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Abstract

For games opublicreputation with uncertainty over types and imperfect
public monitoring, Cripps, Mailath, and Samuelson (2004) showed that an
informed player facing short-lived uninformed opponents cannot maintain
a permanent reputation for playing a strategy thataspart of an equilib-
rium of the game without uncertainty over types. This paper extends that
result to games in which the uninformed player is long-lived and has private
beliefs, so that the informed player’s reputatiorpisvate. We also show
that the rate at which reputations disappeamigormacross equilibria and
that reputations disappear in sufficiently long discounted finitely-repeated
games.Journal of Economic Literatur€lassification Numbers C70, C78.
Keywords Reputation, Imperfect Monitoring, Repeated Games, Commit-
ment, Private Beliefs.
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1 Introduction

Reputation games capture settings in which a long-lived player benefits from the
perception that her characteristics may be different than they actually are. Rep-
utation effects arise most cleanly when a long-lived player faces a sequence of
short-lived players who believe the long-lived player might be committed to the
stage-game “Stackelberg” action. In such a setting, the Stackelberg payoff pro-
vides a lower bound on the long-lived player's average payoff, provided she is
sufficiently patient (Fudenberg and Levine (1989), Fudenberg and Levine (1992)).

In an earlier paper (Cripps, Mailath, and Samuelson (2004)), we showed that
if monitoring is imperfect and the reputation of the long-lived playepuslic,
meaning that the public signals allow the long-lived player to infer the short-lived
players’ beliefs about the long-lived player’s type, then reputation effects eventu-
ally disappear. Almost surely, the short-lived player eventually learns the type of
the long-lived player.

Many long-run relationships involve two (or more) long-lived players. Rep-
utation effects arise in this setting as well, and can be more powerful than when
the uninformed player is short-lived. Intertemporal incentives can induce the un-
informed agent to choose actions even more advantageous to the informed long-
lived player than the myopic best reply to the Stackelberg action (Celentani, Fu-
denberg, Levine, and Pesendorfer (1996)). In addition, it is natural for an analysis
of long-lived uninformed players to encompgssvate reputations: the actions
of both players are not only imperfectly monitored, but the monitoring need not
have the special structure required for the informed player to infer the uninformed
player’s beliefs. Instead, the uninformed player’s beliefs can depend critically on
his own past actions, which the informed player cannot obgerve.

In this paper, we show that reputations eventually disappear when the unin-
formed player is long-lived and beliefs are priv%te\Ne also improve on our

IFor example, the inferences a firm draws from market prices may depend upon the firm’'s
output choices, which others do not observe. Because private reputations arise when the unin-
formed player privately observes hisvn past actions, they occur most naturally with a single,
long-lived uninformed player rather than a sequence of short-lived players. In Cripps, Mailath,
and Samuelson (2004), we assumed that the short-run player’s actions are public, allowing a nat-
ural interpretation of the assumption that short-run players’ observed their predecessors’ actions,
but also ensuring that player 1's reputation (player 2’'s belief) is public.

2Cripps, Mailath, and Samuelson (2004, Theorem 6)psidial result for the case of a long-
lived uninformed player whose beliefs grablic. That result is unsatisfactory, even for the public-
reputation case, in that it imposes a condition on the behavior of the long-lived uninformed player
in equilibrium See footnotE]S for more details.
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earlier paper by showing that the rate at which reputations disappaaifesm
across equilibria (Theorefr) 3), and that reputations disappear in sufficiently long
discounted finitely-repeated games (Theoy¢m 4).

In our analysis, the long-lived informed player (player 1) may be a commit-
ment type that plays an exogenously specified strategy or a normal type that max-
imizes expected payoffs. We show that if the commitment strateggtian equi-
librium strategy for the normal type in the complete-information game, then in any
Nash equilibrium of the incomplete-information repeated game, almost surely the
uninformed player (player 2) will learn that a normal long-lived player is indeed
normal. Thus, a long-lived player cannot indefinitely maintain a reputation for
behavior that is not credible given her type.

Establishing such a result for the case of public reputations and short-lived
uninformed players is relatively straightforward (Cripps, Mailath, and Samuel-
son (2004)). Since monitoring is imperfect, deviations from equilibrium play by
player 1 cannot be unambiguously detected by player 2, precluding the trigger-
strategy equilibria that support permanent reputations in perfect-monitoring games.
Instead, the long-run convergence of beliefs ensures that evensaumgilyurrent
signal of play has an arbitrarily small effect on player 2’s beliefs. Thus, when rep-
utations are public, player 1 eventuakgowsthat player 2's beliefs have nearly
converged and hence that playing differently from the commitment strategy will
incur virtually no cost in terms of altered beliefs. Coupled with discounting, this
ensures that deviations from the commitment strategy have virtually no effect on
the payoffs from continuation play. But the long-run effect of many such devia-
tions from the commitment strategy would be to drive the equilibrium to full reve-
lation. Public reputations can thus be maintained only if the gains from deviating
from the commitment strategy are arbitrarily small, that is, only if the reputation
is for behavior that is part of an equilibrium of the complete-information game
corresponding to the long-lived player’s tyfe.

The situation is more complicated in the private-reputation case, where player
2's beliefs arenot known by player 1. Now, player 1 may not know when de-
viations from the commitment strategy have relatively little effect on beliefs and
hence are relatively costless. Making the leap from the preceding intuition to
our main result thus requires showing that there is a set of histories under which
player 2’s beliefs have nearly convergamd under which player 1 is eventually

3This argument does not carry over to repeated games without discounting, where small
changes in beliefs, with implications only for distant behavior, can still have large payoff im-
plications.
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relatively certain player 2 has such beliefs.

In general, one cannot expect player 1's beliefs about player 2’s beliefs to be
very accurate when the latter depend on private histories. A key step in our proof
is to show that whenever player 2’s private history induces him to act as if he is
convinced of some important characteristic of player 1, eventually player 1 must
become convinced that such a private history did indeed occur (Léhma 3). In
particular, if this private history ensured that player 2 is almost convinced that he
faces a commitment type, and acts on this belief, then this eventually becomes
known to player 1.

As in the case where player 1's reputation is public, the impermanence of rep-
utation also arises at the behavioral level. Asymptotically, continuation play in
every Nash equilibrium is a correlated equilibrium of the complete-information
game (Theorerp|5). While the set of Nash equilibrium payoffs in the game with
complete information is potentially very large when player 2 is sufficiently pa-
tient (suggesting that limiting behavior to that set imposes few restrictions), we
emphasize that our analysis holds &lirdegrees of patience of the players. When
player 2 is impatient, as in the extreme case of short-run player 2s, reputations can
ensure payoffs for player 1 that cannot be obtained under complete information.
Our result (that limiting behavior must be consistent with complete information)
shows that this effect is transitory.

More importantly, reputation arguments are also of interest for their ability to
restrict, rather than expand, the set of equilibrium outcomes. For example, repu-
tation arguments are important in perfect-monitoring games with patient players,
precisely because they impose tight bounds on (rather than expanding) the set of
equilibrium payoffs. Our results caution that one cannot assume that such selec-
tion effects are long-lasting.

For expositional clarity, this paper considers a long-lived informed player who
can be one of two possible types—a commitment and a normal type—facing a
single long-lived uninformed player, in a game of imperfect public monitoring.
The argument of Cripps, Mailath, and Samuelson (2004, Section 6.1) can be used
to extend our results to many possible commitment types. The final section of this
paper explains how our results can be extended to the case of private monitoring
(where reputations are necessarily private).

