibility that the police actually act so as to maximize the detection and

punishment of criminals.

An emphasis on arrest rates might arise for instrumental reasons, because

arrest rates are seen to be the best available measure of the police agency�s

ability to reduce crime, or because arrest rates are the best measure of the
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crime-reduction e¤ort of the individual cop. But there also seems to be some

intrinsic value attached to arrests and convictions. For instance, Alpert and

Mclaren (1993) list crime rates as the �rst of four �enshrined� measures

of police performance; however the second measure is arrest rates. They

argue: �For most practical purposes, these are the statistics by which police

departments throughout the United States are now held accountable.�3 To

summarize, there seems to be little evidence to decide between HRM and

CRM as a model of police behavior, but a general feeling that the CRM

objective better re�ects the normative purpose of the police. In testing for

biased policing therefore, it would seem prudent to allow for the possibility

that police are in fact crime-rate minimizers.

In this paper, we derive conditions that permit an inference of racial bias

(i.e., rule out unbiased policing) from observed hit rates when the true objec-

tive of police behavior is to minimize crime rather than to maximize arrests.

We focus on the simple case with two observable groups. The members of

these groups each choose to commit crime if the group-speci�c search rate

falls short of an individual-speci�c threshold value that re�ects the individ-

ual�s net gains from crime. We ask whether there exist restrictions on the

distributions of this crime propensity that permit inference of racial bias from

hit-rate data under the CRM hypothesis. In particular, we seek to distin-

guish between two explanations of search disparities: (1) minorities are more

likely to be searched because police are biased and (2) minorities are more

3The acting director of the Bureau of Justice Statistics in 1993 cites as evidence of the

success of the �War on Drugs�campaign the fact that �drug o¤enses now account for a

larger share of convictions and imprisonments than ever before�. Lawrence A. Greenfeld,

in the foreword to Performance Measures for the Criminal Justice System.
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likely to be searched because a greater fraction of them are guilty.

We begin by deriving conditions for an inference of bias were search rates,

hit rates, and marginal deterrence e¤ects to be observed. We then present

a negative �nding on identi�cation for the realistic case when marginal de-

terrence e¤ects are not observed. In our model, it is the density of the

crime-propensity distribution that determines deterrence e¤ects, while the

cumulative distribution function determines hit rates. The main identi�ca-

tion problem under CRM arises because the optimal strategy of unbiased

police is to choose group-speci�c search rates such that the densities are

equated at each group�s search rate. In the absence of further assumptions,

equating the densities does not restrict the ranking of the CDFs evaluated

at these search rates. That is, unlike HRM, unbiased CRM policing does not

yield restrictions on hit rate disparities.

We then derive the necessary condition that must be satis�ed in our

model for an inference of bias to be possible. We show that this condition

is satis�ed under some simple restrictions on the relationship between the

two distributions: if there is a high-crime group whose distribution can be

written as a spreading out of that of the low-crime group and if the density of

the high-crime group is declining, unbiased police will not choose search rates

such that the success rate from searching the high-crime group is less than

that of searching the low-crime group. Hence a pattern of higher search rates

and lower hit rates for a given group cannot be justi�ed by simply alleging a

higher crime propensity of that group.

It may be that what the police actually care about is not crime per se,

but rather the rate at which crimes go unpunished. We therefore consider a
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model in which police attempt to minimize the rate at which people commit

crimes without being caught. We refer to this objective as unpunished crime

minimization (UCM). Manski (2005) makes a similar distinction between ex

ante and ex post search. We �nd that the same conditions that permit an

inference of bias from search rates and hit rates under CRM also permit this

inference under UCM. Theoretically, we show that inference under UCM is

valid for weaker conditions than our conditions for CRM, but in practice

these conditions are likely to be equivalent.

Because we abstract from non-racial observables, we do not address the

problem of correlation between other crime-related observables and race.

Suppose that, in the real world, non-racial variables were actually not in-

formative about crime probabilities. How useful would our results be? The

answer depends on who bears the burden of proof in a case where the police

are accused of bias. The spreading condition is equivalent in our model to

the condition that the deterrent e¤ect of search on the high-crime group is

less responsive than that of the other group. It is not plausible to assume

that one can a priori rule out local violations of this restriction over the range

of feasible search rates. However, to the extent that the plainti¤ is simply re-

quired to show that our restrictions are satis�ed at observed search rates, and

that there is no reason to believe them violated elsewhere, then our results

could be used to make the case that the police are biased. Conversely, an

e¤ective defense against such a charge would be to show that the high-crime

group is in fact more responsive to deterrence than is the low-crime group.

Section 2 presents a simple CRM model of police behavior, taking as

given the distributions of crime propensities and, hence, crime-rate response
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functions. We derive conditions under which the combination of higher search

rates and lower hit rates would lead to an inference of biased policing under

the CRMhypothesis, and we discuss practical issues for the application of this

result. In Section 3, we derive analogous results under the UCM hypothesis.

We conclude with some ideas for future research.

