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Abstract

Some private-monitoring games, that is, games with no public histories, can have his-
tories that arealmostpublic. These games are the natural result of perturbing public-
monitoring games towards private monitoring. We explore the extent to which it is possible
to coordinate continuation play in such games. It is always possible to coordinate continu-

ation play by requiring behavior to habeunded recal(i.e., there is a boundd such that in

any period, the ladt signals are sufficient to determine behavior). We show that, in games
with general almost-public private monitoring, this is essentially the only behavior that can

coordinate continuation play.
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Coordination Failure in Repeated Games with Almost-Public
Monitoring

by George J. Mailath and Stephen Morris

1. Introduction

Intertemporal incentives often allow players to achieve payoffs that are inconsistent with myopic
incentives. For games with public histories, the construction of sequentially rational equilibria
with nontrivial intertemporal incentives is straightforward. Since continuation play in a pub-
lic strategy profile is a function of public histories only, the requirement that continuation play
induced by any public history constitute a Nash equilibrium of the original game is both the nat-
ural notion of sequential rationality and relatively easy to check (Abreu, Pearce, and Stacchetti
(1990)). Thesgerfect public equilibrigor PPE) use public histories to coordinate continuation
play.

While games with private monitoring (where actions and signals are private) have no public
histories to coordinate continuation play, some do have histories thaframstpublic. We
explore the extent to which it is possible to coordinate continuation play for such games. It is
always possible to coordinate continuation play by requiring behavior to thaweded recall
(i.e., there is a bound such that in any period, the lalstsignals are sufficient to determine
behavior). We show that, in games with general almost-public private monitoring, this is essen-
tially the only behavior that can coordinate continuation play. To make this precise, we must
describe what it means for a game to have “general but almost-public private monitoring” and
“essentially.”

Since the coordination-of-continuation-play interpretation depends on the structure of the
strategy profile, we focus on equilibrium strategy profiles, rather than on the equilibrium payoff
set, of private-monitoring games. Very little is known about the general structure of the equilib-
rium payoff set for general private-monitoring games. We return to this issue at the end of the
Introduction.

Fix a game with full support public monitoring (so that every signal arises with strictly
positive probability under every action profile). In the minimal perturbation of the public-
monitoring game towards private monitoring, each player obsergéasate signal drawn from
the space of public signals, and the other specifications of the game are unchanged. In this
private-monitoring game, at the end of each period, there is a profile of private signals, and we
say the game haminimally-private almost-public monitoriri§the probability of any profile in
which all players observe the same value of the signal is close to the probability of that signal
in the public-monitoring game (there is also positive probability that different players observe
different values of the public signal).



Any strategy profile of a public-monitoring game naturally induces behavior in minimally-
private almost-public-monitoring gamé&sMailath and Morris (2002) introduced a useful rep-
resentation device for these profiles. Recall that all PPE of a public-monitoring game can be
represented in a recursive way by specifying a state space, a transition function mapping public
signals and states into new states, and decision rules for the players, specifying behavior in each
state (Abreu, Pearce, and Stacchetti (1990)). We use the same state space, transition function
and decision rules to summarize behavior in the private-monitoring game. Each player will now
have aprivate state and the transition function and decision rules define a Markov process on
vectors of private states.

This representation is sufficient to describe behavior under the given strategies, but (with
private monitoring) isiot sufficient to verify that the strategies are optimal. It is also necessary
to know how each player’s beliefs over the private states of other players evolve. This is at
the heart of the question of whether histories can coordinate continuation play, since, given a
strategy profile, a player’s private state determines that player’s continuation play. A sufficient
condition for a strict equilibrium to remain an equilibrium with private monitoring is that after
every history each player assigns probability uniformly close to one to all other players being
in the sameprivate state (Mailath and Morris (2002, Theorem 4.1)). PPE with bounded recall
satisfy this sufficient condition, since for sufficiently close-by games with minimally-private
almost-public monitoring, the probability that all players observed the samk &ighals can
be made arbitrarily close to one. However, under other strategy profiles, the condition may fail.
The grim trigger PPE in some parameterizations of the repeated prisoners’ dilemma, for exam-
ple, does not induce an equilibriumanyclose-by minimally-private almost-public-monitoring
game (Exampl2in Sectiori3.1).

The restriction to minimally-private almost-public monitoring is substantive, since all play-
ers’ private signals are drawn from a common signal space. In this paper, we allow for the
most general private monitoring consistent with the game being “close-to” a public-monitoring
game. We assume there is a signalling function for each player that assigns to each private
signal either some value of the public signal or a dummy signal (with the interpretation that that
private signal cannot be related to any public signal). Using these signalling functions (one for
each player), there is a natural sense in which the private monitoring distribution can be said
to be close to the public monitoring distribution, even when the sets of private signals differ,
and may have significantly larger cardinality than that of the set of public signals. We say such
games havalmost-public monitoringlf every private signal is mapped to a public signal, we
say the almost-public-monitoring gamesisongly closeo the public-monitoring game.

Using the signalling functions, any strategy profile of the public-monitoring game induces
behavior in strongly-close-by almost-public-monitoring games. As in minimally-private almost-
public-monitoring games, a player’s private state determines that player’s continuation play.

1Since playeri's set of histories in the public-monitoring game and in the minimally-private almost-public-
monitoring game agree, the domains for play®strategy in the two games also agree.



Given a sequence of private signals for a player, that player’s private state is determined by the
induced sequence of public signals that are the result of applying his signalling function. Con-
sequently, it might appear that the richness of the private signals does not alter the situation from
the case of minimally-private almost-public monitoring. However, the richness of the private
signals is important for the formation of that player’'s beliefs about the other players’ private
states. It turns out that the requirement that the private-monitoring distribution be close to the
public-monitoring distribution places essentially no restriction on the manner in which private
signals enter into the formation of posterior beliefs. Nonetheless, if the profile has bounded
recall, the richness of the private signals is irrelevant. Indeed, even if the private-monitoring
games are not strongly close to the public-monitoring game, there is still a natural sense in
which every strict PPE with bounded recall induces equilibrium behavior in every close-by
almost-public-monitoring game (Theoréih

When a strategy profile of the public-monitoring game does not have bounded recall, re-
alizations of the signal in early periods can have long-run implications for behavior. Subject
to some technical caveats, we call such a prafparating While the properties of bounded
recall and separation do not exhaust possible behavior, they do appear to cover most behaviors
of interes? When the space of private signals is sufficiemity in the values of posterior-odds
ratios (this is what we mean by “general almost public”), and the profile is separating, it is pos-
sible to manipulate a player’s updating over other players’ private states through an appropriate
choice of private history. This suggests that it should be possible to choose a private history
with the property that a player (say, playgrs in one private state and assigns arbitrarily high
probability to all the other players being in a different common private state.

There is a significant difficulty that needs to be addressed in order to make this argument:
The history needs to have the property that playswery confident of the other players’ state
transitions for any given initial state. This, of course, requires the monitoring be almost-public.
At the same time, monitoring must be sufficiently imprecise that plgyefter an appropriate
initial segment of the history, assigns positive probability to the other players being in acommon
state different from’s private state. This is the source of the difficulty: for dmength history,
there is are (decreasing i) such that for private monitoring-close to the public monitoring,
playeri is sufficiently confident of the perio@l private states of players+ i as a function of
their periodt < T private states (and the history). However, thiguts an upper bound on the
prior probability that player can assign in periodto the playerg # i being in a common state
different fromi’s private state. Since the choice Bfis decreasing in this prior (i.e., larg@r
required for smaller priors), there is a tension in the determinatidnanfde.

We show, however, that any separating profile implementable using a finite number of states
has enough structure that we can choose the history so that not only do relevant states cycle,
but that every other state transits under the cycle to a cycling state. The cycle allows us to

2We provide one example of a non-separating profile without bounded recall in SBdibrample6). This
profile is not robust to the introduction of even minimally-private monitoring.



effectively choose th& above independently of the prior, and gives us our main result (Theorem
4): Separating strict PPE profiles of public-monitoring games implementable using a finite
number of states do not induce Nash equilibriamystrongly-close-by games with rich private
monitoring.

Thus, separating strict PPE of public-monitoring games are not robust to the introduction
of even a minimal amount of private monitoring. Consequently, separating behavior in private-
monitoring games typically cannot coordinate continuation play (CorallaryOn the other
hand, bounded recall profiles are robust to the introduction of private monitoring. The extent
to which bounded recall is a substantive restriction on the set of payoffs is unkhdur.
results do suggest, even for public-monitoring games, that bounded recall profiles are particu-
larly attractive (since they are robust to the introduction of private monitoring). Moreover, other
apparently simple strategy profiles are problematic.

Our focus on equilibrium strategy profiles is in contrast with much of the literature in
repeated games with private monitorthgror the repeated prisoners’ dilemma with almost-
perfect private monitoring, folk theorems have been proved using both equilibria with a coor-
dination interpretation (for example, Sekiguchi (1997), which we discuss in Exétnpled
Bhaskar and Obara (2002)) and those that are “belief-free” (for example, Piccione (2002), Ely
and Valimaki (2002), and Matsushima (208%) Loosely, belief-free equilibria are constructed
so that after relevant histories, players are indifferent between different choices. In games with
finite signal spaces, this requires a significant amount of randomization (randomization is not
required with a continuum of signals, but only because behavior can be purified using signals).
Not only is the generality of this approach unclear (Elrirer, and Olszewski (2005)), these
equilibria do not have a clean coordination interpretation due to the extent of player indiffer-
ences.

