
 
 

 
 

 
 

by 
 

 

http://ssrn.com/abstract=659143  

Nicola Persico 

 
 “Generic Uniqueness of the Solutions to a Continuous Linear  

Programming Problem” 

PIER Working Paper 05-010 

Penn Institute for Economic Research  
Department of Economics  
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://www.econ.upenn.edu/pier 

mailto:pier@econ.upenn.edu
http://www.econ.upenn.edu/pier
http://ssrn.com/abstract=659143


Generic Uniqueness of the Solutions to a Continuous Linear

Programming Problem

Nicola Persico�

February 14, 2005

Abstract

Let f : R! R be strictly increasing. We are interested in the set of probability distributions

� on the interval [0; S] that solve the linear programming problem max�
R S
0
f (p) d� (p) subject

to
R S
0
g (p) d� (p) � C: We provide a su¢ cient condition on the pair (f; g) for the solution to

the linear programming problem to be unique and show that this su¢ cient condition is satis�ed

�generically.�

Keywords: Linear Programming

JEL number: C60

1 The problem

Let [0; S] be an interval of the real line. Let the function f : [0; S]! [0; 1] be continuous and strictly

increasing. Let the function g : [0; S] ! R be continuous. Let M denote the set of probability

distributions on [0; S]. We wish to characterize the solutions to the following linear problem:

max
�2M

Z S

0
f (p) d� (p) (P)

s.t.
Z S

0
g (p) d� (p) � C:

To guarantee existence of a solution, in what follows we assume that minp2[0;S] g (p) � C. We will
prove the following result showing that, �generically,�the solution to problem P is unique.

Proposition 1 The solution to problem P is unique and puts positive probability on at most two

points whenever g � f�1 belongs to a set which is a dense G � � set in the space of all continuous
functions equipped with the supnorm.
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2 Characterization of the solutions to problem P

Let T denote the set of continuous functions x (t) : [0; S]! R with the property that at least one

of the hyperplanes that supports x (t) from below is tangent to x (t) at more than two points. In

what follows, the superscript C indicates set complements.

Lemma 2 If g � f�1 belongs to T C , any solution to problem P places all the probability on one or

two points in [0; S] :

Proof: If �� is a solution to problem P, there exists a number � � 0 such that �� maximizes
the Lagrangean

L(�; �) =
Z S

0
[f (p)� �g (p)] d� (p) + �C:

The case � = 0 is easily disposed of, since in that case the (unique) solution requires all the mass

to be places on S. Let us turn, then, to the case � > 0. If �� is to maximize the Lagrangean, the

set of p�s on which �� may place positive probability is given by

A = argmax
p
[f (p)� �g (p)] :

By de�nition of A, there is a number M such that

f (p)� �g (p) =M for p 2 A
f (p)� �g (p) < M for p =2 A

If �� puts positive mass on more than two points, then the cardinality of A would have to exceed

2. Consider the transformation ' (p) = f�1 (p=S). The function ' is a one-to-one mapping of [0; S]

onto itself. We can therefore write

f (' (p))� �g (' (p)) =M for ' (p) 2 A
f (' (p))� �g (' (p)) < M for ' (p) =2 A;

or, with the obvious meaning of symbols,

p
S � �g (' (p)) =M for p 2 '�1 (A)
p
S � �g (' (p)) < M for p =2 '�1 (A) :

Note that the set '�1 (A) has the same cardinality of A. Thus, if A has cardinality greater than

2, it means that the two numbers � and M are such that the straight line identi�ed by 1
�

� p
S �M

�
is tangent to the function g

�
f�1 (p=S)

�
at more than two points and never exceeds it. This means

that there is a tangent hyperplanes to the set

Y =
�
(p; y) : y � g

�
f�1 (p=S)

�	
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which makes contact with the set Y at more than two points. }

Lemma 3 If g � f�1 belongs to T C , the solution to problem P is unique.

Proof: If the constraint is not binding then clearly �� is unique. If the constraint is binding,
Lemma 2 guarantees that there are two points, call them pL and pH (here we allow for the

possibility that pL = pH); such that

��(pL) + �
�(pH) = 1; (1)

where the constraint in problem (P) reads

g(pL) � ��(pL) + g(pH) � ��(pH) = C: (2)

The system of equations given by (1) and (2) identi�es a unique pair ��(pL); ��(pH) unless the

system has less than full rank, i.e., unless g(pL) = g(pH). But in that case, since f is strictly

increasing, the (unique) solution requires all the mass to be placed on max fpL; pHg : }

3 Characterization of the set T

We now show that the set T is �small� in this topological sense: that its complement T C is a

dense G � � set, i.e., it is dense and the countable intersection of sets that are open, in the space
of continuous functions equipped with the supnorm.

