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Abstract

Some private-monitoring games, that is, games with no public histories, can have his-
tories that arealmostpublic. These games are the natural result of perturbing public-
monitoring games towards private monitoring. We explore the extent to which it is possible
to coordinate continuation play in such games. It is always possible to coordinate continu-
ation play by requiring behavior to havebounded recall(i.e., there is a boundL such that in
any period, the lastL signals are sufficient to determine behavior). We show that, in games
with general almost-public private monitoring, this is essentially the only behavior that can
coordinate continuation play.
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Coordination Failure in Repeated Games with Almost-Public
Monitoring

by George J. Mailath and Stephen Morris

1. Introduction

Intertemporal incentives often allow players to achieve payoffs that are inconsistent with myopic
incentives. For games with public histories, the construction of sequentially rational equilibria
with nontrivial intertemporal incentives is straightforward. Since continuation play in a pub-
lic strategy profile is a function of public histories only, the requirement that continuation play
induced by any public history constitute a Nash equilibrium of the original game is both the nat-
ural notion of sequential rationality and relatively easy to check (Abreu, Pearce, and Stacchetti
(1990)). Theseperfect public equilibria(or PPE) use public histories to coordinate continuation
play.

While games with private monitoring (where actions and signals are private) have no public
histories to coordinate continuation play, some do have histories that arealmostpublic. We
explore the extent to which it is possible to coordinate continuation play for such games. It is
always possible to coordinate continuation play by requiring behavior to havebounded recall
(i.e., there is a boundL such that in any period, the lastL signals are sufficient to determine
behavior). We show that, in games with general almost-public private monitoring, this is essen-
tially the only behavior that can coordinate continuation play. To make this precise, we must
describe what it means for a game to have “general but almost-public private monitoring” and
“essentially.”

Since the coordination-of-continuation-play interpretation depends on the structure of the
strategy profile, we focus on equilibrium strategy profiles, rather than on the equilibrium payoff
set, of private-monitoring games. Very little is known about the general structure of the equilib-
rium payoff set for general private-monitoring games. We return to this issue at the end of the
Introduction.

Fix a game with full support public monitoring (so that every signal arises with strictly
positive probability under every action profile). In the minimal perturbation of the public-
monitoring game towards private monitoring, each player observes aprivatesignal drawn from
the space of public signals, and the other specifications of the game are unchanged. In this
private-monitoring game, at the end of each period, there is a profile of private signals, and we
say the game hasminimally-private almost-public monitoringif the probability of any profile in
which all players observe the same value of the signal is close to the probability of that signal
in the public-monitoring game (there is also positive probability that different players observe
different values of the public signal).
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Any strategy profile of a public-monitoring game naturally induces behavior in minimally-
private almost-public-monitoring games.1 Mailath and Morris (2002) introduced a useful rep-
resentation device for these profiles. Recall that all PPE of a public-monitoring game can be
represented in a recursive way by specifying a state space, a transition function mapping public
signals and states into new states, and decision rules for the players, specifying behavior in each
state (Abreu, Pearce, and Stacchetti (1990)). We use the same state space, transition function
and decision rules to summarize behavior in the private-monitoring game. Each player will now
have aprivate state, and the transition function and decision rules define a Markov process on
vectors of private states.

This representation is sufficient to describe behavior under the given strategies, but (with
private monitoring) isnot sufficient to verify that the strategies are optimal. It is also necessary
to know how each player’s beliefs over the private states of other players evolve. This is at
the heart of the question of whether histories can coordinate continuation play, since, given a
strategy profile, a player’s private state determines that player’s continuation play. A sufficient
condition for a strict equilibrium to remain an equilibrium with private monitoring is that after
every history each player assigns probability uniformly close to one to all other players being
in thesameprivate state (Mailath and Morris (2002, Theorem 4.1)). PPE with bounded recall
satisfy this sufficient condition, since for sufficiently close-by games with minimally-private
almost-public monitoring, the probability that all players observed the same lastL signals can
be made arbitrarily close to one. However, under other strategy profiles, the condition may fail.
The grim trigger PPE in some parameterizations of the repeated prisoners’ dilemma, for exam-
ple, does not induce an equilibrium inanyclose-by minimally-private almost-public-monitoring
game (Example2 in Section3.1).

The restriction to minimally-private almost-public monitoring is substantive, since all play-
ers’ private signals are drawn from a common signal space. In this paper, we allow for the
most general private monitoring consistent with the game being “close-to” a public-monitoring
game. We assume there is a signalling function for each player that assigns to each private
signal either some value of the public signal or a dummy signal (with the interpretation that that
private signal cannot be related to any public signal). Using these signalling functions (one for
each player), there is a natural sense in which the private monitoring distribution can be said
to be close to the public monitoring distribution, even when the sets of private signals differ,
and may have significantly larger cardinality than that of the set of public signals. We say such
games havealmost-public monitoring. If every private signal is mapped to a public signal, we
say the almost-public-monitoring game isstrongly closeto the public-monitoring game.

Using the signalling functions, any strategy profile of the public-monitoring game induces
behavior in strongly-close-by almost-public-monitoring games. As in minimally-private almost-
public-monitoring games, a player’s private state determines that player’s continuation play.

1Since playeri’s set of histories in the public-monitoring game and in the minimally-private almost-public-
monitoring game agree, the domains for playeri’s strategy in the two games also agree.
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Given a sequence of private signals for a player, that player’s private state is determined by the
induced sequence of public signals that are the result of applying his signalling function. Con-
sequently, it might appear that the richness of the private signals does not alter the situation from
the case of minimally-private almost-public monitoring. However, the richness of the private
signals is important for the formation of that player’s beliefs about the other players’ private
states. It turns out that the requirement that the private-monitoring distribution be close to the
public-monitoring distribution places essentially no restriction on the manner in which private
signals enter into the formation of posterior beliefs. Nonetheless, if the profile has bounded
recall, the richness of the private signals is irrelevant. Indeed, even if the private-monitoring
games are not strongly close to the public-monitoring game, there is still a natural sense in
which every strict PPE with bounded recall induces equilibrium behavior in every close-by
almost-public-monitoring game (Theorem2).

When a strategy profile of the public-monitoring game does not have bounded recall, re-
alizations of the signal in early periods can have long-run implications for behavior. Subject
to some technical caveats, we call such a profileseparating. While the properties of bounded
recall and separation do not exhaust possible behavior, they do appear to cover most behaviors
of interest.2 When the space of private signals is sufficientlyrich in the values of posterior-odds
ratios (this is what we mean by “general almost public”), and the profile is separating, it is pos-
sible to manipulate a player’s updating over other players’ private states through an appropriate
choice of private history. This suggests that it should be possible to choose a private history
with the property that a player (say, playeri) is in one private state and assigns arbitrarily high
probability to all the other players being in a different common private state.

There is a significant difficulty that needs to be addressed in order to make this argument:
The history needs to have the property that playeri is very confident of the other players’ state
transitions for any given initial state. This, of course, requires the monitoring be almost-public.
At the same time, monitoring must be sufficiently imprecise that playeri, after an appropriate
initial segment of the history, assigns positive probability to the other players being in a common
state different fromi’s private state. This is the source of the difficulty: for anyT-length history,
there is anε (decreasing inT) such that for private monitoringε-close to the public monitoring,
playeri is sufficiently confident of the periodT private states of playersj 6= i as a function of
their periodt < T private states (and the history). However, thisε puts an upper bound on the
prior probability that playeri can assign in periodt to the playersj 6= i being in a common state
different from i’s private state. Since the choice ofT is decreasing in this prior (i.e., largerT
required for smaller priors), there is a tension in the determination ofT andε.

We show, however, that any separating profile implementable using a finite number of states
has enough structure that we can choose the history so that not only do relevant states cycle,
but that every other state transits under the cycle to a cycling state. The cycle allows us to

2We provide one example of a non-separating profile without bounded recall in Section5 (Example6). This
profile is not robust to the introduction of even minimally-private monitoring.
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effectively choose theT above independently of the prior, and gives us our main result (Theorem
4): Separating strict PPE profiles of public-monitoring games implementable using a finite
number of states do not induce Nash equilibria inanystrongly-close-by games with rich private
monitoring.

Thus, separating strict PPE of public-monitoring games are not robust to the introduction
of even a minimal amount of private monitoring. Consequently, separating behavior in private-
monitoring games typically cannot coordinate continuation play (Corollary1). On the other
hand, bounded recall profiles are robust to the introduction of private monitoring. The extent
to which bounded recall is a substantive restriction on the set of payoffs is unknown.3 Our
results do suggest, even for public-monitoring games, that bounded recall profiles are particu-
larly attractive (since they are robust to the introduction of private monitoring). Moreover, other
apparently simple strategy profiles are problematic.

Our focus on equilibrium strategy profiles is in contrast with much of the literature in
repeated games with private monitoring.4 For the repeated prisoners’ dilemma with almost-
perfect private monitoring, folk theorems have been proved using both equilibria with a coor-
dination interpretation (for example, Sekiguchi (1997), which we discuss in Example1, and
Bhaskar and Obara (2002)) and those that are “belief-free” (for example, Piccione (2002), Ely
and V̈alimäki (2002), and Matsushima (2004)5). Loosely, belief-free equilibria are constructed
so that after relevant histories, players are indifferent between different choices. In games with
finite signal spaces, this requires a significant amount of randomization (randomization is not
required with a continuum of signals, but only because behavior can be purified using signals).
Not only is the generality of this approach unclear (Ely, Hörner, and Olszewski (2005)), these
equilibria do not have a clean coordination interpretation due to the extent of player indiffer-
ences.

Finally, we view our findings as underlining the importance of communication in private-
monitoring games as a mechanism to facilitate coordination. For some recent work on com-
munication in private-monitoring games, see Compte (1998), Kandori and Matsushima (1998),
Fudenberg and Levine (2004), and McLean, Obara, and Postlewaite (2002).

3Cole and Kocherlakota (forthcming) show that for some parameterizations of the repeated prisoners’ dilemma,
the restriction to strongly symmetric bounded recall PPE results in a dramatic collapse of the set of equilibrium
payoffs.

4See Kandori (2002) for a brief survey of this literature, as well as the accompanying symposium issue of the
Journal of Economic Theoryon “Repeated Games with Private Monitoring.”

5Matsushima (2004) covers some two player games with private monitoring that need not be almost perfect, with
signals that are either conditionally independent or have a particular correlation structure. His analysis does not
cover almost-public-monitoring games.
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2. Games with Imperfect Monitoring

2.1. Private-Monitoring Games

The infinitely-repeated game with private monitoring is the infinite repetition of a stage game
in which at the end of the period, each player learns only the realized value of a private signal.
There aren players, with a finite stage-game action set for playeri ∈N≡ {1. . . . ,n} denotedAi .
At the end of each period, each playeri observes a private signal, denotedωi drawn from a finite
setΩi . The signal vectorω ≡ (ω1, . . . ,ωn)∈Ω≡Ω1×·· ·×Ωn occurs with probabilityπ(ω|a)
when the action profilea∈ A≡∏i Ai is chosen. Playeri does not receive any information other
thanωi about the behavior of the other players. All players use the same discount factor,δ .