Finally, we view our findings as underlining the importance of communication in private-
monitoring games as a mechanism to facilitate coordination. For some recent work on com-
munication in private-monitoring games, see Compte (1998), Kandori and Matsushima (1998),
Fudenberg and Levine (2004), and McLean, Obara, and Postlewaite (2002).

3Cole and Kocherlakota (forthcming) show that for some parameterizations of the repeated prisoners’ dilemma,
the restriction to strongly symmetric bounded recall PPE results in a dramatic collapse of the set of equilibrium
payoffs.

4See Kandori (2002) for a brief survey of this literature, as well as the accompanying symposium issue of the
Journal of Economic Theomgn “Repeated Games with Private Monitoring.”

SMatsushima (2004) covers some two player games with private monitoring that need not be almost perfect, with
signals that are either conditionally independent or have a particular correlation structure. His analysis does not
cover almost-public-monitoring games.



2. Games with Imperfect Monitoring

2.1. Private-Monitoring Games

The infinitely-repeated game with private monitoring is the infinite repetition of a stage game
in which at the end of the period, each player learns only the realized value of a private signal.
There aren players, with a finite stage-game action set for playeN = {1....,n} denoted.
At the end of each period, each playebserves a private signal, denotgddrawn from a finite
setQ;. The signal vectow = (wy, ..., wh) € Q= Q1 x --- x Q, occurs with probabilityt(w|a)
when the action profila € A= []; A is chosen. Playéardoes not receive any information other
thanaw about the behavior of the other players. All players use the same discount &actor,
Sincew is the only signal a player observes about opponents’ play, we assume (as usual)
that playeri’s payoff after the realizatiofiw,a) is given byu; (w,a;). Stage game payoffs
are then given by (a) = S, U (w, &) m(w|a). It will be convenient to index games by the
monitoring technologyQ, m), fixing the set of players and action sets.
A pure strategy for playerin the private-monitoring game is a functign 4 — A;, where

= UP (A< Qi)'
is the set of private histories for playier
Definition 1 A pure strategy isction-freef, for all hf, ﬁ} € J satisfyingw’ = @ forall T <t,
s(h)) =s ().

Since action-free strategies play a central role in our analysis, it is useful to note the follow-
ing immediate result, which does not require full-support monitoring (its proof is omitted):

Lemma 1 Every pure strategy in a private-monitoring game is realization equivalent to an
action-free strategy. Every mixed strategy is realization equivalent to a mixture over action-free
strategies.

Remark 1 Behavior strategies realization equivalent to a mixed strategy will typically not be
action-free. For example, consider the once repeated prisoners’ dilemma, with action spaces
A ={e,n},° Qi = {gi, b}, and the mixed strategy assigning equal probability to the two action-
free strategies; and$;, where

51 (9) =e1; s1(91) =€y, S (by) =y,

and
81(2) =ng; §1(g1) =Ny, § (b)) =y

Sinterpreting the prisoners’ dilemma as a partnership ganis ‘exert effort,” whilen; is “no effort.”
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Figure 1:The prisoners’ dilemma.

A behavior strategy realization equivalent to this mixed strategy must specify in the second pe-
riod behavior that depends nontrivially on playiés first period action. (A similar observation

applies to public-monitoring games: every pure strategy is realization equivalent to a public
strategy, every mixed strategy is realization equivalent to a mixture over public strategies, and
yet all behavior strategies that are realization equivalent to a mixed strategy may not be public.)

Every pure action-free strategy can be represented by a set of\&tatesinitial staten!,

a decision ruled; : W — A; specifying an action choice for each state, and a transition function
0 : W x Q; — W. In the first period, playerchooses actioa! = d;(w!). At the end of the first
period, the vector of actions?, then generates a vector of private signalsaccording to the
distributiont(- |at), and playei observes the signal'. In the second period, playechooses

the actiona? = dj (W?), wherew? = oj(w, ), and so on. Any action-free strategy requires at
most the countable s = U Q2.

Any collection of pure action-free strategies can be represented by a set of\SBtates
decision ruled;, and a transition functiow; (the initial state indexes the pure strategies). One
class of mixed strategies is described Wy, 1, di, gi ), wherey; is a probability distribution over
the initial stataNil, andW is countable. Not all mixed strategies can be described in this way,
since the set of all pure strategies is uncountable (which would régftebe uncountable).

Remark 2 A consequence of Remalkis that action-free strategy profiles, and profiles of
mixtures over action-free strategies, are often not sequentially rational. However, when the
monitoring has full support, every Nash equilibrium has a realization-equivalent sequentially
rational strategy profile (see Sekiguchi (1997, Proposition 3) and Kandori and Matsushima
(1998, p. 648)). Consequently, we focus on Nash equilibria of games with private monitoring.

Example 1 We will often use the repeated prisoners’ dilemma under various monitoring as-
sumptions. The ex ante stage game is given by the normal form in Figursluch of the
literature has studiedlmost-perfect conditionally-independent private monitoriptayeri’s
signals are given b@; = {&,fi;}, with & € Q; a signal ofa; € Aj = {ej,n;}. Playersl and2’s

"Here (and in other examples) we follow the literature in assuming the ex ante payoff matrix is independent of
the monitoring distribution. This simplifies the discussion and is without loss of generality: Ex ante payoffs are
close when the monitoring distributions are close (Lerdinand all relevant incentive constraints are strict.



signal are, conditional on the action profile, independently distributed, with
n(élé2|a1a2) =Tn (él‘az) 112} (éz|a1)

and
Ala\ 1—8, ifé;:aj,
wala={ " Ga e

wheree > 0 is a small constant. As will be clear, we focus on a different class of private
monitoring distributions.

In an important article, Sekiguchi (1997) constructed an efficient equilibrium for the almost-
perfect conditionally-independent case (as well as for correlated but almost-perfect monitoring).
Let W = {wew"}, gi(w", &) =w" for all §, gi(wf,&) = we, andg;(we, i) =w". The pure
strategy of grim trigger (begin playing, and continue to plag as long as§ is observed,
switch ton; after; and always playy thereafter) is induced by the initial stat¢ = w?. The
pure strategy of always play is induced by the initial state' = w". The critical insight in
Sekiguchi (1997) is that while grim trigger is not a Nash equilibrium of this game, the symmetric
mixed strategy profile where each player independently randomizes over initial states
w" is an equilibrium (as long a8 is not too close td). Sekiguchi (1997) then constructs an
equilibrium for largerd by treating the game ad distinct games, with thi game played in
periodsk+tM, fort € O0. The mixed equilibrium foM = 3 is constructed from the machine
in Figure2. The staten®"€for example corresponds to grim trigger in “gamésand 3, and
alwaysn; in game2.

2.2. Public-Monitoring Games

We turn now to the benchmark public-monitoring game for our games with private monitoring.
The finite action set for playarc N is againA;. The public signal is denotegand is drawn
from afinite set. The probability that the signgloccurs when the action profilec A= [; A
is chosen is denotegdl(y|a). We refer to(Y, p) as the public-monitoring distribution. Playés
payoff after the realizatiofty,a) is given by (y,a;). Stage game payoffs are then given by
Gi (a) = 3,0 (v,a) p (y|a). The infinitely repeated game with public monitoring is the infinite
repetition of this stage game in which at the end of the period each player learns only the
realized value of the signgl Players do not receive any other information about the behavior
of the other players. All players use the same discount fagtor,

A strategy for player is publicif, in every periodt, it only depends on the public history
ht € Y'=1, and not ori’s private history® Henceforth, by the termublic profile we will always
mean a strategy profile for the public-monitoring game that is itself publigedect public
equilibrium (PPE)is a profile of public strategies that, after observing any public histhry

8Note that strategies of public-monitoring games are public if and only if they are action-free when we view the
public-monitoring game as a game with (trivial) private monitoring.



Figure 2: The automaton described the pure strategies in Sekiguchi (199%) fer3. The
decision rules ard; (WabC) = g;. Unlabeled arrows are unconditional transitions.

specifies a Nash equilibrium for the repeated game. Under imperfect full-support public mon-
itoring, every public history arises with positive probability, and so every Nash equilibrium in
public strategies is a PPE.

Any pure public strategy profile can be described as an automaton as follows: There is a set
of statesW, an initial statew! € W, a transition functioro : W x Y — W, and a collection of
decision rulesgl : W — A;. In the first period, playerrchooses actios! = d| (wl). The vector
of actions,a!, then generates a signgl according to the distributiop (-\al). In the second
period, playeii chooses the actioaf = d; (W?), wherew? = o (w,y!), and so on. Since we
can takeW to be the set of all histories of the public signalsoYX, W is at most countably
infinite. A public profile isfinite if W is a finite set. Note that, given a pure strategy profile
(and the associated automaton), continuation play after any history is determinedployplice
state reached by that history. In games with private monitoring, by contrast, given an action-free
strategy profile (and the associated automaton), a sufficient statistic for continuation play after
any history is the vector of curreptivate states, one for each player.