2 A CRM Model of Policing

In this section we develop a model of discretionary motor-vehicle searches

motivated by crime-rate minimization. We consider a simple world in which

there exist one cop and many motorists of di¤erent observable types and

unobservable crime propensities. The cop is aware only of the motorist type

and the distribution of crime propensities within each type; the motorist is

aware of the probability of being searched. We ask how observed patterns

of search rates and hit rates would depend on whether the cop is biased

against some observable group. In other words, is it possible, in our basic

model, to infer racial bias from search rate and hit rate statistics, or can the

variation in these statistics always be explained by hypothesized variation

in crime propensities across groups? We show that, under CRM, the ability

to infer bias from police search data requires additional restrictions on the

distribution of unobservable variables. We then derive a set of conditions

that permit such inference.
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2.1 The basic model

For simplicity, suppose there are two observable types of motorists.4 Let �r

denote the share of group r in the population, where r 2 fa; bg:

Motorists also di¤er according to an unobservable characteristic � which

determines whether or not they commit a crime for any given probability of

being caught by the cop. Motorist i of group r commits a crime whenever

�i > p
s
r

where psr denotes the group-r probability of being apprehended if guilty of

committing a crime.5 Note that, for any value �i < 0; individual i will

not commit crime at any search rate, whereas he will invariably commit

crime if �i > 1. Suppose the individual crime propensities �i in group r

are independent draws from a distribution with density �r and cumulative

distribution function �r: We can write the crime probability of the group

as a function fr(psr) = [1� �r (psr)] : We call this function the crime-rate
4The extension of the main results to a model with multiple types is quite straight-

forward. As should be clear from inspection of the forthcoming optimality conditions,

these results hold for pairwise comparisons (across groups) of search rates and hit rates.

However, as discussed in the Applications section, the extension to mulitple types when

the researcher only observes aggregations of these types (i.e., the researcher observes only

a subset of the attributes observed by the cop) is not as straightforward and is beyond the

scope of this analysis.
5In this model, the group-speci�c probability of being apprehended is just the group-

speci�c probability of search. This result arises because group identity r is the only

observed attribute that may determine police search decisions. The result is more general

than it may appear, given that group identity may be determined by numerous observed

attributes in a model with many groups.

9



response function of group r: We shall focus attention on the group-speci�c

density �r; which, by construction, determines the marginal deterrence e¤ect

of searches. An important assumption that we maintain throughout is that

this density is continuously di¤erentiable.

The number of crimes committed by each group is therefore determined

by the search probability and the mass of the group.

nr(p
s
r) = fr(p

s
r)�r (1)

The cop apprehends criminals by searching their motor vehicles for con-

traband. We assume that all guilty motorists are caught if searched; hence

the probability of search is identical with psr as de�ned above. We assume

that the cop can choose to search a motorist with probability zero, and can

choose any positive search rate up to a maximum search rate pr: This rules

out non-discretionary searches and allows for the possibility of non-�nancial

constraints on search, such as the availability or visibility of a given type of

motorist. We denote the set of feasible search-rate pairs by P:

We assume the cop is perfectly informed about the crime-rate response

function. However, the cop can observe neither whether the individual has

committed a crime nor the individual�s crime propensity. Hence the cop is

only aware of the characteristics of the motorist�s group. The success-rate �r

of search on a given group r therefore equals the crime rate within the group:

�r (p
s
r) = fr(p

s
r)

Search is costly; we assume that the cost of search is constant and does

not vary by group. We set the search cost equal to one. Hence the budget
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constraint, given that the cop has resources Y s; can be written as:

�ap
s
a + �bp

s
b = Y

s (2)

A general assumption that we maintain throughout is that the budget con-

straint binds: any search-rate pair (pa; pb) that results in zero crime for any

group requires resources greater than Y s:

We assume the cop has preferences over a weighted sum of the number

of crimes committed by each group. Let u (na; nb) be a utility function that

represents these preferences. We write the cop�s problem as choosing group-

speci�c search probabilities psr to minimize u subject to the budget constraint:

min
psa;p

s
b

u (na; nb) (3)

subject to (1) and (2) :

We now de�ne the search-rate pair that will be the focus of the analysis

and give conditions such that this pair represents an interior solution to the

problem (3) :

De�nition 1 The feasible set of search rates is denoted by

P = f(pa; pb) jpa 2 [0; pa] and pb 2 [0; pb] g

; where pa 2 (0; 1) and pb 2 (0; 1) represent the highest feasible search rates

of each group.

For the purposes of our analysis it is convenient to set the upper bounds

p equal to 1, but given the concerns raised in the existing literature, such as

Dharmapala and Ross (2004), regarding the possibility that search rates are
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in fact bounded far below one, we introduce this notation so that it is clear

that our results do not depend on the assumption that the upper bound is

equal to one.

De�nition 2 Let the pair p� = (p�a; p
�
b) denote the search rates that are ob-

served. We assume that p�a > p
�
b and that p

� is on the interior of the feasible

set P .

To represent the two main behavioral hypotheses that explain unequal

search rates, we now formalise them in the model. Without loss of generality,

we suppose, as in the preceding de�nition, that group a corresponds to the

group that is searched at a higher rate in the real world.