Sinceωi is the only signal a player observes about opponents’ play, we assume (as usual)
that playeri’s payoff after the realization(ω,a) is given byu∗i (ωi ,ai). Stage game payoffs
are then given byui (a) ≡ ∑ω u∗i (ωi ,ai)π (ω|a). It will be convenient to index games by the
monitoring technology(Ω,π), fixing the set of players and action sets.

A pure strategy for playeri in the private-monitoring game is a functionsi : Hi → Ai , where

Hi ≡ ∪∞
t=1(Ai×Ωi)

t−1

is the set of private histories for playeri.

Definition 1 A pure strategy isaction-freeif, for all ht
i , ĥ

t
i ∈Hi satisfyingωτ

i = ω̂τ
i for all τ ≤ t,

si(ht
i ) = si(ĥt

i ).

Since action-free strategies play a central role in our analysis, it is useful to note the follow-
ing immediate result, which does not require full-support monitoring (its proof is omitted):

Lemma 1 Every pure strategy in a private-monitoring game is realization equivalent to an
action-free strategy. Every mixed strategy is realization equivalent to a mixture over action-free
strategies.

Remark 1 Behavior strategies realization equivalent to a mixed strategy will typically not be
action-free. For example, consider the once repeated prisoners’ dilemma, with action spaces
Ai = {ei ,ni},6 Ωi = {gi ,bi}, and the mixed strategy assigning equal probability to the two action-
free strategies̄s1 ands̃1, where

s̄1(∅) = e1; s̄1(g1) = e1, s̄1(b1) = n1,

and
s̃1(∅) = n1; s̃1(g1) = n1, s̃1(b1) = n1.

6Interpreting the prisoners’ dilemma as a partnership game,ei is “exert effort,” whileni is “no effort.”
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e2 n2

e1 2,2 −1,3

n1 3,−1 0,0

Figure 1:The prisoners’ dilemma.

A behavior strategy realization equivalent to this mixed strategy must specify in the second pe-
riod behavior that depends nontrivially on player1’s first period action. (A similar observation
applies to public-monitoring games: every pure strategy is realization equivalent to a public
strategy, every mixed strategy is realization equivalent to a mixture over public strategies, and
yet all behavior strategies that are realization equivalent to a mixed strategy may not be public.)

Every pure action-free strategy can be represented by a set of statesWi , an initial statew1
i ,

a decision ruledi : Wi → Ai specifying an action choice for each state, and a transition function
σi : Wi×Ωi →Wi . In the first period, playeri chooses actiona1

i = di(w1
i ). At the end of the first

period, the vector of actions,a1, then generates a vector of private signalsω1 according to the
distributionπ(· |a1), and playeri observes the signalω1

i . In the second period, playeri chooses
the actiona2

i = di
(
w2

)
, wherew2

i = σi(w1
i ,ω1

i ), and so on. Any action-free strategy requires at
most the countable setWi = ∪∞

t=1Ωt−1
i .

Any collection of pure action-free strategies can be represented by a set of statesWi , a
decision ruledi , and a transition functionσi (the initial state indexes the pure strategies). One
class of mixed strategies is described by(Wi ,µi ,di ,σi), whereµi is a probability distribution over
the initial statew1

i , andWi is countable. Not all mixed strategies can be described in this way,
since the set of all pure strategies is uncountable (which would requireWi to be uncountable).

Remark 2 A consequence of Remark1 is that action-free strategy profiles, and profiles of
mixtures over action-free strategies, are often not sequentially rational. However, when the
monitoring has full support, every Nash equilibrium has a realization-equivalent sequentially
rational strategy profile (see Sekiguchi (1997, Proposition 3) and Kandori and Matsushima
(1998, p. 648)). Consequently, we focus on Nash equilibria of games with private monitoring.

Example 1 We will often use the repeated prisoners’ dilemma under various monitoring as-
sumptions. The ex ante stage game is given by the normal form in Figure1.7 Much of the
literature has studiedalmost-perfect conditionally-independent private monitoring: player i’s
signals are given byΩi = {êi , n̂i}, with âi ∈Ωi a signal ofa j ∈ A j ≡

{
ej ,n j

}
. Players1 and2’s

7Here (and in other examples) we follow the literature in assuming the ex ante payoff matrix is independent of
the monitoring distribution. This simplifies the discussion and is without loss of generality: Ex ante payoffs are
close when the monitoring distributions are close (Lemma4) and all relevant incentive constraints are strict.
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signal are, conditional on the action profile, independently distributed, with

π (â1â2|a1a2) = π1(â1|a2)π2(â2|a1)

and

πi(âi |a j) =
{

1− ε, if âi = a j ,
ε, if âi 6= a j ,

whereε > 0 is a small constant. As will be clear, we focus on a different class of private
monitoring distributions.

In an important article, Sekiguchi (1997) constructed an efficient equilibrium for the almost-
perfect conditionally-independent case (as well as for correlated but almost-perfect monitoring).
Let Wi = {we,wn}, σi(wn, âi) = wn for all âi , σi(we, êi) = we, andσi(we, n̂i) = wn. The pure
strategy of grim trigger (begin playingei , and continue to playei as long asêi is observed,
switch toni after n̂i and always playni thereafter) is induced by the initial statew1

i = we. The
pure strategy of always playni is induced by the initial statew1

i = wn. The critical insight in
Sekiguchi (1997) is that while grim trigger is not a Nash equilibrium of this game, the symmetric
mixed strategy profile where each player independently randomizes over initial stateswe and
wn is an equilibrium (as long asδ is not too close to1). Sekiguchi (1997) then constructs an
equilibrium for largerδ by treating the game asM distinct games, with thekth game played in
periodsk+ tM, for t ∈ ℵ. The mixed equilibrium forM = 3 is constructed from the machine
in Figure2. The statewene for example corresponds to grim trigger in “games”1 and3, and
alwaysni in game2.

2.2. Public-Monitoring Games

We turn now to the benchmark public-monitoring game for our games with private monitoring.
The finite action set for playeri ∈ N is againAi . The public signal is denotedy and is drawn
from a finite setY. The probability that the signaly occurs when the action profilea∈A≡∏i Ai

is chosen is denotedρ(y|a). We refer to(Y,ρ) as the public-monitoring distribution. Playeri’s
payoff after the realization(y,a) is given byũ∗i (y,ai). Stage game payoffs are then given by
ũi (a)≡ ∑y ũ∗i (y,ai)ρ (y|a). The infinitely repeated game with public monitoring is the infinite
repetition of this stage game in which at the end of the period each player learns only the
realized value of the signaly. Players do not receive any other information about the behavior
of the other players. All players use the same discount factor,δ .

A strategy for playeri is public if, in every periodt, it only depends on the public history
ht ∈Yt−1, and not oni’s private history.8 Henceforth, by the termpublic profile, we will always
mean a strategy profile for the public-monitoring game that is itself public. Aperfect public
equilibrium (PPE)is a profile of public strategies that, after observing any public historyht ,

8Note that strategies of public-monitoring games are public if and only if they are action-free when we view the
public-monitoring game as a game with (trivial) private monitoring.
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iê

iê

iê
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Figure 2: The automaton described the pure strategies in Sekiguchi (1997) forM = 3. The
decision rules aredi(wabc) = ai . Unlabeled arrows are unconditional transitions.

specifies a Nash equilibrium for the repeated game. Under imperfect full-support public mon-
itoring, every public history arises with positive probability, and so every Nash equilibrium in
public strategies is a PPE.

Any pure public strategy profile can be described as an automaton as follows: There is a set
of states,W, an initial state,w1 ∈W, a transition functionσ : W×Y →W, and a collection of
decision rules,di : W→ Ai . In the first period, playeri chooses actiona1

i = di
(
w1

)
. The vector

of actions,a1, then generates a signaly1 according to the distributionρ
(·|a1

)
. In the second

period, playeri chooses the actiona2
i = di

(
w2

)
, wherew2 = σ

(
w1,y1

)
, and so on. Since we

can takeW to be the set of all histories of the public signal,∪k≥0Yk, W is at most countably
infinite. A public profile isfinite if W is a finite set. Note that, given a pure strategy profile
(and the associated automaton), continuation play after any history is determined by thepublic
state reached by that history. In games with private monitoring, by contrast, given an action-free
strategy profile (and the associated automaton), a sufficient statistic for continuation play after
any history is the vector of currentprivatestates, one for each player.

Denote the vector of average discounted expected values of following the public profile
(W,w,σ ,d) (i.e., the initial state isw) by φ(w). Define a functiong : A×W→W by g(a;w)≡
(1− δ )u(a)+ δ ∑y φ (σ (w,y))ρ(y|a). We have (from Abreu, Pearce, and Stacchetti (1990)),
that if the profile is an equilibrium, then, for allw∈W, the action profile(d1(w), . . . ,dN(w))≡
d(w) is a pure strategy equilibrium of the static game with strategy spacesAi and payoffs
gi(·;w) for eachi and, moreover,φ (w) = g(d(w) ,w). Conversely, if

(
W,w1,σ ,d

)
describes

an equilibrium of the static game with payoffsg(·;w) for all w ∈W, then the induced pure

8



strategy profile in the infinitely repeated game with public monitoring is an equilibrium.9 A
PPE(W,w1,σ ,d) is strict if, for all w∈W, d(w) is a strict Nash equilibrium of the static game
g(· :;w).10

A maintained assumption throughout our analysis is that public monitoring has full support.

Assumption 1 ρ (y|a) > 0 for all y∈Y and all a∈ A.

Definition 2 An automaton(W,w1,σ ,d) is minimal if for every stateŵ ∈ W, there exists
a sequence of signalŝy1, . . . , ŷ` such thatŵ = σ(ŷ1, . . . , ŷ`;w1)), whereσ(ŷ1, . . . , ŷ`;w1) ≡
σ(ŷ`,σ(. . . ,σ(ŷ1,w1))), and for every pair of statesw, ŵ∈W, there exists a sequence of signals
y1, . . . ,yL such that for somei, di(σ(y1, . . . ,yL;w)) 6= di(σ(y1, . . . ,yL; ŵ)).

The restriction to minimal automata is without loss of generality: every profile has a min-
imal representing automaton. Moreover, this automaton is essentially unique.11 Accordingly,
we treat a public strategy profile and its minimal representing automaton interchangeably.

3. Almost-Public Monitoring

3.1. Minimally-private almost-public monitoring

Games with public monitoring(Y,ρ) are nested within games with private monitoring, since
public monitoring simply means that all players always observe the same signal, i.e.,Ωi =
Ω j = Y, andπ (y, . . . ,y|a) = ρ (y|a) for all a. Mailath and Morris (2002) discussed the case of
minimally-private monitoring, in the sense that there is a public monitoring distribution(Y,ρ)
with Ωi = Y andπ close toρ:

Definition 3 A private-monitoring game(u∗,(Yn,π)) is ε-closeto a public-monitoring game
(ũ∗,(Y,ρ)), if |ũ∗i (y,ai)−u∗i (y,ai)| < ε and |π ((y, . . . ,y) |a)−ρ (y|a)| < ε for all i ∈ N, y∈Y
and all a∈ A. We also say that such a private-monitoring game hasminimally-private almost-
public monitoring.

9We have introduced a distinction betweenW and the set of continuation payoffs for convenience. Any pure
strategy equilibriumpayoff can be supported by an equilibrium whereW ⊂ ℜI andφ (w) = w (again, see Abreu,
Pearce, and Stacchetti (1990)).