Denote the vector of average discounted expected values of following the public profile
(W,w, 0,d) (i.e., the initial state isv) by @(w). Define a functiorg: AxW — W by g(a;w) =
(1-d)u(@+oy,0(co(wy))p(yla). We have (from Abreu, Pearce, and Stacchetti (1990)),
that if the profile is an equilibrium, then, for all € W, the action profildd; (w),...,dy(w)) =
d(w) is a pure strategy equilibrium of the static game with strategy spacesd payoffs
gi(-;w) for eachi and, moreoverg(w) = g(d(w),w). Conversely, if(W,w!, o,d) describes
an equilibrium of the static game with payoff-;w) for all w € W, then the induced pure



strategy profile in the infinitely repeated game with public monitoring is an equilitiuin.
PPE(W,w}, g,d) is strict if, for all w € W, d(w) is a strict Nash equilibrium of the static game
g(- ;w).1

A maintained assumption throughout our analysis is that public monitoring has full support.

Assumption 1 p(y|a) > OforallycY and allac A.

Definition 2 An automaton(W,w?, a,d) is minimal if for every statew € W, there exists
a sequence of slgnabs1 LY such thatw = o (9%,...,9;wh)), wherea(¥,...,¥,;wh) =
o(¥,o(...,a(y,wh))), and for every pair of states,w ew, there exists a sequence of signals
.,yL such that for somg di(o(yh,...,y5w)) A di(o(yh,...,y5 W)

The restriction to minimal automata is without loss of generality: every profile has a min-
imal representing automaton. Moreover, this automaton is essentially Uricuecordingly,
we treat a public strategy profile and its minimal representing automaton interchangeably.

3. Almost-Public Monitoring

3.1. Minimally-private almost-public monitoring

Games with public monitoringY, p) are nested within games with private monitoring, since
public monitoring simply means that all players always observe the same signaf)ji-=.,
Q; =Y, andm(y,...,yla) = p(y|a) for all a. Mailath and Morris (2002) discussed the case of
minimally-private monitoring, in the sense that there is a public monitoring distrib(¥igm)
with Q; =Y andr close top:

Definition 3 A private-monitoring gaméu*, (Y", 1)) is e-closeto a public-monitoring game
(@, (Y,p)), if |G (y,a) —u(y,&)| < € and |1t((y,...,y)|a) —p(yla)| < eforallie N,yeY
and alla € A. We also say that such a private-monitoring game in&smally-private almost-
public monitoring

SWe have introduced a distinction betwedhand the set of continuation payoffs for convenience. Any pure
strategy equilibriurpayoff can be supported by an equilibrium whatec O' and @(w) = w (again, see Abreu,
Pearce, and Stacchetti (1990)).

19equivalently, a PPE is strict if each player strictly prefers his equilibrium strategy to everypmibkc strategy.
For a large class of public-monitoring games, strictness is without loss of generality, in that a folk theorem holds for
strict PPE (Fudenberg, Levine, and Maskin (1994, Theorem 6.4 and remark)).

115upposeéW, w!, o, d) and(W, W!, &, d) are two minimal automata representing the same public strategy profile.
Define a mappingp : W — W as follows: Setp(w') = Wl Forw e W\{w!'}, lety',...,§¢ be a public history
reachingw (i.e., w = a(y%,...,y;wh)), and setp (W) = &(¥*,..., .9 W1)). Since both automata are minimal and
represent the same profll¢ does not depend on the ch0|ce of publlc hlstory reackiingt is straightforward to
verify that ¢ is one-to-one and onto. Moreoveér(y, W) = ¢ (o (y, ¢ ~1(W)), andd(W) = d(¢ (w)).



Forn > Othere ise > 0 such that if(u*, (Y", ) is e-closeto (0%, (Y, p)), then

> u(vi,&)mys,. .. ynla) - Z“ y,a)p(yla)| <

In other words, the ex ante stage payoffs of any minimally-private almost-public-monitoring
game are close to the ex ante stage payoffs of the benchmark public-monitoring game.

An important implication of the assumption that the public monitoring has full support is
that when a player observes a private signéfor € small) that player assigns high probability
to all other players also observing the same signal, irrespective of the actions taken. Since the
proof is immediate, it is omitted.

Lemma 2 Fix a full support public monitoring distributiop andn > 0. There existg > 0
such that ifrtis e-close top, then for allac Aandy €Y,

T (yllay) >1-n.

A public strategy profiléW,w!, g, d) in the public-monitoring game induces a strategy pro-
file (s1,...,Sn) in minimally-private almost-public-monitoring games in the obvious w&y:=
di(wh), S(at,yb) = di(a(wh, y})) = di(w?), and defining states recursively by = o (W, y}),
for i = (al,yha2,y%...;a Ly ) € (AxY)' L, d(hf) = di(wh). This private strategy is, of
course, action-free.

If W is finite, each player can be viewed as following a finite state automaton. Hopefully
without confusion, when we can take the initial state as given, we abuse notation and write
wh = o(wh, ht) = o(ht). We describevt as playeii’s private statein periodt. It is important
to note that while all players are in the same private state in the first period, since the signals
are private, after the first period, different players may be in different private stateprivate
profile is the translation to the private-monitoring game of the public profile (of the public-
monitoring game).

If player i believes that the other players are following a strategy that was induced by a
public profile, then a sufficient statistic bf for the purposes of evaluating continuation strate-
gies is playei’s private state ands beliefs over the other players’ private states, ief, 8!),
wheref! € AWWN-1). In principle, W may be quite large. For example, if the public strategy
profile is nonstationary, it may be necessary to ¥k be the set of all histories of the public
signal,Ux=oYX. On the other hand, the strategy profiles typically studied can be described with
a significantly more parsimonious collection of states, often finite. Whkias finite, the need
to only keep track of each player’s private state and that player’s beliefs over the other players’
private states is a considerable simplification, as the following result (Mailath and Morris (2002,
Theorem 4.2)) demonstrates.

10



Theorem 1 Suppose the public profil@V,w!, o,d) is a strict equilibrium of the full-support
public-monitoring game for som&and |W| < . For all k > 0, there exist$) and € such that

in any game with minimally-private almost-public monitoring, if the posterior beliefs induced by
the private profile satisf (o (h) 1|hf) > 1—n for all ht = (di(w*), y; di(W2),y2; ... ; di(wh1), v 1),
wherewr+1 = g(w',y}), and if rTis e-close top, then the private profile is a Nash equilibrium

of the game with private monitoring for the samand the expected payoff in that equilibrium

is within k of the public equilibrium payoff.

Example 2 We return to the repeated prisoners’ dilemma, with ex ante stage game given by
Figurel (recall footnoter). In the benchmark public-monitoring game, the set of public signals
isY = {y,y} and public monitoring distribution is

p, if agax =ere
p(Ylasaz) = ¢ 0, if ayap =einp orniey,
r, if agap =nino.

The grim trigger strategy profile for the public-monitoring game is described by the automaton
W = {wf,w"}, initial statew®, decision rulesl;(w?) = &, and transition rule

[ wEify=yandw=wF,
a(vv,y)_{ w",  otherwise.

Grim trigger is a strict PPE i& > (3p—2g)~! > 0 (a condition we maintain throughout this
example). We turn now to minimally-private-monitoring games thatactse to this public-
monitoring game. It turns out that, far small, grim trigger induces a Nash equilibrium in
such games ify < r, but not if g > r. Consider first the casg > r and the private history
(ery,,My1,my1,...,my1). We now argue that, after a sufficiently long such history, the grim
trigger specification ofi; is not optimal. Intuitively, while playet has transited to the private
statew}, playerl always puts strictly positive (but perhaps small) probability on his opponent
being in private stat&s. Sinceq > r (and¢ is small), the private signal; after playingn;

is an indication that playe? had playede, (rather tham,), and so playefl’s posterior that
player2 is still in w5 increases. Eventually, playéris sufficiently confident of playe still
being inw5 that he finds; suboptimal. On the other hand, whgr< r, such a history is not
problematic because it reinforcé's belief that2 is also inwj. Two other histories are worthy
of mention: (elyl,nlyl,nlyl, ;n1y,) and(ewy, e1y1, e1y1, ..., ey1). Under the first history,
while the S|gnab/ is now a signal tha® had chosem, in the previous period, fog small, 1

is confident thaR also observedl, and so will transit tar5. For the final history, the signgi
continually reassuresthat?2 is stlll playing e, and soe; remains optimal. (See Mailath and
Morris (2002, Section 3.3) for the calculations underlying this discussion.)

Example 3 As the players become patient, the payoffs from grim trigger converg@ @. A
grim trigger profile (i.e., a profile in which the specificationmpfs absorbing) can only achieve
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Figure 3:Forgiving grim trigger where any two realizationsyofead tow".

significant payoffs for patient players by being forgiviiigSuch a profile provides a different
example of how a strict PPE can fail to induce a Nash equilibrium in close-by minimally-
private-monitoring games. The simplest forgiving profile requires two realization®aiwitch

to ninp. The automaton for this profile has a set of stAtés- {wf,We w"}, initial statew®,
decision rulesl;(w?) = g andd;(W¢) = g, and transition function

we, if y=yandw=wF,
owy) =4 W, ify=yandw=wory=yandw =W,
w",  otherwise.

The profile is illustrated in Figur8. This PPE never induces a Nash equilibrium in close-
by minimally-private-monitoring games: consider a private history in which playsayse;
and observey; for T periods, and then observgs Under the forgiving profile, playet is
supposed to switch to the private stéigand continue to plag; (until anothely is observed).
But, for largeT, it is more likely that playe® has observeg, in exactly one of the first
periods than having observggin every period-® Consequently, for larg&, playerl will not
find e, optimal. Clearly, the same analysis applies to forgiving grim triggers that require more
realizations ofy to switch tow".

