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Abstract

This paper proposes a semi-parametric method to uncover the distribution of bidders’
private information in the market for highway procurement when unobserved auction het-
erogeneity is present. I derive sufficient conditions under which the model is identified
and show that the estimation procedure produces uniformly consistent estimators of the
distributions in question.
The estimation procedure is applied to data from Michigan highway procurement auc-

tions. I estimate that 75% of the variation in bidders’ costs may be attributed to the
factors known to all bidders and only 25% may be generated by private information. My
results suggest that failing to account for unobserved auction heterogeneity may lead to
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1 Introduction

In auction markets, the performance of a particular mechanism crucially depends on the degree

of uncertainty faced by market participants. In private values environments, a growing liter-

ature started by Laffont, Ossard, Vuong (1995) and Guerre, Perrigne, Vuong (2000) uses the

equilibrium relationship between bids and bidders’ costs to uncover the distribution of private

information. After controlling for observed auction characteristics, the estimation procedures

proposed in the literature typically assume that remaining variation in bids is generated by

variation in private information. Existing procedures do not allow for the possibility that

bidders take into account some characteristics of the auction that the researcher cannot ob-

serve. Therefore, they can significantly overestimate the magnitude of private information if

unobserved auction heterogeneity is present.

This paper constructs a model that incorporates both private information and un-

observed auction heterogeneity. It develops a semi-parametric estimation method to recover

distributions of private information and unobserved auction heterogeneity from submitted bids.

It also establishes sufficient conditions under which these distributions are identified and shows

uniform consistency of the estimators. The estimation method is applied to data from Michi-

gan highway procurement auctions to quantify the importance of private information in this

market and to study the biases that result from ignoring unobserved auction heterogeneity.

I assume that project cost for any particular bidder equals the product of a common

and an individual component. The common component consists of cost attributes known to

all bidders, some of which may not be observed by the researcher. The individual component

consists of additional cost attributes privately observed by each bidder. This costs structure

implies that the distribution of costs may vary across projects even after all project character-

istics known to the researcher are held constant. In addition, I allow bidders to be asymmetric,

so that the distribution of individual cost component may vary with observable characteristics

of the bidder.

I exploit dependence between bids submitted in the same auction to recover the dis-

tributions of the common and individual components of bids. In particular, I show that the

distributions of components are identified from the joint distribution of two arbitrary bids sub-

mitted in the same auction when the individual cost components are independently distributed

across bidders and are independent from the common component. Further, the distributions

of individual bid components are used to uncover the distributions of individual cost compo-

nents. This new identification result provides insight into sources of identification for more

general models with unobserved auction heterogeneity. The estimation procedure proposed in

the paper follows the steps of the identification argument.
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I conduct a Monte Carlo study to analyze small sample behavior as well as sensitivity

of the estimation procedure to the assumptions of the model. Simulation analysis shows that

this procedure behaves well in samples of moderate size. It also correctly recovers individual

components and a degenerate common component when applied to data generated by the

model with independent private values and no unobserved auction heterogeneity.

I also study the consequences of misspecifying the model and failing to account for

unobserved auction heterogeneity. I find that, when applied to data with unobserved auction

heterogeneity, the estimation procedures based on the assumptions of independent private

values or affiliated private values tend to recover bid functions that are much flatter than the

true bid function and to predict mark-ups that are significantly higher than the ones implied

by the true distribution. They also predict a higher chance of inefficient outcomes, i.e., when

projects are not assigned to the lowest cost bidder. Also, the recovered distributions of costs

have higher variances than the true distributions.

The proposed method is implemented using data for highway maintenance projects

auctioned by the Michigan Department of Transportation between February 1997 and Decem-

ber 2003. This set of highway procurement projects has features consistent with unobserved

auction heterogeneity. For example, the bidders participating in such auctions have access to a

detailed description of the project and travel to the project site. Therefore they likely to have

an advantage over the researcher in recognizing the differences in the distributions of costs

across projects. On the other hand, these projects are precisely specified and quite simple, so

that this market is well described by the assumption of private values.

Descriptive analysis of the data indicates that unobserved auction heterogeneity may

be present. In particular, fixed and random effects regressions show that a large component

of bids’ variation could be attributed to the so-called "between variation" or variation across

auctions.

I use the estimation procedure developed in this paper to estimate the bidding strategies

and the distributions of individual and common cost components. Results indicate that 85% of

the variation in costs is explained by the variation in the common component. The estimated

bid function implies an average mark-up over the bidders’ costs of around 7%. In contrast, the

model with affiliated private values predicts average mark-ups of 11%, whereas the model with

independent private values predicts 15%. The difference amounts to $33,000 in the case of

affiliated private values and $61,000 for the model with independent private values. I estimate

that there is a 28% chance of an inefficient outcome, which is lower than that obtained under

alternative procedures. I also estimate expected distribution of total costs. The variance of

the cost distribution estimated under the assumption of unobserved auction heterogeneity is

about 25% lower that the variance of the cost distribution estimated under the assumption
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of affiliated private values and 35% lower than the variance of the cost distribution estimated

under the assumption of independent private values. Finally, I perform several robustness

checks for the assumptions of the model.

The paper proceeds as follows. Section 2 describes the model. Section 3 discusses

identification, testable implications and some extensions of the model. Section 4 details the

estimation procedure and summarizes results of the simulation study. Section 5 presents results

of estimation and section 6 concludes.

1.1 Related Literature

This paper adds to the literature on estimation of auction models that aims to uncover distri-

bution of bidders’ private information from the bids submitted in the auction. In particular,

Donald and Paarsch (1993, 1996) and Laffont, Ossard and Vuong (1995) develop parametric

methods to recover the distribution of cost from the observed distribution of bids. Elyakime,

Laffont, Loisel and Vuong (1994, 1997) propose a nonparametric method to estimate distribu-

tion of cost. Guerre, Perrigne, and Vuong (2000) study identification of the First-Price auction

model with symmetric bidders. They establish that the distribution of bidders’ valuations can

be identified from bid data if and only if the empirical inverse bid function is increasing. They

propose a uniformly consistent estimation procedure. Li, Perrigne, and Vuong (2000, 2002)

extend the result to the affiliated private values and the conditionally independent private val-

ues models. Campo, Perrigne, and Vuong (2001) prove identification and develop a uniformly

consistent estimation procedure for first-price auctions with asymmetric bidders and affiliated

private values. These papers rely on the assumption of no unobserved auction heterogene-

ity, i.e., they explicitly use a one-to-one mapping between distribution of bidders’ costs and

distribution of observed bids that arises in such environments.

The few papers that indirectly address the issue of unobserved auction heterogeneity

include Campo, Perrigne, and Vuong (2001), Bajari and Ye (2003) and Hong and Shum (2002).

The first two papers rely on the assumption that the number of bidders can serve as a suffi-

cient statistic for the unobserved auction heterogeneity. Hong and Shum (2002) account for

unobserved auction heterogeneity by modelling the median of the bid distribution as a normal

random variable with a mean that depends on the number of bidders. In this paper, I allow

for unobserved auction heterogeneity to vary even within the subset of auctions with the same

number of bidders. I estimate non-trivial auction specific component after controlling for the

number of bidders, which implies that these papers may underestimate common information

available to all bidders. In contrast to this literature, I also study identification of the model

and implications of failing to account for unobserved auction heterogeneity.
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To the best of my knowledge, only a couple of papers directly address the issue of

unobserved auction heterogeneity. Athey and Haile (2001) study unobserved auction hetero-

geneity in the context of second-price and English auctions. Chakraborty and Deltas (1998)

assume that the distribution of bidders’ valuations belongs to a two-parameter distribution

family. They use this assumption to derive small sample estimates for the corresponding pa-

rameters of the auction-specific valuation distributions. The estimates are later regressed on

the observable auction characteristics to determine the percent of values variation that could

be attributed to unobserved auction heterogeneity. The methodology is applied to data for

packages of real estate loans. They find a significant auction-specific component in their data.

In this sense, my results are consistent with their findings.

Highway procurement auctions have already been studied in the literature. Porter and

Zona (1993) find evidence of collusion in Long Island highway procurement auctions. Bajari

and Ye (2003) reject the hypothesis of collusive behavior in the procurement auctions conducted

in Minnesota, North Dakota, and South Dakota. Jofre-Bonet and Pesendorfer (2003) find

evidence of capacity constraints in California highway procurement auctions. Hong and Shum

(2002) find some evidence of common values in the bidders’ costs in the case of New Jersey

highway construction auctions.

2 The Model

This section describes the first-price auction model under unobserved auction heterogeneity

and summarizes properties of the equilibrium bidding strategies.

The seller offers a single project for sale to m bidders. Bidder i0s cost is equal to the
product of two components: one is common and known to all bidders; the other is individual

and private information of the firm i. Both the common and the individual cost components

are random variables, and they are denoted by the capital letters Y and X respectively. The

small letters y and x denote realizations of the common component and the vector of individual

components. The two random variables (Y , X) are distributed on [y, y]× [x, x]m, y > 0, x > 0,

according to the probability distribution function H,

Pr(Y ≤ y0,X ≤ x0) = H(y0, x0).

Asymmetries between bidders: I assume that there are two types of bidders: m1 bidders

are of type 1, and m2 bidders, m2 = (m−m1), are of type 2. Thus, the vector of independent
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cost components is given by X = (X11, ..,X1m1 ,X2(m1+1), ..,X2m). The model and all the

results can easily be extended to the case of m types. I focus on the case of two types for the

sake of expositional clarity. Types are defined from the observable characteristics of bidders.

Assumptions (D1)− (D4) are maintained throughout the paper.

(D1) Y and Xj ’s are mutually independent and distributed according to

H(y0, x10, .., xm0) = HY (y0)

j=m1Y
j=1

HX1(xj0)

j=mY
j=m1+1

HX2(xj0),

whereHY ,HX1 , andHX2 are marginal distribution functions of Y ,X1j, andX2j respectively.The

supports of HY and HXk
are given by S(HY ) = [y, y], y > 0, y ≤ y; S(Hk) = [x, x], x > 0,

x ≤ x, for k ∈ {1, 2}.
(D2) The probability density functions of the individual cost components, hX1 and hX2 ,

are continuously differentiable and bounded away from zero on every closed subset of (x, x).

(D3) EX1j = 1 for all j = 1, ...,m1.

(D4) (a) The number of bidders is common knowledge;

(b) There is no binding reservation price.

Assumption (D2) ensures the existence of equilibrium. The identification result relies

on assumptions (D1) and (D3). In particular, assumption (D3) is used to fix the scale of

the distribution of the individual cost component for a bidder of type 1. (D4) summarizes

miscellaneous assumptions about the auction environment.

The auction environment can be described as a collection of auction games indexed by

the different values of the common component. An auction game corresponding to the common

component equal to y, y ∈ [y, y], is analyzed below.
The cost realization of bidder i is equal to xi ∗ y, where xi is the realization of the

individual cost component. The information set of bidder i is given by Pyi = {xi|xi ∈ [x, x]}.
A bidding strategy of bidder i is a real-valued function defined on [x, x]

βyi : [x, x]→ [0,∞].

I use a small Greek letter β with subscript yi to denote the strategy of bidder i as a

function of the individual cost components and a small Roman letter b to denote the value of

this function at a particular realization xi.
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Expected profit. The profit realization of the bidder i, πyi(bi, b−i, xi), equals (bi−xi ∗y)
if bidder i wins the project and zero if he loses. The symbol bi denotes the bid submitted by

bidder i, and the symbol b−i denotes the vector of bids submitted by bidders other than i. At

the time of bidding, bidder i knows y and xi but not b−i. The bidder who submits the lowest

bid wins the project. The interium expected profit of bidder i is given by

E[πyi|X = xi, Y = y] = (bi − xi ∗ y) ∗ Pr(bi ≤ bj ,∀j 6= i|Y = y).

A Bayesian Nash Equilibrium is then characterized by a vector of functions βy =

{βy1, ..., βym} such that byi = βyi(xi) maximizes E[πi|X = xi, Y = y], when bj = βyj(xj),

j 6= i, j = 1, ..,m; for every i = 1, ..,m and for every realization of Xi.

LeBrun (1999) and others establish that, under assumptions (D1)− (D2), a vector of

equilibrium bidding strategies βy = {βy1, ..., βym} exists. The strategies are strictly monotone
and differentiable. Maskin and Riley (2000) show that under these assumptions there is a

unique vector of equilibrium strategies, βy = {βy1, ..., βym}, which satisfy the following bound-
ary condition: for all i βyi(x) = x, and there exists dyi ∈ [x, x] such that βyi(x) = dyi.

These results accordingly establish equilibrium existence and uniqueness in the game

where the common cost component equals y.

Next, I characterize a simple property of the equilibrium bidding strategies.

Proposition 1

If (α1(.), ..., αm(.)) is a vector of equilibrium bidding strategies in the game with y = 1,

then the vector of equilibrium bidding strategies in the game with y, y ∈ [y, y], is given by

βy = {βy1, ..., βym}, such that βyi(xi) = y ∗ αi(xi), i = 1, ...,m.

The proposition shows that the bid function is multiplicatively separable into a common

and an individual bid component, where the individual bid component is given by αi(.). The

proof of this proposition is based on the comparison of the two sets of first-order conditions

and follows immediately from the assumption that costs are multiplicatively separable and

that the common component is known to all bidders.

Next, I characterize the necessary first-order conditions for the set of equilibrium strate-

gies when y = 1. Note that αi(.) denotes a strategy of bidder i as a function of the individual

cost component and ai the value of this function for a particular realization of Xi. The equi-

librium inverse bid function of the individual bid component for a type k bidder is denoted
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by φk. Since the function αk(.) is strictly monotone and differentiable, the function φk(.) is

well-defined and differentiable.

The probability of winning in this game can be expressed as

Pr(aj ≥ ai,∀j 6= i) = [(1−HXk(i)
(φk(i)(ai)))]

(mk(i)−1)[(1−HX−k(i)
(φ−k(i)(ai)))]

m−k(i) ,

where k(i) denotes bidder i0s type and ”− k(i)” denotes the complementary type.