Our analysis subsumes a private-reputation model with a sequence of short-
lived uninformed players. In several places, the arguments for the latter case are
simpler and considerably more revealing, primarily because we can then restrict
attention to simpler commitment strategies. Accordingly, where appropriate, we
give the simpler argument for short-lived uninformed players as well as the more
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involved argument for the long-lived uninformed player.

2 The Complete-Information Game

We begin with an infinitely repeated game with imperfect public monitoring. The
stage game is a two-player simultaneous-move finite game of public monitoring.
Player1 chooses an actione {1,2,...,1} = I and player2 chooses an action

j €{1,2,...,J} = J. The public signaly, is drawn from the finite set’. The
probability thaty is realized under the action profil¢ ;) is given byp;;. The ex

post stage-game payoff to playerespectively?) from the action (resp.,j) and
signaly is given by f1(i,y) (resp.,f2(j,v)). The ex ante stage game payoffs are
T (27]) = Zy fl (Zay) ply] andms (Zaj) = Zy fQ (jay) p;y]

We assume the public signals have full support (Assumpfion 1), so every sig-
nal y is possible after any action profile. We also assume that with sufficiently
many observations, either player can correctly identify, from the frequencies of
the signals, any fixed stage-game action of their opponent (Assumptions P and 3).

Assumption 1 (FULL SUPPORY) py; > Oforall (i,j) € I x Jandy € Y.

Assumption 2 (IDENTIFICATION OF 1) For all j € J, thel columns in the ma-
trix (pi;)yev.icr are linearly independent.

Assumption 3 (IDENTIFICATION OF 2) Forall 7 € I, theJ columns in the matrix
(p;)yev.jes are linearly independent.

The stage game is infinitely repeated. Player 1 (“she”) is a long-lived player
with discount factow; < 1. Player 2 (“*he”) is either short-lived, in which case
a new player 2 appears in each period, or is also long-lived, in which case player
2's discount factov, may differ fromd;. Each player observes the realizations
of the public signal and his or her own past actions. (If player 2 is short-lived,
he observes the actions chosen by the previous pliger Player 1 in period
t thus has grivate history consisting of the public signals and her own past
actions, denoted by, = ((i0, %0), (i1, 11), - - -, (i1, 1)) € Hiy = (I x V).
Similarly, aprivate historyfor player2 is denotedhy; = ((jo, %), (J1,¥1);- - -,
(je—1,yi-1)) € Hy = (J x Y)". Thepublic historyobserved by both players is
the sequencéyo, v1,...,y.-1) € Y*. The filtration on(/ x J x Y)* induced
by the private histories of playér= 1, 2 is denoted{H, }:°,, while the filtration
induced by the public historidg, y1, ..., y:—1) is denotedH, }>°,.
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In Cripps, Mailath, and Samuelson (2004), we assumed that the public signal
included player 2’s action. This ensures that player 1 knows everything player
2 does, including player 2’s beliefs. Here, only player 2 observes his action,
breaking the link between 2’s beliefs and 1's beliefs about those beliefs.

The long-lived players’ payoffs in the infinite horizon game are the averaged
discounted sum of stage-game payoffs,— d,) > >, oym(ir, j-) for £ = 1,2,

The random variable,, denotes average discounted payoffs in petjod

T = (1—060) Y 67 ‘mlir, ji). (1)

T=t

If player 2 is short-lived, the periotiplayer 2 has payoffs, (i, j;).

A behavior strategy for playdr(respectively, 2) is amapy : U Hy; — Al
(resp.,oy @ U2 Hy — A7), from all private histories to the set of distributions
over current actions. Fdr= 1, 2, o, defines a sequence of functiofsy };°, with
oy : Hy — Al'andoy, : Hy, — A7, Each functions,, denotes the'™ period
behavior strategy of,. The strategy profile = (o1, 05) induces a probability
distributionP? over(I x J x Y')*. Let E7[ - | H,:] denote playef’s expectations
with respect to this distribution conditional Gty;.

A Nash equilibrium for the case of two long-lived players requires pléger
strategy to maximize the expected valuergf, the discounted value of payoffs in
period zero:

Definition 1 A Nash equilibrium of the complete-information game with a long-
lived player 2is a strategy profiler = (o1, 05) such thatE? [r1] > E@172)[rr ]
for all o, and E7 [y > E7172)[19] for all o).

This requires that under the equilibrium profile, play&r strategy maximizes
continuation expected utility after any positive-probability history. For example,
for player 1,E7[my|H1] > E©172[my,|H,,] P7-almost surely for alb’ and all
t. The assumption of full-support monitoring ensures that all histories of public
signals occur with positive probability, and hence must be followed by optimal
behavior in any Nash equilibrium (with long-lived or short-lived player 2’s, and
complete or incomplete information). Consequently, any Nash equilibrium out-
come is also the outcome of a perfect Bayesian equilibrium.

For future reference, when player 2 is long-lived,

BRL<O'1) = {0'2 : EU[TFQU] 2 E(Ul’gé)[ﬂ'gg] VO'IQ}

is the set of player 2’s best repliesde in the game with complete information.
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When player 2 is short-lived, in equilibrium, player 2 plays a best response
after every equilibrium history. Playeis strategyo is then a best responsedo
if, for all ¢,

E7[ma(iv, ji) | Hatl > E7[ma(in, ) | Hol, vjeJ P°-as.

Denote the set of such best responsesiiy’ (o). The definition of a Nash
equilibrium for this case is:

Definition 2 A Nash equilibrium of the complete-information game with a short-
lived player 2is a strategy profiler = (0, o3) such thatE? o] > E©1:72) 7]
for all o} ando, € BR% (o).

3 The Incomplete-Information Game: Disappear-
ing Reputations

We now perturb the complete-information game by introducing incomplete infor-
mation about the type of playér At timet = —1, Nature selects a type of player
1. With probability1 — py > 0, she is the “normal” type, denoted lyand with
the preferences described above, who plays a repeated game sératégfth
probability p, > 0, she is a “commitment” type, denoted bywho plays the
repeated game strategy.

A state of the world in the incomplete information game,is a type for
playerl and a sequence of actions and signals. The set of statesign, c} x
(I x J xY)™. The priorpy, the commitment strategy;, and the strategy profile
o = (61,02), jointly induce a probability measute on 2, which describes how
an uninformed player expects play to evolve. The strategy préfite (61, 05)
(respectively,c = (61,0,)) determines a probability measufe (resp., P) on
2, which describes how play evolves when playes the commitment (resp.,
normal) type. Since? and P are absolutely continuous with respect/o any
statement that holdB-almost surely, also hold8- and P-almost surely. We use
E@vone2)l. ] to denote expectations taken with respect to the meaBur€his
will usually be abbreviated t&| - | except where it is important to emphasize the
dependence on the strategies. Also, where appropriate, we[us@nd |- ] to
denote the expectations taken with respedttand P (instead of£(@ 1o2)[. ] and
E1o2)[. ). The filtrations{H,; } 22, and{H, }32, will be viewed as filtrations on
Q2 in the obvious way.
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The normal type of player 1 has the same objective function as in the complete-
information game. Playe, on the other hand, uses the information he has ac-
quired from his time private history to update his beliefs about player 1's type
and actions, and then maximizes expected payoffs. Pliygosterior belief in
periodt that playerl is the commitment type is thH¥,,-measurable random vari-
able P(c|/Hx) = pr - © — [0,1]. By Assumptior] [, Bayes’ rule determines this
posterior after all histories. At any Nash equilibrium of this game, the bglief
is a bounded martingale with respect to the filtratiGi,, }; and measuré. It
therefore convergeB-almost surely (and hende- and P-almost surely) to a ran-
dom variablep, defined ort). Furthermore, at any equilibrium the posteniprs
a P-submartingale and B-supermartingale with respect to the filtratipH o, },.