The �rst hypothesis is that the cop is biased against this group. To rep-

resent biased policing in our model, we assume that the cop�s utility function

weights each crime according to the group-membership of the person that

has committed the crime. Let the bias parameter � � 1 denote the weight

that u places on crime committed by group a; where the weight on crime

committed by group b is normalized to 1.

u (na; nb) = �na + nb (4)

An inference of bias against group a, therefore, would arise from a �nding of

� > 1:

The competing hypothesis is that group a is a �high-crime�group. This

hypothesis requires that, were both groups to be searched at an identical rate,

then the crime rate, and hence the success rate of searches, would be higher

for group a: Notice that this hypothesis does not restrict the crime rates at
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the observed search-rate pair p�. Given our model of the crime decision, the

high-crime hypothesis requires the assumption that, at any given search rate,

the crime-rate probability of group a would be higher than that of group b:

This implies the criminality distributions �r can be ranked in the sense of

�rst-order stochastic dominance. For the derivation of our main results, we

may restrict attention to these distributions on [p�b ; p
�
a] :

Assumption 1 Suppose that the distributions satisfy the following restric-

tion on the quantile-quantile plot of �a versus �b, denoted g (:)

g (t) � t; t 2 [p�b ; p�a] (5)

where

�b (t) = �a (g(t))

That is, �a �rst-order stochastically dominates �b on [p�b ; p
�
a]:

In the analysis to follow, the goal is to identify conditions that permit the

observer to distinguish between these two explanations of search disparities

on the basis of search rates and success rates of searches. We take it as

given that the high-crime group is known to be the one that is searched at

higher rate, and ask whether we can rule out unbiased policing on the basis

of observed hit rates. That is, assuming that the high-crime hypothesis is

correct, is the data generating process su¢ cient to permit identi�cation of a

lower bound on � that exceeds 1? If not, than what additional information

would su¢ ce to permit such identi�cation and, therefore, potentially lead to

a valid inference of bias based on observed variation in search rates and hit

rates?

13



2.2 Inference from Marginal Deterrence E¤ects

Suppose we observe that the cop is searching both groups with interior prob-

abilities. Given this observation, how can we infer anything about racial

bias, according to our model? The discussion proceeds by �rst establishing

necessary conditions such that a pair of interior probabilities p� may indeed

be an optimum, and showing that any deviation from equality of marginal

deterrence e¤ects at p� must be due to bias. This requires only local regular-

ity assumptions. Then we explore the conditions needed to permit inference

about bias from observable statistics, such as search rates and success rates

of search.

Given the assumption that p� is interior, we mainly need to ensure that

the crime-rate response functions are continuously di¤erentiable at p�:

Assumption 2 For r 2 fa; bg ; �r (p�r) is continuous and strictly positive.

Proposition 1 Suppose that Assumption 2 is satis�ed. Then the interior

search-rate pair (p�a; p
�
b) is a local optimum only if it satis�es the �rst-order

condition of (3):
f 0a (p

�
a)

f 0b (p
�
b)
=
1

�
(6)

Notice that we have not established whether p� minimizes the weighted

crime rate, because we have not ruled out other local optima. Our immediate

concern is rather, given that we observe p�, we could infer racial bias against

group a if the marginal deterrence e¤ects f 0r (p
�
r) were observed to satisfy the

following inequality:
f 0a (p

�
a)

f 0b (p
�
b)
< 1 (7)
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Corollary 2 Suppose that Assumption 2 is satis�ed. Then, at the interior

search-rate pair (p�a; p
�
b) ; inequality (7) cannot arise from unbiased police who

minimize crime, as de�ned by (3) :

Even if there were other local optima that dominated p� for unbiased

cops, condition (7) would indicate, under our model, bias against group a.

This result is clear from Proposition 1, where unbiased policing has � = 1

and, therefore, f 0a (p
�
a) = f 0b (p

�
b) at any interior solution. Hence, inference

of bias from marginal deterrence e¤ects requires only the assumption that

the densities are smooth and positive in some neighborhood of p�: However

we could not infer non-bias against a from violation of (7) ; because the

possibility of other optima preferred by unbiased police cannot be ruled out.

These results form the foundation for our assessment of conditions under

which we can infer bias from police search data.

2.3 Inference from Hit Rates

The results in the previous section cannot be directly applied to the real-life

problem of testing for bias, because it is extremely unlikely that it will be

possible to observe the marginal deterrence e¤ects. Suppose instead that we

observe only the search rates and the success rates of those searches, for each

observable group of motorist. What additional conditions are required to

make inferences about bias from those statistics, under the above assump-

tions?

It is clear that inference from observable statistics is only possible under

CRM to the extent that it is possible to infer something about the densities

of � from these statistics. Without further restrictions on the distributions
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however, the hit rates only tell us the area under �r to the right of the

observed search probability p�r, not the height of �r: This negative �nding

may be stated as follows:

Proposition 3 Assumptions 1 and 2 are not su¢ cient to allow inference of

racial bias from observation of search rates (p�a; p
�
b) and hit rates (�a (p

�
a) ; �b (p

�
b)),

when police are known to minimize crime, as de�ned by (3) :

2.4 Restrictions on Distributions

We have established conditions on marginal deterrence e¤ects that an interior

solution must satisfy if the cop is unbiased. The purpose of this section

is to establish weak mathematical conditions that make inference of bias

possible from observables. We assume that the data reveal which group is

experiencing the higher search rate, and which is experiencing the higher

hit rate. We assume that, as is likely in practice, the analyst is aware of

neither the functional forms of the crime-propensity distributions nor the

absolute level of the search rates. While it may be reasonable to assume that

the hit rates are precisely measured, it should be clear that this additional

information is of little use in the context of the CRM model, given the above

limitations on the analyst�s knowledge.

The observation that group a is being searched at a higher rate than

group b and yet is yielding a lower success rate of searches is represented in

our model by p�a > p
�
b and �a (p

�
a) < �b (p

�
b) : As implied by Proposition 3, an

inference of bias from such an observation will require further assumptions.

