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Abstract

Let f: R — R be strictly increasing. We are interested in the set of probability distributions
o on the interval [0, .S] that solve the linear programming problem max,, fos f(p) du(p) subject
to fOSg (p) du(p) < C. We provide a sufficient condition on the pair (f, g) for the solution to
the linear programming problem to be unique and show that this sufficient condition is satisfied
“generically.”
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1 The problem

Let [0, S] be an interval of the real line. Let the function f : [0, 5] — [0, 1] be continuous and strictly
increasing. Let the function g : [0,S] — R be continuous. Let M denote the set of probability
distributions on [0, S]. We wish to characterize the solutions to the following linear problem:

S
max /O f (p) dp (p) (P)

HEM

S
s.t. /0 g9 (p)du(p) <C.

To guarantee existence of a solution, in what follows we assume that minycg 5 g (p) < C. We will

prove the following result showing that, “generically,” the solution to problem P is unique.

Proposition 1 The solution to problem P is unique and puts positive probability on at most two
points whenever g o f~1 belongs to a set which is a dense G — § set in the space of all continuous

functions equipped with the supnorm.
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2 Characterization of the solutions to problem P

Let 7 denote the set of continuous functions z (¢) : [0, S] — R with the property that at least one
of the hyperplanes that supports z (¢) from below is tangent to x (¢) at more than two points. In

what follows, the superscript ¢ indicates set complements.

Lemma 2 If go f~1 belongs to T, any solution to problem P places all the probability on one or
two points in [0,S].

Proof: If u* is a solution to problem P, there exists a number A > 0 such that p* maximizes

the Lagrangean ;
£ = [ 17 0) =g ) du ) + AC

The case A = 0 is easily disposed of, since in that case the (unique) solution requires all the mass
to be places on S. Let us turn, then, to the case A > 0. If y* is to maximize the Lagrangean, the

set of p’s on which p* may place positive probability is given by

A = argmax [f (p) = Ag ()]
By definition of A, there is a number M such that

fp)—Agp)=M forpeA
fp)—Aglp) <M forpg A

If p* puts positive mass on more than two points, then the cardinality of A would have to exceed
2. Consider the transformation ¢ (p) = f~* (p/S). The function ¢ is a one-to-one mapping of [0, S]

onto itself. We can therefore write

f(e(p) —Ag(p(p) =M forp(p) €A
fleP) —Ag(e(p)) <M for p(p) ¢ A,

or, with the obvious meaning of symbols,

—Xg(p(p)) =M forpep (A
—Xg(p(p) <M forp¢ ™! (A).

Note that the set ¢! (A) has the same cardinality of A. Thus, if A has cardinality greater than
2, it means that the two numbers A and M are such that the straight line identified by % (% - M )

is tangent to the function g ( (/S )) at more than two points and never exceeds it. This means

AS)

NI 0l

that there is a tangent hyperplanes to the set
Y ={(py):y<g(f"(0/9)}
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which makes contact with the set Y at more than two points. &

Lemma 3 If go f~! belongs to TC, the solution to problem P is unique.

Proof: If the constraint is not binding then clearly p* is unique. If the constraint is binding,
Lemma 2 guarantees that there are two points, call them p; and py (here we allow for the

possibility that p;, = py), such that

w(pr) + ' (p) =1, (1)

where the constraint in problem (P) reads

g(pr) - W' (pL) + 9(pu) - 1" (pu) = C. (2)

The system of equations given by (1) and (2) identifies a unique pair p*(pr), u*(pr) unless the
system has less than full rank, i.e., unless g(pr) = g(pg). But in that case, since f is strictly

increasing, the (unique) solution requires all the mass to be placed on max {pr,pr} . &

3 Characterization of the set 7

We now show that the set 7 is “small” in this topological sense: that its complement 7€ is a
dense G — § set, i.e., it is dense and the countable intersection of sets that are open, in the space
of continuous functions equipped with the supnorm.