3.1 Uninformed Player is Short-Lived

When player 2 is short-lived, and we are interested in the lower bounds on player
1's ex ante payoffs that arise from the existence of “Stackelberg” commitment
types (as in Fudenberg and Levine (1992)), it suffices to consider commitment
types who follow “simple” strategies. Consequently, when player 2 is short-lived,
we assumé, specifies the same (possibly mixed) actigne A’ in each period
independent of history (cf. Definitigr} 4 below).

If ¢; is part of a stage-game equilibrium, reputations need not disappear—
we need only consider an equilibrium in which the normal and commitment type
both plays;, and player 2 plays his part of the corresponding equilibrium. We are
interested in commitment types who play a strategy thadipart of a stage-game
equilibriumf

Assumption 4 (NON-CREDIBLE COMMITMENT ) Player2 has a unique best re-
ply tos; (denoted;,) ands = (1, ¢2) is not a stage-game Nash equilibrium.

Sinceg; is the unique best responsestq ¢, is pure andBRS(&l) is the sin-
gleton{s.}, whereg, is the strategy of playing, in every period. Assumptidr| 4
implies that(¢,, 72) is not a Nash equilibrium of the complete-information infinite
horizon game.

4If player 2 has multiple best responses, it is possible to construct equilibria of the complete
information game in which player 1 always playsin each period, irrespective of history, even
if ¢1 is not part of a stage-game equilibrium (for an example, see Cripps, Mailath, and Samuelson
(2004, Section 2)).
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Definition 3 A Nash equilibrium of the incomplete-information game with short-
lived uninformed playerss a strategy profil§a,, o5) such that for allo}, j € J
andt =0,1,...,

E [71'10]
E[ mo(it, ji) | Hotl

E(Ull’UQ) [7'('10] , and

>
2 E[Tr2(it7j) ‘ H2t]7 P—a.s.

Our main result, for short-lived uninformed players, is that reputations for
non-equilibrium behavior are temporary:

Theorem 1 Suppose the monitoring distributigrsatisfies Assumptiops[1, 2, and
and the commitment actian satisfies Assumptign 4. In any Nash equilibrium
of the incomplete-information game with short-lived uninformed players; 0
P-almost surely.

3.2 Uninformed Player is Long-Lived

When player 2 is long-lived, non-simple Stackelberg types may give rise to higher
lower bounds on player 1's payoff than do simple types. We accordingly introduce
a richer set of possible commitment types, allowing arbitrary public strategies.

Definition 4 (1) A behavior strategy,, ¢ = 1, 2, ispublicif it is measurable with
respect to the filtration induced by the public signdl&; },.
(2) A behavior strategy,, ¢ = 1,2, issimpleif it is a constant function.

A public strategy induces a mixture over actions in each period that only depends
on public histories. Any pure strategy is realization equivalent to a public strat-
egy. Simple strategies, which we associated with the commitment type in Section
[3.1, play the same mixture over stage-game actions in each period, and hence are
trivially public.

Allowing the commitment type to play any public strategy necessitates im-
posing the noncredibility requirement directly on the infinitely repeated game of
complete information. Mimicking Assumptidn} 4, we require thatplayer 2's
best responsé, be unique on the equilibrium path anid) there exists a finite
time 7 such that, for every > 7°, a normal player 1 would almost surely want
to deviate fromsy, given player 2's best response. That is, there is a period-
continuation strategy for player 1 that strictly increases her utility. A strategy
satisfying these criteria at least eventually loses its credibility, and hence is said to
have “no long-run credibility.”
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Definition 5 The strategyr; hasno long-run credibilityif there exists’™ and
€ > 0 such that, for every > 7°,
(1) 6, € BR"(5,) implies that withP(?172)-probability one s, is pure and

E° [ 7o | Hoe ] > EEvo2) [ 72 | Hot | + €7,

for all o, attaching probability zero to the action played by (h,,) after P@1:02)-
almost allhy; € Ho, and
(2) there exists, such that, forr, € BR"(5,), P\?172)-almost surely,

E(6142) (70 | Hae ) > B [y | Hu ] +€°.

This definition captures the two main features of Assumgtjon 4, a unique best
response and absence of equilibrium, in a dynamic setting. In particular, the stage-
game action of any simple strategy satisfying Definifipn 5 satisfies Assunfiption 4.
In assuming the best response is unique, we need to avoid the possibility that
there are multiple best responses to the commitment action “in the limit (as
gets large). We do so by imposing a uniformity condition in Definifipbn 5.1, that
inferior responses reduce payoffs by at lezist The condition on the absence
of equilibrium in Definition[$.2 similarly ensures that for all largeplayer 1
can strictly improve on the commitment action. Again it is necessary to impose
uniformity to avoid the possibility of an equilibrium in the linfit.

Any ¢, that doeshot satisfy Definitior] 5 must have (at least in the limit) peri-
ods and histories where, given player 2 is best responding,tplayer 1 prefers
to stick to her commitment. In other words, is a credible commitment, in the
limit, at least some of the time.

Equilibrium when the uninformed player is long-lived is:

Definition 6 ANash equilibrium of the incomplete-information game with a long-
lived uninformed playeis a strategy profilds,, o5) such that,

E[mo) > E“°)[r] , Vo), and
E[?Tg()] 2 E(&l’&l’aé)[ﬂ'zo}, VO‘IQ

SCripps, Mailath, and Samuelson (2004) show that reputations disappear when the commitment
strategy satisfies the second, but not necessarily the first, condition (such a strategy was said to be
never an equilibrium strategy in the long ruHowever, that result also requires the commitment
strategy to be implementable by a finite automaton, and more problematically, the result itself
imposed a condition on the behavior of player 2 in the equilibrium of the game with incomplete
information. We do neither here. Consequently, unlike our earlier paper, the long-lived player
result implies the result for short-lived players.
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Our result for games where player 2 is long-lived, which implies The¢ijem 1,
is:

Theorem 2 Suppose satisfies Assumptioh§[1, 2, grid 3, and that the commitment
type’s strategys; is public and has no long run credibility. Then in any Nash
equilibrium of the game with incomplete informatign,— 0 P-almost surely.

We have followed the standard practice of working with commitment types
whose behavior is fixed. If we instead modeled commitment types as strate-
gic agents whose payoffs differed from those of normal types, we would obtain
the following: Under Assumptions [[}-3, in any Nash equilibrium in which the
“‘commitment-payoff” type plays a public strategy with no long run credibility for
the “normal-payoff” typep, — 0 P-almost surely.

3.3 Uniform Disappearance of Reputations

Theoreny 2 leaves open the possibility that while reputations do asymptotically
disappear in every equilibrium, for any peridgdthere may be equilibria in which
reputations survive beyonfi. We show here that that possibility cannot arise:
there is somd’ after which reputations have disappeare@linNash equilibria.
Intuitively, a sequence of Nash equilibria with reputations persisting beyond pe-
riod T" — oo implies the (contradictory) existence of a limiting Nash equilibrium
with a permanent reputation.