We show here that joint restrictions on the quantile-quantile plot g and the

densities �r will be necessary for such inference.
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Proposition 4 It is possible to infer bias against group a from knowledge

that p�a > p
�
b and �a (p

�
a) < �b (p

�
b) ; given Assumptions 1 and 2, under crime

minimization (3) ; if and only if the following proposition is true:6

p�a > g(p
�
b)) g0 (p�b) >

�a (p
�
a)

�a (g(p
�
b))

Note that if p�a > g(p
�
b) implies �a (p

�
a) < �a (g(p

�
b)) then this proposition

implies that inference is only possible if g0 is bounded below by 1. This is

because we cannot rule out p�a and g(p�b) being arbitrarily close, and hence

the ratio of the densities cannot, a priori, be restricted to be less than one.

In the corollary, we formalize this as a pair of restrictions that jointly su¢ ce

for inference of bias when the high-crime group is searched at a higher rate

and these searches are less successful, without requiring knowledge of the

speci�c functions forms of �r and g:

Corollary 5 Suppose that Assumptions 1 and 2 are satis�ed. Then, at inte-

rior search rates p�; knowledge of g0 (p�b) � 1 and �a (p�a) < �a (g(p�b)) ensures

that higher search rates p�a > p
�
b and lower hit rates �a (p

�
a) < �b (p

�
b) cannot

arise from unbiased police who minimize crime under CRM:

The proposition and its corollary require local restrictions on g and �a.

However, the di¢ culty of observing actual search rates leads us to believe

that any attempt to verify these restrictions would require that they hold

over a range of feasible search rates. Moreover, when such a requirement is

6As noted in the proof contained in the Appendix, the combination of stochastic dom-

inance (Assumption 1) and lower hit rates implies higher search rates of the high-crime

group p�a > g (p
�
b) � p�b . In contrast, stochastic dominance and higher search rates imply

no restrictions on relative hit rates.
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made, the substance of the restrictions becomes clearer. That is, inference

of bias from unequal hit rates is valid when the high-crime distribution is

known to (i) be more spread out to the right than the distribution of the

low-crime group and (ii) exhibit a declining density over [g (p�b) ; p
�
a] :

7

2.4.1 Examples of Restrictions on Distributions

Our analysis proceeds by brie�y illustrating what these restrictions mean

for the shapes of the crime propensity distributions and for the relationship

between these distributions. We focus on two cases. First, we consider a shift

and spread, which means that g0 (t) � 1 for all t 2 [0; 1] : As the above analysis

indicates, knowledge of g0 (p�b) � 1may enable inference of bias from observed

hit rates. As search rates are di¢ cult to measure, empirical veri�cation of

this condition may require that the inequality hold over the range of plausible

search rates, so we use the entire unit interval for illustration. Second, to

exemplify a relationship among distributions that would not enable such an

inference, we consider what we call a shift and tightening, in which case

0 < g0 (t) < 1 for all t 2 [0; 1]. One may interpret the shift-and-spread

restriction as a case in which members of low-crime group are more similar

in terms of crime propensity than are members of high-crime group. The

converse is true under the shift-and-tightening restriction. In both cases

we maintain the assumptions that the group-a distribution stochastically

dominates the group-b distribution and the group-a density is declining on

[0; 1].

In both cases, we restrict attention to distributions that are necessarily

7Note that stochastic dominance and lower hit rates imply g (p�b) < p
�
a:
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declining over [p�b ; p
�
a], as occurs, for example, whenever �a is unimodal with

mode less than p�b . Should this density be allowed to increase above p�b

or, in particular, above g (p�b), then inference is not possible without more

information on the distributions and, perhaps, search rates. As should be

clear from the derivations above, an interior solution for unbiased policing

satis�es

g0 (p�b) =
�a (p

�
a)

�a (g(p
�
b))

If �a has a mode or modes above g (p
�
b), then, without additional information,

the fraction on the right cannot be bounded below unity based on observed

search rates and hit rates.

Restriction 1: Shift and Spread Suppose that

g (t) � t and g0 (t) � 1 for all t 2 [0; 1] (8)

Here, the group-a distribution is both shifted up the real line and more

widely spread. Thus, the group-a crime-rate function fa (psa) is less respon-

sive to changes in the search rate than is the group-b crime-rate function.

Graphically, the downward sloping portion of the group-a density may lie

everywhere above the group-b density (as in Figure 1a) or may perhaps start

below the group-b density and cross it on [0; 1] (Figure 1b). This relation-

ship among crime-propensity distributions necessarily satis�es g0 (p�b) � 1

and yields the following result:

Proposition 6 Suppose that group a has a distribution of crime propensities

� that is a shift and spread of that of group b; such that (8) holds. Suppose

further that Assumption 2 is satis�ed and �a is strictly decreasing on [0; 1].
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Then, unbiased police who minimize crime, as de�ned by (3) ; choose p�a �

g (p�b) : Therefore, the hit rate among searches of the high-crime group is

weakly greater than the hit rate for the low-crime group, with strict inequality

unless g0 (p�b) = 1. A lower hit rate only arises if police are biased against

group a.