Another class of forgiving grim trigger profiles requires successive realizatiorystf
switch tow”. In the three state version, the automaton is identical to that above exghy) =
we (see Figured). The analysis of this profile is similar to that of Exam@leThe profile does
not induce a Nash equilibrium in close-by minimally-private-monitoring gameg>ifr for
similar reasons. There are now two possibilities for the ¢gse, since isolated observations
of y, do not lead tony). For the histories considered in Exam@lethe same argument applies
once we note that, conditional on players being in onefbr W¢, a player assigns very high
probability to the other player being in the same state, since this is determined by the last signal.

12This is the class of profiles studied by Compte (2002) for the conditionally-independent private-monitoring
prisoners’ dilemma.

13This type of drift of beliefs is a general phenomenon when players choose the same action in adjacent states
(see also Exampl@).
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Figure 4:Forgiving grim trigger where two successive realizationg lefad tow".

The remaining histories are those with isolated observatiogs dthe critical history (since it
contains the largest fraction g{’s consistent withey) is (eys, ey, ey, ey, ,e1y1), thatis,
alternatingy, andy;. If p(1—p) > q(1—q), then such a history (weakly) indicates that player
2 is still playing e;, while the reverse strict inequality indicates that plages playing n,.
Summarizing, the profile induces a Nash equilibrium in close-by minimally-private-monitoring
games ifand only iff<r andp(1—p) >q(1-q).

3.2. General almost-public monitoring

We now turn to the most general private monitoring structure that nonetheless preserves the
essential characteristics of both Definit@and Lemmé2.14

Definition 4 The private monitoring distributiofQ, 1) is e-closeunder f to the public mon-
itoring distribution (Y, p), wheref = (fy,..., f,) is a vector ofsignaling functionsf; : Q; —
YU{@},if

1. foreachae Aandye,

n{w: fi(w)=yforalli}|ja)—p(yla)| < &,

and

14while there is a connection to informational smallness (see, for example, McLean and Postlewaite (2004)),
these are distinct notions. For concreteness, sup@oi&ea noisy signal ofy. Then,(Q, m) is e-close to(Y, p) if
and only if the private signal is a sufficiently accurate signal.oA player isinformationally smalif the posterior
ony, conditional on the other players’ private signals, on average does not vary too much with that player’s private
signal. Even if each player’s private signal is very accurate, the posterior can vary dramatically in a player’s signal
if that player’s signal is sufficiently accurate relative to the other players. Moreover, if there are many players, even
when signals are very noisy, each player will be informationally small.
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2. forallyeY, w e f1(y), and allac A,
m({wi: fj(w)=yforall j#i}|(a,m)) > 1—e¢.

The private monitoring distributiofiQ, 1) is strongly e-closeunder f to the public mon-
itoring distribution (Y, p) if it is e-close underf, and in addition, all the signaling functions
map intoy.

A private monitoring distributio{Q, i) is (strongly)e-closeto the public monitoring dis-
tribution (Y, p) if there exists a vector of signaling functioissuch that(Q, i) is (strongly)
e-close underf to (Y, p).

If the private monitoring iss-close underf, but not stronglye-close underf, then some
private signals are not associated with any public signal: there is a sigsatisfyingfi (w) =
@. Such an “uninterpretable” sighal may contaminformation about the signals observed by
the other players.

Note that the second condition implies that every player has at least one private signal
mapped to each public signal. Moreover, for the c@gse- Y, the first condition implies the
second (Lemm@).

The condition ofe-closeness in Definitiod can be restated as follows. Recall from Mon-
derer and Samet (1989) that an evenpievidentif, whenever it is true, everyone assigns
probability at leasp to it being true. The following Lemma is a straightforward application of
the definitions, and so we omit the proof.

Lemma 3 Suppossd; : Q; — YU{@},i=1,...,n, is a collection of signaling functions. The
private monitoring distribution(Q, 1) is e-close underf to the public monitoring distribution
(Y,p) if and only if for each public signal, the set of private signal profildgv: fi (cn) =y for
all i} is (1— g)-evident (conditional on any action profile) and has probability withiaf the
probability ofy (conditional on that action profile).

Example 4 We now allow playerl to have a richer set of private signa3; = {y,.y,¥;},
keeping playeP signals unchange®, = {XZ,YZ}. The probability distribution of the signals is
given in Figureb. This private-monitoring distribution ig/e-close to the public-monitoring dis-
tribution of Example2 under the signaling functiorfs(y,) =yandfz(y2) = fi(y;) = f1(¥7) =V,
as long ag is sufficiently small, relative tanin{a’,a — a'}.

Definition 5 A private-monitoring gaméu®, (Q, 1)) is e-close (undef) to the public-monitoring
game(0*, (Y,p)), if (Q, n) is e-close underf to (Y,p) and

|G (fi(),a) — Ui (@, @) <€

forallieN,a A, andw € fi‘l(Y). We will also say that such a private-monitoring game
hasalmost-public monitoring
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18y Y, y2

y, | (1-a)(1-3¢) £
A £ a’(1—3e)
4 £ (a—a')(1-3¢)

Figure 5: The probability distribution of the private signals for ExamgleThe distribution is
given as a function of the action profiga,, wherea = pif aja, = e1e, qif aja, = e1ny or
n1&, andr if aja, = nin, (analogouslya’ is given byp', d, orr’ as a function ofay). All
probabilities are strictly positive.

As above, the ex ante stage payoffs of any almost-public-monitoring game are close to the
ex ante stage payoffs of the benchmark public-monitoring game (the proof is in the Appendix).

Lemma 4 For all n > 0, there ise > 0 such that if(u*, (Q, )) is e-closeto (0", (Y, p)), then

> ui(@.a)mer, ... whla) — Y G (y.a)p(yla) <n.
W5 Gh y

Fix a public profile(W,w?, o,d) of a full-support public-monitoring gan{éi*, (Y, p)), and,
underf, a stronglye-close private-monitoring game*, (Q, 1)). The public profile induces a
private profile in the private-monitoring game in a natural way: Plégestrategy is described
by the automatorfW,w!, g;,d;), whereai(w,w) = a(w, fi(w)) for all w € Q; andw € W.
The set of states, initial state, and decision function are from the public profile. The transition
functiong; is well-defined, because the signaling functions all mapYht@ther thary U{&}.
As for games with minimally-private almost-public monitoring, if playbelieves that the other
players are following a strategy induced by a public profile, a sufficient statistif fof the
purposes of evaluating continuation strategies is pléyqrivate state ands beliefs over the
other players’ private states, i.éwt,B!), wheref! € A(WNfl). Finally, we can recursively
calculate the private states of playeasw? = o(W!, fi(w?!)) = a(wWh, wt), Wwe = 0 (W2, ?),
and so on. Thus, for any private histdty we can writest = g;(ht).

Example 5 In Example2, we argued that ifj < r, grim trigger induces Nash equilibrium be-
havior in close-by minimally-private-monitoring games. We now argue that under the private
monitoring distribution of Exampld, even ifg < r, grim trigger will not induce a Nash equi-
librium behavior in some close-by games. In particular, suppose’ < d < q<r. Under

this parameter restriction, the signélaftern; is indeed a signal that play&mad also played

no. However, the signaf, aftern, is a signal that playe? had playeds, and so a sufficiently
long private history of the forn(lelyl,nly'l,nly'l, ...,myj) will lead to a posterior for playet

at whichng is not optimal.
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4. PPE with bounded recall

As we saw in Exampl§, arbitrary public equilibria need not induce equilibria of almost-public-
monitoring games, because the public state in pdriedietermined, in principle, by the entire
historyh'. For profiles that have bounded recall, the entire history is not needed, and equilibria
in bounded recall strategies will induce equilibria in almost-public-monitoring gafnes.

Definition 6 A public profiles has bounded recalif there existsL such that for allht =
(..., Y andht = (y,...,¢¢ 1), ift > Landy’ =y  fort =t —L,...,t — 1, then

s(ht) = s(hh).

LetW be the set of states reachable in petidtf = {we W :w=a(wh,y',y?, ...,y 1) for
some(yl,y?, ...,y 1), wherew! is the initial stat¢. The following characterization of bounded
recall (proved in the Appendix) is useful.

Lemma 5 The public profile induced by the minimal automat@w!, o,d) has bounded re-
call if and only if there exists such that, for alk andw,w € W and for allh € Y®,

o(w,ht) = a(w,hh).