10Equivalently, a PPE is strict if each player strictly prefers his equilibrium strategy to every otherpublicstrategy.
For a large class of public-monitoring games, strictness is without loss of generality, in that a folk theorem holds for
strict PPE (Fudenberg, Levine, and Maskin (1994, Theorem 6.4 and remark)).

11Suppose(W,w1,σ ,d) and(W̃, w̃1, σ̃ , d̃) are two minimal automata representing the same public strategy profile.
Define a mappingϕ : W → W̃ as follows: Setϕ(w1) = w̃1. For ŵ ∈W\{w1}, let ŷ1, . . . , ŷ` be a public history
reachingŵ (i.e., ŵ = σ(ŷ1, . . . , ŷ`;w1)), and setϕ(ŵ) = σ̃(ŷ1, . . . , ŷ`; w̃1)). Since both automata are minimal and
represent the same profile,ϕ does not depend on the choice of public history reachingŵ. It is straightforward to
verify thatϕ is one-to-one and onto. Moreover,σ̃(y, w̃) = ϕ(σ(y,ϕ−1(w̃)), andd̃(w̃) = d(ϕ(w)).

9



For η > 0 there isε > 0 such that if(u∗,(Yn,π)) is ε-closeto (ũ∗,(Y,ρ)), then
∣∣∣∣∣ ∑
y1,...,yn

u∗i (yi ,ai)π(y1, . . . ,yn|a)−∑
y

ũ∗i (y,ai)ρ(y|a)

∣∣∣∣∣ < η .

In other words, the ex ante stage payoffs of any minimally-private almost-public-monitoring
game are close to the ex ante stage payoffs of the benchmark public-monitoring game.

An important implication of the assumption that the public monitoring has full support is
that when a player observes a private signaly, (for ε small) that player assigns high probability
to all other players also observing the same signal, irrespective of the actions taken. Since the
proof is immediate, it is omitted.

Lemma 2 Fix a full support public monitoring distributionρ and η > 0. There existsε > 0
such that ifπ is ε-close toρ , then for alla∈ A andy∈Y,

πi (y1|a,y) > 1−η .

A public strategy profile(W,w1,σ ,d) in the public-monitoring game induces a strategy pro-
file (s1, . . . ,sn) in minimally-private almost-public-monitoring games in the obvious way:s1

i =
di(w1), s2

i (a
1
i ,y

1
i ) = di(σ(w1,y1

i ))≡ di(w2
i ), and defining states recursively bywt+1

i ≡ σ(wt
i ,y

t
i ),

for ht
i ≡ (a1

i ,y
1
i ;a2

i ,y
2
i ; . . . ;at−1

i ,yt−1
i ) ∈ (A×Y)t−1, st

i (h
t
i ) = di(wt

i ). This private strategy is, of
course, action-free.

If W is finite, each player can be viewed as following a finite state automaton. Hopefully
without confusion, when we can take the initial state as given, we abuse notation and write
wt

i = σ(w1,ht
i ) = σ(ht

i ). We describewt
i as playeri’s private statein periodt. It is important

to note that while all players are in the same private state in the first period, since the signals
are private, after the first period, different players may be in different private states. Theprivate
profile is the translation to the private-monitoring game of the public profile (of the public-
monitoring game).

If player i believes that the other players are following a strategy that was induced by a
public profile, then a sufficient statistic ofht

i for the purposes of evaluating continuation strate-
gies is playeri’s private state andi’s beliefs over the other players’ private states, i.e.,(wt

i ,β t
i ),

whereβ t
i ∈ ∆(WN−1). In principle,W may be quite large. For example, if the public strategy

profile is nonstationary, it may be necessary to takeW to be the set of all histories of the public
signal,∪k≥0Yk. On the other hand, the strategy profiles typically studied can be described with
a significantly more parsimonious collection of states, often finite. WhenW is finite, the need
to only keep track of each player’s private state and that player’s beliefs over the other players’
private states is a considerable simplification, as the following result (Mailath and Morris (2002,
Theorem 4.2)) demonstrates.

10



Theorem 1 Suppose the public profile(W,w1,σ ,d) is a strict equilibrium of the full-support
public-monitoring game for someδ and |W|< ∞. For all κ > 0, there existsη andε such that
in any game with minimally-private almost-public monitoring, if the posterior beliefs induced by
the private profile satisfyβi(σ (ht

i )1|ht
i )> 1−η for all ht

i =(di(w1),y1
i ;di(w2

i ),y
2
i ; . . . ;di(wt−1

i ),yt−1
i ),

wherewτ+1
i ≡ σ(wτ

i ,y
t
i ), and ifπ is ε-close toρ, then the private profile is a Nash equilibrium

of the game with private monitoring for the sameδ and the expected payoff in that equilibrium
is within κ of the public equilibrium payoff.

Example 2 We return to the repeated prisoners’ dilemma, with ex ante stage game given by
Figure1 (recall footnote7). In the benchmark public-monitoring game, the set of public signals
is Y = {y, ȳ} and public monitoring distribution is

ρ(ȳ|a1a2) =





p, if a1a2 = e1e2

q, if a1a2 = e1n2 or n1e2,
r, if a1a2 = n1n2.

The grim trigger strategy profile for the public-monitoring game is described by the automaton
W = {we,wn}, initial statewe, decision rulesdi(wa) = ai , and transition rule

σ(w,y) =
{

we, if y = ȳ andw = we,
wn, otherwise.

Grim trigger is a strict PPE ifδ > (3p−2q)−1 > 0 (a condition we maintain throughout this
example). We turn now to minimally-private-monitoring games that areε-close to this public-
monitoring game. It turns out that, forε small, grim trigger induces a Nash equilibrium in
such games ifq < r, but not if q > r. Consider first the caseq > r and the private history
(e1y

1
,n1ȳ1,n1ȳ1, . . . ,n1ȳ1). We now argue that, after a sufficiently long such history, the grim

trigger specification ofn1 is not optimal. Intuitively, while player1 has transited to the private
statewn

1, player1 always puts strictly positive (but perhaps small) probability on his opponent
being in private statewe

2. Sinceq > r (andε is small), the private signal̄y1 after playingn1

is an indication that player2 had playede2 (rather thann2), and so player1’s posterior that
player2 is still in we

2 increases. Eventually, player1 is sufficiently confident of player2 still
being inwe

2 that he findsn1 suboptimal. On the other hand, whenq≤ r, such a history is not
problematic because it reinforces1’s belief that2 is also inwn

2. Two other histories are worthy
of mention: (e1y

1
,n1y

1
,n1y

1
, . . . ,n1y

1
) and(e1ȳ1,e1ȳ1,e1ȳ1, . . . ,e1ȳ1). Under the first history,

while the signaly
1

is now a signal that2 had chosene2 in the previous period, forε small,1
is confident that2 also observedy

2
and so will transit town

2. For the final history, the signal̄y1

continually reassures1 that2 is still playinge2, and soe1 remains optimal. (See Mailath and
Morris (2002, Section 3.3) for the calculations underlying this discussion.)

Example 3 As the players become patient, the payoffs from grim trigger converge to(0,0). A
grim trigger profile (i.e., a profile in which the specification ofni is absorbing) can only achieve

11
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Figure 3:Forgiving grim trigger where any two realizations ofy lead town.

significant payoffs for patient players by being forgiving.12 Such a profile provides a different
example of how a strict PPE can fail to induce a Nash equilibrium in close-by minimally-
private-monitoring games. The simplest forgiving profile requires two realizations ofy to switch
to n1n2. The automaton for this profile has a set of statesW = {we, ŵe,wn}, initial statewe,
decision rulesdi(wa) = ai anddi(ŵe) = ei , and transition function

σ(w,y) =





we, if y = ȳ andw = we,
ŵe, if y = y andw = we or y = ȳ andw = ŵe,

wn, otherwise.

The profile is illustrated in Figure3. This PPE never induces a Nash equilibrium in close-
by minimally-private-monitoring games: consider a private history in which player1 playse1

and observes̄y1 for T periods, and then observesy
1
. Under the forgiving profile, player1 is

supposed to switch to the private stateŵe
1 and continue to playe1 (until anothery

1
is observed).

But, for largeT, it is more likely that player2 has observedy
2

in exactly one of the firstT
periods than having observed̄y2 in every period.13 Consequently, for largeT, player1 will not
find e1 optimal. Clearly, the same analysis applies to forgiving grim triggers that require more
realizations ofy to switch town.

Another class of forgiving grim trigger profiles requires successive realizations ofy to
switch town. In the three state version, the automaton is identical to that above exceptσ(ŵe, ȳ)=
we (see Figure4). The analysis of this profile is similar to that of Example2. The profile does
not induce a Nash equilibrium in close-by minimally-private-monitoring games ifq > r for
similar reasons. There are now two possibilities for the caseq≤ r, since isolated observations
of y

1
do not lead town

2. For the histories considered in Example2, the same argument applies
once we note that, conditional on players being in one ofwe or ŵe, a player assigns very high
probability to the other player being in the same state, since this is determined by the last signal.

12This is the class of profiles studied by Compte (2002) for the conditionally-independent private-monitoring
prisoners’ dilemma.

13This type of drift of beliefs is a general phenomenon when players choose the same action in adjacent states
(see also Example6).
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Figure 4:Forgiving grim trigger where two successive realizations ofy lead town.

The remaining histories are those with isolated observations ofy
1
. The critical history (since it

contains the largest fraction ofy
1
’s consistent withe1) is (e1ȳ1,e1y

1
,e1ȳ1,e1y

1
, . . . ,e1ȳ1), that is,

alternatingy
1

andȳ1. If p(1− p)≥ q(1−q), then such a history (weakly) indicates that player
2 is still playing e2, while the reverse strict inequality indicates that player2 is playing n2.
Summarizing, the profile induces a Nash equilibrium in close-by minimally-private-monitoring
games if and only ifq≤ r andp(1− p)≥ q(1−q).

3.2. General almost-public monitoring

We now turn to the most general private monitoring structure that nonetheless preserves the
essential characteristics of both Definition3 and Lemma2.14

Definition 4 The private monitoring distribution(Ω,π) is ε-closeunder f to the public mon-
itoring distribution (Y,ρ), where f = ( f1, . . . , fn) is a vector ofsignaling functionsfi : Ωi →
Y∪{∅}, if

1. for eacha∈ A andy∈Y,
∣∣∣∣π ({ω : fi (ωi) = y for all i}|a)−ρ (y|a)

∣∣∣∣≤ ε,

and
14While there is a connection to informational smallness (see, for example, McLean and Postlewaite (2004)),

these are distinct notions. For concreteness, supposeωi is a noisy signal ofy. Then,(Ω,π) is ε-close to(Y,ρ) if
and only if the private signal is a sufficiently accurate signal ofy. A player isinformationally smallif the posterior
on y, conditional on the other players’ private signals, on average does not vary too much with that player’s private
signal. Even if each player’s private signal is very accurate, the posterior can vary dramatically in a player’s signal
if that player’s signal is sufficiently accurate relative to the other players. Moreover, if there are many players, even
when signals are very noisy, each player will be informationally small.
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2. for all y∈Y, ωi ∈ f−1
i (y), and alla∈ A,

π
({

ω−i : f j (ω j) = y for all j 6= i
}∣∣(a,ωi)

)≥ 1− ε.