The necessary first-order conditions are, then, given by

1

a− φk(i)(a)
= (mk(i) − 1)

hXk(i)
(φk(i)(a))φ

0
k(i)(a)

1−HXk(i)
(φk(i)(a))

+m−k(i)

hX−k(i)
(φ−k(i)(a))φ

0
−k(i)(a)

1−HX−k(i)
(φ−k(i)(a))

, (1)

where φ0k(.) denotes the derivative of φk(.).

Equation (1) characterizes the equilibrium inverse individual bid function when y = 1.

It describes a trade-off the bidder faces when choosing a bid: an increase in the markup over

the cost may lead to a higher ex-post profit if bidder i wins, but it reduces the probability of

winning. The bid a is chosen in such a way that the marginal effects of an infinitesimal change

in a bid on the winner’s profit and the probability of winning sum to zero.

The next section uses properties of the equilibrium bidding functions to show how the

primitives of the first-price auction model can be recovered from the submitted bids in the

presence of unobserved auction heterogeneity.

3 Identification and Testable Implications

The first part of this section formulates an identification problem and provides conditions

under which a first-price auction model with unobserved auction heterogeneity is identified.

The second part describes restrictions this model imposes on the data. The third part discusses

possible extensions.

3.1 Identification

I assume that the econometrician has access to bid data, based on n independent draws from

the joint distribution of (Y,X). The observable data are in the form {bij}, where i denotes
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the identity of the bidder, i = 1, ..,m; and j denotes project, j = 1, ..., n. If data represent

equilibrium outcomes of the model with unobserved auction heterogeneity, then

bij = βyjk(i)(xij) (2)

(i.e., bij is a value of bidder i’s equilibrium bidding strategy corresponding to yj evaluated at

the point xij).

As was shown in the previous section, bij depends on the realizations of the common and

individual components as well as on the joint distribution of the individual cost components.

This section examines under what conditions on available data there exists a unique triple

{{xij}, {yj},HX} that satisfies 2, i.e., under what conditions the model from a previous section
is identified.

Guerre, Perrigne, and Voung (2000) obtain an identification result by transforming the

first-order conditions for optimal bids to express a bidder’s cost as an explicit function of the

submitted bid, the bid probability density function, and the bid distribution function. Under

unobserved auction heterogeneity, the necessary first-order condition yields an expression for

xij · yj as a function of bij and the conditional bid probability density function and the condi-
tional bid distribution function conditional on Y = yj . The econometrician does not observe

the realization of Y and, consequently, does not know the conditional distribution of bids for

Y = yj . Hence, it is not possible to establish identification based on the above first-order

conditions.

The idea of my approach is to focus on the joint distributions of bids submitted in

the same auction instead of the marginal bid distributions in order to identify the model with

unobserved auction heterogeneity.

I use Bi to denote the random variable that describes the bid of bidder i with distribu-

tion function GBk(i)
(.) and the associated probability density function gBk(i)

(.); bij denotes the

realization of this variable in the auction j. The econometrician observes the joint distribution

function of (Bi1 , .., Bil) for all subsets (i1, ..., il) of (1, ...,m).

Proposition 1 establishes that

bij = yj ∗ aij ,

where aij is a hypothetical bid that would have been submitted by bidder i if y were equal

to one. I use Ai to denote the random variable with realizations equal to aij. The associated

distribution function is denoted by GAk(i)
(.) with the probability density function gAk(i)

(.).

Notice that the econometrician does not observe yj and neither therefore aij . The distribution
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of Ai is latent.

My identification result is established in two steps. First, it is shown that the probabil-

ity density functions of Y, Ai’s can be uniquely determined from the joint distribution of two

bids that share the same cost component. Second, monotonicity of the inverse bid function

is used to establish identification of the probability density functions HX1 and HX2 from the

distributions of the individual bid components, GA1 and GA2
.

The following theorem is the main result of this section. It formulates sufficient iden-

tification conditions for the model with unobserved heterogeneity.

Theorem 1

If conditions (D1)−(D4) are satisfied, then probability density functions hY (.), hX1(.)

and hX2(.) are identified from the joint distribution of (Bi1 ,Bi2), where (i1, i2) is any pair

such that i1 ∈ {1, ..,m1}; i2 ∈ {m1 + 1, ..,m}.

Theorem 1 states that the distribution functions of cost components HXk
(.) and HY (.)

are identified. The proof of this theorem consists of two steps and is given in Part A of

the Appendix. In the first step, a statistical result by Kotlarski1 (1966) is applied to the

log-transformed random variables Bi1 and Bi2 given by

log(Bi1) = log(Y ) + log(Ai1),

log(Bi2) = log(Y ) + log(Ai2).

Kotlarski’s result is based on the fact that the characteristic function of the sum of two inde-

pendent random variables is equal to the product of characteristic functions of these variables.

This property allows us to find the characteristic functions of log(Y ), log(Ai1), and log(Ai2)

from the joint characteristic function of (log(Bi1), log(Bi2)). It leads to the following three

equations:

Φlog(Y )(t) = log(

tZ
0

Ψ1(0, u2)

Ψ(0, u2)
du2), (3)

Φlog(A1)(t) =
Ψ(t, 0)

ΦlogY (t)
,

Φlog(A2)(t) =
Ψ(0, t)

ΦlogY (t)
,

1See Rao (1992).
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where Ψ(., .) and Ψ1(., .) denote the joint characteristic function of (log(Bi1), log(Bi2)) and the

partial derivative of this characteristic function with respect to the first component respectively.

Since there is a one-to-one correspondence between the set of characteristic functions and the

set of probability density functions, the probability density functions of Y , Ai1, Ai2 can be

uniquely deduced from the characteristic functions of log(Y ), log(Ai1), and log(Ai2) since log(.)

is a strictly increasing function; αk(.), k = 1, 2, are increasing functions of x; [x, x] ⊂ (0,∞),
[y, y] ⊂ (0,∞). Notice that the marginal distribution of a single bid per auction may not allow
us to identify the distribution functions of Y , Ai1, Ai2 because there is no unique decomposition

of the sum (or product) into its components. The second step in the proof establishes that the

distribution of the individual cost component is identified with (possibly) asymmetric bidders

and independent private values. It is similar to the argument given in Laffont and Vuong

(1996).

A related question concerns identification of specific realizations xij and yj correspond-

ing to a particular bid bij. In this case, the answer is negative: xij and yj cannot be separately

identified. The reason is that for every value of y from the support of the distribution HY (.),

we can find values {xij}, i = 1, ..,m, such that a vector (x1j , .., xmj, y), together with the

distribution functions HXk
(.), k = 1, 2, rationalizes the vector of bids {bij}, i = 1, ..,m. More

details are provided in Part A of the Appendix after the proof of Theorem 1.

Theorem 1 establishes that identification of the model with unobserved auction het-

erogeneity crucially relies on the assumption of independence of individual components across

bidders and from the common cost component. Next, we show how validity of these assump-

tions can be evaluated within a framework of the model with unobserved auction heterogeneity.

3.2 Testable Implications

Notice that instead of log(Bi1) and log(Bi2), Kotlarski’s result can be applied to the variables

log(
Bi1
Bi3
) and log(

Bi2
Bi3
), since log(

Bi1
Bi3
) = log(Ai1)− log(Ai3) and log(

Bi2
Bi3
) = log(Ai2)− log(Ai3).

Here log(Ai3) plays the role of a common component whereas log(Ai1) and log(Ai2) remain

individual components. If the individual cost components Xi1, Xi2 and Xi3 are independently

distributed, then so are log(Ai1), log(Ai2), and log(Ai3). The characteristic functions of these

variables can be computed using the joint characteristic function of (log(
Bi1
Bi3
), log(

Bi2
Bi3
)), which

I denote by Θ(., .), according to a formula similar to equation (3).2 Specifically,

2The symbol Θ1(., .) denotes the partial derivative of Θ(., .) with respect to the first argument.
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Λlog(Ai3
)(t) = exp(

tZ
0

Θ1(0, u2)

Θ(0, u2)
du2), (4)

Λlog(Ai1 )
(−t) =

Θ(t, 0)

Λlog(Ai3 )
(t)

.

Two observations can be made at this point. First, if Bi1 and Bi3 are submitted by

bidders of the same type and the assumption about independence of individual components

holds, then Λlog(Ai3 )
(t) and Λlog(Ai1 )

(t) should be equal. Second, I have relied only on the

functional form and the independence of the individual cost components assumptions to obtain

Λlog(Aik
)(.). The assumption of independence of Y and X then implies that Λlog(Ai3 )

(.) and

Λlog(Ai1 )
(.) have to coincide with the functions given by (3). These observations are summarized

by conditions (W1) and (W2).

(W1) For any triple (i1, i2, i3) such that {i1 = 1, ..,m1 and i3 = 1, ..,m}, or { i1 =

m1 + 1, ..,m and i3 = m1 + 1, ..,m},

Λlog(Ai1)
(t) = Λlog(Ai3 )

(t)

for every t ∈ [−∞,∞].
(W2) For any triple (i1, i2, i3),

Φlog(Ai3 )
(t) = Λlog(Ai3 )

(t),

Φlog(Ai1 )
(t) = Λlog(Ai1 )

(t)

for every t ∈ [−∞,∞]. Here Φlog(Ai3
)(t) and Φlog(Ai1

)(t) denote the characteristic functions of

the log of the individual bid components defined earlier in the identification section.

Independence of individual cost components further implies condition (W3).

(W3) For any quadruple (i1, i2, i3, i4) ⊂ {1, ...,m}, Bi1
Bi2

and
Bi3
Bi4

are independently

distributed.

Proposition 2 describes implications of the independence assumptions.

Proposition 2
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Let bidder i’s cost for the project j be given by cij = xij ∗ yj .
(1) If the individual cost components are independent, then (W1) has to be satisfied.

(2)If the individual cost components are independent, then (W3) has to be satisfied.

(3) Further, if Y is independent of X, then W2 holds.

The proof of proposition 2 is given in Part A of the Appendix.

3.3 Rationalization

The identification section derives conditions under which primitives of a model with unobserved

auction heterogeneity can be uniquely recovered from data generated within the framework

of this model. Next, I address an issue of model rationalization, i.e., I identify properties

of data that allow us to conclude that a particular data set could have been generated by

the model with unobserved auction heterogeneity. Then we discuss if and how the model

with unobserved heterogeneity can be distinguished from other models consistent with private

values environment.

Conditions below describe a set of joint restrictions imposed on data by all the assump-

tions of the model with unobserved auction heterogeneity.

(W4) For every pair (il, ip), il = 1, ...,m1; ip = m1+1, ..,m, the functionsΦlog(Y )(.),Φlog(Ail
)(.),

Φlog(Aip )
(.) given by (2) represent characteristic functions of real-valued variables.

(W5) The characteristic functions Φlog(Y )(.),Φlog(Ail
)(.) and Φlog(Aip)

(.) do not depend

on the pair of (il, ip), il = 1, ...,m1; ip = m1 + 1, ..,m, which was used to derive them.

(W6) The inverse bid functions

φk(a) = a− (1−GAk
(a))(1−GA−k

(a))

(mk − 1)gAk
(a)(1−GA−k

(a)) +m−kgA−k
(a)(1−GAk

(a))
, k = 1, 2,

are strictly increasing in a.

Proposition 3

If available data satisfy conditions (W4)− (W6), then there exists a model with unob-

served heterogeneity that could have generated the data.
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The first condition guarantees that two independent random variables Y and Ai exist

with the property Bi = Y ∗ Ai. The third condition ensures that A0is are consistent with the
equilibrium behavior under the independent private values assumption. The first and second

assumptions guarantee that bidders within each of the types are identical.

The model with independent private values is nested in the model with independent

private values. Condition (W7) provides the basis for Proposition 4, which shows how the

null of independent private values can be tested against the alternative of independent private

values.

(W7) The distribution of log(Y ) is degenerate.

Proposition 4

If conditions (W4) and (W7) are satisfied then data are generated by the model with

independent private values.

While I do not have a formal proof, my conjecture is that the model with unobserved

auction heterogeneity and affiliated individual components cannot be identified from bid data.

Li, Perrigne and Vuong (2002) outline conditions for the rationalization of the model with affil-

iated private values. If conditions of proposition 3 are satisfied simultaneously with conditions

in Li, Perrigne and Vuong (2002), then the three models - the model with unobserved auction

heterogeneity and independent individual components, the model with unobserved auction het-

erogeneity and affiliated individual components, and the model with affiliated private values -

are observationally equivalent.

3.4 Extensions

The model with unobserved auction heterogeneity assumes that bidder i0s cost of completing
the project equals the product of the common and the individual cost components. This

functional form emerges when the cost distribution for a particular project is scaled by a

project-specific common variable, in which case mean and variance vary with the common

component in a coordinated way.

A more general model may allow for the common component to have distinct effects

on the mean and variance of the cost distribution function. Such a model can be constructed

13



using a two-dimensional project heterogeneity. Bidder i0s cost of the project is, then, equal to

cij = y1j + y2j ∗ xij,

where (y1j, y2j) is a realization of a two-dimensional cost component that is common knowledge

among all bidders; xij is a realization of an individual component, which is private information

of firm i. This specification has the following interpretation: the average cost of the project j

equals y1j, and the individual cost deviations have auction-specific scale. It can be shown that

the described model is identified under conditions similar to those in Theorem 1. The exact

conditions and the proof are given in Part A of the Appendix.

4 Estimation

This section describes the estimation method, derives properties of the estimators, and dis-

cusses practical issues related to the estimation procedure.

4.1 Estimation Method

The econometrician has data for n auctions. For each auction j, (mj, {bij}i=mj

i=1 , zj) are ob-

served, where mj is the number of bidders in the auction j, with mj1 bidders of type 1 and

mj2 bidders of type 2; {bij}i=mj

i=1 is a vector of bids submitted in the auction j; and zj is a

vector of auction characteristics. The estimation procedure is described for the case of discrete

covariates. It can be extended to the case of continuous zj.

The estimates are obtained conditional on the number of bidders, mj = m0, m1j =

m01, and zj = z0. Let n0 denote the number of auctions that satisfy these restrictions.