Theorem 3 Suppose satisfies Assumptions [1, 2, 3, and that the commit-
ment type’s strategy; is public and has no long run credibility. For ail > 0,
there existsl’, such that for all Nash equilibriag, of the game with incomplete
information,

Po(pf <e, Vt>T)>1—¢,

whereP’ is the probability measure induced énby o and the normal type, and
p? is the associated posterior of play2ion the commitment type.

Proof. Suppose not. Then there exists> 0 such that for alll’, there is a
Nash equilibriumz? such that

PT(pl < e, ¥t >T)<1—¢,

where PT is the measure induced by the normal type uneerandp! is the
posterior in period undero?.
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Since the space of strategy profiles is sequentially compact in the product
topology, there is a convergent subsequefice }, with limit o*. We can relabel
this sequence so that — o* and

Pr(pl < e, Vt> k) <1—c¢,

i.e.,
P*(pl > ¢ for somet > k) > ¢.

Since eachr” is a Nash equilibriump? — 0 P*-a.s. (TheorerﬂZ), and so
there existd{; such that

PrpF < e, YVt > Kp) <1—¢/2.
Consequently, for alt,
PE(pF > ¢, for somet, k <t < K}) > ¢/2.
Let 7, denote the stopping time
Tr = min{t > k : pf > ¢},
andqr the associated stopped process,

ko pf, if ¢t < 74,
@@= e ift>r1

Note that;* is a supermartingale undé¥ and that fort < k, ¢* = pF.
Observe that for alk andt > K,

Eqf > ePt(r, < t) > £%/2.

Sincecs* is a Nash equilibriump: — 0 P*-a.s. (appealing to Theore@] 2
again), and so there exists a datsuch that

P*(pr < €%/12) > 1 —%/12.

Then,
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Sincec® — o* in the product topology, there isk > s such that for alk > ¥/,

2
£
EFpl < =

3
But sincek’ > s, ¢* = p* for k > ¥’ and so for any > K,

g2 -
3 Efpy = E*q;

(2)

which is a contradiction. ]

3.4 Disappearing reputations in discounted finitely-repeated games

In this section we show that reputations also disappear in sufficiently long dis-
counted finitely-repeated games of incomplete information. We first describe the
finitely repeated game with incomplete information. If the commitment type plays
a simple strategy of playing, in every period, withs; satisfying Assumption

[4, then the description of the finitely repeated game for differing repetitions is
straightforward: The commitment type playsin every period. More generally,

if 67 is the commitment type’s strategy in tieperiod game, we require that the
sequencd s’} converge to a strategy, of the infinitely repeated game that has
no long-run credibility.

Theorem 4 Suppose satisfies Assumptioh$[1, 2, grid 3, @nds a public strat-

egy of the infinitely repeated game with no long run credibility. @étdenote the
T-period repeated game of incomplete information in which the commitment type
plays according tar; . Suppose for alt, 67, — 61, asT — oo. Forall ¢ > 0,

there existg” such that for all7” > T and for all Nash equilibrias of G*,

P (p] <e,Vt>T)>1—c¢,

whereP? is the probability measure induced 0h x J x Y)T' by o and the nor-
mal type, angy is the associated posterior of play2on the commitment type.

Proof. Suppose not. Then there exists- 0, such that for alll’, there exists
T" > T and a Nash equilibriuma” of the 7"-period finitely repeated game with

PT(ptT<5, Vi>T)<1-—g¢,
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where P” is the probability measure induced in tiie-period repeated game by
o™ and the normal type, and is the associated posterior.

A standard diagonalization argument yields a subsequentg and a strat-
egy profile in the infinitely repeated game’, with the property that for alt,
o — oy, for 0 = 1,2@ Moreover, since each’* is a Nash equilibrium of in-
creasingly long finitely repeated games aﬁ(ﬂ — 014, 0° IS a Nash equilibrium
of the infinitely repeated game with incomplete information in which the com-
mitment type plays,. We can relabel this sequence so that— o for eacht
and

Pr(pl < e, YVt > k) <1—e.

Letting 7}, be the length of the finitely repeated game correspondingf tave
have (recall that the initial period is period

Pr(pf > ¢, forsomet, k <t < Ty) > e.

The proof now proceeds as that of Theofeém 3, With (2) evaluated-&f, — 1.
]

3.5 Asymptotic Equilibrium Play

The impermanence of reputations has implications for behavior as well as beliefs.
In the limit, the normal type of player and player2 play a correlated equilib-
rium of the complete-information game. Hence, differences in the players’ beliefs
about how play will continue vanish in the limit. This is stronger than the con-
vergence teubjectiveequilibria obtained by Kalai and Lehrer (1995, Corollary
4.4.1)[Z]though with stronger assumptions.

We present the result for the case of a long-run player 2, since only straightfor-
ward modifications are required (imposing the appropriate optimality conditions
period-by-period) to address short-run player 2’s. To begin, we describe some
notation for the correlated equilibrium of the repeated game with imperfect mon-
itoring. We use the termperiodt continuation gamedor the game with initial
period in perioth] We use the notatioti = 0, 1,2, ... for a period of play in a

6For eacht, o} * ando are elements of the same finite dimensional Euclidean space.

“In a subjective correlated equilibrium, the measuré jn (3) can differ from the measEfe in (4).

8Since a strategy profile of the original game induces a probability distributionteeenod
histories,H1; x Hs;, we can view the perioticontinuation, together with a type spakig; x Ho,
and induced distribution on that type space, as a Bayesian game. Different strategy profiles in the
original game induce different distributions over the type space in the continuation game.
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continuation game (which may be the original game) afa the time elapsed

prior to the start of the periotlcontinuation game. A pure strategy for player

s1, is a sequence of maps, : Hiy — [ fort’ =0,1,.. E] Thus,s;y € I and

s, € [V = S, and similarlys, € S, = JY 22 The spaces$; andS, are
countable products of finite sets. We equip the product spaseS; x S, with

the o-algebra generated by the cylinder sets, denoted.bfpenote the players’
payoffs in the infinitely repeated game (as a function of these pure strategies) as
follows

U1<81,82) = E(SI’SQ)[’ZH()], and

Ug(Sl, 82) = E(Sl’s2)[ 20 ]

The expectation above is taken over the action pairsj). These are random,
given the pure strategy profile;, s»), because the pure action played in period
depends upon the random public signals.

We follow Hart and Schmeidler (1989) in using the ex ante definition of cor-
related equilibria for infinite pure-strategy sets:

Definition 7 Acorrelated equilibriunof the complete-information game is a mea-
sure i, on (S,S) such that for allS-measurable functiong, : S, — S; and
C2 . SQ — SQ,

/ (51, 82) — ur(Cy(s1). s2)]dp > 0, and 3)
S

/S[W(Sl»@)—U2(81aC2(82))]dM > 0. (4)

Let M denote the space of probability measusesn (S, S), equipped with
the product topology. Then, a sequenceconverges tq if, for eachr > 0, we
have

/,Ln|1(l><Y)7'><J(.]><Y)T — ,U/‘I(IXY)TXJ(JXY)T.

Moreover, M is sequentially compact with this topology. Payoffs for players
and2 are extended toV in the obvious way. Since payoffs are discounted, the
product topology is strong enough to guarantee continuity,af M —R. The
set of mixed strategies for playérs denoted by\,.