The private monitoring distribution(Ω,π) is stronglyε-closeunder f to the public mon-
itoring distribution (Y,ρ) if it is ε-close underf , and in addition, all the signaling functions
map intoY.

A private monitoring distribution(Ω,π) is (strongly)ε-closeto the public monitoring dis-
tribution (Y,ρ) if there exists a vector of signaling functionsf such that(Ω,π) is (strongly)
ε-close underf to (Y,ρ).

If the private monitoring isε-close underf , but not stronglyε-close underf , then some
private signals are not associated with any public signal: there is a signalωi satisfying fi (ωi) =
∅. Such an “uninterpretable” signal may containno information about the signals observed by
the other players.

Note that the second condition implies that every player has at least one private signal
mapped to each public signal. Moreover, for the caseΩi = Y, the first condition implies the
second (Lemma2).

The condition ofε-closeness in Definition4 can be restated as follows. Recall from Mon-
derer and Samet (1989) that an event isp-evident if, whenever it is true, everyone assigns
probability at leastp to it being true. The following Lemma is a straightforward application of
the definitions, and so we omit the proof.

Lemma 3 Supposefi : Ωi →Y∪{∅}, i = 1, . . . ,n, is a collection of signaling functions. The
private monitoring distribution(Ω,π) is ε-close underf to the public monitoring distribution
(Y,ρ) if and only if for each public signaly, the set of private signal profiles{ω : fi (ωi) = y for
all i} is (1− ε)-evident (conditional on any action profile) and has probability withinε of the
probability ofy (conditional on that action profile).

Example 4 We now allow player1 to have a richer set of private signals,Ω1 = {y
1
, ȳ′1, ȳ

′′
1},

keeping player2 signals unchanged,Ω2 = {y
2
, ȳ2}. The probability distribution of the signals is

given in Figure5. This private-monitoring distribution is
√

ε-close to the public-monitoring dis-
tribution of Example2 under the signaling functionsfi(yi

) = y and f2(ȳ2) = f1(ȳ′1) = f1(ȳ′′1) = ȳ,
as long asε is sufficiently small, relative tomin{α ′,α−α ′}.

Definition 5 A private-monitoring game(u∗,(Ω,π)) is ε-close (underf ) to the public-monitoring
game(ũ∗,(Y,ρ)), if (Ω,π) is ε-close underf to (Y,ρ) and

|ũ∗i ( fi(ωi),ai)−u∗i (ωi ,ai)|< ε

for all i ∈ N, ai ∈ Ai , andωi ∈ f−1
i (Y). We will also say that such a private-monitoring game

hasalmost-public monitoring.

14



a1a2 y
2

ȳ2

y
1

(1−α)(1−3ε) ε

ȳ′1 ε α ′ (1−3ε)

ȳ′′1 ε (α−α ′)(1−3ε)

Figure 5:The probability distribution of the private signals for Example4. The distribution is
given as a function of the action profilea1a2, whereα = p if a1a2 = e1e2, q if a1a2 = e1n2 or
n1e2, andr if a1a2 = n1n2 (analogously,α ′ is given byp′, q′, or r ′ as a function ofa1a2). All
probabilities are strictly positive.

As above, the ex ante stage payoffs of any almost-public-monitoring game are close to the
ex ante stage payoffs of the benchmark public-monitoring game (the proof is in the Appendix).

Lemma 4 For all η > 0, there isε > 0 such that if(u∗,(Ω,π)) is ε-closeto (ũ∗,(Y,ρ)), then
∣∣∣∣∣ ∑
ω1,...,ωn

u∗i (ωi ,ai)π(ω1, . . . ,ωn|a)−∑
y

ũ∗i (y,ai)ρ(y|a)

∣∣∣∣∣ < η .

Fix a public profile
(
W,w1,σ ,d

)
of a full-support public-monitoring game(ũ∗,(Y,ρ)), and,

under f , a stronglyε-close private-monitoring game(u∗,(Ω,π)). The public profile induces a
private profile in the private-monitoring game in a natural way: Playeri’s strategy is described
by the automaton(W,w1,σi ,di), whereσi(w,ωi) = σ(w, fi(ωi)) for all ωi ∈ Ωi and w ∈W.
The set of states, initial state, and decision function are from the public profile. The transition
functionσi is well-defined, because the signaling functions all map intoY, rather thanY∪{∅}.
As for games with minimally-private almost-public monitoring, if playeri believes that the other
players are following a strategy induced by a public profile, a sufficient statistic ofht

i for the
purposes of evaluating continuation strategies is playeri’s private state andi’s beliefs over the
other players’ private states, i.e.,(wt

i ,β t
i ), whereβ t

i ∈ ∆
(
WN−1

)
. Finally, we can recursively

calculate the private states of playeri asw2
i = σ(w1, fi(ω1

i )) = σi(w1,ω1
i ), w3

i = σi(w2
i ,ω2

i ),
and so on. Thus, for any private historyht

i , we can writewt
i = σi(ht

i ).

Example 5 In Example2, we argued that ifq < r, grim trigger induces Nash equilibrium be-
havior in close-by minimally-private-monitoring games. We now argue that under the private
monitoring distribution of Example4, even ifq < r, grim trigger will not induce a Nash equi-
librium behavior in some close-by games. In particular, suppose0 < r ′ < q′ < q < r. Under
this parameter restriction, the signalȳ′′1 aftern1 is indeed a signal that player2 had also played
n2. However, the signal̄y′1 aftern1 is a signal that player2 had playede2 and so a sufficiently
long private history of the form(e1y

1
,n1ȳ′1,n1ȳ′1, . . . ,n1ȳ′1) will lead to a posterior for player1

at whichn1 is not optimal.
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4. PPE with bounded recall

As we saw in Example5, arbitrary public equilibria need not induce equilibria of almost-public-
monitoring games, because the public state in periodt is determined, in principle, by the entire
historyht . For profiles that have bounded recall, the entire history is not needed, and equilibria
in bounded recall strategies will induce equilibria in almost-public-monitoring games.15

Definition 6 A public profile s has bounded recallif there existsL such that for allht =
(y1, . . . ,yt−1) andĥt = (ŷ1, . . . , ŷt−1), if t > L andyτ = ŷτ for τ = t−L, . . . , t−1, then

s
(
ht) = s(ĥt).

LetWt be the set of states reachable in periodt,Wt ≡{w∈W : w= σ(w1,y1,y2, . . . ,yt−1) for
some(y1,y2, . . . ,yt−1), wherew1 is the initial state}. The following characterization of bounded
recall (proved in the Appendix) is useful.

Lemma 5 The public profile induced by the minimal automaton(W,w1,σ ,d) has bounded re-
call if and only if there existsL such that, for allt andw,w′ ∈Wt and for all h∈Y∞,

σ(w,hL) = σ(w′,hL).

Fix a strict public equilibrium with bounded recall,
(
W,w1,σ ,d

)
. Fix a private monitoring

technology(Ω,π) ε-close underf to (Y,ρ). Following Monderer and Samet (1989), we first
consider aconstrained gamewhere behavior after “uninterpretable signals” is arbitrarily fixed.
Define the set of “uninterpretable” private histories,Hu

i = {ht
i : ωτ

i ∈ f−1
i (∅) , someτ satisfying

t−L ≤ τ ≤ t−1}. This is the set of private histories for which in any of the lastL periods, a
private signalωτ

i satisfying fi (ωτ
i ) = ∅ is observed. We fixarbitrarily player i’s action after

any private historyht
i ∈ Hu

i . For any private history that is not uninterpretable, each of the last
L observations of the private signal can be associated with a public signal by the functionfi .
Denote bywi (ht

i ) the private state so obtained. That is,

wi(ht
i ) = ( fi(ω t−1

i ), . . . , fi(ω t−L
i )),

for all ht
i /∈ Hu

i . We are then left with a game in which in periodt ≥ 2 player i only chooses
an action after a signalω t−1

i yields a private history not inHu
i . We claim that forε sufficiently

15Denote a dummy signal by∗. Mailath and Morris (2002) used the termbounded memoryfor public pro-
files with the property that there is an integerL such that a representing automaton is give byW = (Y∪ {∗})L,
σ(y,(yL, . . . ,y2,y1)) = (y,yL, . . . ,y2) for all y∈Y, andw1 = (∗, . . . ,∗). Our earlier notion implicitly imposes a time
homogeneity condition, since the caveat in Lemma5 that the two states should be reachable in the same period is
missing. The strategy profile in which play alternates between the same two action profiles in odd and even periods
has bounded recall, but not bounded memory.
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small, the profile(ŝ1, . . . , ŝN) is an equilibrium of this constrained game, whereŝi is the strategy
for playeri:

ŝt
i (h

t
i ) =

{
di(w1

i ), if t = 1,
di(wi(ht

i )), if t > 1 andht
i /∈ Hu

i .

But this follows from arguments almost identical to that in the proofs of Mailath and Morris
(2002, Theorems 4.2 and 4.3): since a player’s behavior depends only on the lastL signals,
for small ε, after observing a historyht

i /∈ Hu
i , player i assigns a high probability to playerj

observing a signal that leads to the same private state. The crucial point is that forε small,
the specification of behavior after signalsωi satisfying fi(ωi) = ∅ is irrelevant for behavior at
signalsωi satisfyingfi(ωi)∈Y. It remains to specify optimal behavior after signalsωi satisfying
fi(ωi) =∅. So, consider a new constrained game where playeri is required to followŝi where
possible. This constrained game has an equilibrium, and so by construction, we thus have an
equilibrium of the unconstrained game. We have thus proved:

Theorem 2 Fix a full-support public-monitoring game(ũ∗,(Y,ρ)) and a strict public perfect
equilibrium, s̃, with bounded recallL. There existsε > 0 such that for all private-monitoring
games(u∗,(Ω,π)) ε-close underf to (ũ∗,(Y,ρ)),

1. if fi(Ωi) = Y for all i, the induced private profile is a Nash equilibrium; and

2. if fi(Ωi) 6= Y for somei, there is a Nash equilibrium of the private-monitoring game,s,
such that, for allht = (y1, . . . ,yt−1) andht

j = (ω1
j , . . . ,ω

t−1
j ), if t > L andyτ = f j(ωτ

j ) for
τ = t−L, . . . , t−1, then

sj(ht
j) = s̃j(ht)

for all j . Moreover, for allκ > 0, ε can be chosen sufficiently small that the expected
payoff to each player unders is within κ of their public equilibrium payoff.

We could similarly extend our results on patiently-strict, connected, finite public profiles
(Mailath and Morris (2002, Theorem 5.1)) and on the almost-public almost-perfect folk theo-
rem (Mailath and Morris (2002, Theorem 6.1)) to this more general notion of nearby private-
monitoring distributions.