Restriction 2: Shift and Tightening Now consider the case where

g (t) � t and g0 (t) < 1 for all t 2 [0; 1] (9)

In this case, the group-a crime propensity distribution is tighter over [0; 1]

and the crime-rate function is therefore more responsive to changes in the

search rate than is the group-b crime rate. In Figure 2, note that the group-a

density lies above the group-b density but declines more quickly on [0; 1]. This

relationship among crime-propensity distributions obviously violates g0 (t) �

1 for any search rate p�b . With these conditions, we instead have the following

result on hit rates:

Proposition 7 Suppose that the distribution of the high-crime group is a

shift and tightening of that of the low-crime group, such that (9) holds. Sup-

pose further that Assumption 2 is satis�ed and �a is strictly decreasing on

[0; 1]. Then, unbiased police who minimize crime, as de�ned by (3) ; choose

p�a > g (p
�
b) > p

�
b : Therefore, the high-crime group is searched at a higher rate,

and the hit rate for this group is lower than for the low-crime group.

Under the conditions required for Proposition 6, it is possible to infer

that police are biased against group a: If these conditions are violated, as

in Restriction 2, then we cannot rule out unbiased crime minimization as an
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explanation of the higher search rates of group a: However, under Restriction

2, inspection of Proposition 7 reveals that observing higher �nd rates for the

high-crime group would indicate a bias against group b: By restricting � � 1

in our model, we have not allowed for this possibility, so that we may focus

attention on what appears to be the prevalent concern in analyses of police

search data.

2.5 Applications

The �ndings thus far draw attention to the di¢ culty of drawing an infer-

ence of biased policing based on the observation that search rates are higher

and hit rates are lower among racial and ethnic minority drivers than among

white drivers. We have established conditions under which such an inference

may be made even if the minority group is said to constitute a high-crime-

propensity group. Empirical veri�cation of these conditions, however, poses

a serious challenge. In contrast, application of the KPT hit-rate test ap-

pears straightforward, should one accept the HRM hypothesis. It is worth

noting that the relationship between hit-rate outcomes and bias under HRM

and is observationally equivalent to that under CRM if the crime-propensity

distributions are identical, but for a shift in location�that is, g0 (t) = 1 for

all t 2 [0; 1].8 Of course, this assumption is very strong and unlikely to be

generally acceptable.

It may be more acceptable to assume that the distribution of the high-

crime group is a shift and spread, in the sense de�ned above. An interpre-

8Proof of this result follows the same line of reasoning as that applied in the proof of

Proposition 6.
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tation of the condition g0 (:) � 1 is that members of the high-crime group

are less similar to each other in terms of the net returns to crime than is

the case for members of the low-crime group. This is a plausible condition

that could in principle be empirically veri�ed.9 Inference in this case re-

quires very general assumptions about the functional form of the high-crime

group distribution: positive but decreasing density. However, the di¢ culty

of precisely measuring search rates�e.g., the denominator problem�suggests

to us that the restrictions on g0 (:) and �a need be veri�ed to hold for all

plausible search rates. Further, to be literally implemented, the test requires

measuring not the distributions of criminal propensities per se, but rather

the perceptions of the cop of these distributions over plausible search rates.

Another important di¤erence in terms of observable results between the

CRM model and the KPT test is that, even under conditions that would

permit testing conditional on observables, the CRM model does not justify

integration over variables that are observed by the cops but not by the ana-

lyst. In contrast, the KPT equilibrium with unbiased policing results in all

motorists having the same guilt rate so that aggregation is possible. Under

the CRM equilibrium, such aggregation would require additional restrictions

on the distribution of these unobserved (by the analyst) attributes and/or

within-group variation in crime-propensity distributions conditional on these

attributes. Thus, the omitted variable problem faced by researchers who

assess search rate disparities arises here as well.

9The empirical analysis in Persico (2002) may be interpreted as such, taking the re-

ported income distribution as a proxy for the distribution of propensity to not commit

crime. In Persico�s model, individuals di¤er only in legitimate earnings opportunities, so

this interpretation would be appropriate. His results suggest, in fact, that g0 (t) < 1:
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Persico (2002) analyzes fairness and e¤ectiveness of policing, maintain-

ing as we do the information structure of KPT and the focus on interior

solutions. Persico posits variation in legal earnings opportunities available

to members of each group as the sole source of unobserved heterogeneity

in his model, and hence the sole source of variation in propensity to (not)

commit crime. He then asks whether a trade-o¤ exists between fairness and

e¢ ciency, which he implements as a question of whether a marginal decrease

in search rate disparities from the no-bias KPT equilibrium would increase

aggregate crime. He derives a key restriction on the quantile-quantile plot

between the group-speci�c distributions of earnings, which is analogous to

our shift-and-tightening restriction on crime propensity distributions.10 His

empirical analysis of reported earnings suggests that this restriction holds.

So far we have only considered one alternative to HRM, the CRM hy-

pothesis. While we �nd this a plausible and bene�cial motivation for the

cop, one might be concerned more about minimizing the rate of crime that

goes unpunished, rather than just the crime rate. Under CRM, catching

criminals is only instrumental in reducing the crime rate, not desirable in

itself. In the next section, we extend the model to allow for the apprehension

of criminals. This is a natural extension, because there is a sense in which it

combines both the HRM and the CRM models of police behavior.

10This result may be extended to cover large changes in search rates, if the densities are

both known to be declining over a large range of search rates. See Appendix.
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3 The UCM Model of Policing

What if cops seek not to just either deter crime or to apprehend criminals, as

in CRM or HRM, respectively, but instead seek to minimize the rate at which

people commit crimes without being caught? This type of motivation could

arise because catching criminal signals higher diligence or competence of the

cop making the arrest, or because catching criminals has some intrinsic value

to the community. We now extend the model by modifying the cop�s objective

function to combine both the deterrence and apprehension objectives. We

refer to this model as unpunished crime minimization (UCM).