To this end, let C (x (�)) denote the convex hull of x (�), i.e., the function that is given by the
intersection of all the epigraphs of the a¢ ne linear functions that lie below the function x (t) and

are tangent to it. Consider all open intervals � of the real line such that for all t 2 �, the convex
hull Cx (t) coincides with a linear a¢ ne function; and such that this property is not enjoyed by any

open interval containing �: Among those, select all those intervals �0 such that x (t) � Cx (t) = 0

for some t 2 �0. If there are no such �0; then x =2 T . If there are such intervals, let the extremes of
the largest among these be denoted by ax and bx (if there are several largest intervals, pick one at

random.) Clearly, x (t) and C (x (t)) agree at t = ax; bx. Furthermore, denote

mx = arg min
t2(ax;bx)

����t� ax + bx2

����
s.t. x (t)� C (x (t)) = 0:
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Clearly, if x 2 T we have ax < mx < bx. The point mx represents the point of tangency of the

supporting hyperplane that is closest to the middle of the interval (ax; bx). Denote Ix = [ax; bx] For

x 2 T , Ix represents the largest interval at which any tangent hyperplane to x is tangent at more
than two points.

Denote

Tn;m =
�
x 2 T such that (bx � ax) �

1

n
and min fmx � ax; bx �mxg �

1

m

�
:

Clearly,

T =
S
n�1
m�n

Tn;m;

and so to obtain the required characterization for T C we need to show that for each n;m, the set
(Tn;m)C is open and that the set T C is dense in the set of all continuous functions endowed with
the supnorm. We start with showing dense.

Lemma 4 The set T C is dense in the set of continuous functions endowed with the supnorm.

Proof: We show that in the supnorm neighborhood of every continuous function there is a

function x0 2 T C . Fix, then, an arbitrary continuous function x. If x 2 T C there is nothing to
prove, so we can focus on the case x 2 T . Our task is to show that there is a function ~x close to
x with the property that no supporting hyperplane to ~x has more than two contact points with

~x. Let H denote the set of hyperplanes that have more than two contact points with x. Elements

of H are identi�ed by their slope h. For every hyperplane h 2 H, take the sup and the inf of all
its contact points t and call those ah and bh. Consider now a continuous function dg (t) which

is equal to 0 for every t unless t 2 (ah; bh) for some h 2 H, in which case dg (t) assumes values
strictly between zero and 1. Let ~x" (t) � [1 + " � dg (t)] �x (t). For any " > 0, the function ~x" (t) has
exactly the same set of supporting hyperplanes as x (t). Moreover, by construction no hyperplane

is tangent to ~x" (t) at more than two points. Since the function ~x" (t) can be made arbitrarily close

to x (t) in the supnorm by choosing " to be small, the set T C is shown to be dense, as desired. }

Lemma 5 For each n � 1;m � n, the set (Tn;m)C is open in the set of continuous functions

endowed with the supnorm.

Proof: The result will follow if we show that Tn;m is closed. To this end, let�s �x an arbitrary
sequence fxig that converges to some x in the supnorm. For each xi, consider the set Di =
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faxi ;mxi ; bxig : Since the interval [0; S] is compact in the Euclidean distance, the space of subsets
of [0; S] endowed with the Hausdor¤distance is compact (see Theorem 3.71 in Aliprantis and Border

1999). The sequence of sets fDig therefore contains a convergent subsequence fDjg. Consequently,
the limits (in the euclidean distance) of axj ;mxj ; and bxj for j ! 1 exist. Denote these limit

points by a;m; and b respectively. It is clear that (b� a) � 1
n and min fm� a; b�mg �

1
m .

Since the mapping C (�) is continuous in the supnorm, we have

lim
j!1

C (xj (a)) = C (x (a)) and lim
j!1

C (xj (b)) = C (x (b))

For each j, the function C (xj (t)) is linear a¢ ne for t 2
�
axj ; bxj

�
. Thus, for t 2 [a; b], the function

C (x (t)) is the limit in the supnorm of linear a¢ ne functions, hence a linear a¢ ne function itself.

To �nish the proof, we use the continuity of the mapping C (�) to write

x (m) = lim
j!1

xj
�
mxj

�
= lim
j!1

C
�
xj
�
mxj

��
= C (x (m)) :

We have shown that C (x (t)) is linear a¢ ne for t 2 [a; b], and that x (m) = C (x (m)) : This shows
that x 2 Tn;m, and thus that Tn;m is closed. }

4 Conclusion

We have shown that T C =
T
n�1
m�n

(Tn;m)C is dense, and is the countable intersection of sets that are

open, in the space of continuous functions endowed with the supnorm. This fact, in conjunction

with with Lemma 3, proves Proposition 1.
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