5. Failure of Coordination

Example5 illustrates that updating in almost-public-monitoring games can be very different
than would be expected from the underlying public-monitoring game. In this section, we build
on that example to show that when the set of signals is sufficiently rich (in a sense to be defined),
many profiles fail to induce equilibrium behavior in almost-public-monitoring games.
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Our negative results are based on the following converse to Theorem1 (the proof is in the
Appendix). Since the theorem is negative, the assumption of strongε-closeness enhances the
usefulness of the result.16

Theorem 3 Suppose the public profile
(
W,w1,σ ,d

)
is a strict equilibrium of the full-support

public-monitoring game(ũ∗,(Y,ρ)) for someδ and|W|< ∞. There existsη > 0 andε > 0 such
that for any game with private monitoring(u∗,(Ω,π)) stronglyε-close to(ũ∗,(Y,ρ)), if there
exists a playeri, a private history for that playerht

i , and a statew such thatdi (w) 6= di(σi(ht
i ))

andβi (w1|ht
i ) > 1−η , then the induced private profile is not a Nash equilibrium of the game

with private monitoring for the sameδ .

We implicitly used this result in our discussions of the repeated prisoners’ dilemma. For
example, in Example5, we argued that there was a private history for player1 that leaves him
in the private statewn

1, but his posterior after that history assigns probability close to1 that
player2’s private state iswe

2.
Our approach is to ask when it is possible to so “manipulate” a player’s beliefs through

selection of private history that the hypotheses of Theorem3 are satisfied. In particular, we are
interested in the weakest independent conditions on the private-monitoring distributions and on
the strategy profiles that would allow such manipulation.

Fix a PPE of the public-monitoring game and a close-by almost-public-monitoring game.
The logic of Example5 runs as follows: Consider a playeri in a private statêw who assigns
strictly positive (albeit small) probability to all the other players being in some other common
private statew̄ 6= ŵ (full-support private monitoring ensures that such an occurrence arises with
positive probability). Let̃a = (di(ŵ),d−i(w̄)) be the action profile that results wheni is in state
ŵ and all the other players are in statēw. Suppose that if any other player is in a different
private statew 6= w̄, then the resulting action profile differs from̃a. Suppose, moreover, there
is a signaly such thatŵ = σ(ŵ,y) and w̄ = σ(w̄,y), that is, any player in the statêw or w̄
observing a private signal consistent withy stays in that private state (and so the profile cannot
have bounded recall, see Lemma5). Suppose finally there is a private signalωi for player i
consistent withy that is more likely to have come from̃a thanany other action profile, i.e.,
ωi ∈ f−1

i (y) and (whereπi(ωi |a) is the probability that playeri observes the signalωi undera)

πi(ωi |ã) > πi(ωi |(di(ŵ),a′−i)) ∀a′−i 6= d−i(w̄). (1)

16While we have stated this theorem, and Theorem4 below, for pure strategies, they also hold for some mixed
strategy profiles. Recall from Section2.1that given an automaton(W,di ,σi) describing a collection of pure strategies
for playeri (taking any statew∈W as the initial state gives a pure strategy), a probability distribution overW gives
a mixed strategy. Consider now a mixed strategy PPE of the game with public-monitoring. Clearly, such a profile
cannot be strict. However, there may exist a periodT, such that all the incentive constraints after periodT are strict
(the equilibria in Sekiguchi (1997) are important examples). In that case, Theorem3 holds if the hypotheses are
satisfied fort ≥ T.
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Then, after observing the private signalωi , player i’s posterior probability that all the other
players are in̄w should increase (this is not immediate, however, since the monitoring is private).
Moreover, since players in̂w andw̄ do not change their private states, we can eventually make
player i’s posterior probability that all the other players are inw̄ as close to one as we like.
If di(ŵ) 6= di(w̄), an application of Theorem3 shows that the induced private profile is not an
equilibrium.

The suppositions in the above logic can be weakened in two ways. First, it is not necessary
that thesameprivate signalωi be more likely to have come from̃a thananyother action profile.
It should be enough if for each action profile different fromã, there is a private signal more likely
to have come from̃a than that profile, as long as the signal not mess up the other inferences
too badly. In that case, realizations of the other signals could undo any damage done without
negatively impacting on the overall inferences. For example, suppose there are two players,
with player1 the player whose beliefs we are “manipulating,” and in addition to statew̄, player
2 could be in statêw or w. Suppose alsoA2 = {ã2,a′2,a

′′
2}. As before, suppose there is a signal

y such thatw = σ(w,y), ŵ = σ(ŵ,y), andw̄ = σ(w̄,y), that is, any player in the statew, ŵ,
or w̄, observing a private signal consistent withy stays in that private state. We would like the
odds ratioPr(w2 6= w̄|ht

1)/Pr(w2 = w̄|ht
1) to converge to zero ast → ∞, for appropriate private

histories. Letã1 = d1(ŵ), ã2 = d2(w̄), a′2 = d2(ŵ), anda′′2 = d2(w), and suppose there are two
private signals,ω ′

1 andω ′′
1 consistent withy, satisfying

π1(ω ′
1|ã1,a

′′
2) > π1(ω ′

1|ã) > π1(ω ′
1|ã1,a

′
2)

and
π1(ω ′′

1 |ã1,a
′
2) > π1(ω ′′

1 |ã) > π1(ω ′′
1 |ã1,a

′′
2).

Then, after observing the private signalω ′
1, we have

Pr(w2 = ŵ|ht
1,ω ′

1)
Pr(w2 = w̄|ht

1,ω ′
1)

=
π1(ω ′

1|ã1,a′2)
π1(ω ′

1|ã)
Pr(w2 = ŵ|ht

1)
Pr(w2 = w̄|ht

1)
<

Pr(w2 = ŵ|ht
1)

Pr(w2 = w̄|ht
1)

as desired, butPr(w2 = w|ht
1,ω ′

1)/Pr(w2 = w̄|ht
1,ω ′

1) increased. On the other hand, after observ-
ing another private signalω ′′

1 , also consistent withy, while the odds ratioPr(w2 = w|ht
1,ω ′′

1 )/Pr(w2 =
w̄|ht

1,ω ′′
1 ) falls, Pr(w2 = ŵ|ht

1,ω ′′
1 )/Pr(w2 = w̄|ht

1,ω ′′
1 ) increases. However, it may be that the

increases can be offset by appropriate decreases, so that, for example,ω ′
1 followed by two re-

alizations ofω ′′
1 results in a decrease inboth odds ratios. If so, a sufficiently high number of

realizations ofω ′
1ω ′′

1 ω ′′
1 result inPr(w2 6= w̄|ht

1)/Pr(w2 = w̄|ht
1) being close to zero.

In terms of the odds ratios, the sequence of signalsω ′
1ω ′′

1 ω ′′
1 lowers both odds ratios if, and

only if,
π1(ω ′

1|ã1,a′2)
π1(ω ′

1|ã)

(
π1(ω ′′

1 |ã1,a′2)
π1(ω ′′

1 |ã)

)2

< 1
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and
π1(ω ′

1|ã1,a′′2)
π1(ω ′

1|ã)

(
π1(ω ′′

1 |ã1,a′′2)
π1(ω ′′

1 |ã)

)2

< 1.

Our richness condition on private monitoring distributions captures this idea. For a private
monitoring distribution,(Ω,π), defineγaa′−i

(ωi)≡ logπi(ωi |ai ,a−i)− logπi(ωi |ai ,a′−i), and let

γa(ωi) =
(

γaa′−i
(ωi)

)
a′−i∈A−i ,a′−i 6=a−i

denote the vector inℜ|A−i |−1 of the log odds ratios of the

signalωi associated with different action profiles. The last two displayed equations can then be
written as1

3γã(ω ′
1)+ 2

3γã(ω ′′
1 ) > 0, where0 is the2×1 zero vector.17

Definition 7 A private-monitoring distribution(Ω,π) is rich, given signaling functionsf , if
for all a ∈ A and all y ∈ Y, the convex hull of the set of vectors{γa(ωi) : ωi ∈ f−1

i (y) and

πi(ωi |ai ,a′−i) > 0 for all a′−i ∈ A−i} has a nonempty intersection withℜ|A−i |−1
++ .

It will be useful to quantify the extent to which the conditions of Definition7 are satisfied.
Since the space of signals and actions are finite, there are a finite number of constraints in
Definition 7, and so for any rich private monitoring distribution, the set ofζ over which the
supremum is taken in the next definition is non-empty.18

Definition 8 Given f , therichnessof a rich private-monitoring distribution(Ω,π) is the supre-
mum of allζ > 0 satisfying: for ally∈Y, the convex hull of the set of vectors{γa(ωi) : ωi ∈
f−1
i (y) andπi(ωi |ai ,a′−i) ≥ ζ for all a′−i ∈ A−i} has a nonempty intersection withℜ|A−i |−1

ζ ≡
{x∈ℜ|A−i |−1

++ : xk ≥ ζ for k = 1, . . . , |A−i |−1}.
The second weakening concerns the nature of the strategy profile. The logic assumed that

there is a signaly such thatŵ = σ(ŵ,y) andw̄ = σ(w̄,y). If there were only two states,̂w and
w̄, it would clearly be enough that there be a finite sequence of signals such that bothŵ and
w̄ cycle. When there are more states, we also need to worry about what happens to the other
states. In addition, we need to allow for time-dependent profiles, and profiles that use some
states for only a finite time. DefineR(w̃) as the set of states that are repeatedly reachable in the
same period as̃w (i.e.,R(w̃) = {w∈W : {w, w̃} ⊂Wt infinitely often}).

We generalize the cycling idea to the notion that there be a path that allows some dis-
tinguished state to beseparatedfrom every other state that could ever be reached. Given an
outcome pathh≡ (y1,y2, . . .) ∈Y∞, let τh≡ (yτ ,yτ+1, . . .) ∈Y∞ denote the outcome path from
periodτ, so thath = (hτ ,τh) andτhτ+t = (yτ ,yτ+1, . . . ,yτ+t−1).

17The convex combination is strictly positive (rather than negative) because the definition ofγaa′−i
inverts the odds

ratios from the displayed equations.
18The boundζ appears twice in the definition. Its first appearance ensures that for allζ > 0, there is uniform

upper bound on the number of private signals satisfyingπi(ωi |ai ,a′−i) ≥ ζ in any private-monitoring distribution
with a richness of at leastζ .
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A B C

A 3,3 0,0 0,0

B 0,0 3,3 0,0

C 0,0 0,0 2,2

Figure 6:The normal form for Example6.

Definition 9 The public strategy profile isseparatingif there is some statẽw and an outcome
pathh∈Y∞ such that there is another statew∈ R(w̃) that satisfiesσ(w,ht) 6= σ(w̃,ht) for all
t, and for allτ andw∈ R(σ(w̃,hτ)), if σ(w,τhτ+t) 6= σ(w̃,hτ+t) for all t ≥ 0, then

di(σ(w,τhτ+t)) 6= di(σ(w̃,hτ+t)) infinitely often, for alli.

When the set of states is finite, our next Lemma (proved in the Appendix) shows that sepa-
ration isequivalentto a simpler and seemingly stronger cycling condition.

Lemma 6 A finite public strategy profile of the public-monitoring game is separating if, and
only if, there is a finite sequence of signalsȳ1, . . . , ȳm, a collection of statesWc, and a state
w̄∈Wc such that

1. σ(w, ȳ1, . . . , ȳm) = w for all w∈Wc,

2. σ(w, ȳ1, . . . , ȳm) ∈Wc for all w∈ R(w̄),

3. ∀w∈Wc\{w̄}, ∀i ∃k, 1≤ k≤m, such that

di(σ(w, ȳ1, . . . , ȳk) 6= di(σ(w̄, ȳ1, . . . , ȳk),

and

4. for somei andŵ∈Wc\{w̄}, di(ŵ) 6= di(w̄).