We write the cop�s problem as choosing group-speci�c search probabilities

psr to minimize the weighted sum of unpunished crimes:

min
psa;p

s
b

� [na(p
s
a) � (1� psa)] + nb(psb) � (1� psb) (10)

This simple modi�cation of the CRM objective function (4) arises from the

independence of guilt and search probabilities, conditional on group.11

Suppose again that we could observe marginal deterrence e¤ects, in ad-

dition to search rates and hit rates, and wish to make inferences on racial

bias.

Proposition 8 Suppose that Assumption 2 is satis�ed. Then the interior

search-rate pair (p�a; p
�
b) is a local optimum only if it satis�es the �rst-order

11As in out analysis of CRM, group summarizes all information available to the cops

about individual crime propensity. Therefore, conditional on group r; the rate of search

among the guilty is just the marginal search rate psr; so the fraction of group-r criminals

who are not apprehended is just (1� psr) :
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condition of (10):
(1� p�a) f 0a (p�a)� fa (p�a)
(1� p�b) f 0b (p�b)� fb (p�b)

=
1

�
(11)

or, equivalently,
(1� p�a)�a (p�a) + �a (p�a)
(1� p�b)�b (p�b) + �b (p�b)

=
1

�

Notice that the �rst component of the numerator and denominator of (11)

includes the main element of the CRM optimality condition�the marginal

deterrent e¤ect�and the second component includes the main element of the

HRM optimality condition�the hit rate. We may see this optimality condition

as a combination of the optimality conditions under CRM and HRM.

What can we infer from search rates and hit rates under UCM? Recogniz-

ing again that observation of marginal deterrent e¤ects is highly implausible,

we seek to determine conditions under which we could infer bias against

group a based on observation that this group is searched at a higher rate and

the success rate of these searches is lower.

To do so, we consider the optimality condition for the unbiased cop

(� = 1) who minimizes unpunished crime, as in (10). We may rewrite (11) to

identify the following condition for an interior solution (p�a; p
�
b) for unbiased

policing:

�a (p
�
a)� �b (p�b) = (1� p�b)�b (p�b)� (1� p�a)�a (p�a) (12)

Inspection of (12) yields the following result:

Proposition 9 Suppose that Assumptions 1 and 2 are satis�ed. Then higher

search rates p�a > p
�
b and weakly lower hit rates �a (p

�
a) � �b (p�b) cannot arise

from unbiased police who minimize unpunished crime, as de�ned by (10) ;

when g0 (p�b) � 1 and �a (p�a) < �a (g (p�b)) :
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Thus, once again, higher search rates and lower hit rates among the high-

crime group cannot arise in the absence of bias when the high-crime group

distribution is a spread of the low-crime group distribution and the density

is declining. In fact, as can be derived from the proof in the appendix, the

spread restriction may be weakened somewhat. In particular, the main result

of Proposition 9 holds for any g0 (p�b) >
�
1�p�a
1�p�b

�
: This weaker constraint is not

particularly applicable, as search rates are notoriously di¢ cult to measure.

It seems likely that police are directly concerned with both crime de-

terrence and apprehension of criminals (e.g., for the purposes of prevention,

incapacitation, and/or retribution), so it is reassuring that key �ndings under

CRM apply under UCM. It should be noted that previous �ndings on opti-

mal policing in the absence of bias must be reconsidered, if the UCM model

is more appropriate. As noted above, Persico (2002) develops conditions�

closely related to the shift-and-tightening condition in our framework�under

which a marginal increase in fairness will increase the aggregate crime rate,

yielding a trade-o¤ between fairness and e¢ ciency. Should e¢ ciency instead

be de�ned with respect to the rate of unpunished crimes rather than all

crimes, these conditions would likely need be to revised.12

12In out results, the key restriction on the quantile-quantile plot for unbiased policing

to yield �a (p�a) < �b (p
�
b) changes from g0 (p�b) < 1 (under CRM) to g

0 (p�b) �
�
1�p�a
1�p�b

�
< 1

(under UCM). Therefore, it seems that Persico�s conditions for the existence of a fairness-

e¢ ciency tradeo¤ would become more stringent as well.
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4 Conclusions

This paper explored the potential to distinguish, on the basis of search data,

between two common explanations of the apparently high search rates of

African-American and Hispanic minorities by police. These competing expla-

nations are that the police are biased against minorities, and that minorities

contain a higher share of individuals inclined to commit crime. Accordingly,

we considered a basic model where there are two groups of motorists, one of

which was assumed to have a higher average value of an idiosyncratic propen-

sity to commit crime. The goal of our analysis was to establish conditions on

the distribution of this random crime �propensity�across groups such that the

hit-rate test developed by KPT in the context of the HRM model of police

behavior would also be valid if police minimize crime (the CRM model).

We found that the hit-rate test applies if the distributions are invariant

in shape across groups. However this condition is too restrictive to be very

useful. When distributions are allowed to di¤er more generally, we found a

precise mathematical condition that must be satis�ed to permit inference of

bias against a group that has a lower success rate of search. We then showed

that this condition is satis�ed when the high-crime group has a more spread-

out distribution, so that it is less responsive at the margin to the deterrent

e¤ects of search.