Fix an equilibrium of the incomplete-information game with imperfect mon-
itoring. When playenl is the normal (respectively, commitment) type, the mon-
itoring technology and the behavior strateg(és, o») (resp.,(d1,02)) induce a

9Recall thatr; denotes general behavior strategies.
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probability measuré;t (resp.,{bt) on thet-period historieghyy, hoy) € Hyp X Hoy.
If the normal type of playet observes a private histovy;, € Hy;, her strategy,
71, specifies a behavior strategy in the pericabntinuation game. This behavior

strategy is realization equivalent to a mixed straté}élf/ € M, for the periodt

continuation game. Similarly, the commitment type will play a mixed strategy

5\h” € M, for the continuation game and playzwill form his posteriorp; (ha;)

and play the mixed strategy* € M, in the continuation game. ‘Conditional
on player 1 being normal, the composition of the probability measueand the

measuresﬂh“, A"2t) induces a joint probability measurg, on the pure strategies
in the continuation game and play®s posterior (the spacg x [0, 1]). Similarly,
conditional upon playet being the commitment type, there is a measyren
S x [0, 1]. Let i, denote the marginal ¢f, on S and/:, denote the marginal gf,
onsS.

At the fixed equilibrium, the normal type is playing in an optimal way from
time ¢ onwards given her available information. This implies that for &l
measurable functions, : S; — 54,

/ul(slv‘g?)d:&t Z/Ul(Q(Sl)?Sz)dﬂr (5)
S S

LetS x B denote the produet-algebra ort x [0, 1] generated by on S and the
Borel o-algebra o0, 1]. Player2 is also playing optimally from time onwards,
which implies that for allS x B-measurable functiors, : S, x [0, 1] — S,

/ (81, 52)d(pops+(1—po)p;) > / uz(51,&5(52, pe) )d(popyt+(1—po) py)-
Sx[0,1]

Sx[0,1]
(6)

If we had metrizedM, a natural formalization of the idea that asymptoti-
cally, the normal type and play@rare playing a correlated equilibrium is that
the distance between the set of correlated equilibria and the induced equilibrium
distributionsfi, on S goes to zero. WhileM is metrizable, a simpler and equiv-
alent formulation is that the limit of every convergent subsequende:df is a
correlated equilibrium. This equivalence is an implication of the fact tais
sequentially compact, and hence every subsequenge phas a convergent sub-
subsequence. The proof of the following is in the Appendix:

Theorem 5 Fix a Nash equilibrium of the incomplete-information game and sup-
posep; — 0 P-almost surely. Lef:, denote the distribution oty induced in
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periodt by the Nash equilibrium. The limit of every convergent subsequence of
{in,} is a correlated equilibrium of the complete-information game.

Since players have access to a coordination device, namely histories, in gen-
eral it is not true that Nash equilibrium play of the incomplete-information game
eventually looks like Nash equilibrium play of the complete-information @ne.

Suppose the Stackelberg payoff is not a correlated equilibrium payoff of the
complete-information game. Recall that Fudenberg and Levine (1992) provide
a lower bound on equilibrium payoffs in the incomplete-information game (with
short-run players) of the following type: Fix the prior probability of the Stackel-
berg (commitment) type. Then, there is a value for the discount faGtsuch that
if 6, > 9, then in every Nash equilibrium, the long-lived player’s ex ante payoff
is essentially no less than the Stackelberg payoff. The reconciliation of this re-
sult with Theoren 5 lies in the order of quantifiers: while Fudenberg and Levine
(1992) fix the priorp,, and then seleat(p,) large (withé (py) — 1 aspy — 0),
we fix §; and examine asymptotic play, so that eventugllis sufficiently small
thaté, < 0 (p;).

4 Proofs of Theorems 11 and 2

The short-lived uninformed player case is a special case of the long-lived player
case. However, the proof for the long-lived uninformed player is quite compli-
cated, while the short-lived player case illustrates many of the issues in a simpler
setting. In what follows, references to the incomplete information game without
further qualification refer to the game with the long-lived uninformed player, and
so the discussion also covers short-lived uninformed players (whéke) = <,

for all h,). Whenever it is helpful, however, we also give informative simpler
arguments for the case of short-lived uninformed players.

The basic strategy of our proof is to show that if plageis not eventually
convinced that playet is normal, then he must be convinced that playes
playing like the commitment type (Lemna 1) and hence playptays a best
response to the latter. Our earlier paper proceeded by arguing that the normal type

0We do not know if Nash equilibrium play in the incomplete-information game eventually
looks like a public randomization over Nash equilibrium play in the complete-information game.
As far as we are aware, it is also not known whether the result of Fudenberg and Levine (1994,
Theorem 6.1, part (iii)) extends to correlated equilibrium. That is, for moral hazard mixing games
and for larged, is it true that the long-run player's maximuaoorrelated equilibrium payoff is
lower than when monitoring is perfect?
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then has an incentive to deviate from the commitment strategy (since the latter has
no long-run credibility), which forms the basis for a contradiction (with player
2’s belief that the two types of playédrare playing identically). The difficulty in
applying this argument in our current setting is that playeeeds to know player

2's private historyhs; in order to predic®’s period+ beliefs and hence behavior.
Unfortunately, playet knows only her own private history;;. Our argument thus
requires showing that player 1 eventually “almost” knows the relevant features of
player 2’s history.

4.1 Player 2’s Posterior Beliefs

The first step is to show thaither player 2's expectation (given his private his-
tory) of the strategy played by the normal type is, in the limit, identical to his
expectation of the strategy played by the commitment tgpalayer 2's poste-
rior probability that playet is the commitment type converges to zero (given that
player 1 is indeed normal). This is an extension of a familiar merging-style argu-
ment to the case of imperfect monitoring. If, for a given private history for player
2, the distributions generating his observations are different for the normal and
commitment types, then he will be updating his posterior, continuing to do so as
the posterior approaches zero. His posterior converges to something strictly posi-
tive only if the distributions generating these observations are in the limit identical
for each private history.

The proof of Lemma 1 in Cripps, Mailath, and Samuelson (2004) applies to
the current setting without change:

Lemma 1 Suppose Assumptiopp 1 drid 2 are satisfied @ni public. In any
Nash equilibrium of the game with incomplete informafign,

1 — E[ &1 | Hot |

Jim py(1—py) ’ =0, P-as. (7)

Condition [T) says that almost surely either player 2’s best prediction of the
normal type’s behavior at the current stage is arbitrarily close to his best prediction

of the commitment type’s behavior (that i§1; — E[ 61; | Ha: ] || — 0), or the

type is revealed (that ig, (1 — p;) — 0). However,limp;, < 1 P-almost surely,
and hence (7) implies a simple corollary:

We usel|z|| to denote theup-norm onR’.
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Corollary 1 Suppose Assumptions 1 drjd 2 are satisfiedand public. In any
Nash equilibrium of the game with incomplete information,

o1t — E[51t | Hot |

‘ =0, P-a.s.

lim p,
t—o0

4.2 Player 2’'s Beliefs about his Future Behavior

We now examine the consequences of the existencefbpasitive measure set
of states on which reputations do not disappear, ligy, .., p;(w) > 0. The
normal and the commitment types eventually play the same strategy on these states
(Lemma[1). Consequently, we can show that on a positive probability subset of
these states, player 2 eventually attaches high probability to the event that in all
future periods he will play a best response to the commitment type.