The estimation procedure closely follows the identification argument described in the proof

of Theorem 1. It consists of two steps. First, the joint characteristic function of two log

transformed bids is estimated for every (t1, t2) as a sample average of the exp(it1·Blj+it2·Bpj)),

where the average is taken across auctions with mj = m0, m1j = m01 and zj = z0. Then the

joint characteristic function is used to compute the characteristic functions of the logs of

the common and the individual bid components according to the formulas given by (3). The

inversion formula is used to recover the probability density functions for the logs of the common

and the individual bid components from the characteristic functions. Finally, the probability

density functions of logs are used to recover the probability density functions of the common

and the individual bid components.

In the second step, the probability density functions of the individual bid components
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are used to obtain estimates of the probability density function of the individual cost com-

ponent. For that, a sample of pseudo-bids is drawn form the probability density function

of the relevant individual bid component. This sample is then used to obtain the sample of

pseudo-costs with the help of the corresponding inverse bid function. Finally, the sample of

pseudo-costs is used to non-parametrically estimate the probability density function of the

individual cost component.

To estimate the probability density function of the total cost of the bidder i at a point

c, I compute an integral of the function hXi
( c
y
) ∗ hY (y) with respect to y over the interval

[y, y]. To evaluate this integral, I perform Monte Carlo integration with respect to hY (.).3 The

value of an average inverse bid function at a point b is estimated as the mean of the value of

the individual bid function at a point b
y
multiplied by y with respect to the distribution of y.

Again, Monte Carlo integration methods are used to compute the mean.

The details of the estimation procedure are outlined in the Appendix.

4.2 Properties of the Estimator

This subsection shows that the estimation procedure yields uniformly consistent estimators

of the relevant distributions. I use the result from Li and Vuong (1998) to establish uniform

consistency of the first stage estimators. Their argument applies if probability distributions of

bid components satisfy following restrictions on the tail behavior of characteristic functions.

(D5) The characteristic functions φLY (.) and φLAk
(.) are ordinary smooth4 with κ > 1.

This property holds, for example, when cumulative probability functions of cost com-

ponents admit up to R, R > 1, continuous derivatives on the support interior such that M of

them, 1 ≤M ≤ R, can be continuously extended to the real line. The uniform consistency of

the first stage estimators is used to establish uniform consistency of the estimator of individual

cost component distribution.

Proposition 5 summarizes properties of the estimator.
3Judd (2000) provides a detailed explanation of a Monte-Carlo integration method.
4Following Fan (1991),

Definition 1 The distribution of random variable Z is ordinary-smooth of order κ if its characteristic function
φz(t) satisfies

d0|t|−κ ≤ |φz(t)| ≤ d1|t|−κ
as t→∞ for some positive constants d0,d1,κ.
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Proposition 5

If conditions (D1)-(D5) are satisfied, then bhY (.) and bhXk
(.) are uniformly consistent

estimators of hY (.) and hXk
(.), k = 1, 2, respectively.

The proof of Proposition 5 is presented in Part A of the Appendix.

4.3 Practical Issues

Several important comments must be made about the first step. First, to reduce the error

in the characteristic function estimation, I scale bids to fit into the interval [0, 2π]. Second,

as noted by Diggle and Hall (1993) and Li, Perrigne and Vuong (2000), the estimators forbhLY (.) and bhLA(.), which are obtained by truncated inverse Fourier transformation, may have
fluctuating tails.5 This feature can be alleviated by adding a damping factor to the integrals

in bhLY (.) and bgLA(.). Following Diggle and Hall (1993) and Li, Perrigne and Vuong (2000), I
introduce a damping factor defined as

dT (t) =

(
1− |t|

T , if |t| ≤ T

0, otherwise

)
.

Thus, the estimators are generalized to

bgLA(a) =
1

2π

TZ
−T

dT (t) exp(−ita)bΦLA(t)dt,

bhLY (y) =
1

2π

TZ
−T

dT (t) exp(−ity)bΦLY (t)dt.

Third, the smoothing parameter T should be chosen to diverge slowly as n → ∞,

so as to ensure uniform consistency of the estimators. However, the actual choice of T in

finite samples has not yet been addressed in the literature. I choose T through a data-driven

criterion. In particular, I use the bid data to obtain estimates of the means and variances

for distributions6 of LY and LA, bµLY , bµLA = 0, bσLY , bσLA. These estimates are then used to
choose a value of T . Specifically, I try different values of T and obtain estimates of hLY (.)

and hLA(.). From each estimated density I compute the means and variances eµLY , eµLA, eσLY ,
5Li,Perrigne and Vuong (2000) encountered this problem as well and dealt with it in a similar way.
6The estimates for the first two moments of the distributions of LY , LA1 and LA2 can be obtained as follows:bµ

LY
=

P
log(bi)
n∗m , bµ

LA
= 0, bσLA =

P
(log(bi1 )−log(bi2 ))

2

2∗n∗m , bσLY =
P
(log(bi))

2

2∗n∗m − (bµ
LY
)2 − bσLA.
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eσLA, respectively. This gives goodness-of-fit criterion |bµLY − eµLY |+ |bσLY − eσLY | for LY , and
similarly for LA. The value of T that I choose minimizes the sum of these errors in percentage

of bσLY and bσLA. In the estimation, the optimal T equals 50.

The second step in the estimation involves taking random draws from the estimated

density. I use a rejection method.7 In this method random pairs (zj , aj) are drawn from the

uniform distribution on [0, r]× [a, a], where r is the maximum value that bhA(.) attains on the
support of the distribution of A. Then, aj is added to the sample of pseudo-bids if zj ≤ bhA(aj).
The resulting sample of pseudo-bids is distributed according to bhA(.).

The second step of the estimation involves non-parametric estimation of the density and

distribution function. In the density estimation a tri-weight kernel is used, because it satisfies

conditions of compact support and continuous differentiability on the support, including the

boundaries.8 The tri-weight kernel is defined as

K(u) =
35

32
(1− u2)31(|u| ≤ 1).

I follow Guerre, Perrigne, and Vuong(2000) in my choice of bandwidth, δg = dg(L)
− 1
6 ,

where dg is computed according to a ”rule of thumb.” Specifically, I use dg = 2.978× 1.06bσa,
where bσa is the standard deviation of the logarithm of (1 + bids), and 2.978 follows from the

use of tri-weight kernel.9

Confidence intervals for the estimates are obtained through a bootstrap procedure.

4.4 Monte Carlo Study

This section describes results of the Monte Carlo study. It consists of two parts. The first part

studies small sample properties of the estimation procedure that accounts for the presence of

unobserved auction heterogeneity. The second part investigates the direction and magnitude of

the bias that arises when procedures that ignore unobserved auction heterogeneity are applied

to data that possess this feature. The results of the first part are summarized in tables 1b and

2b. In particular, table 1b describes the data generating process for each of the experiments,

whereas table 2b summarizes estimation results. For each data generating process I report the

chosen variances of the cost components, the variance of the total costs, the correlation between

common and individual components, the correlation of individual components across bidders,

7The rejection method was proposed by Newmann (1951). We need to know the support of the distribution
in question to apply this method. A procedure for the supports estimation is described in the Part A of the
Appendix.

8Conditions given in Li, and Vuong (1998) ensure uniform consistency of the second-stage estimator.
9See Hardle, 1991.
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the correlation of total costs across bidders and the expected mark-up over the bidders’ costs

implied by the equilibrium bid function. The estimation results include the variances of the

estimated distributions of components, the variance of the estimated distribution of total costs

as well as the estimated expected mark-up over the bidders’ cost. Table 3b summarizes results

of the second part. The study is performed for the case of symmetric bidders, i.e. all bidders

are assumed to draw their costs from the same distribution.

The simulated data sets are generated as follows. The cost of bidder i is assumed to

equal the sum of the common and the individual cost components, ci = y+xi. The individual

cost component is distributed according to the uniform distribution with mean fixed at zero.

The common component is chosen to be distributed according to the power distribution with

the exponent equal to three and mean fixed at 10.5. To study the effect of an increase in

the correlation of bids on the performance of estimation procedures, I use power distributions

with different variances. The distributions are chosen so that analytical expression for bidding

strategies can be derived in each case.10 To create a typical data set describing n procurement

auctions with k bidders, k ∗ n independent draws from the uniform distribution are combined

with n draws from the corresponding power distribution (α = 3), such that

{cij , cij = yj + xij , i = 1, ., k; j = 1, .., n}

is a matrix of simulated costs. The matrix of associated bids is calculated according to the

equilibrium bid function. The values of n and k are set to equal 400 and 2, respectively. I

replicate each experiment 500 times and illustrate the resulting distributions of the estimators.

Independent Costs. First, I apply a procedure that accounts for unobserved auction

heterogeneity to the bid data based on the independent costs draws, i.e., data with a degenerate

common component. This experiment corresponds to case 1 in the tables 1b and 2b. Figures 1b

and 2b present the results of the estimation. As figure 2b shows, the estimated density of the

common component is close to degenerate. It is not exactly degenerate due to the estimation

error. The estimates indicate that the error is always confined to the interval of an order

of 0.2. Figure 1b shows that at the same time, the density of the individual component is

estimated quite precisely. In particular, the true density function lies within a 95% pointwise

confidence interval of the corresponding estimator. It is also true for the bid function, expected

bid function and expected density.

Non-trivial Unobserved Auction Heterogeneity Component. Figures 3b and 4b demon-

strate the estimation results when the procedure is applied to the data with non-trivial unob-

10 I considered combinations of several distributions to analyze the behavior of the estimation procedure, and
the results were very similar to those presented here.

18



served auction heterogeneity component. This experiment corresponds to case 2 in the tables

1b and 2b. In particular, I consider two sub-cases: in the first sub-case the common component

is chosen to be relatively small (case 2a) and in the second sub-case it is relatively large (case

2b). The results of estimation indicate that estimation procedure performs equally well in

both cases. In general, the estimation results are somewhat less precise as compared to the

case 1. The experimentation with different distributions shows that the estimator is the least

precise around the mode of the distribution. In the case of the uniform distribution, it is the

least precise around the ends of the support; for the power distribution, the precision is worst

at the right end of the support. However, the estimates for both the density of the common

component and the density of the individual components are still reasonably close to the true

densities. In particular, the true densities lie within a 95% pointwise confidence interval of the

estimators. The same is true for the estimators of the individual bid function, expected bid

function, and the estimated density of total costs.

Affiliated Private Values. Next, I evaluate the performance of the estimation procedure

when data are generated by the affiliated private values model. This experiment corresponds

to case 3 in the tables 1b and 2b. As before, the cost realizations are equal to the sum of draws

from two distributions: X and Y , where X has a uniform distribution and Y is distributed

according to power distribution. However, in this case I assume that bidder i observes only her

cost realization, ci = xi + y, but not xi or y. I derive an analytical expression for the bidding

function according to the characterization result stated in Milgrom and Weber (1982) and use

it to compute bid values corresponding to the sample of cost draws. I consider two sub-cases:

in the first sub-case the Y component is chosen to be relatively small (case 3a) and in the

second sub-case it is relatively large (case 3b). The results of estimation presented in table 2b

show that the recovered expected cost density is tighter than the true cost distribution. The

recovered expected bid function is steeper than the true bid function. On average, estimated

expected mark-up is smaller than the true one.

Correlated Individual Components. Another experiment analyzes the performance of

the estimation procedure when individual cost components are correlated (case 4). The under-

lying cost realizations are generated as a sum of draws from three distributions: X0, X1, and

Y . In particular, c1j = x1j+yj and c2j = x2j+yj , where x1j = x1j0 +x
j
1 and x

2j = x2j0 +x
j
1, are

realizations of individual components, and yj is a realization of the common cost component.

The distributions of X0 and X1 are uniform and the distribution of the common cost compo-

nent Y is power with exponent three. The bidding function is derived taking into account the

correlation between individual components, and bid realizations are computed by evaluating

the bid function at cost realizations. As before, I consider two sub-cases: in the first sub-case

the X1 component is chosen to be relatively small and thus affiliation is rather weak (case
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4a), and in the second sub-case it is relatively large (case 4b). In the case 4, the estimation

procedure tends to overestimate the variance of the common component and underestimate

the variance of the individual component. This effect decreases as the variance of X1 decreases

and practically vanishes when the correlation is about 5% of the variance of X. In fact, it

seems that a small amount of correlation between individual cost components improves the

performance of the procedure. The estimated individual bid function tends to underestimate

the true mark-ups but the estimated expected bid function produces almost unbiased estimates

of the true expected bid function. The last effect arises because variance of Y is overestimated.

Because of this effect the estimated distribution of total costs is also an almost unbiased es-

timator of the true distribution of expected total costs. the bias increases as the strength of

affiliation increases.

Correlated Common and Individual Components. Finally, I investigate the performance

of the procedure when individual components are correlated with the common component but

not with each other (case 5). The underlying cost realizations are generated as a sum of draws

from distributions of three random variables: X0, X1, and Y0, namely, c1j = x1j + yj and

c2j = x2j + yj , where x1j = x1j0 + x1j1 and x2j = x2j0 + x2j1 are individual components, and

yj = x1j1 + x2j1 + yj0 is a common component. The distributions are chosen as follows: the

distributions of X0 and X1 are uniform and the distribution of Y0 is a power distribution

with exponent three. The bidding function is derived for the bidders’ beliefs corresponding

to the distribution of X0 + X1. As before, I consider two sub-cases: in the first sub-case

the X1 component is chosen to be relatively small (case 5a) and in the second sub-case it is

relatively large (case 5b). The results of estimation presented in the table 2b show that the

recovered distribution of the common component tends to have larger variance than the true

distribution of Y, and the recovered distribution of X tends to have smaller variance than the

true distribution. Changes in variances are consistent with the variance of the joint part of X

and Y being added to the variance of Y and subtracted from the variance of X. Therefore, it

confirms our intuition that the estimation procedure decomposes the sum of random variables

into the orthogonal components. This effect decreases as the correlation between X and Y

decreases and practically vanishes when the correlation is about 5% of the variance of X. In

fact, it seems that a small amount of correlation between X and Y improves the performance

of the procedure. Similar to the case of correlated individual components, the estimated

individual bid function tends to underestimate the true mark-ups, but the estimated expected

bid function and the estimated distribution of total costs produce almost unbiased estimates

of the true expected bid function and the true distribution of total costs.