Note that part 4 implies that|Wc| ≥ 2. We emphasize that each state in the set of statesWc

cycles under the given finite sequence of signalsand every state reachable (infinitely often) in
the same period as̄w is taken intoWc by one round of the cycle.

Clearly, a separating profile cannot have bounded recall. Moreover, it is easy to construct
PPE that neither have bounded recall nor are separating (Example6). Nonetheless, we are
not aware of any strict PPE of substantive interest that neither have bounded recall nor are
separating.

21



Aw Aŵ
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y′

y′

y ′′
y ′′

y ′′

y ′′

y′

y′

Figure 7:The strategy profile for Example6. In stateswA andŵA, the actionA is played, while
in wB the actionB and inwC, the actionC is played.

Example 6 The stage game is given in Figure6. In the public-monitoring game, there are two
public signals,y′ andy′′, with distribution (0 < q < p < 1)

ρ(y′′|a1a2) =
{

p, if a1 = a2,
q, otherwise.

Finally, the public profile is illustrated in Figure7. This profile is not separating: Under any
path in whichy′y, y = y′ or y′′, appears, all states transit to the same state. If onlyy′′ appears,
only wA andŵA arise. The definition of separation fails because play is the same at stateswA

andŵA.
The profile is also not robust: After enough realizations of private signals corresponding to

y′′, beliefs must assign roughly equal probability towA andŵA,19 and so after the first realization
of a private signal corresponding toy′, B is the only best reply (even if the current state iswC).
This example (like the second forgiving grim trigger of Example3) illustrates the possibility
that beliefs over private states can drift to a stationary distribution when play is identical in
different states.

19This is most easily seen by considering the Markov chain describing player2’s private state transitions con-
ditional on player1 always playingA and always observing the same private signal consistent withy′′ (a Markov
chain is associated with eachω1 ∈ f1(y′′)). Each such Markov chain is ergodic, and so has a unique stationary
distribution. A straightforward calculation shows that, in the limit (as the private-monitoring distributions become
arbitrarily close), the probability assigned towA

2 equals1
2 .
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It remains to ensure that, under private monitoring, players may transit to different states. It
suffices to assume the following, weaker than full-support, condition:20

Definition 10 A private monitoring distribution(Ω,π) that is ε-close to a public monitoring
distribution(Y,ρ) hasessentially full supportif for all (y1, . . . ,yn) ∈Yn,

π{(ω1, . . . ,ωn) ∈Ω : fi(ωi) = yi , i = 1, . . . ,n}> 0.

Theorem 4 Fix a separating strict finite PPE of a full-support public-monitoring game(ũ∗,(Y,ρ)).
For all ζ > 0, there existsε ′ > 0 such that for allε < ε ′, if (u,(Ω,π)) is a private-monitoring
game stronglyε-close under some signalling functionf to (ũ∗,(Y,ρ)) with (Ω,π) having rich-
ness, givenf , at leastζ and essentially full support, then the induced private profile is not a
Nash equilibrium of the private monitoring game.

It is worth noting that the bound onε is only a function of the richness of the private
monitoring. It isindependentof the probability that a disagreement in private states arises. By
considering finite state profiles that are separating, not only is the difficulty identified in the
Introduction dealt with (as we discuss at the end of the next Section), but we can accommodate
arbitrarily small probabilities of disagreement.

Thus, separating strict PPE of public-monitoring games are not robust to the introduction
of private monitoring.21 It, of course, also implies that separating behavior in the private-
monitoring game typically cannot coordinate continuation play in the following sense. Say
a profile isε-strict if all the incentive constraints are satisfied by at leastε. (The result follows
immediately from upperhemicontinuity and Theorem4.)

Corollary 1 Fix a vector of signaling functionsf , fi : Ωi → Y. Suppose{(uk,(Ω,πk))} is a
sequence of private-monitoring games, with(uk,(Ω,πk)) 1/k-close to some public-monitoring
game(ũ∗,(Y,ρ)) and {(Ω,πk)} a rich sequence of distributions. Fix a pure strategy profile
of the private monitoring game in which each player’s strategy respects his signaling function
fi (i.e., σi(hi ,ai ,ωi) = σi(hi ,ai , ω̂i) if fi(ωi) = fi(ω̂i) 6= ∅). Suppose this profile is separating
(when interpreted as a public profile). For allε > 0, there existsk′ such that fork > k′, this
profile is not anε-strict Nash equilibrium.

Since the equilibrium failure of separating profiles seem to arise after private histories that
have low probability, an attractive conjecture is that equilibrium can be restored by appropri-
ately modifying the profile at only the problematic histories. Unfortunately, such a modifica-
tion appears to require additional modifications to the profile, destroying the connection to the
public-monitoring game.

20If an essentially-full-support private monitoring distribution does not have full support, Nash equilibria of the
private-monitoring game may not have realization-equivalent sequentially-rational strategy profiles (recall Remark
2).

21The extension to mixed strategies described in footnote16also holds for Theorem4.
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6. The Proof of Theorem4

The proof of Theorem4 is by contradiction. So, suppose there existsζ > 0 such that for
all k there exists a private monitoring game(u,(Ωk,πk)) strongly1/k-close under somef to
(ũ∗,(Y,ρ)) with (Ωk,πk) having richness at leastζ , with the induced private profile a Nash
equilibrium of the private-monitoring game.

To develop intuition, suppose the space of signals for each player were independent ofk, so
thatΩk

i = Ωi . Then, we can assumeπk converges to a limit distributionπ∞ on Ω (by choosing
a subsequence if necessary). The behavior of beliefs of playeri over the private states of the
other players under the limit private monitoring distribution(Ω,π∞) is significantly easier to
describe. Since(Ω,πk) is strongly1/k-close to(Y,ρ) andπk → π∞, for eachy∈Y the event
{(ω1, . . . ,ωn) : ωi ∈ f−1

i (y)} is common belief underπ∞. Moreover, if the other players start
in the same state (such as̄w) then they stay in the same state thereafter. We can thus initially
focus on finding the appropriate sequence of signals to manipulatei’s updating about the current
private states of the other players, without being concerned about the possibility that subsequent
realizations will derail the process (we will deal with that issue subsequently). The difficulty,
of course, is thatΩk

i depends onk, and moreover, that in principle ask gets large, so mayΩk
i .

We can however, proceed as follows: For eachk andai ∈ Ai , let

Ωk,ai
i =

{
ωi ∈Ωk

i : πk
i (ωi |ai ,a

′
−i) > ζ for all a′−i ∈ A−i

}
.

Since(Ωk,πk) is strongly close to(Y,ρ), every signal inΩk
i is associated with some public

signal, and so we can partitionΩk,ai
i into subsets of private signals associated with the same

public signal,Ωk,ai
i (y). Order arbitrarily the signals in∪ai Ω

k,ai
i (y), and give thè -th signal in

the order the label(y, `). Let ki,y ≡
∣∣∣∪ai Ω

k,ai
i (y)

∣∣∣; note thatki,y is (crudely) bounded above by

|Ai |/ζ for all k. With this relabeling, and definingΩi ≡ ∪y∈Y {(y,1),(y,2), . . . ,(y,ki,y)}, a finite
set, we have, for alli andk,

Ωk
i ⊂Ωi ∪

(
Ωk

i \
(
∪ai∈Ai Ω

k,ai
i

))
(2)

and
Ωk

i ∩Ωi 6=∅.

Without loss of generality, we can assume (2) holds with equality (simply include any signal
ωi ∈Ωi\Ωk

i in Ωk
i , so thatπk

i (ωi |a) = 0).
We augmentΩi , for eachy ∈ Y, by a new signal denotedωy

i , and defineΩ∞
i ≡ Ωi ∪(∪y{ωy

i }
)
. We interpretωy

i as the set ofi’s private signals associated withy that are not in
Ωi . For eachk, we can interpretΩ∞

i as a partition ofΩk
i (eachωi ∈ Ωi appears as a singleton,

while ωy
i ≡

{
ωi ∈Ωk

i \
(
∪ai∈Ai Ω

k,ai
i

)
: fi(ωi) = y

}
may be empty). For eacha∈ A, denote by

π̂k( · |a) the probability distribution on∏i Ω∞
i induced byπk( · |a). Note that we now have a
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sequence of probability distributions{π̂k(·|a)}k for eacha∈ A on a common finite signal space
∏i Ω∞

i .
By passing to a subsequence if necessary, we can assume

{
π̂k(ω|a)

}
k is a convergent se-

quence with limitπ∞(ω|a) for all a∈ A, ω ∈ ∏i Ω∞
i . Note that(Ω∞,π∞) is 0-close to(Y,ρ).

Moreover, by passing to a further subsequence if necessary, we can also assume that, for each
i, ai ∈Ai , andy∈Y, the convex hull of the set of vectors{γ∞

a (ωi) : ωi ∈ f−1
i (y) ,π∞

i (ωi |ai ,a′−i) >

ζ for all a′−i ∈A−i} has a nonempty intersection withℜ|A−i |−1
ζ , whereγ∞

aa′−i
(ωi)≡ logπ∞

i (ωi |ai ,a−i)

− logπ∞
i (ωi |ai ,a′−i) andγ∞

a (ωi) =
(

γ∞
aa′−i

(ωi)
)

a′−i∈A−i ,a′−i 6=a−i

.

In the following lemma, a private signalω j for player j is consistentwith the private signal
ωi for player i if f j(ω j) = fi(ωi), where fi and f j are the signaling functions from Definition
4. It is an implication of this lemma that if playeri assigns strictly positive probability to all
the other players being in the statēw, then after sufficient repetitions of the cycle~ωL

i (defined
in Lemma7), playeri eventually assigns probability arbitrarily close to1 that at the end of a
cycle, all the other players are in the statew̄.

Lemma 7 Fix a finite separating public profile of the public-monitoring game, and letw̄, ŵ,
Wc, andi be the states, set of states, and player identified in Lemma6. Then, there exists a finite
sequence of private signals for playeri, ~ωL

i ≡ (ω1
i ,ω2

i , . . . ,ωL
i ), such that

1. σi(ŵ, ~ωL
i ) = ŵ,

2. for all sequences of private signals,~ωL
j , for player j 6= i consistent with~ωL

i , σ j(w, ~ωL
j )= w

for all w∈Wc, and

3. for all w ∈Wn−1
c \{w̄1},

A(~ωL
i ;w)≡ Pr∞(~ωL

i |w−i = w,wi = ŵ)
Pr∞(~ωL

i |w−i = w̄1,wi = ŵ)
< 1, (3)

wherePr∞ denotes probabilities calculated underπ∞ and the assumption that all players
follow the private profile.

Proof. The cycleȳ1, . . . , ȳm from Lemma6 induces a cycle in the states̄w = w̄1, . . . , w̄m+1 = w̄1

andŵ= ŵ1, . . . , ŵm+1 = ŵ. We index the cycle bỳ and writeā` = d
(
w̄`

)
andâ`

i = di
(
ŵ`

)
. Let

ã` ≡ (â`
i , ā

`
−i). Richness implies that for each`, there exists a vector of nonnegative integers,

(nωi )ωi∈ f−1
i (y`), so that for alla′−i 6= ā`

−i ,

∑
ωi∈ f−1

i (ȳ`)

γ∞
ã`,a′−i

(ωi)nωi > 0.