As g, is public, player 2 has a best responséitthat is also public. Moreover,
this best response is unique on the equilibrium path for 2ll7° (by Definition
[B). We letj*(h;) denote the action that is the pure best-response after the public
historyh,, for allt > T°. Note thatj*(h;) is H;-measurable. The event that player
2 plays a best response to the commitment strategy in all periods aftér is
then defined as

GO ={w: ol (hyy(w) =1,Vs >t}

whereh,(w) (respectivelyhq,(w)) is thes-period public (resp., 2's private) history
of w.

When the uninformed players are short-livédl,is simple and player 2 has a
unique best replyBR%(¢1) = {s2}, SO

Gy = {w : 025(has(w)) = ¢2,Vs > t}.

With this in hand we can show that if player 2 does not eventually learn that
player 1 is normal, then he eventually attaches high probability to thereafter play-
ing a best response to the commitment type:

Lemma 2 Suppose the hypotheses of Theo@;m ZE)w]d suppose there is a
Nash equilibrium in which reputations do not necessarily disappearf?.(eél,) >

0, whereA = {p, - 0}. There existg) > 0 and F C A, with P(F)) > 0, such
that, for any¢ > 0, there existg” for which, onF,

Pt > 1, VvVt > T,

12This lemma does not require Assumpl@n 3.
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and )
P(GY | Hy) >1-¢, vVt >T. (8)

Proof. SinceP(A) > 0 andp, converges almost surely, there exists 0 and

n > 0 such thatP(D) > 2u, whereD = {w : lim,_,, p;(w) > 21}. The random
variables|| &1, — E[51,|H2]| tend P-almost surely to zero o (by Corollary

. Consequently, the random variablés = sup,-, |61, — E[51|Has]| also
convergeP-almost surely to zero o). Thus, from Hart (1985, Lemma 4.24),
E[lDZt | Ha:) converge almost surely to zero, whdrg is the indicator for the
eventD. DefineA, = {w : E[1p | Ha(w) > 1}. TheHz-measurable event,
approximates) (because player 2 knows his own beliefs, the random variables
d, = |1p — 1,4,| convergeP-almost surely to zero). Hence

1pE[Z, | Hy] < 14,E[Z; | Hot] + dy

- E[]-AtZt | Hgt] + dt
< E[lpZ; | Hal + Eld; | Ha + dy,

where the first and third lines usg < 1 and the second uses the measurability
of A; with respect tdH,;. All the terms on the last line convergféalmost surely

to zero, and sd|[Z;|H,| — 0 P-a.s. on the seb. Egorov's Theorem (Chung
(1974, p. 74)) then implies that there exigtsC D such thatl5(F) > (0 on which
the convergence qf, andE[Zt|H2t] is uniform.

To clarify the remainder of the argument, we present here the case of short-
lived player 2 (long-lived player 2 is discussed in Apper{dix]A.2). This case is
particularly simple, because if playerbelieved his opponent was “almost” the
commitment type, then in each peripglays the same equilibrium action as if he
wascertainhe was facing the commitment simple type.

¢, From the upper semi-continuity of the best response correspondence, there
existsy > 0 such that for any histor;; and any(, € A’ satisfying||¢; — ¢1]| <
1, a best response tq is also a best responsedq and so necessarily equals
The uniform convergence df[Z;|Hx] on F implies that, for any¢ > 0, there
exists a timél” such that or¥, for all ¢t > T', p, > n and (sincer; = ¢1)

i {sup ¢ — E[614/Had] <&y,

s>t

' Hay

As E[Z|Hy) < &y forallt > T onF andZ, > 0, P({Z, > 1)}|Ha) < & for all
t > T on F, implying (8). |



July 28, 2004 20

4.3 Player 1's Beliefs about Player 2’s Future Behavior

Our next step is to show that, with positive probability, player 1 eventually expects
player 2 to play a best response to the commitment type for the remainder of the
game. We first show that, while play2s private historyh, is typically of use
to player 1 in predictin@’s periods behavior fors > ¢, this usefullness vanishes
ass — oo. The intuition is straightforward. If period-behavior is eventually
(ass becomes large) independent/af, then clearlyh,; is eventually of no use
in predicting that behavior. Suppose then thatis essential to predicting player
2's behavior in all periods > ¢. Then, playef continues to receive information
about this history from subsequent observations, reducing the value of tiaying
explicitly revealed. As time passes player 1 will figure out whethgractually
occurred from her own observations, again reducing the value of independently
knowing hy;.

Denote by3(.A, B) the smallest-algebra containing the-algebras4 andB.
Thus,3 (H1s, Ha:) is theo-algebra describing playéfs information at times if
she were to learn the private history of plageat timet.

Lemma 3 Suppose Assumptions 1 dnd 3 hold. For any0 andr > 0,

slifglo HE[Uz,SHW(HmH%)] - E[U2,s+r|Hls] =0, P-as.

Proof. We prove the result here for = 0. The case of > 1 is proved by
induction in Appendix A.B. SupposkE C J!is a set oft-period player action
profiles(jo, j1, .-, j+—1). We also denote bif the corresponding event (i.e., subset
of ©2). By Bayes’ rule and the finiteness of the action and signal spaces, we can
write the conditional probability of the eveht given the observation by playér
of hy s+1 = (his, Ys, is) as follows

PlK|hon] = P[K|hi,ys, i)
p[K‘hls]P[y57is’K7 his]
Plys. is|his]
PIK|has] 33, ol Bl (ha) lhas, K]
> P B0 (has) )

Y

where the last equality uséd|i,| K, hi,] = P [is|hy).
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SubtractP[K | h,,] from both sides to obtain

PIK|h,] 5, 05 (Elob(ha) g, K] = Elod(has)l b))

P[K|hy s11]—P[K|hys] = _
Zj p?:jE[U%(h2S> |h]

The term)_ p¥*; B0 (has )| has] is playerl’s conditional probability of observing
the periods signaly, given she takes actiofy and hence is strictly positive and
less than one by Assumptipp 1. Thus,

P[K|hy s11] — P[K|hy]| > P[K|hy]

ety (Elos fm)\hls,m—E[o§<h23>|h14)‘.

Since the sequence of random variablé$K |H,,)}, is a martingale relative to
({H.4}s, P), it convergesP-almost surely to a non-negative Imﬂt[KlHlm] as

s — co. Consequently, the left side of this inequality convergealmost surely

to zero. The signals generated by plagsractions satisfy Assumptidr] 3, so an
identical argument to that given at the end of the proof of Lemma 1 in Cripps,
Mailath, and Samuelson (2004) establishes fhaimost everywhere of’,

lim p[K’Hls}

S$— 00

E[U2s‘ﬁ (H137 K)] - E[UZS‘Hls]

wheres (A, B) is the smallest-algebra containing both the-algebrad and the
eventB. Moreover,P [K|H1] (w) > 0 for P-almost allw € K. Thus,P-almost
everywhere ony,

lim ‘E[028|ﬁ(H157K)] — Eloas|Hus

§—00

Since this holds for alK” € Ho,
lim || Blos | B(Has, Hor)) = Blowf ] =0, Pas,
giving the result forr = 0. [ ]

Now we apply Lemma|3 to a particular piece of information player 2 could
have at time¢. By Lemmd 2, with positive probability, we reach a timat which
player 2 assigns high probability to the event that all his future behavior is a best
reply to the commitment type. Intuitively, by Lemrnp 3, these petibeliefs of
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player 2 about his own future behavior will, eventually, become known to player
1.