The second part of the study aims to evaluate the magnitude and direction of the

bias that arises when estimation procedures that ignore the presence of unobserved auction
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heterogeneity are applied to the data generated by the model with unobserved auction hetero-

geneity. In particular, I obtain estimates under the assumption of independent private values

and affiliated private values respectively. In this analysis I allow the ratio between the vari-

ance of the individual cost component and the variance of the common cost component to vary.

Estimation results are summarized in the table 3b. I use average mark-ups over the bidders’

costs to compare the bidding function’s estimators across different estimation procedures. Es-

timation results indicate that bid functions estimated under the assumption of independent

private values or affiliated private values tend to underestimate bidders’ costs and therefore

overestimate the mark-ups over the bidders’ costs. The bias increases as the ratio between

variances of the common and individual components increases, i.e., as the correlation between

costs increases. In particular, this effect becomes significant when the correlation coefficient is

around or exceeds 0.3. The bid functions estimated by the IPV and APV procedures are flatter

than the true inverse bid function for most of the support. In particular, the IPV estimator

gets increasingly flatter at the lower end of the support. Intuitively, the presence of the known

common component leads to a bid distribution with very thin tails. Under the assumption of

independent private values, such a distribution reflects extreme bid shading at the lower end

of the support, or an extremely flat bid function.

Table 3b also presents estimates of the mean and variance of the cost distribution across

estimation procedures and for different values of the variance of the common component. The

results suggest that the cost distributions estimated under both the independent and affiliated

private values assumptions tend to have lower means and higher variances compared to the

true cost distribution.

To summarize, results of the simulation study show that the procedure performs reason-

ably well when applied to data generated by the model with unobserved auction heterogeneity

and also when a small amount of correlation between individual components and/or a corre-

lation between the individual component and common cost component is present. They also

show that if an estimation procedure that relies on the assumption of no unobserved auction

heterogeneity is applied to data with a significant amount of unobserved auction heterogeneity,

it can lead to substantially biased estimates of bidding function, mark-ups and the probability

density function of bidders’ costs.

So far, I have described identification conditions, proposed an estimation procedure,

and discussed small sample properties of the estimator using a Monte-Carlo study.
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5 Michigan Highway Procurement Auctions

This section describes characteristics of the Michigan highway procurement auctions. Section

5.1 and 5.2 present the data and report descriptive evidence of auction-specific variation in the

bids distribution. Section 5.3 describes estimation results for the model with unobserved het-

erogeneity and compares them to the estimates obtained under the assumption of independent

and affiliated private values. The estimates suggest that unobserved auction heterogeneity may

account for a large part of bid variation. If unobserved auction heterogeneity is present, estima-

tors obtained under alternative assumptions may substantially exaggerate bidders’ mark-ups

and misrepresent the shape of the cost distribution.

5.1 Market Description

The Michigan Department of Transportation (DoT) is responsible for construction and main-

tenance of most roads within Michigan. The Department of Transportation identifies work

that has to be done and allocates it to companies in the form of projects through a first-price

sealed bid auction. The project usually involves a small number of tasks, such as resurfacing,

or replacing the base or filling in cracks.

Letting process. The Department of Transportation advertises projects 4 to 10 weeks

prior to the letting date. Advertisement usually consists of a short description of the project,

including the location, completion time and a short list of the tasks involved. Companies

interested in the project can obtain a detailed description from the DoT.

Estimated cost. The DoT constructs a cost estimate for every project. This estimate

is based on the engineer’s assessment of the work required to perform each task and prices

derived from the winning bids for similar projects let in the past. The costs are then adjusted

through a price deflator.

Federal law requires that the winning bid should be lower than 110% of the engineer’s

estimate. If a state decides to accept a bid that is higher than this threshold, it has to justify

this action in writing. In this case the engineer’s estimate has to be revised and verified for any

possible mistake. In my data set, I observe a number of bids higher than 110% of the engineer’s

estimate. On multiple occasions, the winning bid is higher than this threshold. These facts

suggest that bidders consider the probability of an event when this restriction comes into effect

to be rather small. The assumption of no reserve price is justified in this environment.

Number of bidders. It is unclear if the auction participants have a good idea about the

number of their competitors. The existing literature on highway procurement auctions tends

to argue that this is a small market where participants are well informed about each other
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and can accurately predict the identities of auction participants.11 I follow this tradition and

assume that the number of actual bidders is known to auction participants.

5.2 Descriptive Statistics

I use data for highway procurement auctions held by the Michigan Department of Transporta-

tion (DoT) between February 1997 and December 2003. In particular, I focus on highway

maintenance projects with bituminous resurfacing as the main task. The data set consists of

a total of 3,947 projects. My information includes the letting date, the completion time, the

location, the tasks involved, the identity of all the bidders, their bids, an engineer’s estimate,

and a list of planholders.

My choice of the projects’ type is motivated by two objectives. First, I want to ensure

that auction environment is characterized by private rather than common values. Second, I

am looking for an environment that is likely to have unobserved auction heterogeneity. High-

way maintenance projects are usually precisely specified and relatively simple. It is likely that

bidders can predict their own costs for the project quite well. The existing uncertainty is,

therefore, associated with variation in costs across firms, which is consistent with the private

values environment. This variation is generated by differences in opportunity costs and input

prices faced by different firms. Further, although highway maintenance projects are rather

simple, their costs can be substantially affected by local conditions such as elevation and cur-

vature of the road; traffic intensity; age and quality of the existing surface. Information about

these features may not be available to the researcher. On the other hand, firms’ representa-

tives usually travel to the project site and therefore are likely to collect this information and

incorporate it in their bids. Hence, I expect to find unobserved auction heterogeneity.

The paving companies participating in the maintenance auctions mostly differ by their

size (employment, number of locations), specialization (single vs. multiple tasks), and fre-

quency of participation in the DoT market. Each of these three features may potentially imply

cost differences. The size maybe important if economies of scale are present. For example,

larger companies are likely to own their equipment instead of renting it, which maybe cost

reducing. Specialization may be important because projects in my data set usually involve

some auxiliary work, such as marking or landscaping. A firm that specializes in paving may

have to subcontract these tasks, whereas a firm with multiple specializations may be able to

perform all the tasks internally. This may result in cost differences. Frequency of participation

reflects experience with DoT projects. Construction Business Handbook notes that "...in most

government contracts, a body of standard specifications have developed over the years. ...

11See, for example, Bajari and Ye (2003).

23



A bidder is required to learn a whole new and separate body of specifications..." Therefore

companies that infrequently participate in the DoT market may have higher costs due to the

limited experience with DoT projects. On the other hand, infrequency of participation maybe a

manifestation of some inherent cost disadvantages or dynamic strategies of the company. Since

size, specialization and frequency are observable to all market participants it is important to

allow for the possibility that market participants have different beliefs about the distribution

of costs for groups of companies that differ according to these features. Therefore, I allow

for asymmetries between bidders. In particular, I distinguish between two types of bidders:

regular (large) bidders and fringe bidders. The set of regular bidders is defined to include

large companies that frequently participate in auctions held by the DoT and have multiple

specializations. In particular, it includes firms that submit at least 12 bids per year, are within

the top 10% of firms according to the employment size, and specialize in three or more types

of tasks. The set of fringe bidders includes all other companies. It may be worth noting that

the set of regular bidders is completely defined by the first two conditions. All large companies

submitted at least 12 bids per year and specialized in multiple tasks. However, some of the

companies that submitted many bids are quite small as well as may specialize in only one task.

Companies that specialize in many tasks tend to be large.

In my data, the number of bidders per project varies between 1 and 11. More than 85%

of projects attracted between 2 to 6 bidders with the mean number of bidders equalling 3.4

and standard deviation of 1.3. About 75% of the projects have an engineer’s estimate between

$100,000 and $1,000,000; 5% are below $100,000 and 20% are above $1,000,000.

Table 1c provides summary statistics of several important variables by the number of

bidders. It shows that the mean of the engineer’s estimate does not change significantly across

groups of projects that attracted different number of bidders. The tabulation of the winning

bid indicates that the difference between the engineer’s estimate and the winning bid is positive

and increases with the number of bidders, which implies that the engineer’s estimate may not

be a good indicator of the costs of the project. An important statistic of the data is “money

left on the table” as represented by the difference between the lowest and second-to-lowest bid

normalized by the engineer’s estimate. This variable is usually taken to indicate the extent

of uncertainty present in the market. ”Money left on the table” is, on average, equal to 7%

of the engineer’s estimate and decreases with the number of bidders. The magnitude of the

"money left on the table" variable is similar to the findings of other studies.12 It indicates that

cost uncertainty may be substantial. Table 1c also shows that the number of regular bidders

is usually between 1 and 3 and increases only slightly with the total number of bidders.

Next, I explore if there is a scope for unobserved auction heterogeneity in my data.

12See, for example, Jofre-Bonnet and Pessendorfer (2003).
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Table 2c presents results of the regression analysis of bid levels. It includes results of simple

OLS regression, OLS regression with auction dummies and random effects regression. Each

regression controls in a flexible way for firm and auction features observable to a researcher. In

particular, I estimate the relationship between bid levels and the engineer’s estimate, time to

complete the project (duration), the smallest distance between firm’s locations and the project

site (Distance), the firm’s backlog13 at the time of bidding, number of potential bidders and

indicator whether firm is a regular bidder. I use logarithms of bids, the engineer’s estimate,

and the backlog variable. These variables are measured in hundreds of thousands of dollars.

Distance is measured in tens of miles. Regression analysis is performed conditional on the main

task of the project and number of bidders. presented results correspond to the bituminous

resurfacing projects with four bidders. OLS regression indicates that the engineer’s estimate,

distance to the project site, and backlog variable have a positive and statistically significant

impact on the submitted bid. The effect of distance to the project on the bid level is quite

small. It is about $300 for every 10 extra miles. The time of completion does not produce a

significant impact on the bid level. On the other hand, fringe bidders bid, on average, $20,000

more than regular bidders. As expected the number of potential bidders has negative effect

on the bid level. The second-order and interaction terms are not statistically significant. This

analysis produces R2 equal to 0.81 which indicates that variables included in the regression

describe factors affecting bid levels quite well. However, when auction dummies are added to

the set of explanatory variables R2 increases to 0.89 which indicates that substantial amount

of inter-auction variation cannot be explained by the variables available to the researcher.

This result suggests that unobserved auction heterogeneity maybe present. The results of the

random effects regression are very similar to the first two sets of results. They show that about

48% of the residual variation in the log’s of bids may be across auctions. Thus, the regression

analysis provides strong evidence for the importance of unobserved auction heterogeneity in

Michigan highway procurement auctions.

5.3 Estimation Results

Estimation results presented below correspond to the set of projects with an engineer’s estimate

between $500,000 and $900,000 and time to completion between 6 and 9 months that attracted

two regular and two fringe bidders. This set consists of 487 projects. The results for different

values of engineer’s estimate, duration, and the number of bidders are qualitatively similar.

In the estimation, the mean of the high type is normalized to be equal to one. Figures

13Backlog of the firm i is computed as a sum of the projects won by firm i that have not reached the completion
deadline weighted by the ratio of time remaining before the project deadline to the total time allocated for the
project.
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1c and 2c present estimated distributions of the common and individual cost components. The

recovered distribution of the common component has a mean equal to $654,000 and a standard

deviation of $31,700. The recovered distributions of individual components for high and low

types are very similar. The individual cost component of fringe type has a slightly higher mean

and variance than the individual cost component of the regular type. The mean of the fringe

type distribution is 1.2 . Standard deviations of the regular and fringe type distributions are

0.22 and 0.23, respectively.

Variance decomposition. Recall that bidder i0s cost for project j is given by cij = yj∗xij .
Taylor approximation applied to C(.,.) as a function of X and Y allows us to approximate the

variance of C in the following way:

V ar(c) = (EY )2V ar(X) + (EX)2V ar(Y ).

If (EY )2V ar(X) and (EX)2V ar(Y ) are taken to represent parts of the cost variation generated

by the variation in the individual and common cost components respectively, then it can be

calculated that the individual cost component accounts for almost 15% of variation in the

cost.14

Mark-ups over the bidders’ costs. The estimated inverse bid functions are used to com-

pute mark-ups over the bidders costs. The normalized mark-up, b−c
c = a−x

x , x = φ(a), ranges

from 0.1% to 25% and, on average, is equal to 7.5% for the regular bidder. Mark-ups for the

fringe type bidders range between 0.1% to 18% and, on average, are equal 6%. Mark-ups for

the winning bid are, on average, equal to 16% and 14% respectively.

Inefficient outcomes. When bidders are asymmetric, it is possible that the project is

not awarded to the lowest cost bidder, i.e., the auction outcome is not efficient. To compute

the probability of such event for the selected set of projects, I use the estimated distributions

of cost components to create a pseudo-sample of cost vectors, where for each vector two draws

are taken from the cost distribution of regular type and two draws from the cost distribution

of the fringe type. Then, for each cost draw, the bid value is calculated on the basis of the

14Note that this decomposition does not depend on our choice of mean normalization. Suppose that X0 and
Y0 are true random variables representing the individual and common cost components, respectively. Due to
normalization we are working with X = 1

k
X0 and Y = kY0, for some k > 0. Then

(EY )2V ar(X) = k
2(EY0)

2 1

k2
V ar(X0),

i.e.
(EY )2V ar(X) = (EY0)

2
V ar(X0).

Similarly,
(EX)2V ar(Y ) = (EX0)

2
V ar(Y0).
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estimated bidding function. Finally, the fraction of the auctions in which the lowest bids do

not correspond to the lowest costs is computed. This exercise is repeated 100 times. I find

that the estimated probability of inefficient outcome is, on average, equal to 28% with 95%

quantile range given by [26.6, 30.3].