Fix a strict public equilibrium with bounded reca(W, wh, o,d). Fix a private monitoring
technology(Q, ) e-close underf to (Y, p). Following Monderer and Samet (1989), we first
consider aconstrained gamehere behavior after “uninterpretable signals” is arbitrarily fixed.
Define the set of “uninterpretable” private historiel$,= {h : 7 € {1 (), somer satisfying
t—L <1 <t-—1}. Thisis the set of private histories for which in any of the lagteriods, a
private signako’ satisfyingf; (w') = @ is observed. We fiarbitrarily playeri’s action after
any private histonht € HU. For any private history that is not uninterpretable, each of the last
L observations of the private signal can be associated with a public signal by the fufiction
Denote byw; (hf) the private state so obtained. That is,

wi(h) = (fi(e ™), fi(a ™),

for all ht ¢ HY. We are then left with a game in which in peribd 2 playeri only chooses
an action after a signemq‘*1 yields a private history not ifl". We claim that fore sufficiently

15Denote a dummy signal by. Mailath and Morris (2002) used the teroounded memorfor public pro-
files with the property that there is an intedesuch that a representing automaton is giveWy= (Y U {x})*,
aly,(y-,...,Y2¥h)) = (V,y,....¥?) forally e Y, andw! = (x,...,%). Our earlier notion implicitly imposes a time
homogeneity condition, since the caveat in Lenfrthat the two states should be reachable in the same period is
missing. The strategy profile in which play alternates between the same two action profiles in odd and even periods
has bounded recall, but not bounded memaory.
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small, the profilg$s,. .., %) is an equilibrium of this constrained game, whéris the strategy

for playeri:
sty { G, - ift=1
' di(wi(ht)), ift>landht ¢ H".

But this follows from arguments almost identical to that in the proofs of Mailath and Morris
(2002, Theorems 4.2 and 4.3): since a player’'s behavior depends only on thesigsals,

for small €, after observing a historf ¢ HUY, playeri assigns a high probability to playgr
observing a signal that leads to the same private state. The crucial point is tigasriaall,

the specification of behavior after signabssatisfying fi(cy) = @ is irrelevant for behavior at
signalsw satisfyingfi(aw) €Y. It remains to specify optimal behavior after signalsatisfying

fi(w) = @. So, consider a new constrained game where pliaigarequired to follow§ where
possible. This constrained game has an equilibrium, and so by construction, we thus have an
equilibrium of the unconstrained game. We have thus proved:

Theorem 2 Fix a full-support public-monitoring gaméi*, (Y, p)) and a strict public perfect
equilibrium, §, with bounded recallL. There exist€ > 0 such that for all private-monitoring
gamegqu*, (Q, m)) e-close underf to (0, (Y, p)),

1. if f{(Qi) =Y for all i, the induced private profile is a Nash equilibrium; and

2. if fi(Qi) #Y for somei, there is a Nash equilibrium of the private-monitoring garge,
such that, for alh' = (y*,...,y 1) andht = (wf,..., @), ift > Landy" = f;(w[) for
T=t—L,....,t—1, then

sj(hj) = §(h")
for all j. Moreover, for allk > 0, € can be chosen sufficiently small that the expected
payoff to each player underis within k of their public equilibrium payoff.

We could similarly extend our results on patiently-strict, connected, finite public profiles
(Mailath and Morris (2002, Theorem 5.1)) and on the almost-public almost-perfect folk theo-
rem (Mailath and Morris (2002, Theorem 6.1)) to this more general notion of nearby private-
monitoring distributions.

5. Failure of Coordination

Exampleb illustrates that updating in almost-public-monitoring games can be very different
than would be expected from the underlying public-monitoring game. In this section, we build
on that example to show that when the set of signals is sufficiently rich (in a sense to be defined),
many profiles fail to induce equilibrium behavior in almost-public-monitoring games.
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Our negative results are based on the following converse to Thebftm proof is in the
Appendix). Since the theorem is negative, the assumption of sg-ahgseness enhances the
usefulness of the resu.

Theorem 3 Suppose the public profilV,w!, g,d) is a strict equilibrium of the full-support
public-monitoring gaméd*, (Y, p)) for somed and|W| < . There existg) > 0ande > 0such

that for any game with private monitorin@, (Q, 1)) strongly e-close to(0*, (Y, p)), if there
exists a playef, a private history for that playeh!, and a statew such thatd; (w) # di(oi(hf))

and 3 (wi|ht) > 1—n, then the induced private profile is not a Nash equilibrium of the game
with private monitoring for the same.

We implicitly used this result in our discussions of the repeated prisoners’ dilemma. For
example, in Exampl®&, we argued that there was a private history for pldy#rat leaves him
in the private stateV], but his posterior after that history assigns probability closé tbat
player2’s private state isvs.

Our approach is to ask when it is possible to so “manipulate” a player’s beliefs through
selection of private history that the hypotheses of The@ere satisfied. In particular, we are
interested in the weakest independent conditions on the private-monitoring distributions and on
the strategy profiles that would allow such manipulation.

Fix a PPE of the public-monitoring game and a close-by almost-public-monitoring game.
The logic of Examplé runs as follows: Consider a playem a private stat&v who assigns
strictly positive (albeit small) probability to all the other players being in some other common
private statev # W (full-support private monitoring ensures that such an occurrence arises with
positive probability). Lei = (dj(W),d_j(w)) be the action profile that results wheeis in state
W and all the other players are in state Suppose that if any other player is in a different
private statev # w, then the resulting action profile differs frofn Suppose, moreover, there
is a signaly such thatv = o(W,y) andw = g(w,y), that is, any player in the state or w
observing a private signal consistent wjtBtays in that private state (and so the profile cannot
have bounded recall, see LemiBa Suppose finally there is a private sigralfor playeri
consistent withy that is more likely to have come froi thanany other action profile, i.e.,

W € fi‘l(y) and (whereg(w |a) is the probability that playerobserves the signah undera)

() > (el (d (W), ) Vel #di(W). (1)

18while we have stated this theorem, and Theod:below, for pure strategies, they also hold for some mixed
strategy profiles. Recall from Secti@rll that given an automatdiV, d;, o;) describing a collection of pure strategies
for playeri (taking any statev € W as the initial state gives a pure strategy), a probability distribution\Wgives
a mixed strategy. Consider now a mixed strategy PPE of the game with public-monitoring. Clearly, such a profile
cannot be strict. However, there may exist a pefiogduch that all the incentive constraints after peffodre strict
(the equilibria in Sekiguchi (1997) are important examples). In that case, Théhatds if the hypotheses are
satisfied fot > T.
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Then, after observing the private sigral, playeri’s posterior probability that all the other
players are invshould increase (this is notimmediate, however, since the monitoring is private).
Moreover, since players W andw do not change their private states, we can eventually make
playeri’s posterior probability that all the other players arenras close to one as we like.
If di(W) # di(w), an application of Theorei8 shows that the induced private profile is not an
equilibrium.

The suppositions in the above logic can be weakened in two ways. First, it is not necessary
that thesameprivate signaty be more likely to have come frofithananyother action profile.
It should be enough if for each action profile different frénthere is a private signal more likely
to have come frond than that profile, as long as the signal not mess up the other inferences
too badly. In that case, realizations of the other signals could undo any damage done without
negatively impacting on the overall inferences. For example, suppose there are two players,
with playerl the player whose beliefs we are “manipulating,” and in addition to staptayer
2 could be in stat&v or w. Suppose alsé, = {&y,8,,a;}. As before, suppose there is a signal
y such thatw = o(w,y), W= o(W,y), andw = o(w,y), that is, any player in the state W,
or w, observing a private signal consistent wjtktays in that private state. We would like the
odds ratioPr(w # wjh})/Pr(w, = w]hj) to converge to zero ds— «, for appropriate private
histories. Let; = di(W), & = da2(w), &, = d2(W), andaj = d(w), and suppose there are two
private signalse] andw;’ consistent withy, satisfying

T (01|81, 85) > 78 (e |&) > T8 (|8, 85)
and
(o) |8y, a8p) > 1 (wy |8) > 78 (cy|d, 85).
Then, after observing the private signgl, we have
Priwy = Whi,w])  mm(wi|é1,a,) Priwz =Wlh}) Pr(w, =Whj)
Priwe =WHy, @) Ta(wjd) Priw, =wihh) ~ Pr(w, = wjn})

as desired, blRr(w, = w|h}, )/ Pr(w, = wlhi, «}) increased. On the other hand, after observ-
ing another private signal/’, also consistent witl, while the odds rati®r(w, = wih}, ')/ Pr(w, =
wih, o) falls, Pr(w, = WihY, ')/ Pr(w, = whi, /) increases. However, it may be that the
increases can be offset by appropriate decreases, so that, for exainfdowed by two re-
alizations ofwj results in a decrease both odds ratios. If so, a sufficiently high number of
realizations ofw| ' wj;’ result inPr(w, # wihj )/ Pr(w, = wjh}) being close to zero.

In terms of the odds ratios, the sequence of sigagts] @/’ lowers both odds ratios if, and
only if,

7'[1((&)_([‘51,3/2) 7T1((U5_’|51,a/2) 2
(i [A) ( (18) ) <1
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and

i (. ) <n1<a4|é1,az>>2 <1
(0w} |8) i (wy'|8)

Our richness condition on private monitoring distributions captures this idea. For a private
monitoring distribution(Q, 1), definey,y  (w) = log7i(wlai,a i) —logrg(w|a,a’;), and let
ya(w) = (yad _ (oq)) denote the vector if)/A-1 of the log odds ratios of the

- a jeAja #a

signalwy associated with different action profiles. The last two displayed equations can then be
written as3 ys(w}) + 3ya(wy) > 0, whereQ is the2 x 1 zero vectod’

Definition 7 A private-monitoring distribution(Q, i) is rich, given signaling functiond, if
for all ac A and ally € Y, the convex hull of the set of vectofg (w) : @ € 1 (y) and
T (wl|a,a ;) >0forall & ; € A} has a nonempty intersection wiﬂﬁ;“*l.