Since
γ∞

ã`,a′−i
(ωi) = logπ∞

i (ωi |ã`)/π∞
i (ωi |â`

i ,a
′
−i),
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we have, for alla′−i 6= ā`
−i ,

∏
ωi∈ f−1

i (ȳ`)

(
π∞

i (ωi |ã`)
π∞

i (ωi |â`
i ,a

′
−i)

)nωi

> 1. (4)

Lettingn` = ∑ωi∈ f−1
i (y`) nωi for each̀ , denote byN′ the lowest common multiple of{n1, . . . ,nm}.

Let ~ωL
i denote the cycle of private signals for playeri consistent with cyclingN times through

the public signals̄y1, ȳ2 . . . , ȳm and in which for each̀, the private signalωi ∈ f−1
i (y`) appears

(N′/n`)nωi times. This cycle is of lengthL≡mN′.
Given a private state profilew ∈Wn−1

c , let ǎ`
−i denote the action profile taken in period` of

the cycle. Then,

A(~ωL
i ;w)≡ Pr∞(~ωL

i |wt
−i = w,wi = ŵ)

Pr∞(~ωL
i |wt

−i = w̄1,wi = ŵ)

=




m

∏̀
=1


 ∏

ωi∈ f−1
i (ȳ`)

(
π∞

i (ωi |â`
i , ǎ

`
−i)

π∞
i (ωi |ã`)

)nωi




N/n`

 .

For w 6= w̄1, then in each period at least one player is in a private state different fromw̄. From
Lemma6.2, ǎ`

−i 6= ã`
−i for at least onè, and soA(~hL

i ;w) must be strictly less than1.

We are, of course, primarily concerned with private monitoring under the distribution(Ωk,πk).
In this situation, one must deal with the possibility that playerj ’s private signals may be incon-
sistent with playeri’s observations. However, by choosingk sufficiently large, one can ensure
that this possibility does not arise with large probabilityalong the cycle~ωL

i . The subsequent
lemma implies that this possibility never arises with large probability.

Lemma 8 Assume the hypotheses of Lemma7, and let ht
i be a private history for playeri

satisfyingŵ = σi(ht
i ). For all η > 0, there existsξ > 0 andk′ (independent ofht

i ) such that, for
all k > k′, if η < Prk(wt

−i ∈Wn−1
c \{w̄1}|ht

i ) < 1 andPrk(wt
−i /∈Wn−1

c |ht
i ) < ξ , then

Prk(wt+L
−i 6= w̄1|~ωL

i ,ht
i )

Prk(wt+L
−i = w̄1|~ωL

i ,ht
i )

< (1−ξ )
Prk(wt

−i 6= w̄1|ht
i )

Prk(wt
−i = w̄1|ht

i )
, (5)

wherePrk denotes probabilities calculated underπk and the assumption that all players follow
the private profile, and~ωL

i is the sequence identified in Lemma7.

Proof. For clarity, we suppress the conditioning onht
i . Denote the event that players other than

i observe some sequence of private signals consistent with the cycle(ȳ1, . . . , ȳm)N by~y−i , and
the complementary event by¬~y−i . Then,

Prk(wt+L
−i 6= w̄1, ~ωL

i ) = Prk(wt+L
−i 6= w̄1, ~ωL

i , ~y−i)+Prk(wt+L
−i 6= w̄1, ~ωL

i , ¬~y−i)
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and

Prk(wt+L
−i 6= w̄1, ~ωL

i , ~y−i)

≤ Prk(wt
−i 6= w̄1, ~ωL

i , ~y−i)

= Prk(wt
−i ∈Wn−1

c \{w̄1}, ~ωL
i , ~y−i)+Prk(wt

−i /∈Wn−1
c \{w̄1}, ~ωL

i , ~y−i),

where the inequality arises because a playerj 6= i may be in a private state not inWc. Now,

Prk(wt
−i ∈Wn−1

c \{w̄1}, ~ωL
i , ~y−i)

= Prk(~ωL
i , ~y−i |wt

−i ∈Wn−1
c \{w̄1})Prk(wt

−i ∈Wn−1
c \{w̄1})

≤ Prk(~ωL
i , ~y−i |wt

−i ∈Wn−1
c \{w̄1})Prk(wt

−i 6= w̄1),

and ifPrk(wt
−i /∈Wn−1

c \{w̄1}) < ξ (whereξ is to be determined),

Prk(wt
−i /∈Wn−1

c \{w̄1}, ~ωL
i , ~y−i)+Prk(wt+L

−i 6= w̄1, ~ωL
i , ¬~y−i)

< ξ +Prk(wt+L
−i 6= w̄1, ~ωL

i , ¬~y−i)

≤ ξ +Prk(~ωL
i , ¬~y−i)

= ξ +Prk(¬~y−i |~ωL
i )Prk(~ωL

i ).

Moreover,

Prk(wt+L
−i = w̄1, ~ωL

i )≥ Prk(wt
−i = w̄1, ~ωL

i , ~y−i)

= Prk(~ωL
i , ~y−i |wt

−i = w̄1)Prk(wt
−i = w̄1).

Defining

xt (k)≡ 1
Prk(wt

−i 6= w̄1)
(
ξ +Prk(¬~y−i |~ωL

i )Prk(~ωL
i )

)
,

we have,

Prk(wt+L
−i 6= w̄1|~ωL

i )
Prk(wt+L

−i = w̄1|~ωL
i )

<
Prk(~ωL

i , ~y−i |wt
−i ∈Wn−1

c \{w̄1})+xt (k)
Prk(~ωL

i , ~y−i |wt
−i = w̄1)

× Prk(wt
−i 6= w̄1)

Prk(wt
−i = w̄1)

≤
maxw∈Wn−1

c \{w̄1}Prk(~ωL
i , ~y−i |wt

−i = w)+xt (k)

Prk(~ωL
i , ~y−i |wt

−i = w̄1)
× Prk(wt

−i 6= w̄1)
Prk(wt

−i = w̄1)
. (6)

From Lemma7,

max
w∈Wn−1

c \{w̄1}
A(~ωL

i ;w) = max
w∈Wn−1

c \{w̄1}
lim
k→∞

Prk(~ωL
i , ~y−i |wt

−i = w)
Prk(~ωL

i , ~y−i |wt
−i = w̄1)

< 1,
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and so there is anξ ′ > 0 sufficiently small so that (recall that the denominator has a strictly
positive limit)

max
w∈Wn−1

c \{w̄1}
lim
k→∞

Prk(~ωL
i , ~y−i |wt

−i = w)+ξ ′

Prk(~ωL
i , ~y−i |wt

−i = w̄1)
< 1−ξ ′.

The finiteness of the state space and the number of players allows us to interchange themaxand
lim operations. Consequently, there existsk′′ such that for allk≥ k′′,

maxw∈Wn−1
c \{w̄1}Prk(~ωL

i , ~y−i |wt
−i = w)+ξ ′

Prk(~ωL
i , ~y−i |wt

−i = w̄1)
< 1−ξ ′. (7)

Since(Ω,πk) is strongly1/k-close to(Y,ρ), limk→∞ Prk(¬~y−i |~ωL
i ) = 0, and so there exists

k′′′ such thatPrk(¬~y−i |~ωL
i ) < ξ ′η/2 for all k≥ k′′′. Supposeξ = ξ ′η//2 andk′ = max{k′′,k′′′}.

Sinceη < Prk(wt
−i ∈Wn−1

c \{w̄1}) ≤ Prk(wt
−i 6= w̄1), xt(k) ≤ ξ ′. Consequently (7), with (6),

implies (5) (sinceξ < ξ ′).

Lemma6 guarantees that one round of the cycle of signals will always take a state not inWc

into Wc, ensuring that the probability on states inW\Wc can be controlled.

Lemma 9 Assume the hypotheses of Lemma7, and let ht
i be a private history for playeri

satisfyingŵ = σi(ht
i ). Fix η > 0 and letξ andk′ be the constants identified in Lemma8 . There

existsT such that ift ≥ T, then for allk > k′,

Prk(wt+L
−i /∈Wn−1

c |~ωL
i ,ht

i ) < ξ .

Proof. Fix T large enough, so that if̄w∈Wt (the set of states reachable in periodt) for t ≥ T,
thenWt ⊂ R(w̄) . Separation then impliesPrk(wt+L

−i /∈Wn−1
c , ~y−i) = 0, and so

Prk(wt+L
−i /∈Wn−1

c | ~ωL
i )

= Prk(wt+L
−i /∈Wn−1

c , ~y−i | ~ωL
i )+Prk(wt+L

−i /∈Wn−1
c , ¬~y−i | ~ωL

i )

= Prk(wt+L
−i /∈Wn−1

c , ¬~y−i | ~ωL
i )

≤ Prk(¬~y−i | ~ωL
i ),

which is less thanξ for k≥ k′.

We are now in a position to complete the proof. Supposeĥt
i is a private history for player

i that leads to the private statêw with t ≥ T, and letη be the constant required by Theorem
3. Sinceŵ and w̄ are both reachable in the same period, with positive probability playeri
observes a private historŷht

i that leads to the private statêw. Moreover, atĥt
i his posterior

beliefs that all the other players are in the private statew̄, Prk(wt
−i = w̄1|ĥt

i ), is strictly positive
for all k, though converging to0 as k → ∞ (wherePrk denotes probabilities underπk). If
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Prk(wt
−i 6= w̄1|ĥt

i ) ≤ η , thenPrk(wt
−i = w̄1|ĥt

i ) > 1−η , and sincedi(ŵ) 6= di(w̄), Theorem3
yields the desired conclusion.

Suppose then thatPrk(wt
−i 6= w̄1|ĥt

i ) > η , andk > k′, wherek′ is from Lemma8. Lemmas
8 and9 immediately imply that, as long asPrk(wt+κL

−i 6= w̄1|ht
i ,(~ωL

i )κ) > η , after the first cycle,
the odds ratio falls until eventually,Prk(wt ′

−i 6= w̄1|ht ′
i ) ≤ η , at which point we are in the first

case (sincêw cycles under~ωL
i , i’s private state continually returns tôw).

We conclude by explaining how the difficulty identified in the Introduction is dealt with. In
the above argument, the length of the cycle was determined by Lemma7 from the limit distribu-
tion (Ω∞,π∞), independently ofPrk(wt

−i = w̄1|ĥt
i ). Separation is critical here, since it allows us

to focus on a cycle, rather than an entire outcome path. We then considered private-monitoring
games sufficiently far out in the sequence, such that along the cycle, state transitions occur as
expected with high probability (Lemmas8 and 9). Since we can use a cycle to manipulate
beliefs, the magnitude of the prior is irrelevant; all we need is thatPrk(wt

−i = w̄1|ĥt
i ) > 0.