Comparison to alternative auction models. Figure 4c compares the expected bid func-

tion estimated under the assumption of unobserved auction heterogeneity to the bid function

recovered under the affiliated private values (APV) and independent private values (IPV) as-

sumptions, respectively.15 Both the IPV and APV procedures estimate total costs that are

substantially lower than the expected costs estimated under the unobserved auction hetero-

geneity assumptions both for low and high type. In particular, the model with unobserved

auction heterogeneity implies an average mark-up over the bidders’ costs of around 7%. In

contrast, the model with affiliated private values predicts average mark-ups of 11%, whereas

the model with independent private values predicts 15%. The difference amounts to $33,000 in

the case of affiliated private values and $61,000 for the model with independent private values.

In both cases, confidence intervals for the IPV and APV estimates intersect the confidence

interval constructed under the null of unobserved heterogeneity only for a very small part near

the upper end of the support. Finally, the models with private and affiliated values predict

a higher probability of inefficient outcome: 34% and 38%, respectively. These results suggest

that the APV and IPV models may lead to significant overestimation of mark-ups and thus

erroneous policy conclusions if the data are generated by the model with unobserved auction

heterogeneity.

Figure 4c compares the expected density function of the cost distribution estimated

under the assumption of unobserved auction heterogeneity to the cost density functions recov-

ered under APV and IPV assumptions.16 The IPV and APV densities are much flatter relative

to the density function estimated under the assumption of unobserved auction heterogeneity.

In both cases, confidence intervals for the IPV and APV estimates intersect the confidence

interval constructed under the null of unobserved auction heterogeneity only for a very small

part near the upper end of the support. The variance of the cost distribution estimated un-

der the assumption of unobserved auction heterogeneity is about 25% lower that the variance

of the cost distribution estimated under the assumption of affiliated private values and 35%

lower than the variance of the cost distribution estimated under the assumption of indepen-

dent private values. Therefore, if data are generated by the model with unobserved auction

heterogeneity, then the models that fail to account for unobserved auction heterogeneity tend

15To compute the value of the expected inverse bid function at a point b, I first derived total costs for every
value of the common component that could have resulted in a bid b and then computed an expectation of total
costs with respect to the distribution of the common component.
16The total cost density function is computed as a convolution of the density functions of the common and

the individual cost component.
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to overestimate the uncertainty present in the market.

Measuring fit. To measure the fit of the model, I generate a sample of pseudo-bids on

the basis of the model with unobserved auction heterogeneity and draws from the estimated

distributions of the cost components. I then construct an estimate of the pseudo-bid densities

for two types of bidders and compare them to the densities estimated from the real bids. Results

for regular type bidders’ are presented in Figure 5c. It shows that for both types, densities

of pseudo-bids are very similar to the estimated bid densities. The largest discrepancy occurs

near the mode of distribution, which is a typical feature of this estimation procedure as we

have observed in the Monte Carlo section.

Evaluating assumptions of the model. The identification and estimation of the model

with unobserved auction heterogeneity relies on the assumption about functional relation be-

tween total costs and cost components and the assumption that individual cost components are

independent from each other and from the common cost component. Proposition 2 from the

identification section allows us to evaluate validity of these assumptions in the data. It exploits

the observation that the same methodology which we used to recover the distributions of indi-

vidual bid and common cost components from the joint distribution of (log(B1), log(B2)) can

be used to recover the distributions of the individual bid components of B1, B2,B3 from the

joint distribution of (log(B1)− log(B3)), (log(B2)− log(B3)). This suggests two checks for the

internal consistency of the model. Let us suppose that B1 and B3 represent bids submitted by

bidders of the regular type, whereas B2 represent bids submitted by bidders of the fringe type.

Then, if functional relation assumption and independence of individual components hold in the

data, the distributions of individual bid components A1 and A3 recovered from the joint distri-

bution of (log(B1)− log(B3)), (log(B2)− log(B3)) should look very similar. On the other hand
if functional form assumption is very imprecise then the dependence in (log(B1)− log(B3)) and
(log(B2)− log(B3)) is generated not only by log(A3) but also by some random variable that

captures difference between the true and assumed functional form. In this case, we are likely

to recover different distributions for the A1 and A3. Also, if individual cost components, and

thus individual bid components, are not independent, then the estimate for the distribution of

the A1 is likely to underestimate the variance of the individual bid component of B1, whereas

an estimate for the distribution of A3 is likely to overestimate the variance of individual bid

component of B3. This provides the first check on the model. The second check arises from

the fact that we do not use an assumption about independence of the individual cost compo-

nents from the common cost component when recovering distributions of A1, A2 and A3 from

the joint distribution of (log(B1) − log(B3)), (log(B2) − log(B3)). Therefore, if this assump-

tion holds in the data then the distributions of A1 and A2 recovered from joint distribution

of (log(B1) − log(B3)), (log(B2) − log(B3)) should be very similar to the distributions of A1
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and A2 recovered from joint distribution of (log(B1), log(B2)). On the other hand if this as-

sumption is violated then the estimated distributions of A1 and A2 produced by the second

procedure are likely to have smaller variances than the the estimated distributions of A1 and

A2 produced by the first procedure.

Table 3c presents estimation results for the two methodologies when B1 and B3 rep-

resent bids submitted by the regular type. In particular, it shows variances of the estimated

distributions. The formal test that would allow us to establish if two sets of estimates are

statistically different has not yet been developed in the literature. However, the estimates for

the distribution of individual bid component look reasonably similar for the random variables

A1 and A3 as well as across methodologies. This gives us confidence that the assumptions of

the model hold at least approximately.

Robustness check. I perform several robustness checks to verify if my estimates are

sensitive to some of the assumptions about auction environment.

The model of bidding behavior that I take to the data assumes that firms’ bidding

decisions are independent across auctions. This assumption maybe violated if bidders’ decisions

are affected by dynamic considerations. In particular, when company is capacity constrained it

has to take into account the effect of winning project today on its ability to explore profitable

opportunities tomorrow. If dynamic links between auctions are substantial in magnitude our

estimates of the characteristic function of joint distribution of two bids submitted in the same

auction may be biased which in turn would lead to biased estimates for the distributions of

cost components. To evaluate the effect of dynamic links on the performance of the estimation

procedure I re-estimate the model for the subset of projects, such that all regular firms bidding

for the projects in this subset have their backlog variable between 30% and 75% of the maximum

of backlog variable for this firm observed in our data. Even though this exercise substantially

reduces the number of available projects and therefore leads to less precise estimates, the

results of the estimation are quantitatively similar. In particular, findings about variance

decomposition and biases from misspecification hold.

Presence of unobserved auction heterogeneity manifests itself through the correlation

between bids submitted in the same auction. It is possible, however, that the correlation

between bids is generated through some other mechanism. For example, it may arise if the

auction environment has common values features. It may also arise if participating companies

are systematically engaged in collusive behavior. I deal with the first issue by restricting my

attention to maintenance projects that are unlikely to have any project-related uncertainty

that could lead to a common values effect.

It is much harder to reject a possibility of collusion, since all the tests proposed in
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the literature depend on the particular collusion scheme employed. I use the test proposed by

Porter in Zona (1993), which is based on the assumption that if there is a collusion scheme, then

only the winning bid corresponds to a real cost realization and all other bids are "phony,", i.e.,

unsubstantiated by any cost realization. I use a procedure described in Athey and Haile (2001)

to recover distribution of high and low type bids from the distribution of the winning bid. I

then compare these distributions to the ones estimated from the losing bids. Distributions

estimated through these two procedures appear to be similar, which gives us confidence that

the data do not reflect the outcome of collusive behavior.

6 Conclusion

This paper proposes a semi-parametric procedure to recover the distribution of bidders’ private

information in the market for highway procurement when unobserved auction heterogeneity is

present. I derive sufficient conditions under which the model is identified and show that the

estimation procedure produces uniformly consistent estimators of the distributions in question.

Using data for highway maintenance projects collected by the Michigan Department of Trans-

portation, I estimate that conditional on the number of bidders, the type of the project as

defined by the main task, and the size and duration bracket, about 75% of the project cost is

a common knowledge among bidders. Therefore, private information accounts for only 25% of

the project costs. Results of the estimation further reveal that the estimation procedures that

ignore unobserved auction heterogeneity tend to estimate lower costs and higher mark-ups.

They also tend to overestimate the variance of the distribution of bidders’ costs.

My estimation procedure relies on the assumptions of the independence of individual

cost components across bidders and from the common cost component. These assumptions

seem consistent with the data. The downside of the first assumption is that the procedure

cannot recover the distribution of private information if individual components are affiliated.

Therefore, I cannot distinguish between the model with unobserved auction heterogeneity

and the model with affiliated private values - the two models that generate correlated bids.

However, these two models represent two extremes in the environment with private values.

The model with unobserved auction heterogeneity attributes all correlation to the common

knowledge of the bidders about the project costs, whereas the model with affiliated values

interprets the correlation in bids as the correlation of bidders’ costs that occurs due to factors

unknown to the bidders. Therefore, the model with unobserved auction heterogeneity gives

us the minimal and the model with affiliated values gives us the maximum amount of private

information, which is consistent with the data.

The analysis is performed conditional on bidders’ decisions to participate in the auction
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and on the number of bidders. The next step in the analysis of unobserved auction hetero-

geneity is to explicitly account for the participation decision of bidders. I address this issue in

a different paper.

31



References

Athey, S. and P. Haile (2001). ”Identification of Standard Auction Models,” Econo-

metrica, 70(b), 2107-2140.

Athey, S. and P. Haile (2000). ”Identification of Standard Auction Models,” MIT

working paper 00-18 and SSRI working paper 2013.

Bajari, P. and L.Ye (2003). ”Deciding between Competition and Collusion,” The Re-

view of Economics and Statistics, 85(4), 971-989.

Chakraborty,I., and G.Deltas (1998). ”A Two-stage Approach to Structural Econo-

metric Analysis of First-Price Auctions,” Working Paper, University of Illinois.

Campo S., Perrigne I., and Q. Vuong (2003). ”Asymmetric Bidders in First-Price

Auctions with Affiliated Private Values,” Journal of Applied Econometrics, 18,179-207.

Construction Business Handbook (1985). edited by Cusman R. and J. Bigda, McGraw-

Hill, 2nd edition.

Diggle, P. J., and P. Hall (1993). ”A Fourier Approach to Nonparametric Deconvolution

of a Density Estimate,” J.Royal Statist. Soc. Ser. B 55, 523 - 531.

Donald, S. G. and H. J. Paarsch (1993). "Piece-wise Pseudo-Maximum Likelihood

Estimation in Empirical Models of Auctions," International Economic Review, 34, 121-148.

Donald, S., and H. Paarsch (1996). ”Identification, Estimation and Testing in Paramet-

ric Empirical Models of Auctions within the Independent Private Values Paradigm,” Econo-

metric Theory, 12, 517-567.

Elyakime, B., J. J. Laffont, P. Loisel, and Q. Vuong (1994). ”First-Price Sealed Bid

Auctions with Secret Reservation Prices,” Annales d’Economie et de Statistique, 34, 115-141.

Elyakime, B., J. J. Laffont, P. Loisel, and Q. Vuong (1997). ”Auctioning and Bargain-

ing: An Econometric Study of Timber Auctions with Secret Reservation Prices,” Journal of

Business and Economic Statistics, 15, 209-220.

Fan, J. Q. (1991). ”On the Optimal Rates of Convergence for Nonparametric Decon-

volution Problems,” Ann. Statist. 19, 1257-1272.

Guerre, E., I. Perrigne, and Q. Vuong (2000). ”Optimal Nonparametric Estimation of

First-Price Auctions,” Econometrica, 68, 525-574.

Hardle, W. (1990). "Applied Nonparametric Regression," Cambridge University Press.

Hendricks, K. and R. Porter (1988). ”An Empirical Study of an Auction with Asym-

metric Information,” American Economic Review, 78, 865-883.

32



Hong H., and M. Shum (2002). “Increasing Competition and the Winner’s Curse:

Evidence from Procurement,” Review of Economic Studies, 69, 871-898.

Jofre-Bonet M., and M. Pesendorfer (2003). ”Estimation of a Dynamic Auction Game,”

Econometrica, 71(5), 1443-1489.

Judd, K. (2000). "Numerical Methods in Economics," The MIT Press.

Kotlarski, Ignacy (1966). ”On Some Characterizations of Probability Distributions in

Hilbert Spaces,” Annal di Matematica Pura et Applicate, 74, 129-134.

Laffont, J. J., H. Ossard and Q. Vuong (1995). "Econometrics of First-Price Auction,"

Econometrica, 63, 953-980.

Laffont, J. J., and Q. Vuong (1996). ”Structural Analysis of Auction Data,” American

Economic Review, Papers and Proceedings, 86, 414-420.

LeBrun, B. (1999). ”First-Price Auctions in the Asymmetric N Bidder Case,” Interna-

tional Economic Review, 40, p. 125-142.

Li, T., I. Perrigne, and Q. Vuong (2000), ”Conditionally Independent Private Informa-

tion in OCS Wildcat Auctions,” Journal of Econometrics, 98, 129-161.

Li, T., I. Perrigne, and Q. Vuong (2002). ”Structural Estimation of the Affiliated

Private Values Model,” Rand Journal of Economics, 33(2), 171-194..

Li, T., and Q. Vuong (1998). ”Nonparametric Estimation of Measurement Error Model

Using Multiple Indicators,” Journal of Multivariate Analysis, 65, 135-169.

Lukacs, E. (1970), ”Characteristic Function,” Griffin, London.

Maskin, E., and J. Riley (2000a). ”Asymmetric Auctions,” Review of Economic Stud-

ies, 67, 413-438.

Maskin, E., and J. Riley (2000b). ”Existence of Equilibrium in Sealed High Bid Auc-

tions,” Review of Economic Studies, 67, 439-454.

Milgrom, P., and R. Weber (1982). "A Theory of Auctions and Competitive Bidding,"

Econometrica, 50(5), 1089-1122.

Perrigne, I., and Q. Vuong (1999). ”Structural Econometrics of First-Price Auctions:

A Survey of Methods,” Canadian Journal of Agricultural Economics, 47, 203-223.

Porter, R., and D. Zona (1993). ”Detection of Bid Rigging in Procurement Auctions,”

Journal of Political Economy, 101, 518-538.

Rao, B. L. S. P. (1992). ”Identifiability in Stochastic Models: Characterization of

Probability Distributions,” Academic Press, New York.