We also extended the model to allow for the possibility that what the

police care about is the number of crimes that go unpunished. We called this

the UCM model. We found that the same conditions that permit inference

from hit rates in the CRM model are also su¢ cient in the UCM model.

Thus, the hit-rate methodology appears somewhat robust to speci�cation of
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the police objective function, provided our restrictions on distributions are

satis�ed.

Our results do not however extend a carte blanche to the hit-rate method-

ology, even when these restrictions are satis�ed. Our model, unlike that of

KPT, does not imply that guilt-rates will be equalized across observable

groups. In real life, groups that are identical in the data will di¤er according

to other attributes observable to the police that can help predict crime. If

these attributes are not recorded in the data, then further work is needed to

characterize the conditions that will permit valid inferences of bias in such

situations.

5 Appendix

5.1 Proofs

Proof. Proposition 3. For an arbitrary interior search-rate pair p�, we

know the hit rates are 1� �a (p�a) and 1� �b (p�b) : We also know �a (p�a) >

0; �b (p
�
b) > 0: The second-order condition requires that no more than one

density be increasing, but no informative restrictions are placed on �a (p
�
a) ;

�b (p
�
b) : Thus, it may be the case that �a (p

�
a) = �b (p

�
b) ; which satis�es

the �rst-order condition for unbiased policing. For example, Figures 1 and

2 depict distributions that can capture all 3 possible combinations of hit

rate and search rate rankings based on unbiased policing when group-a is

the high-crime group. Only 3 possible combinations exist, because �rst-

order stochastic dominance rules out any possibility that �a (p�a) < �b (p
�
b)

when p�a < p�b . De�ning p
�
a > p�b ; as we do in the text, rules out one more
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combination, leaving just the two possibilities on which we focus in Figure 1

(�a (p�a) > �b (p
�
b)) and Figure 2 (�a (p

�
a) < �b (p

�
b)).

Proof. Proposition 4. By Assumption 1; we may write �b (t) = �a (g(t)),

where g (t) � t for all t 2 [p�b ; p�a]. Thus, �a (p�a) < �b (p�b) implies �a (p�a) >

�a (g(p
�
b)) : By monotonicity of the CDF, this inequality requires

p�a > g(p
�
b)

and stochastic dominance requires

g(p�b) � p�b

yielding the ordering

p�a > g(p
�
b) � p�b

Next, by taking derivatives of �b (t) and �a (g(t)) with respect to t; we know:

�b (t) = �a (g(t))� g0 (t)

In Corollary 2, under Assumption 2; we have established condition (7) for an

inference of racial bias against group a: Condition (7) may be rewritten here

as
�a (p

�
a)

�b (p
�
b)
< 1

or, by plugging in for �b (p
�
b) ;

�a (p
�
a)

�a (g (p
�
b))� g0 (p�b)

< 1

Thus, to infer biased policing from p�a > p
�
b and �a (p

�
a) > �b (p

�
b) ; we require

that p�a > g (p
�
b) (� pb) implies

�a (p
�
a) < �a (g(p

�
b))� g0 (p�b)
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If this implication does not arise, then condition (7) need not hold.

Proof. Proposition 6. An interior solution with no bias (� = 1) is

characterized by

�a (p
�
a) = �b (p

�
b)

= �a (g (p
�
b)) g

0 (p�b)

With g0 (t) � 1 for all t 2 [0; 1] ; we know

�a (p
�
a) � �a (g (p�b))

with strict inequality unless g0 (p�b) = 1: Given a declining density �a, we can

deduce that p�a � g (p�b) : Thus, we know

�a (p
�
a) � �a (g (p�b)) = �b (p�b)

and

�a (p
�
a) � �b (p�b)

with strict inequality unless g0 (p�b) = 1: If instead the cop is biased (� > 1);

then

�a (p
�
a) < �a (g (p

�
b)) g

0 (p�b)

and, perhaps

�a (p
�
a) < �b (p

�
b)

when g0 (t) � 1 for all t 2 [0; 1]

Proof. Proposition 7. An interior solution with no bias (� = 1) is

characterized by

�a (p
�
a) = �a (g (p

�
b)) g

0 (p�b)
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With g0 (t) < 1; for all t 2 [0; 1] we know

�a (p
�
a) < �a (g (p

�
b))

We can deduce that

p�a > g (p
�
b) > p

�
b

That is, the group-a search rate exceeds the group-b search rate. Further,

�a (p
�
a) > �a (g (p

�
b)) = �b (p

�
b)

Thus,

�a (p
�
a) < �b (p

�
b)

Proof. Proposition 9. Suppose hit rates are weakly lower in group a:

�a (p
�
a) � �b (p�b)

Therefore, by (12), an interior solution without bias requires

(1� p�a)�a(p�a) � (1� p�b)�b(p�b)

Plug in �a (g (p
�
b)) g

0 (p�b) for �b(p
�
b) to get

�a(p
�
a) �

(1� p�b)
(1� p�a)

�a (g (p
�
b)) g

0 (p�b)

Note that, with p�a > p
�
b ; this weak inequality requires

�a(p
�
a) > �a (g (p

�
b)) g

0 (p�b)

We impose the restriction that g0 (p�b) � 1, so we now require

�a(p
�
a) > �a (g (p

�
b))

But this condition contradicts the stated restriction on the density.
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5.2 Do fairness restrictions increase crime?