It will be useful to quantify the extent to which the conditions of Definitibare satisfied.
Since the space of signals and actions are finite, there are a finite humber of constraints in
Definition[7, and so for any rich private monitoring distribution, the seafver which the
supremum is taken in the next definition is non-enigty.

Definition 8 Givenf, therichnesf a rich private-monitoring distributioQ, i) is the supre-
mum of all{ > 0 satisfying: for ally € Y, the convex hull of the set of vectdig (w) : w €

f 1 (y) andi(cala, @ ;) >  for all & ; € A_;} has a nonempty intersection with, '~ =
{xe D‘fj‘*l x> fork=1,... |A|—1}.

The second weakening concerns the nature of the strategy profile. The logic assumed that
there is a signa such thatv = o (W,y) andw = g(w,y). If there were only two states; and
w, it would clearly be enough that there be a finite sequence of signals such that bath
w cycle. When there are more states, we also need to worry about what happens to the other
states. In addition, we need to allow for time-dependent profiles, and profiles that use some
states for only a finite time. DefirfgW) as the set of states that are repeatedly reachable in the
same period a® (i.e., R(W) = {we W : {w,Ww} C W infinitely often}).

We generalize the cycling idea to the notion that there be a path that allows some dis-
tinguished state to bgeparatedrom every other state that could ever be reached. Given an
outcome patth = (y1,y?,...) € Y, letTh= (y',y"*1,...) € Y* denote the outcome path from
periodt, so thath = (h?,Th) and™h™! = (y7 y'*+1  y™+t=1),

1"The convex combination is strictly positive (rather than negative) because the definiy{ggg‘rji afiverts the odds
ratios from the displayed equations.

18The bound? appears twice in the definition. Its first appearance ensures that fdr=ald, there is uniform
upper bound on the number of private signals satisfyir(g |aj,a ;) > { in any private-monitoring distribution
with a richness of at leagt.
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C|0,0[00]|22

Figure 6:The normal form for Examplé.

Definition 9 The public strategy profile iseparatingf there is some stat& and an outcome
pathh € Y® such that there is another statec R(W) that satisfiess(w, ht) # o (W, ht) for all
t, and for allT andw € R(g (W, h?)), if o(w,"h™t) =£ g(W,h™*t) for all t > 0, then

di(a(w,"h™)) £ di(a(W,h™™)) infinitely often, for alli.

When the set of states is finite, our next Lemma (proved in the Appendix) shows that sepa-
ration isequivalento a simpler and seemingly stronger cycling condition.

Lemma 6 A finite public strategy profile of the public-monitoring game is separating if, and
only if, there is a finite sequence of signgls...,y™, a collection of state¥\;, and a state
w € W, such that

1. a(wy?,...,y") = wfor all we W,
2. a(wyt, ...,y € W, for all w € R(w),

3. Ywe W\ {w}, Vi 3k, 1 < k < m, such that

di(O'(VV,yl,...,yk) 7& di(a(vv,yl,...,f/k),
and
4. for some andw € We\{w}, di(W) # d;(w).

Note that part 4 implies tha¥\t| > 2. We emphasize that each state in the set of stées
cycles under the given finite sequence of sigaald every state reachable (infinitely often) in
the same period ag is taken into\; by one round of the cycle.

Clearly, a separating profile cannot have bounded recall. Moreover, it is easy to construct
PPE that neither have bounded recall nor are separating (Ex@nplonetheless, we are
not aware of any strict PPE of substantive interest that neither have bounded recall nor are
separating.
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Figure 7:The strategy profile for ExampR In statesv® andW”, the actionA is played, while
in w8 the actiorB and inw®, the actiorC is played.

Example 6 The stage game is given in FiguBeln the public-monitoring game, there are two
public signalsy’ andy”, with distribution 0 < q< p< 1)

y - p7 if a; = ap,
p(Y'lande) = { g, otherwise.

Finally, the public profile is illustrated in Figu’g This profile is not separating: Under any
path in whichy'y, y =y ory’, appears, all states transit to the same state. If ghppears,
only wA andw” arise. The definition of separation fails because play is the same atsfates
andwA.

The profile is also not robust: After enough realizations of private signals corresponding to
y", beliefs must assign roughly equal probabilitydandw? 1° and so after the first realization
of a private signal corresponding ¥4 B is the only best reply (even if the current states.
This example (like the second forgiving grim trigger of Exam8)ellustrates the possibility
that beliefs over private states can drift to a stationary distribution when play is identical in
different states.

19This is most easily seen by considering the Markov chain describing pEs/erivate state transitions con-
ditional on playerl always playingA and always observing the same private signal consistentytita Markov
chain is associated with eaecy € f1(y’)). Each such Markov chain is ergodic, and so has a unique stationary
distribution. A straightforward calculation shows that, in the limit (as the private-monitoring distributions become
arbitrarily close), the probability assignedvt@ equals%.
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It remains to ensure that, under private monitoring, players may transit to different states. It
suffices to assume the following, weaker than full-support, concstion:

Definition 10 A private monitoring distribution(Q, 1) that is e-close to a public monitoring
distribution (Y, p) hasessentially full supporif for all (yi,...,yn) € Y",

m{(w,...,wn) €Q: fi(w) =¥y, i=1,...,n} >0.

Theorem 4 Fix a separating strict finite PPE of a full-support public-monitoring gadie (Y, p)).
For all > 0, there existg’ > 0 such that for alle < €', if (u,(Q, m)) is a private-monitoring
game stronglye-close under some signalling functidrto (G*, (Y, p)) with (Q, 1) having rich-
ness, giverf, at least{ and essentially full support, then the induced private profile is not a
Nash equilibrium of the private monitoring game.

It is worth noting that the bound oa is only a function of the richness of the private
monitoring. It isindependenbf the probability that a disagreement in private states arises. By
considering finite state profiles that are separating, not only is the difficulty identified in the
Introduction dealt with (as we discuss at the end of the next Section), but we can accommodate
arbitrarily small probabilities of disagreement.

Thus, separating strict PPE of public-monitoring games are not robust to the introduction
of private monitoringZ! It, of course, also implies that separating behavior in the private-
monitoring game typically cannot coordinate continuation play in the following sense. Say
a profile ise-strict if all the incentive constraints are satisfied by at leagihe result follows
immediately from upperhemicontinuity and Theordm

Corollary 1 Fix a vector of signaling function$, f; : Q; — Y. Supposd (U, (Q, )} is a
sequence of private-monitoring games, with, (Q, 7¥)) 1/k-close to some public-monitoring
game(0*, (Y,p)) and {(Q, )} a rich sequence of distributions. Fix a pure strategy profile
of the private monitoring game in which each player’s strategy respects his signaling function
fi (i.e., gi(hi,a,@) = gi(hi,a,@) if fi(w) = fi(@) # 9). Suppose this profile is separating
(when interpreted as a public profile). For al> 0, there exist such that fork > K/, this
profile is not ans-strict Nash equilibrium.

Since the equilibrium failure of separating profiles seem to arise after private histories that
have low probability, an attractive conjecture is that equilibrium can be restored by appropri-
ately modifying the profile at only the problematic histories. Unfortunately, such a modifica-
tion appears to require additional modifications to the profile, destroying the connection to the
public-monitoring game.

20if an essentially-full-support private monitoring distribution does not have full support, Nash equilibria of the
private-monitoring game may not have realization-equivalent sequentially-rational strategy profiles (recall Remark
2).

21The extension to mixed strategies described in footfétalso holds for Theore.
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6. The Proof of Theorem4

The proof of Theoren# is by contradiction. So, suppose there exiéts- 0 such that for
all k there exists a private monitoring garie (QK, 7)) strongly 1/k-close under somé to
(0", (Y, p)) with (QX, 1) having richness at leagt, with the induced private profile a Nash
equilibrium of the private-monitoring game.

To develop intuition, suppose the space of signals for each player were indepenklestt of
thatQ}‘ = Q. Then, we can assunT& converges to a limit distribution® on Q (by choosing
a subsequence if necessary). The behavior of beliefs of piayesr the private states of the
other players under the limit private monitoring distributi@®, 71) is significantly easier to
describe. SincéQ, r¥) is strongly1/k-close to(Y, p) and ¢ — 1, for eachy € Y the event
{(w,...,an) : @ € f71(y)} is common belief under™. Moreover, if the other players start
in the same state (such a8 then they stay in the same state thereafter. We can thus initially
focus on finding the appropriate sequence of signals to manipigatedating about the current
private states of the other players, without being concerned about the possibility that subsequent
realizations will derail the process (we will deal with that issue subsequently). The difficulty,
of course, is thaﬂ}‘ depends ok, and moreover, that in principle &gets large, so ma@}‘.

We can however, proceed as follows: For ekemda; € A, let

Qka — {cq e OK: nf(wai,a ;) > foralld_; eA,i}.

Since (QX, 1) is strongly close tqY, p), every signal inQK is associated with some public
signal, and so we can partiti(mi‘"a‘ into subsets of private signals associated with the same
public signaI,Q:“/"’“ (y). Order arbitrarily the signals i Q:""’“ (y), and give the/-th signal in

the order the labely,?). Letkiy = ‘an:""’“ (y)‘; note thatk; y is (crudely) bounded above by

|Ai| /¢ for all k. With this relabeling, and definin@; = Uyey {(y, 1), (¥,2),...,(,kiy)}, a finite
set, we have, for allandk,

Qf cou (QF\ (UaaeAa Q:(’ai)> (2)
and
QNQ £ 2.