33



Stone, C. J. (1992). ”Optimal Rates of Convergence for Non-parametric Regressions,”

Annals of Statistics, 10, 1040-1053.

34



A Proofs of Theoretical Results

Proof of Proposition 1:

LeBrun (1999) and Maskin and Riley (2000) establish that (α1y(.), α2y(.)) constitutes

a unique vector of equilibrium strategies conditional on Y = y if and only if functions αky(.)

satisfy a system of differential equations for every a

1

a− y ∗ x =
(mk−1)

y hXk
(
α−1
ky
(a)

y )

(1−HXk
(
α−1
ky
(a)

y ))α0ky(α
−1
ky (a))

+

m−k

y hXk
(
α−1
ky
(a)

y )

(1−HXk
(
α−1
ky
(a)

y ))α0ky(α
−1
ky (a))

(5)

with boundary conditions given by

(A1) αky(y ∗ x) = x and (2) there exists dky ∈ [y ∗ x, y ∗ x] such that αky(y ∗ x) = dky.

The vector of equilibrium strategies conditional on y = 1 satisfies the system of differ-

ential equations

1

a− x
=

(mk − 1)hXk
(α−1k1 (a))

(1−HXk
(α−1k1 (a)))α

0
k1(α

−1
k1 (a))

+
m−khXk

(α−1k1 (a))

(1−HXk
(α−1k1 (a)))α

0
k1(α

−1
k1 (a))

. (6)

Let us consider a set of functions (γ1y, γ2y), γky : [y ∗ x, y ∗ x]→ (0,∞) such that

γky(z) = y ∗ αk(
z

y
),

γky(y ∗ x) = y ∗ x,
γky(y ∗ x) = y ∗ dy1.

Then

α−1k (
a

y
) =

γ−1ky (a)

y

and

(α−1k (z))
0 = (

γ−1ky (y ∗ z)
y

)0 = (γ−1ky (y ∗ z))0.

If we substitute functions γ1y, γ2y in the system of equations (5), then (5) can be transformed

to
1

a
y − x

=
(mk − 1)hXk

(α−1k1 (
a
y ))

(1−HXk
(α−1k1 (

a
y )))α

0
k1(α

−1
k1 (

a
y ))

+
m−khXk

(α−1k1 (
a
y ))

(1−HXk
(α−1k1 (

a
y )))α

0
k1(α

−1
k1 (

a
y ))

. (7)

Replacing a
y with z in the system of equations (7), we are back to the system of equations

(7), which we know is satisfied by αk1(z), which implies that γ1y, γ2y satisfy the system of
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equations (5). They also satisfy corresponding boundary conditions by definition if dky is set

equal to y ∗dy1. Since the solution to the system (5) that satisfies boundary conditions (A1) is
unique and constitutes the set of equilibrium functions, γ1y, γ2y coincide with α1y, α2y. Thus

αky(z) = y ∗ αk1(
z

y
).

When Y = y, z = y ∗ x, where x ∈ [x, x], then

αky(z) = y ∗ αk1(x).

Proof of Theorem 1:

(a) I start by establishing a statistical result that I use to prove Theorem 1. Namely,

Lemma 1

Let X be a random variable with the probability density function f(.) and support [x,x],

then the characteristic function of variable X is non-vanishing, i.e. it does not turn into zero

on any non-empty interval of the real line.

Proof

The idea of a proof is to consider the extension of the characteristic function ϕX(t) =
xR
x
eitxf(x)dx to the complex domain. In particular, I consider function eϕX(.) defined as

eϕX(z) =
xR
x
eizxf(x)dx at an arbitrary complex point z. It is straightforward to show that

eϕX(.) is an entire function, i.e. it is infinitely complex differentiable at every finite point of

the complex plane. Therefore, it can only be equal to zero in a countable number of points.

Thus the number of points where ϕX(t) is equal to zero cannot be more than countable which

means that ϕX(t) is non-vanishing.

Finally, eϕX(.) is an entire function because

eϕ(k)X (z) =
xR
x
(ix)keizxf(x)dx.

Notice that for every k eϕ(k)X (z) is well defined due to the boundedness of theX’ support.

That concludes the proof of Lemma 1.

(b) Random variables Y , Ai, log(Y ) and log(Ai) have bounded supports and therefore

have non-vanishing characteristic functions.
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(c) As has been established in Proposition 1, Bkij = yj ∗akij, where akij is an individual
bid component. Two bids per auction produce two relationships B1 = Y ∗A1 and B2 = Y ∗A2.
Since Y and Ak’s take only positive values, these relationships can be rewritten as

log(B1) = log(Y ) + log(A1),

log(B2) = log(Y ) + log(A2).

As we noted before characteristic functions of log(Y ) and log(Ai) are non-vanishing. Therefore

theorem by Kotlarski (1966)17 applies directly to this environment and ensures that distrib-

utions of log(Y ), log(A1), and log(A2) are identified up to a constant. To fix the constant

we assume that E(log(A1)) = 0. Then, since the distribution functions of log(Y ), log(A1),

and log(A2) are uniquely identified, and, since log(.) is a strictly monotone function, then the

distribution functions of Y , A1, and A2 are uniquely identified as well.

Since the individual bid components represent bids that would have been submitted

in the auction game without unobserved heterogeneity and with asymmetric bidders, then the

identification of the distribution of the individual cost component from the distribution of the

individual bid component follows according to the results established by Laffont and Vuong

(1996).

Remark

The realizations of the common component and individual cost component correspond-

ing to bid bij are not uniquely identified. In particular, let us denote by bj = {bij} the
vector of bids submitted in the auction j and by xj = {xij} a vector of individual cost com-
ponent draws in the auction j. We will show now that for a generic bj , (i.e., bj = {bij ,
y ∗ αi(x) < bij < y ∗ αi(x)} ) there exist multiple pairs (yj, xij) such that bij = βyj(xij).

Consider {[y0i , y0i ], y0i = max( bij
αi(x)

, y), y0i = min(
bij

αi(x)
, y)}.

If data are generated by the model with unobserved heterogeneity, then bij = yj ∗
αyj (xij) and

max(
yj ∗ αyj (xij)

αi(x)} , y) ≤ yj ≤ min(
yj ∗ αyj (xij)

αi(x)
, y),

with the equality on either side occurring only if xij = x or xij = x. Since the event where

xij = x or xij = x for some i has a probability of zero, generally

max(
yj ∗ αyj (xij)

αi(x)} , y) < yj < min(
yj ∗ αyj (xij)

αi(x)
, y).

17See Rao (1992).
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Thus,

y0 = max(y0i ) < yj < min(y
0
i ) = y0.

For any y ∈ [y0, y0], let us define aiy =
bij
y , i = 1, ..,m. Notice that αi(x) ≤ xiy ≤ αi(x)

by construction. This means that the inverse bid function from (D6) could be used to find

xiy such that aiy = αi(xiy). Thus, I have shown that there are multiple pairs (y, {xiy}) that
rationalize bj.

Proof of proposition 2

(1) The proof follows from the property of independent variables: if the random vari-

ables Z1 and Z2 are independent, then so are f(Z1) and f(Z2), for any function f(.).

(2) If Xi’s are independent, then so are log(Xi). The structure of the bidder’s cost,

ci = y ∗xi, implies that log(B1i1B1i1
) = log(A1i1)− log(A2i2) and log(B1i1B2i2

) = log(A1i3)− log(A2i2).
Then by Kotlarski (1966) theorem the characteristic function of log(A3) is given by

f3(t) =

tZ
0

Θ1(0, u2)

Θ(0, u2)
du2.

and characteristic function of log(A3) by

f1(−t) = Θ(t, 0)

Λlog(Ai3)
(t)

.

If bidders 1 and 3 are of the same type then characteristic functions of log(A1) and log(A3)

should be the same, i.e.

f1(t) = f3(t).

(3) If Y and Xi’s are independent, the cost structure is given by cij = yj ∗ xij , then
Kotlarski (1966) theorem applied to (log(Bi1j), log(Bi2j)) implies that the characteristic func-

tion of log(A1i1j) are given by the function Φlog(A1)(t). Kotlarski (1966) theorem applied to

log(
B1i1j
B1i1j

) and log(
B1i1j
B2i2j

) implies that the characteristic function of log(A1i1j) is given by f1(t).

Thus, the following equality has to hold

Φlog(A1)(t) = f1(t).
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Proof of proposition 3:

According to (W2), Φlog(Y )(.), Φlog(A1il)(.) and Φlog(A2ip )(.) are the same for all pairs

(il, ip) such that ip = 1, ..,m1 and il = m1 + 1, ..,m2. This implies that i indices can be

dropped, so that we can focus on just three functions: Φlog(Y )(.), Φlog(A1)(.), and Φlog(A2)(.).

If (W1) is satisfied, then there exist independent random variables Y , A1, and A2,

such that the characteristic functions of log(Y ), log(A1), and log(A2) are given by Φlog(Y )(.),

Φlog(A1)(.), Φlog(A2)(.), respectively. Kotlarski (1966) shows that

Φlog(Y )(t1 + t2)Φlog(A1)(t1)Φlog(A2)(t2) = Ψ(t1, t2).

This equality implies that (log(Y )+log(A1), log(Y )+log(A2)) are distributed the same

as (log(B1), log(B2)).

Let us consider Xk = φk(Ak). Then Y , X1, and X2 define the model with unobserved

heterogeneity that rationalizes the data.

Two-dimensional model with unobserved heterogeneity

The cost of bidder i is equal to ci = y1+ y2 ∗xi, where Y = (Y1, Y2) is a random vector
representing the common cost component and X = (X11, ..,X1m1,X2,m1+1, ..,X2m). Random

variables (X,Y ) are distributed on [y1, y1] × [y2, y2] × [x, x]m according to the probability

distribution function H(., .., .) with the associated probability density function h(., .., .).

Assumptions (F1)− (F6) are analogous to (D1)− (D6) of the one-dimensional case.
(F1) The components of Y and X are independent:

H(y10, y20, x10, .., xm0) = HY1(y10)HY2(y20)

j=m1Y
j=1

HX1(xj0)

j=mY
j=m1+1

HX2(xj0),

where HY1, HY2 , HX1 and HX2 are marginal distribution functions of Y1, Y2, X1j , and X2j ,

respectively.

(F2) The probability density functions of the individual cost component, hX1 and hX2 ,

are continuously differentiable and bounded away from zero on [x, x].

(F3) EX1j = 1 for all j = 1, ...,m1.

(F4) (a) The number of bidders is common knowledge;
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(b) There is no binding reservation price;

The condition (F2) ensures the existence and uniqueness of the equilibrium in the

auction game corresponding to the realization (y1, y2) of (Y1, Y2). The conditions (F1),(F3),

and (F4) provide a basis for the identification of the probability density functions of Y1,Y2, A1,

A2, X1 and X2.

Theorem 1a

If conditions (F1)−(F4) are satisfied, then the probability density functions hY1,hY2,hX1,

hX2 are uniquely identified from the joint distribution of four arbitrary bids (Bi1, Bi2 ,Bi3 ,Bi4).

Sketch of the proof

(a) Applying Kotlarski’s argument to the log-transformed random variables (Bi1−Bi2)

and (Bi3 −Bi4) allows identification of the probability density function hY2 .

(b) The joint characteristic function of ((Bi1−Bi3), (Bi2−Bi3)) in conjunction with the

characteristic function of Y2 (identified in (a)) allows identification of the joint characteristic

function of ((Ai1−Ai3), (Ai2−Ai3)), which according to the Kotlarski argument in turn implies

that the probability density functions of Ai1 and Ai2 are identified.

(c) The probability density functions gAi1
, hY2 uniquely determine the probability dis-

tribution and thus the characteristic function of Y2 ∗Ai1 , which allows unique identification of

the probability distribution of Y1 from the characteristic function of Bi1.

(d) The argument developed in Laffont and Vuong (1996) can be applied to establish

identification of the probability density functions from the probability distribution of Ai1 and

Ai2 .

Thus I have established that hY1 , hY2 , hX1 , hX2 are identified from the joint distribution

of four arbitrary bids.

Similar to the one-dimensional case, the exact realizations of y1j , y2j and {xij} are not
uniquely identified.

Details of the estimation procedure

Step 1.

1. The log transformation of bid data is performed to obtain LBil = log(Bil) and

LBip = log(Bip), where il = 1, ..,m01 and ip = m01 + 1, ..,m0.
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2. The joint characteristic function of an arbitrary pair (LBil , LBip) is estimated by

bΨ(t1, t2) = 1

m01m02

X
1≤l≤m01,m01+1≤p≤m0

1

n0

n0X
j=1

exp(it1 ·Bilj + it2 ·Bipj)

and the derivative of Ψ(., .) with respect to the first argument, Ψ1(., .), by

cΨ1(t1, t2) = 1

m01m02

X
1≤l≤m01, m01+1≤p≤m0

1

n0

n0X
j=1

iBilj exp(it1 ·Bilj + it2 ·Blpj)

I average over all possible pairs to enhance efficiency.

3. The characteristic functions of the log of individual bid components LAk, k = 1, 2,

and the log of the common cost component LY are estimated as

bΦLY (t) = exp(

tZ
0

bΨ1(0, u2)bΨ(0, u2) du2),
bΦLA1(t) =

bΨ(t, 0)bΦlog Y (t) ,
bΦLA2(t) =

bΨ(0, t)bΦlog Y (t) .
4. The inversion formula is used to estimate densities gLAk

, k = 1, 2, and gLY .

bgLAk
(u1) =

1

2π

TZ
−T

exp(−itu1)bΦLAk
(t)dt,

bhLY (u2) =
1

2π

TZ
−T

exp(−itu2)bΦLY (t)dt

for u1 ∈ [log(ak), log(ak)], and u2 ∈ [log(y), log(y)], where T is a smoothing parameter.
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5. The densities of Ak and Y are obtained as

egAk
(a) =

bgLAk
(log(a))

a
,

ehY (y) =
bhLY (log(y))

y
,

for a ∈ [ak, ak], and y ∈ [y, y].
Step 2

1. The estimate of the individual bid component density, egAk
(.), k = 1, 2, is used to

generate a sample of pseudo-bids {eakj}, j = 1, ...., L.
2. The sample of pseudo bids is used to generate a sample of pseudo-costs as

ex1j = ea1j + (1− eGA1(a1j)) · (1− eGA2(a1j))

(m1 − 1) · egA1(a1j) · (1− eGA2(a1j)) +m2 · egA2(a1j) · (1− eGA1(a1j))
,

ex2j = ea2j + (1− eGA1(a2j)) · (1− eGA2(a2j))

m1 · egA1(a2j) · (1− eGA2(a2j)) + (m2 − 1) · egA2(a2j) · (1− eGA1(a2j))
,

where eGAk
(a) =

aZ
ba1k
egAk
(z)dz

and ba1k is an estimate of the lower bound of the support of gAk
(.) (see part A of the Appendix

for the discussion of the support estimation).