In order to relate our results to existing literature, it may be helpful to

consider a graphical representation in terms of police indi¤erence curves and

the feasible set of crime rates. In particular, we introduce what we call

the crime possibilities frontier (CPF) and we use this construct to extend

previous results on marginal improvements in fairness of search rates. With

restrictions on the CPF that arise from assumptions made in the preceding

analysis, we are able to easily assess the impact of large changes in relative

search rates on the aggregate crime rate.

We know that the no-bias KPT equilibrium has equal hit rates. To gen-

erate hit-rate equalization, the high-crime group is searched at a higher rate

than the low-crime group. We have found in our analysis that a crime-

minimizing interior solution has a high-crime group hit rate greater than

(less than) the low-crime group hit rate when the criminality distribution

is more (less) di¤use, as summarized by the sign of (g0 (t)� 1) : We now

consider how the sign of (g0 (t)� 1) determines the shape of the crime pos-

sibilities frontier and the location of the crime-minimizing outcome relative

to the KPT equilibrium outcome. We then use this framework to answer

the question asked by Persico (2002): Will an increase in fairness (i.e., more

equal search rates) from the no-bias KPT equilibrium increase or decrease

aggregate crime?

First, note that the budget constraint and the crime-rate response func-

tions de�ne the feasible set of crime rates by group. The boundary of this

set, which we call the CPF, has a slope given by � �b
�a

f 0a
f 0b
or � �b

�a

�a
�b
. The po-

lice preferences, as de�ned by (3), imply linear indi¤erence curves with slope
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� �b

�a
1
�
, with utility increasing towards the origin. For ease of exposition,

suppose that �a = �b: Thus, an interior solution to the crime minimization

problem occurs where the slope of the CPF is

�1
�

Note how, all else equal, variation in the bias parameter � yields rotation

of the police indi¤erence curves and movement of the optimum along the

frontier. For unbiased cops, the indi¤erence curves have slope �1 and, im-

portantly, every point along the curve yields an identical aggregate crime

rate. The closer the indi¤erence curve is to the origin, the lower is the ag-

gregate crime rate. Examples are presented in Figures 3a, 3b, and 3c.

In the absence of bias, the KPT equilibrium is located where the 45-degree

line from the origin crosses the frontier. Figure 3c displays a special case in

which the KPT equilibrium is the crime-minimizing outcome for unbiased

cops. This case arises under a shifted distributions restriction, where g0 (:) =

1.

Suppose we assume that both densities are strictly decreasing for all fea-

sible search rates. Then, we know that the CPF is strictly convex to the

origin.13 Strict convexity of the CPF allows us to easily assess whether more

equal search rates increase or decrease aggregate crime relative to the no-bias

KPT equilibrium.

Proposition 10 Suppose the crime possibilities frontier is strictly convex to

the origin. (a) Suppose further that the high-crime group crime-propensity

13To prove convexity, note that the slope of the CPF at any point is � �b
�a

�a
�b
= ��a

�b
: As

fb increases (�b decreases) along the CPF, fa decreases (�a increases). We know then,

given strictly declining densities; that �b increases and �a decreases.
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distribution is shifted and spread relative to the low-crime group distribution.

Then any increase in fairness from the KPT no-bias equilibrium search rates

will decrease aggregate crime, up until the search rates at which aggregate

crime is minimized. (b) Suppose instead that the high-crime group crime-

propensity distribution is shifted and (weakly) tightened relative to the low-

crime group distribution. Then any increase in fairness from the KPT no-

bias equilibrium search rates will increase aggregate crime.

Suppose g0 (t) > 1�Restriction 1, depicted in Figures 1a and 1b. Here,

the no-bias (� = 1) crime-rate minimizing outcome is northwest of the no-bias

KPT equilibrium on the CPF. An increase in fairness that decreases group-

a search rates will represent a northwest move along the frontier from the

KPT equilibrium. This move brings us closer to the crime-rate minimizing

outcome. Given the convexity of the frontier, such a move must yield a point

on a lower indi¤erence curve with slope �1. Therefore, the aggregate crime

rate decreases until one moves past the crime-rate minimizing outcome.

Suppose instead that 0 < g0(t) < 1�Restriction 2 depicted in Figure 2:

Here, the no-bias crime-minimizing outcome is southeast of the no-bias KPT

equilibrium on the frontier. Any increase in fairness will again represent a

northwest move along the frontier, which is now a move away from the crime-

minimizing outcome. Given the convexity of the frontier, such a move must

yield a point on a higher indi¤erence curve with slope �1. Therefore, the

aggregate crime rate increases.

Hence any policy that causes the cop to equalize search rates across race

will increase equilibrium crime if g0 < 1 and decrease crime otherwise. This

�nding is an extension of Proposition 2 in Persico (2002), which states that,
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when Fb is a stretch of Fa, a marginal change from the no-bias KPT equi-

librium toward fairness increases crime�i.e., a trade-o¤ between fairness and

e¢ ciency exists. Under our Restriction 2, in addition to conditions guaran-

teeing a strictly convex CPF, this result holds beyond marginal changes.
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Figure 1b: Shift and Spread 
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Figure 2: Shift and Tightening
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Crime minimizing outcome: f'a(p*a)=f'b(p*b)
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Figure 3b: Crime Possibilities Frontier
 equal-sized groups (µa=µb), with

 shift and tightening 
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Figure 3c: Crime Possibilities Frontier
 equal-sized groups (µa=µb), with

 shifted distributions
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