This step is motivated by the observation that, if player 1 eventually expects
player 2 to always play a best response to the commitment type, then the normal
type of player 1 will choose to deviate from the behavior of the commitment type
(which is not a best response to player 2’s best response to the commitment type).
At this point, we appear to have a contradiction between player 2’s belief on the
eventF’ (from Lemmd ) that the normal and commitment types are playing iden-
tically and player 1’s behavior on the evefit (the event where player 1 expects
player 2 to always play a best response to the commitment type, identified in the
next lemma). This contradiction would be immediatéif was both a subset of
F and measurable for player 2. Unfortunately we have no reason to expect either.
However, the next lemma shows that is in fact close to &{,,-measurable set
on which player 2’s beliefs that player 1 is the commitment type do not converge
to zero. In this case we will (eventually) have a contradiction: On all such histo-
ries, the normal and commitment types are playing identically. However, nearly
everywhere on a relatively large subset of these states, player 1 is deviating from
the commitment strategy in an identifiable way.

Recall thatj*(h) is the action played for sure in periedafter the public his-

tory h, by player 2’s best response to the commitment type. He!ﬁkzé;(h“) His
is the probability player 1 assigns in periedo the event that 2 best responds to
the commitment type in period > s. For the case of the short-lived unin-
formed players and the simple commitment typ&),) = ¢- for all hs and

SO0 HE[025/|H15] — CzH > 1 - E[a;}"s’) His). So, in that case2) implies
HE[023'|H13] - CQH <.

Lemma 4 Suppose the hypotheses of Theofém 2 hold, and suppose there is a
Nash equilibrium in which reputations do not necessarily disappear[f?(e{pt >

0}) > 0. Letn > 0 be the constant anfl' the positive probability event identified

in Lemmg R. For any > 0 and number of periods > 0, there exists an event

FT and a timeT' (v, 7) such that for alls > T'(v, 7) there exist&’! € Hs, with:

ps >n onCl, 9
FTUF ccl, (10)
P(F') > P(C]) = vP(F), (11)

13Here we use, to denote the pure action receiving probability one unrder
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and for anys’ € {s,s+1,....,.s + 7}, onFT,
Elol ") | Hy ]>1-v,  P-as. (12)

Proof. Fix v € (0,1) and a number of periods > 0. Fix £ < (}luP(F))Q,
and letT" denote the critical period identified in Leminja 2 for this valué .of

Player 1's minimum estimated probability gh(/. ) over periodss, ..., s+
can be written ag; = ming<y <y, E[a;;(hS’) His). Notice thatf; > 1 —rvisa
sufficient condition for inequality (12).

The first part of the proof is to find a lower bound ffyr For anyt < s, the

triangle inequality implies

. ad i*(hgr)
1> f.,> min FElo) ,( s
- fs = s<s<sir [ 2s

ﬁ(Hlsa HZt)} - ki?

wherek! = max,<g<gyr ]Z?[Ug;(hs') B(His, Ho)] —E[oé:/(hsl)
Lemma Blim, ... k¢ = 0 P-almost surely.
As o—;;hs” < 1andis equal td on G¢, the above implies

His)| fort < s. By

fs > P(G? | B(HI&H%)) - ki

Moreover, the sequence of random variatlé¥G?|3(H s, Ha:))} s iS @ martin-
gale with respect to the filtratiof#, } s, and so converges almost surely to a limit,
g' = P(G?|8(Hie, Hat)). Hence

12f529t—k§_€ia (13)

wherel! = |g* — P(G?|3(Hs, Har))| @andlim, ., £% = 0 P-almost surely.
The second step of the proof determines the 6étand a set that we will use
to later determing. For anyt > T, define

Ktz{w:p(G?|H2t)>l—§,pt>7]}€H2t.

Let F? denote the evert?_, K, and setF; = N2, K;; note thatliminf K;, =
Ue, N2, K, = URF,. By Lemma2,F C K, forallt > T, soF C Fy,
F C F;,, andF’ C liminf K.

Define N, = {w : ¢* > 1 —/£}. SetCl = F; € H,, and define an
intermediate sef™* by F* = Fr N Ny. Becaus&! C K, @) holds. In addition,
F*UF c Cf, and hencd (10) holds witA* in the role of 7F. By definition,

P(C}) — P(F*) = P(CI N (Pr N Np)) = P((CIn Fr) U (CI N Ny)),
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where we use bars to denote complements. By our choicg,dhe eventC NNy
is a subset of the evelkf; N Nr. Thus, we have the bound

P(CH — P(F*) < P(C! N Fyp) + P(Kp N Ny). (14)

We now find upper bounds for the two terms on the right sidg df (14). First notice
thatP(C! N Fr) = P(F3) — P(Fy). Sincelim,_.o, P(F3) = P(Fr), there exists
T" > T such that

P(CT N Fr) < /¢ forall s > 1T (15)
Also, asP(G"|Kt) > 1—¢andK; € Hy, the properties of iterated expectations
imply that1 — ¢ < P(G9|K;) = E[¢*|K,]. Sinceg’ < 1, we have

1-¢<Elg' | K] < (1= VPN, | Ky)+ P(N, | K)
= 1= \/{:P(Nt | K3).
The extremes of the above inequality imply tHatV, |K,) < /¢. Hence, taking
t =T we get
P(Kr N Np) < €. (16)

Using .) and.6) |n.4)P Ch — P(F*) < 2y/¢forall s > T'. Given
F C C1, the bound orf, andv < 1, it follows that

P(F*) > P(F) — 2/¢ > %P(F) - 0.

Finally, we combine the two steps above to obtaih As P(F*) > 0 and
kT + /T converges almost surely to zero, by Egorov’s Theorem, there exists
F* such thatP(F* \ Ft) < /¢ and a timel” > T such that”" + (7" < /¢ on
Ftforalls > T". SinceFf U F c F*UF c Cf, (10) holds. Letl'(v,7) =
max{T"”,T'}. Also, g" > 1 — /€ on F', because"’ C Ny. Hence onF", by
(3). f. > 1 —2y/¢forall s > T(v, 7). This, and the bound of implies [12).
Moreover, asP(F* \ Ft) < /¢ andP(CT) — P(F*) < 2/¢, (11) holds for all
s>T(v,T). n

When player is long-lived, it will be convenient to know that the conclusions
of Lemmd 4 hold on a sequence of cylinder sets:

Corollary 2 Assume the conditions of Lemija 4. Defitie= {w € Q : proj,(w) =
proj,(w') forsomev’ € FT}, whereproj, (w) is the projection ofs onto(I x J x Y)°.

Then, [(10),[(2)1), and (12) hold fdr} replacing F'f.

Proof. The proof follows from the observation that, for &lF'" ¢ FI c C1
(sinceC! € H,;) and ) is a condition that i¥,,-measurable. [ ]
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4.4 Toward a Contradiction

We have shown that when reputations do not necessarily disappear, there exists a
setF't on which [12) holds and™t C Cf € Hs,. The remaining argument is more
transparent in the setting of the short-lived player 2s of Thefiem 1. Accordingly,
we first prove Theorein 1, and then give the distinct argument needed when player
2 is long-lived and the commitment strategy is not simple.