A. Omitted Proofs

Proof of Lemma 4. Suppose(u∗,(Ω,π)) is ε-closeto (ũ∗,(Y,ρ)) with associated signaling
functions( f1, . . . , fn). Then, for alla,

∣∣∣∣∣ ∑
ω1,...,ωn

u∗i (ωi ,ai)π(ω1, . . . ,ωn|a)−∑
yi

ũ∗i (yi ,ai)ρ(y|a)

∣∣∣∣∣

≤
∣∣∣∣∣∣∑y

∑
ω1∈ f−1

1 (y),...,ωn∈ f−1
n (y)

u∗i (ωi ,ai)π(ω1, . . . ,ωn|a)− ũ∗i (y,ai)ρ(y|a)

∣∣∣∣∣∣
+ |Y|ε max

ωi ,ai
|u∗i (ωi ,ai)|

≤
∣∣∣∣∣∣∑y

ũ∗i (y,ai)



 ∑

ω1∈ f−1
1 (y),...,ωn∈ f−1

n (y)

π(ω1, . . . ,ωn|a)−ρ(y|a)





∣∣∣∣∣∣
+ ε + |Y|ε max

ωi ,ai
|u∗i (ωi ,ai)|

≤ 2|Y|ε max
ωi ,ai

|u∗i (ωi ,ai)|+ ε + ε2 |Y| ,

where the first inequality follows from∑y π ({ω : fi (ωi) = y for eachi}|a) > 1− ε |Y| (an im-
plication of part 1 of Definition4), the second equality follows from|ũ∗i (y,ai)−u∗i (ωi ,ai)|< ε
for all i ∈ N, ai ∈ Ai , andωi ∈ f−1

i (y), and the third inequality from part 1 of Definition4 and
maxy,ai |ũ∗i (y,ai)| ≤ maxωi ,ai |u∗i (ωi ,ai)|+ ε . The last term can clearly be made smaller thanη
by appropriate choice ofε .
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Proof of Lemma 5. Suppose there existsL such that for allw,w′ ∈W reachable in the same
period and for allh∈Y∞,

σ(w,hL) = σ(w′,hL).

Then, for allw,w′ ∈W reachable in the same period and for allh∈Y∞,

d(σ(w,ht)) = d(σ(w′,ht)) ∀t ≥ L+1.

If w = σ(w1,y1, . . . ,yt−L−1) andw′ = σ(w1, ŷ1, . . . , ŷt−L−1), then

s(ht) = d(σ(w,yt−L, . . . ,yt−1))

= d(σ(w′,yt−L, . . . ,yt−1))

= d(σ(w′, ŷt−L, . . . , ŷt−1)) = s(ĥt).

Suppose now the profiles has bounded recall. Let(W,w1,σ ,d) be a representation ofs.
Supposew andw′ are two states reachable in the same period. Then there existshτ andĥτ such
thatw = σ(w1,hτ) andw′ = σ(w1, ĥτ). Then, for allh∈Y∞, (hτ ,ht) and(ĥτ ,ht) agree for the
lastt−1 periods, and so ift ≥ L+1, they agree for at least the lastL periods, and so

d(σ(w,ht)) = s(hτ ,ht)

= s(ĥτ ,ht) = d(σ(w′,ht)).

Minimality of the representing automaton then implies that for allh∈Y∞ andw,w′ ∈W reach-
able in the same period,σ(w,hL) = σ(w′,hL).

Proof of Theorem 3. Let φi (w) be playeri’s continuation value from the strategy profile
(W,w,σ ,d) in the game with public monitoring (i.e.,φi(w) is the continuation value of state
w under the profile

(
W,w1,σ ,d

)
), and letφi (si |w) be the continuation value to playeri from

following the strategysi when all the other players follow the strategy profile(W,w,σ ,d). Since
the public profile is a strict equilibrium and|W|< ∞, there existsθ > 0 such that for alli, w∈W,
ands̃i , a deviation continuation strategy for playeri with s̃1

i 6= di (w),

φi (s̃i |w) < φi (w)−θ .

Every strategỹsi in the game with public monitoring induces a strategysi in the games with
private monitoring that are stronglyε-close in the natural manner:

si(a1
i ,ω1

i ;a2
i ,ω2

i ; . . . ,at−1
i ,ω t−1

i ) = s̃i(a1
i , fi(ω1

i );a2
i , fi(ω2

i ); . . . ,at−1
i , fi(ω t−1

i )).

Denote byVπ
i (w) the expected value to playeri in the game with private monitoring(u∗,(Ω,π))

from the private profile induced by(W,w,σ ,d). Let Vπ
i (si |ht

i ) denote playeri’s continuation
value of a strategysi in the game with private monitoring, conditional on the private historyht

i .
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There existsε andη > 0 such that for all strategies̃si for playeri in the game with public
monitoring, and all historiesht

i for i in the game with private monitoring, if the game with
private monitoring is stronglyε-close to the game with public monitoring andβi (w1|ht

i ) >
1− η , then |Vπ

i (si |ht
i )−φi (s̃i |w)| < θ/3, wheresi is the induced strategy in the game with

private monitoring. (The argument is essentially the same as that of Mailath and Morris (2002,
Lemma 3).)

Suppose there exists a playeri, a private historyht
i , and a statew such thatdi (w) 6= di(σi(ht

i ))
andβi(w1|ht

i ) > 1−η . Denote bys′i the private strategy described by(W,w,σi ,di), s̃′i the public
strategy described by(W,w,σ ,di), si the private strategy described by(W,σi(ht

i ),σi ,di), ands̃i

the public strategy described by(W,σi(ht
i ),σ ,di). Then,

Vπ
i (s′i |ht

i ) > φi(s̃′i |w)−θ/3 = φi(w)−θ/3

> φi(s̃i |w)+2θ/3

> Vπ
i (si |ht

i )+θ/3

= Vπ
i (σi(ht

i ))+θ/3,

so thats′i is a profitable deviation.

Proof of Lemma 6. It is immediate that if the profile satisfies the conditions in the lemma, then
it is separating. Suppose, then, that the profile is separating. Given the outcome pathh∈ Y∞

and statew̃ from the definition of separation,σ(w,ht) denotes the state reached after the first
t−1 signals inh from the statew.

The idea is to construct the setWc by iteratively adding the states necessary to satisfy parts
1 and 2; parts 3 and 4 will then be implications of separation. We start by considering all states
reached infinitely often from states inR(w̃) alongh. While this implies a cycle of those states,
there is no guarantee that other states reachable in the same period will be mapped into the cycle.
Accordingly, we include states that are reached infinitely often from states that are reachable
under any history in the same period as the states just identified, and so on. Proceeding in this
way, we will construct a set of states and a finite sequence of signals with the properties that
the states cycle under the sequence, and every state that could arise is mapped under the finite
sequence of signals to a cycling state.

We begin by denoting byw1(t) the vector of states(σ(w,ht))w∈R(w̃) ∈WR(w̃). SinceW is

finite, so isWR(w̃), and there existsT1
1 such that for allτ ≥ T1

1 , w1(τ) appears infinitely often

in the sequence{w1(t)}t . LetW1≡
{

σ(w,hT1
1 ) : w∈ R(w̃)

}
, i.e.,W1 is the collection of states

that can be reached in periodT1
1 underh, starting from any state inR(w̃). Separation implies∣∣W1

∣∣ ≥ 2. By the definition ofT1
1 , there exists an increasing sequence{Tk

1 }∞
k=2, with Tk

1 → ∞
ask→ ∞, satisfying, for allk≥ 2,

w1(Tk
1 ) = w1(T1

1 ),
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and for allt ≥ T1
1 andk≥ 1, there exists a periodτ with Tk

1 < τ ≤ Tk+1
1 such that

w1(t) = w1(τ).

The first displayed equation implies that for allw∈W1, σ(w,T
1
1hTk

1 ) = w for all k. The second
implies that for any statew in R(w̃) and anyt ≥ T1

1 , the statew′ = σ(w,ht) appears at least once
between each pair of datesTk

1 andTk+1
1 , for all k. For t ≥ T1

1 , w1(t) has
∣∣W1

∣∣ distinct states,

and so is equivalent to
(

σ(w,T
1
1ht)

)
w∈W1

∈WW1
.

The recursion is as follows: For a set of statesWκ and a periodT1
κ , letwκ(t)=

(
σ(w,T

1
κht)

)
w∈Wκ

for t ≥ T1
κ . The recursive step begins with a set of statesWκ and an increasing sequence

{Tk
κ }∞

k=1, with Tk
κ → ∞ ask→ ∞, satisfying, for allk≥ 2,

wκ(Tk
κ ) = wκ(T1

κ ),

and for allt ≥ T1
κ andk≥ 1, there exists a periodτ with Tk

κ < τ ≤ Tk+1
κ such that

wκ(t) = wκ(τ).

DefineR(Wκ) ≡ ∪w∈Wκ R(w); note thatWκ ⊂ R(Wκ). Let wκ+1(t) denote the vector of states(
σ(w,T

1
κhT1

κ +t)
)

w∈R(Wκ )
∈WR(Wκ ). There existŝt ≥ 1 such that for allτ ≥ t̂, wκ+1(τ) appears

infinitely often in the sequence{wκ+1(t)}t . Moreover, there existsT1
κ+1 ≥ T1

κ + t̂ such that

σ(w,T
1

κhT1
κ+1) = w ∀w∈Wκ .

Now, defineWκ+1 = {σ(w,T
1

κhT1
κ+1) : w ∈ R(Wκ)}. By the definition ofT1

κ+1, Wκ ⊂Wκ+1.
Just as in the initial step, there is an increasing sequence{Tk

κ+1}∞
k=2, with Tk

κ+1 → ∞ ask→ ∞,
satisfying, for allk≥ 2

wκ+1(Tk
κ+1) = wκ+1(T1

κ+1),

and for allt ≥ T1
κ+1 andk≥ 1, there exists a periodτ with Tk

κ+1 < τ ≤ Tk+1
κ+1 such that

wκ+1(t) = wκ+1(τ),

concluding the recursive step.
SinceW is finite, this process must eventually reach a point whereWκ+1 = Wκ . We have

thus identified a set of statesWκ and two datesT1
κ andT2

κ , such that letting(ȳ1, . . . , ȳm)≡T1
κ hT2

κ

and settingw̄ = σ(w̃,hT1
κ ) yields parts1 and2 of the Lemma.

Separation implies that underh, for any statew∈ R(w̃)\{w̃} and for all playersi, there is
some state reached infinitely often fromw underh at which i plays differently from the state
reached in that period from̃w. The datesT1

κ andT2
κ have been chosen so that any state reached
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infinitely often underh from a statew∈ R(w̃) appears at least once betweenT1
κ andT2

κ on the
path starting in periodT1

κ from the stateσ(w,hT1
κ ). Consequently, we have part 3.

Finally, since
∣∣W1

∣∣ ≥ 2, |Wc| ≥ 2. If part 4 does not hold for the current choice of cycle
and states, by part 3, it will hold in some period of the cycle(ȳ1, . . . , ȳm), say period̀ . Part4
then holds as well for the cycle beginning in period`, (ȳ`, . . . , ȳm, ȳ1, . . . , ȳ`−1), the statew̄ =
σ(w̃,hT1

κ , ȳ1, . . . , ȳ`−1), and the set of cycling states is given by{σ(w, ȳ1, . . . , ȳ`−1) : w∈Wc}.
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ELY, J. C., J. ḦORNER, AND W. OLSZEWSKI (2005): “Belief-Free Equilibria in Repeated
Games,”Econometrica, 73(2), 377–415.
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