Without loss of generality, we can assur@} ljolds with equality (simply include any signal
w € Qi\QKin QF, so thati(w |a) = 0).

We augmentQ;, for eachy €Y, by a new signal denotedgy, and defineQ* = Q; U
(Uy{aqy }). We interpretoqy as the set of's private signals associated withthat are not in
Q;. For eaclk, we can interpre€)” as a partition o’Q}‘ (eachw € Q; appears as a singleton,
while o’ = {m € Qk\ (UaieAi Q!“a‘> fi(w) = y} may be empty). For eache A, denote by

f*( - |a) the probability distribution orf]; Qf° induced byr( - |a). Note that we now have a

24



sequence of probability distributiogi(-|a) }x for eacha € A on a common finite signal space
RS

By passing to a subsequence if necessary, we can as{sﬂ‘ffma)}k is a convergent se-
quence with limitrt”(w|a) for all a € A, w € [; Q°. Note that(Q®, ) is O-close to(Y, p).
Moreover, by passing to a further subsequence if necessary, we can also assume that, for each
i,a €A, andy €Y, the convex hull of the set of vectofg’ (w) : w € fifl(y) T (wlay,a ) >

{ foralla ; € A_i} has a nonempty intersection WIIHZA“H, whereyy, (w)=logr*(wla,ai)

N logﬂ@(mmi’a/*i) and%f(m) - (y:d—i (m))a/,ieki,ali#au'

In the following lemma, a private signal; for player j is consistenwith the private signal
w for playeri if f;(w;) = fi(w), wheref; and f; are the signaling functions from Definition
4. It is an implication of this lemma that if playérassigns strictly positive probability to all
the other players being in the statethen after sufficient repetitions of the cyd# (defined
in Lemmal?), playeri eventually assigns probability arbitrarily closeldhat at the end of a
cycle, all the other players are in the state

Lemma 7 Fix a finite separating public profile of the public-monitoring game, andiMet,
W, andi be the states, set of states, and player identified in Lerihen, there exists a finite
sequence of private signals for playiefd- = (w!, o?,. .., w"), such that

1. (W, @) =W,

2. for all sequences of private signatt, for playerj # i consistent witlgd, o (w, J)}-) =w
for all we W, and

3. forall w e W1\ {w1},

. Pl (& |W_i = w,w; = W)
A(@Ew) = — — A 1, 3
(@7w) Pl (G- [W_i = W1, W = W) < @)

wherePr,, denotes probabilities calculated undef and the assumption that all players
follow the private profile.

Proof. The cycley!,...,y™ from Lemma6 induces a cycle in the statas=w', ... W™t =w!
andw=W!,..., W™ =wW. We index the cycle by and writea’ = d (W') and& = d; (&). Let
& = (&,a;). Richness implies that for ea¢hthere exists a vector of nonnegative integers,
(Mg ) e 11y, SO that for allel; # &,
Z Va o (@)Ng > 0.
wefi ()

Since

V.o, (6) = log " (&) /(a4 ).
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we have, for ale; # & .,

i)\ )
meﬂ(y@(ﬂm(oﬂéﬁa’_i)) - (4)

Lettingn, = Y aetty) Na for each?, denote byN’ the lowest common multiple diy, ..., ny}.

Let & denote the cycle of private signals for play&onsistent with cyclind\ times through
the public signalg?,y?...,y™ and in which for each, the private signady < f,"1(y’) appears
(N’/ng)ng, times. This cycle is of length = mN.

Given a private state profile ¢ W1, let&’; denote the action profile taken in peri6of
the cycle. Then,

_ Pro(@F W =w,wi = W)
T Pro(@F W = WL w = W)

A (m‘”(w@ﬁﬁ{»)”‘”
J:! ME!i_l()_ﬁ’) T (wd)

Forw # w1, then in each period at least one player is in a private state differentirdfnom
Lemma6.2,&" ; # & , for at least oné, and soA(hl; w) must be strictly less thah ]

N/n(

We are, of course, primarily concerned with private monitoring under the distrib@tm).
In this situation, one must deal with the possibility that plajyeiprivate signals may be incon-
sistent with player’s observations. However, by choosikgufficiently large, one can ensure
that this possibility does not arise with large probabititpng the cycle@-. The subsequent
lemma implies that this possibility never arises with large probability.

Lemma 8 Assume the hypotheses of Lemrand letht be a private history for player
satisfyingi = g;(ht). For all n > 0, there exist€ > 0 andk’ (independent dfit) such that, for
all k> K, if n < Prc(wt ; e W1\ {wl}|h!) < LandPr(wt ; ¢ Wh-1|ht) < &, then

Pr(wHith £ wi| @t h) Pre(w ;, # wi|h) )
Prwi —wnia )~ Pl —wa)

wherePr denotes probabilities calculated undef and the assumption that all players follow
the private profile, andd- is the sequence identified in Lemiha

Proof. For clarity, we suppress the conditioning lin Denote the event that players other than
i observe some sequence of private signals consistent with the(gycle ,y")N by y_;, and
the complementary event byy_;. Then,

Pr(w it # Wi, @) = PrewWHih #£ WL, @, 7o) + Pr(WHt £ Wi, &, —y-4)
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and
Pr(wi £ Wi, @, ¥-i)
S Prk(vvt—i #Wla (I%L7 y—i)
= Pr(wWh; € W\ (WL}, &, Y-i) + Prc(why ¢ WM\ (WL, &, ¥0),
where the inequality arises because a plgygn may be in a private state notW. Now,
Pr(wh; e W1\ {w1}, &, ¥-4)
= Pr(@", y-ilwh; € WO\ {WL}) Prgw! ; € W\ {wia})
< PR(@", Yoilwh; € WD I\ {WL}) Pr(wh; # W),
and if Prc(Wr; ¢ W1\ {wl}) < & (whereé is to be determined),
Pr(wh; ¢ WM\ (WL}, @, ¥-i) + Pr(wHit £ WL, &, —9-)
< &+ Pr(wWhE £ WL, @, -y
< E+PR(a, —Y-)
= &+ Pr(—y-i| &) Pric(a).

Moreover,
Prwth =wil, @) > Pr(w; =wil, &, ¥ i)
= Pr(@", V_ilw; = W1) Prie(W; = Wd).
Defining
Ly 1 oL —L
x (k) = Pro(w. Zwl) (& +Pric(—y—i|@r) Pr(a@r))
we have,

Pri(wit # w6 )
Pr(wh = w1 @b)
_ PR(@F, Yalw €W I(WLY) X (k) P # WD)
Pric(@", Y-i[wt; = wl) Pr(W ; =

MaX, cyo-1, gy Pr(@F, Y-iwWe = w) +X (k) Prig(
N Pr(@", ¥-ilw' ; = wl) % Pric(wW/

i (6)

From Lemmev,

max A(d-;w) = max lim —
wewd 1\ {wi} (@&w) wewg 1\ it} k—e Pri(@b, ¥oijwh
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and so there is ag’ > 0 sufficiently small so that (recall that the denominator has a strictly
positive limit)
Pi(@", y_iwt, =w) + &
max  lim k(oquy W )_+E <1-&.
wews 1\ (wty k—e  Pric(@f, Yoilwt; = wl)
The finiteness of the state space and the number of players allows us to interchangedhe
lim operations. Consequently, there exkétsuch that for alk > k”,

MaXy cwe-1\ (wa} Pr(@", ¥-ilw; = w) +¢&’

Pr(@F, y_i [/, — W) <1-¢ @

Since(Q, 1) is strongly1/k-close to(Y, p), limk .. Pi(=y_i|@-) = 0, and so there exists
K" such thaPr(-y_i|@") < &'n/2forallk > k”. Suppos€ = &'n//2 andk’ = max{k’, k"}.
Sincen < Prc(wt ; € W1\ {wl}) < Pr(wt; # wl), x(k) < &'. Consequently7), with (6),
implies B) (sinceé < &'). [

Lemma6 guarantees that one round of the cycle of signals will always take a state\liot in
into W, ensuring that the probability on statedif\W; can be controlled.

Lemma 9 Assume the hypotheses of Lenmrand leth! be a private history for player
satisfying = i (hf). Fix n > 0 and let¢ andk’ be the constants identified in Lem@aThere
existsT such that it > T, then for allk > K/,

Pro(wi ¢ We e h) < €.

Proof. Fix T large enough, so that W € W (the set of states reachable in pertpdort > T,
thenW C R(W) . Separation then implieRi(WE ¢ W1y ;) =0, and so
Pr(w it ¢ Wi &)
= Pr(WHE WY, o] &) + Pr(wE WY, 9] &)
= Prc(Wt ¢ W, -y ] &)
< Pri(—y-i| @),

which is less thad for k > K'. n

We are now in a position to complete the proof. Suppfu}s'e a private history for player
i that leads to the private stafewitht > T, and letn be the constant required by Theorem
3. Sincew andw are both reachable in the same period, with positive probability player
observes a private historfy% that leads to the private stafie Moreover, alﬁ} his posterior
beliefs that all the other players are in the private sigter (W ; = vVl]Fl}), is strictly positive
for all k, though converging t® ask — « (wherePr, denotes probabilities undet). If
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Pr(wt; # Wi|Rt) < n, thenPr (W, = wi|hf) > 1—n, and sinced;(W) # d;(W), Theoreni3
yields the desired conclusion.