To this end, let C (z (-)) denote the convex hull of z (-), i.e., the function that is given by the
intersection of all the epigraphs of the affine linear functions that lie below the function z (¢) and
are tangent to it. Consider all open intervals ¢ of the real line such that for all ¢ € ¢, the convex
hull Cx (t) coincides with a linear affine function, and such that this property is not enjoyed by any
open interval containing ¢. Among those, select all those intervals ¢/ such that = (t) — Cx (t) = 0
for some t € /. If there are no such «/, then x ¢ 7. If there are such intervals, let the extremes of
the largest among these be denoted by a, and b, (if there are several largest intervals, pick one at
random.) Clearly, x (t) and C (z (t)) agree at t = ag, by. Furthermore, denote

. ag + by
m, = arg min [t —

te(az,bz) 2
st. x(t) —C(z(t)) =0.




Clearly, if x € T we have a, < m; < b;. The point m, represents the point of tangency of the
supporting hyperplane that is closest to the middle of the interval (as, b;). Denote I, = [ay, b,] For
x € T, I, represents the largest interval at which any tangent hyperplane to x is tangent at more
than two points.

Denote

)

1 1
Trm = {mETsuch that (by —az) > — and min{my — az, by — my} > }
n m

Clearly,
T = U Zz,ma

n>1
m>n

and so to obtain the required characterization for 7¢ we need to show that for each n,m, the set
(’Tn,m)C is open and that the set 7¢ is dense in the set of all continuous functions endowed with

the supnorm. We start with showing dense.
Lemma 4 The set TC is dense in the set of continuous functions endowed with the supnorm.

Proof: We show that in the supnorm neighborhood of every continuous function there is a
function o’ € T¢. Fix, then, an arbitrary continuous function z. If z € 7¢ there is nothing to
prove, so we can focus on the case x € 7. Our task is to show that there is a function Z close to
x with the property that no supporting hyperplane to £ has more than two contact points with
Z. Let ‘H denote the set of hyperplanes that have more than two contact points with z. Elements
of H are identified by their slope h. For every hyperplane h € H, take the sup and the inf of all
its contact points ¢ and call those a; and b,. Consider now a continuous function dg4 (t) which
is equal to O for every t unless t € (ay,bp) for some h € H, in which case d, (t) assumes values
strictly between zero and 1. Let . (t) = [1 4+ ¢ - dg (t)] -« (t). For any ¢ > 0, the function Z. (t) has
exactly the same set of supporting hyperplanes as x (t). Moreover, by construction no hyperplane
is tangent to Z. (t) at more than two points. Since the function Z. (¢) can be made arbitrarily close

to x () in the supnorm by choosing € to be small, the set 7¢ is shown to be dense, as desired. ¢

Lemma 5 For each n > 1,m > n, the set (’Z;m)c is open in the set of continuous functions

endowed with the supnorm.

Proof: The result will follow if we show that 7, ,, is closed. To this end, let’s fix an arbitrary

sequence {z;} that converges to some x in the supnorm. For each z;, consider the set D; =



{az,, ma,, by, } . Since the interval [0, S] is compact in the Euclidean distance, the space of subsets
of [0, S] endowed with the Hausdorff distance is compact (see Theorem 3.71 in Aliprantis and Border
1999). The sequence of sets {D;} therefore contains a convergent subsequence {D;}. Consequently,
the limits (in the euclidean distance) of as,,m.;, and b, for j — oo exist. Denote these limit
points by a,m, and b respectively. It is clear that (b —a) > % and min{m —a,b —m} > %
Since the mapping C (-) is continuous in the supnorm, we have

lim C(zj(a)) = C(z(a)) and lim C (z; (b)) = C (x (b))

j—00 j—00
For each j, the function C (z; (t)) is linear affine for ¢ € [ay,,bs;]. Thus, for ¢ € [a, b], the function
C (z (t)) is the limit in the supnorm of linear affine functions, hence a linear affine function itself.
To finish the proof, we use the continuity of the mapping C' (-) to write

z(m) = leIIoloxj (ma;) = jEIEOC (zj (mg;)) = C (z(m)).

We have shown that C (z (¢)) is linear affine for ¢ € [a, b], and that = (m) = C (z (m)) . This shows
that « € 7, ,,, and thus that 7,, ;, is closed. &

4 Conclusion

We have shown that 7¢ = N (’Z;Lm)c is dense, and is the countable intersection of sets that are
>1
mn

open, in the space of continuous functions endowed with the supnorm. This fact, in conjunction

with with Lemma 3, proves Proposition 1.
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