3. The density of the individual cost component is non-parametrically estimated from

the sample of pseudo-cost

eh(x) = 1

Lδhk

nX
j=1

Kh(
x− exkj
δk

),

where Kh(.) is a kernel function, and δhk
is the bandwidth.

3a. The estimation procedure described in Step 1 leads to a zero-mean distribution of

log(A1), which does not necessarily correspond to the random variable X1 such that EX1 =

1. To arrive at the final estimates of the distributions in question we have to perform an

adjustment. Let e denote the mean of the estimated distribution of random variable X1. ThenbhXk
(x) =

ehXk
(ex)

e , bhY (y) = eehY (ye ) are the final estimates of the individual and common cost
component probability density functions.
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4. I have also constructed an estimate of the cost density function

bhCk
(c) =

yZ
y

bhXk
(
c

y
)bhY (y)dy,

for c ∈ [x · y, x · y].
5. An average inverse bid function was estimated as

bϑk(b) = yZ
y

y · bφk( by )bhY (y)dy,
where bφk(.) is an estimate of the individual inverse bid function given by

bφ1(a) = a+
(1− eGA1(a)) · (1− eGA2(a))

(m1 − 1) · egA1(a) · (1− eGA2(a)) +m2 · egA2(a) · (1− eGA1(a))
,

bφ2(a) = a+
(1− eGA1(a)) · (1− eGA2(a))

m1 · egA1(a) · (1− eGA2(a)) + (m2 − 1)egA2(a) · (1− eGA1(a))
.

Both integrals were computed using Monte-Carlo integration with respect to bhY (.).
Properties of the Estimator (Proposition 5)

I start by describing how the supports of distributions of the individual bid and the

common cost components can be estimated. Then I proceed to the proof of proposition 5.

Estimation of the Support Bounds

Strictly speaking bounds of the support are recovered during the inversion procedure

when the density function of the distribution in question is computed. According to the

inversion formula, the density function recovered from the theoretical characteristic function

should approach zero as smoothing parameter T approaches infinity at every point outside of

the support. Therefore, the upper and lower bounds of the support are respectively defined

as lower and upper limits of the points where density function is equal to zero. In estimation,

the density function recovered from the estimated characteristic function does not, in general,

equal zero outside of the support. An econometrician, therefore, has to choose cut-off points
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that correspond to sufficiently low values of the estimated density function. Unfortunately,

econometric theory does not provide us with guidelines on how to choose such cut-off points.

That is why I use a different approach in this paper. I estimate bounds of the supports for

the distributions of interest using restrictions imposed by the model with unobserved auction

heterogeneity. If data are generated by the model with unobserved auction heterogeneity then

this approach leads to consistent estimators of the support bounds. The proof of this statement

and the derivation of the rate of convergence are given together with the proof of proposition 5.

Below I describe a procedure to estimate support bounds of the distributions of the individual

bid and the common cost components.

Notice that the distributions of the components are identified up to the location only.

So, I start with arbitrary choice of supports, then estimate the shift in supports that accom-

panies the first-stage estimation. Finally, after the second-stage I adjust supports, so that

estimated distributions satisfy assumption (D3).

Initially, I ignore the assumption (D3), EXi1 = 1. Instead, I assume that there are no

restrictions on the means of the distributions. To fix the supports of the distributions in ques-

tion, I assume that support of LY is symmetric around zero. I denote the support of the log of

the common component by [−y0, y0] and the support of the log of the individual bid component
of the type 1 bidder by [a10, a10]. Then the support of the log of bids for type 1 is given by

[a01−y0, a01+y
0], and the support of the differences in logs of bids is given by [a01−a01, a

0
1−a01].

Since the bounds of these supports can be estimated as [min(log(b1lj)),max(log(b1lj))] and

[min(log(b1lj)− log(b1pj)),max(log(b1lj)− log(b1pj))], we arrive at the system of equations

min(log(b1lj)) = ba01 − by0,
max(log(b1lj)) = ba01 + by0,

max(log(b1lj)− log(b1pj)) = ba01 − ba01,
which can be solved to get

by0 =
max(log(b1lj))−min(log(b1lj))−max(log(b1lj)− log(b1pj))

2
,

ba01 =
min(log(b1lj)) +max(log(b1lj))−max(log(b1lj)− log(b1pj))

2
,

ba01 =
min(log(b1lj)) +max(log(b1lj)) +max(log(b1lj)− log(b1pj))

2
.

Formulas for the estimation of the characteristic function of the common cost component in

(2) and (4) have been derived under the assumption that E(LA1) = 0. Hence, the mean of the
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common component equals the bids’ mean. Thus, the probability density functions bhY (.) andbhLA1(.) are shifted so as to achieve a zero mean for the distribution of the log of the individual
bid component LA1. If the symmetrization of the common component support initially assigned

a mean of e1 to the individual bid component of type 1, then Step 1 is going to produce densitybhLY (.) with the support [−by0+e1, by0+e1] and bgLA1(.) with the support [ba01−e1,ba01−e1], where
the shift factor e1 is given by the solution to the equation

ba01−e1Z
ba01−e1

abgLA1(a)da = 0.
I use this equation to estimate e1 through a line search method.

The procedure described above produces estimates for the supports of Y and Ak

[by
1
,by1] = [exp(−by0 + be1), exp(by0 + be1)],

[ba11,ba11] = [exp(ba01 − be1), exp(ba01 − be1)],
[ba12,ba12] = [exp(min(log(b2lj)) + by0 − be1), exp(max(log(b2lj))− by0 + be1)].

Proof of proposition 5 :

First, I describe a set of technical assumptions needed to establish the rate of con-

vergence for the estimators of density functions. Assumption 1 is a more technical version of

assumptions D2,which assumes R = 1. The proof is given for a more general case of R ≥ 1. As-
sumption 2 concerns the properties of the kernel used in the second-stage estimation. Finally,

assumption 3 describes the choice of the bandwidth in the second-stage estimation.

Assumption 1:

(i) The supports of HXk
are given by S(Hk) = [x, x], x ≥ 0, x ≤ x, for k ∈ {1, 2};

(ii) hk(.) are bounded away from zero on every closed subset of the interior of S(Hk);

(iii) Hk(.) admit up to R+ 1 continuous bounded derivatives, with R ≥ 1.
Assumption 2:

(i) The kernel Kh(.) is symmetric with bounded hypercube support and twice contin-

uous bounded derivatives;

(ii)
R
Kh(x)dx = 1

(iii) Kh(.) is of order R + 1. Thus, moments of order strictly smaller than the given

order vanish.

45



Assumption 3:

(i) The bandwidth δhk
is of the form

δhk
= λhk

(
log(L)

L
)R/(2R+1),

where λhk
is a strictly positive constant and L is the number of pseudo-bid draws in the

second-stage estimation.

The proof consists of several steps.

(1) First, I establish that the distribution function and the probability density func-

tions of the individual bid components inherit properties of the distribution function and the

probability density functions of the individual cost component. Namely,

Lemma 2

Given Assumption 1, the distribution functions GAk
(.) satisfy:

(i) its supports S(GAk
) are given by [ak, ak] with ak = x;

(ii) GAk
admit up to R+ 1 continuous bounded derivatives on every closed subset of

the interior of S(GAk
).

(iii) For every closed subset of the interior of S(GAk
), there exists cg > 0 such that

|G(r)Ak
(a)| ≥ cg > 0 on this subset.

Proof

The point (i) is established in section 2. To show that the points (ii) and (iii) holds, I

use the relationship between the distribution functions of the individual bid components and

the distribution functions of the individual cost components. Namely,

GAk
(a) = HXk

(φk(a)),

where φk(.) is the inverse individual bid function of the bidder of type k. Then, G
(r)
Ak
(a) is a

sum of terms like H(u)
Xk
(φk(a)) φ

(v)
k (a) for u, v = {1, .., r}. By the equilibrium characterization

φk(.) is continuously differentiable and monotonically increasing. This implies that φk(.) is

bounded and a > φk(a) on every closed subset of the interior of S(GAk
). The necessary first

order conditions for the game with Y = 1 can be re-written as follows

φ
0
k(a) =

(1−HXk
(φ(a)))

(m− 1)hXk
(φ(a))

{ m−k − 1
a− φk(a)

− m−k

a− φ−k(a)
}.

This representation can further be used to show that {φ(u)k (.)}u≤R+1 are well defined, continuos
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and therefore bounded on every closed subset of the interior of S(GAk
). Hence {G(r)Ak

(.)}r≤R+1

are well defined, continuos and bounded on every closed subset of the interior of S(GAk
). Point

(iii) then follows from the properties of {H(u)
Xk
(.)}u≤R+1 and properties of the equilibrium bid

function.

(2) If probability density functions of cost components are ordinarily smooth of order

κ > 1, then Theorems 3.1- 3.2 in Li and Vuong (1998) apply that establish uniform consistency

of the first stage estimators. In particular, they establish that

sup
y∈S(HLY )

|bhLY (y)− hLY (y)| = O(
n

log logn
)
−(2κ−1)
2(2+5κ )

sup
a∈S(GLAk

)
|bgLAk

(a)− gLAk
(a)| = O(

n

log logn
)
−(2κ−1)
2(2+6L) .

Since,

hY (y) =
hLY (log(y))

log(y)

hAk
(a) =

hLAk
(log(a))

log(a)

and a ∈ [ak, ak], ak > xk > 0, then

sup
y∈S(HY )

|bhY (y)− hY (y)| = O(
n

log logn
)
−(2κ−1)
2(2+5κ )

sup
a∈S(GAk

)
|bgAk

(a)− gAk
(a)| = O(

n

log logn
)
−(2κ−1)
2(2+6L) .

(3) Uniform consistency of the estimators for the individual inverse bid function and

the probability density function of the individual component follows the logic of Proposition 3

and Theorem 3 of Guerre, Perrigne, Vuong (2000).

(a) First, we derive the rate of convergence for the support bounds, ak and ak. Recall

that bounds of supports have been derived in several steps. First, supports of the distributions

of LB1i and (LB1i1 − LB1i2) have been estimated as
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[min(log(b1lj)),max(log(b1lj))]

[min(log(b1lj)− log(b1pj)),max(log(b1lj)− log(b1pj))].

These are maximum likelihood estimators for the support bounds of corresponding

densities. (They are well defined due to (v) of Lemma 2.) We know that they converge to the

true value of the support bounds at the rate of n. The preliminary estimates for the bounds

of LAk supports, ba0k and ba0k, are obtained as linear functions of the support bounds for LB1i
and (LB1i1 − LB1i2). Therefore, they also converge to the true support bounds at the rate

of n. Next stage obtains intermediate estimates of the support bounds, ba1k and ba1k. They are
obtained from ba0k and ba0k through a shift by an adjustment factor e1. An extremum estimator

for e1 is obtained by minimizing

bQn = (

ba01−be1Z
ba01−be1

abgLA1(a)da)2,
or

bQn = (

ba01Z
ba01

abgLA1(a+ be1)da− be1)2.
The usual results for extremum estimators apply. Notice that bQn → (

a01R
a01

agLA1(a+e1)da−e1)2

at the same rate as bgLA1 converges to gLA1 (see Li and Vuong (1998) for an appropriate rate
of convergence). Let us denote this rate by dn. It can be shown that all standard conditions

for the convergence of extremum estimators hold and be1 converges to e1 at the rate dn. Thus,
intermediate estimators of the support bounds of LAk, ba1k and ba1k, converge to the corresponding
true values at the rate dn. The bounds of supports for Ak are estimated as bak = exp(ba1k) andbak = exp(ba1k), respectively. The smoothness of the exponential function ensures consistency of
these estimators. The delta method can be used to show that the rate of convergence remains

equal to dn.

(b) The rate of convergence for bgAk
(.) is established in Li and Vuong (1998). Recall

that here we denote it dn. Now we derive a rate of convergence for bGAk
. The estimator for

GAk
is defined as

bGAk
(a) =

aZ
bak
bgAk
(a)da.

48



To establish consistency we consider

¯̄̄ bGAk
(a)−GAk

(a)
¯̄̄
≤

¯̄̄̄
¯̄̄ akZ
bak
bgAk
(a)da

¯̄̄̄
¯̄̄+

¯̄̄̄
¯̄̄ aZ
ak

(bgAk
(a)− gAk

(a))da

¯̄̄̄
¯̄̄ .

Since gAk
is a continuous function with bounded support, (D9), then gAk

is a bounded function.

For large enough n, bgAk
is also bounded a.s. due to uniform convergence of bgAk

to gAk
. Then,

part (b) implies that the first summand converges to zero at the rate dn. The second summand

also converges to zero at the rate dn since support of gAk
is bounded. Therefore, bGAk

converges

to GAk
at the rate dn.

(d) Next, we prove uniform consistency of the estimator for the individual cost com-

ponent. Recall that the individual cost components corresponding to the individual bid com-

ponents ak are estimated as

ex1 = ea1 + (1− eGA1(a1)) · (1− eGA2(a1))

(m1 − 1) · egA1(a1) · (1− eGA2(a1)) +m2 · egA2(a1) · (1− eGA1(a1))
,

ex2j = ea2j + (1− eGA1(a2)) · (1− eGA2(a2))

m1 · egA1(a2) · (1− eGA2(a2)) + (m2 − 1) · egA2(a2) · (1− eGA1(a2))
.

Similar to Guerre, Perrigne and Vuong (2000) I restrict my attention to the subset of the

support

V (GAk
) = {a ∈ [ak, ak] such that (a± 2δk) ∈ S(Hk).