Suppose then thar (W, # wi|Al) > n, andk > K, wherek’ is from Lemme8. Lemmas
8 and9 immediately imply that as long éyk(w‘*"'- #wi|ht, (@h)¥) > n, after the first cycle,
the odds ratio falls until eventuall@r (W' ; # wl\h} ) < n, at which point we are in the first
case (since&v cycles undetdt, i’s private state continually returns &).

We conclude by explaining how the difficulty identified in the Introduction is dealt with. In
the above argument, the length of the cycle was determined by L&hmmi the limit distribu-
tion (Q®, ), independently oPr (W' ; = wi1|h!). Separation is critical here, since it allows us
to focus on a cycle, rather than an entire outcome path. We then considered private-monitoring
games sufficiently far out in the sequence, such that along the cycle, state transitions occur as
expected with high probability (Lemmi&sand9). Since we can use a cycle to manipulate
beliefs, the magnitude of the prior is irrelevant; all we need isRimgivt ; = wi|h) > 0.

A. Omitted Proofs

Proof of Lemma 4. Supposegu*, (Q,m)) is e-closeto (0*, (Y, p)) with associated signaling
functions(fy,..., fy). Then, for alla,

Y u(w,a)ma,..., whla) - Z (vi,a)p(ya)

@15 h

U (e, a)m(ay,. .., whla) — G (y,a)p(yla)
Y ety H(y),....anefat(y)
+[Y[emax|uf (), &)
@,

ﬂ(aa,...,aha>p(ya)}

{&h€f11(Y)7'~uwn€fnl(Y)
+e+|Y|emax|u(w,a )]
AN

<Y U (v.a)
y

<2|Y[emax|y (@, )| +&+&°[Y],

where the first inequality follows frorfi, ({w: fi () =y for eachi}|a) > 1—¢[Y| (an im-
plication of part 1 of Definitiord), the second equality follows fromdi (y,a) — uf(w,a)| < €
foralli e N, a € A, andw € ffl(y), and the third inequality from part 1 of Definitiahand
max, |G (Y, )| < max, s |U(w,a)| + €. The last term can clearly be made smaller than
by appropriate choice . [ ]
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Proof of Lemmal5. Suppose there existssuch that for alw,w € W reachable in the same
period and for alh € Y*,
o(w,ht) = og(w,ht).

Then, for allw,w € W reachable in the same period and forredf Y,
d(a(w,h)) =d(a(w,h")) vt >L+1.
If w=awhy! ..., yt"1) andw = o(wh, ;... .¢¢=t-1), then

sth') =d(a(wy ", ...y 1)
—d(oW. Yy )
=d(oW, ... ) =s(i).

Suppose now the profile has bounded recall. LéW,w!, g,d) be a representation of
Supposev andw are two states reachable in the same period. Then there lekestslh™ such
thatw = o(w!, h?) andw = o(w!, h7). Then, for allh € Y, (h?,ht) and(h?, h') agree for the
lastt — 1 periods, and so if > L + 1, they agree for at least the ldsperiods, and so

~

d(a(w,ht)) =s(h’,h)
s(A", ') = d(o (W, h)).

Minimality of the representing automaton then implies that fohallY* andw,w € W reach-
able in the same period;(w,h") = a(w, ht). m

Proof of Theorem 3. Let @ (w) be playeri’s continuation value from the strategy profile
(W,w, 0,d) in the game with public monitoring (i.e@(w) is the continuation value of state
w under the profile(W,wl,a,d)), and let@ (s|w) be the continuation value to playefrom
following the strategyw when all the other players follow the strategy profilé w, o,d). Since
the public profile is a strict equilibrium and/| < o, there exist® > 0 such that for all, we W,
and§, a deviation continuation strategy for playevith § # d; (w),

@ (§lw) <@ (w)—6.

Every strategy in the game with public monitoring induces a stratggy the games with
private monitoring that are strongéyclose in the natural manner:

s(a el o8 o) =S file)d fi(e?): e fi(ed ™).

Denote by, (w) the expected value to playiein the game with private monitoring*, (Q, 1))
from the private profile induced bfw,w, o,d). LetV,"(s|hf) denote playei’s continuation
value of a strategg in the game with private monitoring, conditional on the private histéry
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There exist€ andn > 0 such that for all strategie% for playeri in the game with public
monitoring, and all histories! for i in the game with private monitoring, if the game with
private monitoring is strongly¥-close to the game with public monitoring ad(w1|h!) >
1-n, then V™ (s|hf) — @ (§|w)| < 6/3, wheres is the induced strategy in the game with
private monitoring. (The argument is essentially the same as that of Mailath and Morris (2002,
Lemma 3).)

Suppose there exists a playea private history!, and a statev such that; (w) # dj (i (ht))
andp(wijht) > 1—n. Denote bys the private strategy described B, w, oi,d;), § the public
strategy described bWV, w, 0, d;), s the private strategy described B, gi(h!), 0i,d;), and§
the public strategy described by, oi(h!), o,d;). Then,

VI (s]h) > a(§|w) — 6/3=q(w)—6/3
> @(§|w)+26/3
> V(s |hi)+6/3
=V/(ai(h))+6/3,

so thats is a profitable deviation. [

Proof of Lemmal6. It is immediate that if the profile satisfies the conditions in the lemma, then
it is separating. Suppose, then, that the profile is separating. Given the outconiegpéth
and statei from the definition of separatiorg(w, h') denotes the state reached after the first
t — 1 signals inh from the statew.

The idea is to construct the 38t by iteratively adding the states necessary to satisfy parts
1 and 2; parts 3 and 4 will then be implications of separation. We start by considering all states
reached infinitely often from states R(W) alongh. While this implies a cycle of those states,
there is no guarantee that other states reachable in the same period will be mapped into the cycle.
Accordingly, we include states that are reached infinitely often from states that are reachable
under any history in the same period as the states just identified, and so on. Proceeding in this
way, we will construct a set of states and a finite sequence of signals with the properties that
the states cycle under the sequence, and every state that could arise is mapped under the finite
sequence of signals to a cycling state.

We begin by denoting by’ (t) the vector of stateéo (w,h')),, g € WRW. Sincew is
finite, so isWRW  and there exist${! such that for allr > T, w'(1) appears infinitely often
in the sequencéw(t)}. Letw! = {a(w, h't) we R(W)}, i.e., Wl is the collection of states

that can be reached in periGg} underh, starting from any state iR(W). Separation implies
IW1| > 2. By the definition ofT{, there exists an increasing sequefi€&}y ,, with T — oo
ask — oo, satisfying, for allk > 2,

Wl(le) = Wl(Tll)»
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and for allt > T{ andk > 1, there exists a periodwith T} < T < TX"* such that

The first displayed equation implies that for alle W, o(w,*h™*) = w for all k. The second
implies that for any statein R(W) and anyt > T, the statev’ = o(w, h') appears at least once
between each pair of dat@& and T)*2, for all k. Fort > T}, w(t) has \W1| distinct states,

and so is equivalent téa(w,Tllht)> e WW',
wew?l

The recursion is as follows: For a set of stadésand a period}, letwX (t) = (O(W,Ttht)> »
we

for t > T!. The recursive step begins with a set of stat&s and an increasing sequence
{TE32 4, with T — o ask — oo, satisfying, for alk > 2,

W (Te) = wH(T{),

and for allt > T} andk > 1, there exists a periodwith TX < 1 < TX*! such that

DefineR(WK) = UwewxR(W); note thatW* ¢ R(WX). LetwX*1(t) denote the vector of states

(U(W,TthTKIH)) R € WRW) " There exist§ > 1 such that for allr > f, w**1(1) appears
we K

infinitely often in the sequencv* 1(t)};. Moreover, there exist!, ; > T} +{ such that
o(W,T*h'1) = w Yw € WK,

Now, defineW+1 = {g(w,T*hT:1) : w € RIWX)}. By the definition ofTZ, ,, WK ¢ WL,
Just as in the initial step, there is an increasing sequffigg 1 ,, with TX | — w0 ask — o,
satisfying, for allk > 2

WHTE ) = W (T ),

and for allt > T2, andk > 1, there exists a periodwith T¥, ; < 7 < TX'1 such that

WK+1(t) — WK+1<T)’

concluding the recursive step.

SinceW is finite, this process must eventually reach a point whefe! = WX, We have
thus identified a set of staté# and two date3 ! andT?2, such that lettingy?, ..., y™) =< h'<
and settingv = o (W, thl) yields partsl and2 of the Lemma.

Separation implies that undbr for any statev € R(W)\{W} and for all players, there is
some state reached infinitely often framnunderh at whichi plays differently from the state
reached in that period frosi. The date§,! andT? have been chosen so that any state reached
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infinitely often undeth from a statew ¢ R(W) appears at least once betweghand T2 on the
path starting in period,! from the states(w, 3 ). Consequently, we have part 3.

Finally, since|W?!| > 2, |W| > 2. If part 4 does not hold for the current choice of cycle
and states, by part 3, it will hold in some period of the cygfk . ..,y™), say period. Part4
then holds as well for the cycle beginning in perigdy’,...,y",y*,...,y* 1), the statev =
o(W,h™ ,y1,...,¥ 1), and the set of cycling states is given by(w,y*,...,¥ 1) :weW,}. m
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