Notice that for every a1j ∈ V (GAk
) corresponding x1j is finite. For every a ∈ V (GAk

), bgAk
(a) ≥

cg > 0 and (1− bGAk
(a)) ≥ cG > 0 for some cg and cG, since bgAk

and bGAk
uniformly converge

to gAk
and GAk

, respectively, and (ii) of Lemma 2.

Below I sketch the argument that establishes uniform convergence of ex1j to x1j.

Let us denote

ξ1(a1) =
(1−GA1(a1)) · (1−GA2(a1))

(m1 − 1) · gA1(a1) · (1−GA2(a1)) +m2 · gA2(a1) · (1−GA1(a1))
,

eξ1(a1) =
(1− eGA1(a1)) · (1− eGA2(a1))

(m1 − 1) · egA1(a1) · (1− eGA2(a1)) +m2 · egA2(a1) · (1− eGA1(a1))
,
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ζ1(a1) = (m1 − 1) · gA1(a1) · (1−GA2(a1)) +m2 · gA2(a1) · (1−GA1(a1)),eζ1(a1) = (m1 − 1) · egA1(a1) · (1− eGA2(a1)) +m2 · egA2(a1) · (1− eGA1(a1)),

ε1(a1) = (1−GA1(a1)) · (1−GA2(a1)),eε1(a1) = (1− eGA1(a1)) · (1− eGA2(a1)).

Then

|ex1j − x1j| =
¯̄̄eξ1(a1)− ξ1(a1)

¯̄̄
,

which in turn can be bounded by¯̄̄eξ1(a1)− ξ1(a1)
¯̄̄
≤ 1fC1C1

¯̄̄eε1(a1)ζ1(a1)− ε1(a1)eζ1(a1)¯̄̄
or

¯̄̄eξ1(a1)− ξ1(a1)
¯̄̄
≤ 1fC1C1 (|eε1(a1)− ε1(a1)| · |ζ1(a1)|+

¯̄̄eζ1(a1)− ζ1(a1)
¯̄̄
· |ε1(a1)|),

or ¯̄̄eξ1(a1)− ξ1(a1)
¯̄̄
≤ 1fC1 |eε1(a1)− ε1(a1)|+ ecGcGfC1C1

¯̄̄eζ1(a1)− ζ1(a1)
¯̄̄
,

where C1 = (m1 +m2 − 1)cgcG and eC1 = (m1 +m2 − 1)ecgecG.
Pointwise application of delta method allows us to conclude that

|eε1(a1)− ε1(a1)| = Op(dn), a.s.¯̄̄eζ1(a1)− ζ1(a1)
¯̄̄
= Op(dn), a.s.

Then ¯̄̄eξ1(a1)− ξ1(a1)
¯̄̄
= Op(dn), a.s.

To conclude the proof we note that δhk
converges to zero as n diverges to infinity (we

choose L so that it diverges to infinity together with n) and thus the statement above holds
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everywhere on the interior of the support.

(d) Finally, we establish uniform convergence of the probability density function of

the individual cost component. Here again we consider closed subsets of the support interior.

Recall that ehXk
(x) =

1

Lδhk

nX
j=1

Kh(
x− exkj
δhk

).

here L is the size of the pseudo-sample. We will make it a function of n, i.e., L = L(n). Let

us denote eehXk
(x) =

1

Lδhk

nX
j=1

Kh(
x− xkj
δhk

).

Then ¯̄̄ehXk
(x)− hXk

(x)
¯̄̄
≤
¯̄̄̄ehXk

(x)− eehXk
(x)

¯̄̄̄
+

¯̄̄̄eehXk
(x)− hXk

(x)

¯̄̄̄
.

The rate of convergence for the second term depends solely on L and is equal to ( log(L)L )R/(2R+1)

(see Stone 1992). Next, we focus on the first term:

¯̄̄̄ehXk
(x)− eehXk

(x)

¯̄̄̄
=

¯̄̄̄
¯̄ 1

Lδhk

nX
j=1

(Kh(
x− exkj
δhk

)−Kh(
x− xkj
δhk

)

¯̄̄̄
¯̄ .

A second-order Taylor expansion gives

¯̄̄̄ehXk
(x)− eehXk

(x)

¯̄̄̄
≤
¯̄̄̄
¯̄ 1

Lδhk

nX
j=1

1

δhk

dKh

dx
(
x− xkj
δhk

) · (x− exkj) + 1

Lδhk

nX
j=1

1

δ2hk

· d
2Kh

dx2
(
x− xkj

δ2k
) · (x− exkj)2

¯̄̄̄
¯̄

or

¯̄̄̄ehXk
(x)− eehXk

(x)

¯̄̄̄
≤
¯̄̄̄
¯̄ 1

Lδhk

nX
j=1

dKh

dx
(
x− xkj
δhk

)

¯̄̄̄
¯̄·¯̄̄̄x− exkjδhk

¯̄̄̄
+

¯̄̄̄
¯̄ 1

Lδhk

nX
j=1

(
1

δhk

)
d2Kh

dx2
(
x− xkj
δhk

)

¯̄̄̄
¯̄·¯̄̄̄x− exkjδhk

¯̄̄̄2
.

The terms

1

Lδhk

nX
j=1

dKh

dx
(
x− xkj
δhk

),

1

Lδhk

nX
j=1

(
1

δk
)
d2Kh

dx2
(
x− xkj
δhk

)
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can be considered as kernel estimators. It can be shown that they converge to

hXk
(x)

Z
dKh

dx
(x− z)dzdx,

hXk
(x)

Z
d2Kh

dx2
(x− z)dzdx

respective, which ensures that corresponding terms are bounded. Recall that the rate of

convergence for (x−xkj) is given by dn. If δhk
is of the order rhk

, then the rate of convergence

for the first term is given by dn/rhk
. This is also the rate of convergence for ehXk

(x)− eehXk
(x),

since the second term has a smaller order of magnitude. The bandwidth is chosen as a function

of the number of random draws L, which, in turn, is a function of n, the number of auctions

in the data set. The number of draws L can always be chosen so that dn/rhk
→ 0. The rate

of convergence for (ehXk
(x) − hXk

(x)) is then given by max{dn/rhk
, ( log(L)L )R/(2R+1)}. Notice

that the second term is equal to rhk
. Therefore, the fastest achievable rate of convergence

corresponds to rhk
' 2
√
dn. This determines the choice of L as a function of n.
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B Results of Monte Carlo Study

Figure 1b: The Probability Density Function of the Individual Cost Component

(independent costs)
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Solid line - true density function; Dotted lines - 5% and 95% pointwise quantiles of the

density estimator
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Figure 2b: The Probability Density Function of the Common Cost Component

(independent costs)

-2

0

2

4

6

8

10

12

10.0 10.2 10.4 10.6 10.8 11.0 11.2

common cost component

de
ns

ity

Dotted lines indicate 5% and 95% pointwise quantiles of the density estimator
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Figure 3b: The Probability Density Function of the Individual Cost Component

(unobserved auction heterogeneity)
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Figure 4b: The Probability Density Function of the Common Cost Component

(unobserved auction heterogeneity)
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Table 1b: Description of the Simulated Models

Cov (C1,C2) Cov (X1,X2) Cov (X,Y) Var (X) Var (Y) Var ( C ) E(Mark-up)
Case 1 0 0 0 0.33 0 0.33 0.38

Case 2a 0.04 0 0 0.33 0.04 0.37 0.09
Case 2b 0.34 0 0 0.33 0.34 0.67 0.09
Case3a 0.16 0 0 0.33 0.16 0.49 0.47
Case 3b 0.04 0 0 0.33 0.04 0.37 0.21
Case 4a 0.52 0.18 0 0.36 0.34 0.7 0.27
Case 4b 0.36 0.02 0 0.2 0.34 0.54 0.15
Case 5a 0.52 0 0.18 0.36 0.34 0.7 0.11
Case 5b 0.2 0 0.02 0.2 0.18 0.38 0.06

Model

Case 1 Independent Costs

Case 2 Unobserved Auction Heterogeneity

Case 3 Affiliated Private Values

Case 4 Correlated Individual Components

Case 5 Individual Components Correlated with Common Component
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Table 2b: Summary of Estimation Results

Var (X) Var(Y) Var( C ) Mark-up

Case 1 0.325 0.013 0.337 0.362
[0.28, 0.34] [0.01, 0.02] [0.28, 0.35] [0.357,0.393]

Case 2a 0.321 0.0362 0.364 0.082
[0.27, 0.36] [0.034, 0.045] [0.312, 0.386] [0.078, 0.095]

Case 2b 0.318 0.335 0.687 0.092
[0.26, 0.37] [0.27, 0.356] [0.61, 0.72] [0.082, 0.098]

Case 3a 0.33 0.18
[0.266, 0.369] [0.153, 0.21]

Case 3b 0.36 0.33
[0.272, 0.385] [0.284, 0.37]

Case 4a 0.176 0.36 0.525 0.137
[0.149, 0.192] [0.347, 0.401] [0.501, 0.584] [0.123, 0.146]

Case 4b 0.254 0.461 0.727 0.238
[0.182, 0.291] [0.416, 0.521] [0.71, 0.773] [0.201, 0.268]

Case 5a 0.187 0.21 0.36 0.052
[0.174, 0.193] [0.19, 0.217] [0.352, 0.368] [0.5, 0.61]

Case 5b 0.174 0.522 0.71 0.098
[0.169, 0.179] [0.512, 0.53] [0.7, 0.722] [0.093, 0.108]

Estimates
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Table 3b: Analysis of Misspecified Models

Var(Y) E( C ) Var ( C ) E(Mark-up)
0.04 model 10.5 0.37 0.09
0.04 UAH [10.44, 10.59] [0.32, 0.41] [0.078, 0.095]
0.04 APV [10.37, 10.48] [0.35, 0.44] [0.097, 0.12]
0.04 IPV [10.41, 10.5] [0.34, 0.44] [0.95, 0.11]
0.34 model 10.5 0.67 0.03
0.34 UAH [10.28, 10.64] [0.63, 0.72] [0.02, 0.038]
0.34 APV [8.31, 9.57] [0.89, 1.02] [0.042, 0.55]
0.34 IPV [8.85, 9.84] [0.83,0.96] [0.4, 0.52]

1 model 10.5 1.33 0.01
1 UAH [10.15, 10.76] [1.27, 1.43] [0.008, 0.014]
1 APV [7.6, 8.8] [2.01, 2.27] [0.033, 0.047]
1 IPV [8.1, 9.2] [1.86, 2.05] [0.31, 0.044]

In the brackets - 5% and 95% pointwise quantiles of the estimator

Notations: UAH - estimation procedure that relies on the assumption of unobserved
auction heterogeneity; APV - estimation procedure that relies on the assumption of affiliated

private values; IPV - estimation procedure that relies on the assumption of independent private

values
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C Michigan Highway Procurement Auctions

Table 1c: Descriptive Statistics of Data

Number of bidders overall 1 2 3 4 5 6

Number of observations 3,947 71 673 1126 1026 365 192

Engineers Estimate (hdrds. th.) mean 12.80 13.34 10.27 12.60 13.90 12.90 16.40
std.dev 2.35 2.88 1.41 3.02 2.26 1.79 3.39

Winning Bid (hdrds. th.) mean 11.10 14.12 10.00 11.80 12.90 11.80 15.20
std.dev 2.32 3.05 1.50 2.89 2.25 1.66 3.35

Money Left on the Table mean 0.07 NA 0.11 0.08 0.07 0.05 0.04
std.dev 0.05 NA 0.08 0.06 0.06 0.05 0.04

Number of Regular Bidders mean 1.92 0.79 1.43 1.65 2.07 2.16 2.29
std.dev 1.06 0.41 0.62 0.72 0.98 1.21 1.32

60



dependent variable log (B1)
number of observations 947
number of bidders 4

Variable OLS Auction Dummies Random Effects

Log (Estimate) 0.9100 0.9300 0.8800
(0.0530) (0.1400) (0.1300)

Duration -0.0210 -0.0490 -0.0210
(0.0500) (0.0250) (0.0500)

Distance 0.0312 0.0540 0.0270
(0.0160) (0.0120) (0.0160)

Length 0.0700 0.0950 0.0650
(0.4700) (0.3900) (0.4900)

Marking (dummy) 0.1000 0.1200 0.1000
(0.0360) (0.0470) (0.0470)

Landscaping (dummy) 0.8700 0.8100 0.8600
(0.0330) (0.0330) (0.0330)

Sign (dummy) -0.0200 -0.0300 -0.0130
(0.0160) (0.0160) (0.0160)

Log (Load Remaining) 0.0310 0.0392 0.0270
(0.0157) (0.0127) (0.0144)

Number of Potential Bidders -0.1100 -0.1330 -0.1100
(0.0310) (0.0230) (0.0290)

Fringe (Dummy) 0.2500 0.2800 0.2200
(0.1100) (0.1200) (0.1000)

….
Constant 0.1750 0.1620 0.1680

(0.0580) (0.0520) (0.0480)

R2 0.857 0.914 R2(within)=0.00
R2(between)=0.934
R2(overall)=0.917
σu

2=0.16
σε

2=0.22
ρ=0.48

other variables: district dummies, regular bidders dummies

Table 2c: Bid Analysis (maintenance projects)
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Figure 1c: The Probability Function of the Common Cost Component
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95% pointwise quantiles of the density estimator
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Figure 2c: The Probability Density Functions of the Individual Cost Components
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Figure 3c: Fit of the Model
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Figure 4c: Bidding Strategies
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strategy estimated under the assumption of affiliated private values; the second perforated

line - the bidding strategy estimated under independent private values
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Figure 5c: The Probability Density Functions
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Table 2c: Evaluating Validity of Independence Assumption

Method 1
(log(B1), log(B2))

recovered as common individual
component component

Var(Xreg) 0.252 0.284 0.205
(0.21, 0.3) (0.2, 0.33) (0.18, 0.29)

Var(Xfringe) 0.27 0.217
(0.22, 0.32) (0.19, 0.31)

Method 2
(log(B1)-log(B3), log(B2)-log(B3))

67