In broad brushstrokes, the argument proving Thedrem 1 is as follows. First,
we conclude that orF', the normal type will not be playing the commitment
strategy. To be precise—ahi' there will exist a stage-game action playeddby
but not by the normal type. This will bias player 2's expectation of the normal
type’s actions away from the commitment strategy(dn because there is little
probability weight onC'T \ F''. We then get a contradiction, because the fact that
ps > n onCl implies player 2 must believe the commitment type’s strategy and
the normal type’s average strategy are the samgjon

The argument proving Theorgm 2 must deal with the nonstationary nature of
the commitment strategy (and the nonstationary nature of the failure of credibil-
ity). As in the simple case, we have found a set of stdtesvhere, for alls
sufficiently large, the normal type attaches high probability to player 2 best re-
sponding to the commitment type for the nexperiods. The normal type’s best
response to this is not the commitment strategy, and hence the normal type does
not play the commitment strategy. We will derive a contradiction by showing that
player 2 almost comes to know this.

The complication is that it may be very difficult for player 2 to predict just how
the normal type’s strategy deviates from the commitment strategy. When working
with the stationary commitment strategy of Theoijgm 1, we can be certain there
is a stage-game action played by the commitment type which the normal type’s
strategy would (eventually) not play after any private history. In the setting of
Theorenj 2, however, the normal type’s deviation from the nonstationary commit-
ment strategy may be much more complicated, and may depend on private (rather
than just public) information.

4.5 Proof of Theorenm1l

Suppose, en route to the contradiction, that there is a Nash equilibrium in which
reputations do not necessarily disappear. TH¢fp, - 0}) > 0. Let S, =

min;e {<} : ¢} > 0}, thatis,¢, is the smallest non-zero probability attached to an
action under the commitment strategy Since(sy, ¢2) is not a Nash equilibrium,
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¢1 plays an action that is suboptimal by at least- 0 when player 2 uses any
strategy sufficiently close tg. That is, there exists > 0, i’ € I with ¢ > 0 and
v > 0 such that

v < Hazrflgi?rﬁgp (Hilgxm(i, o) — (7, 02)) .
Finally, for a given discount factar; < 1 there exists a sufficiently large such
that the loss ofy for one period is larger than any feasible potential gain deferred
by 7 periods:(1 — ;) > 072 max;; |71 (4, j)|.

Fix the eventr” from Lemmd 2. For < min{v, 1, } andr above, let' and,
for s > T'(v, 1), C! be the events described in Lemma 4. Now consider the normal
type of player 1 in period > T'(v,7) at some state it'". By (13), she expects
player 2 to play withinv < v of ¢, for the nextr periods. Playing the actioi
is conditionally dominated in periog, since the most she can get from playing
7" in period s is worse than playing a best responsetdor 7 periods and then
being minmaxed. Thus, oA' the normal type plays actioit with probability
zero:ol, = 0.

Now we calculate a lower bound on the difference between player 2's beliefs
about the normal type’s probability of playing actiérin periods, E[o?|Has],
and the probability the commitment type plays actioon the set of stateS|:

Bl | - Blotira)| 1] = B[(<f = BlotHa) 1]
> ¢ P(CH) — E [ol.10]
> ¢ P(CY) - (P(C]) - P(FT))
> ¢, P(Cl) —vP(F)
> So, PP (a7

The first inequality above follows from removing the absolute values. The second
inequality applies;? > S,» uses theH,,-measurability ofCT and applies the
properties of conditional expectations. The third applies the factdhat= 0
on F ando?, < 1. The fourth inequality applie$ (1) in Lemrh& 4. The fifth
inequality followsv < ¢, andF c Cf (by (10)).

¢ From Corollar 1y, |[s; — E (614 Ha,)|| — 0 P-almost surely. It follows that

pslsi — E(5§/S|st)|1cg — 0, P—as.
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But, by Lemmd Up, > 7 on the set’!, and so
|7 — E(5§IS|H25)|1C; — 0, P—as.

This concludes the proof of Theorér 1, since we now have a contradiction with
P(F) > 0 (from Lemmd 2) and (17), which holds for all> T(v, 7).

4.6 Proof of Theorem2

We first argue that, after any sufficiently long public history, there is one continu-
ation public history after which the commitment type will play some aciton 1

with positive probability, but after which the normal type will choose not to play
1°, regardless of her private history. To find such a history, noticesth§player

2's best response to the commitment strategy) is pure and therefore public, ensur-
ing that the normal player 1 has a public best responge tnd that it is not ;.
Hence, there exists a public history where 1’s public best response differs from the
commitment strategy, for all private histories consistent with this public history.
If we can show this preference is strict, this will still hold when player 2 is just
playing close to a best response, which will open the door to a contradiction. The
formal statement is (the proof is in Appendix A.4):

Lemma5 Supposer; is a public strategy with no long-run credibility (with an
associated @), anda, is player 2’s public best reply. Then, player 1 has a public
best reply,ai, to 6,. There exists € N, A > 0, andx > 0 such that for all

s > T° and eachh, € H,, there is an action®, a periods’ < s + 7, and a public
continuation history:?, of h,, such that

1. 6%, (ho) >\,
2. the action® receives zero probability under, (19,), and

3. player 1's payoff from playingf and continuing with strategy, is at least
r less that what she gets from playinb ath?,i.e.,

E@ [ |h2] — B9 [(1 = 6,)m1 (i, jor) + 6171.011|h2] > K.

Fors > T°, Lemma[$ describes how player 1's best responsg, tdiffers
from ;. In the game with incomplete information, Lemiria 5 defines tlitge
measurable functionsg(-;s) : Q — I, s'(;s) : Q@ — {t : s <t < s+ 7},
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andh(:;s) : Q — UX Y" as follows: Associated with each statec () is the
implied s-period public historyh,. The action-period paifi(w; s), s’ (w; s)) is the
action-period paiti°, ') from Lemmg 5 for the public histork,. Finally, b(w; s)

is thes'(w; s)-period continuation historg? of i, from Lemmd 5. We emphasize
thath(w; s) is typically notthe s’(w; s)-period public history ofv (for a start, it is
'Hs-measurable); while the firstperiods ofy (w; s) are thes-period public history
of w, the nexts’(w; s) — s periods describe the public signals from Lenjrha 5.

With these functions in hand, we can describe how player 1's behavior differs
from that of the commitment type when she is sufficiently confident that player 2
is best responding to the commitment type (where min,; ; p?j > 0 and\is
from Lemmd b; the proof is in Appendix A.5):

Lemma 6 Suppose the hypotheses of Theofém 2 hold, and suppose there is a
Nash equilibrium in which reputations do not necessarily disappear[f?(e{pt >

0}) > 0. Let7, A\, andx be the constants identified in Lemfrla 5, ahd =

maX;er jesref1,2} |Te(?,7)|. Suppose > 7 satisfies|2M o] < «, v > 0 satisfies
12Mv < kp™, and{F]}, is the sequence of events identified in Corol@ry 2. For

all s > T(V_,ZT),

1610 (b(wss) = A,
2. the setF} = {w € F! : hy(.s)(w) = h(w;s)} has probability P(Ff) >
p"P(Ff) >0, and

3. forallw € F?,
514 (M1, (@) = 0.

If the eventsF# were known to player 2 in period, then the argument is
now complete, since there would be a contradiction between player 2's belief
that the normal and commitment type play the same way'prand player 1's
actual behavior. HoweveF}? is not known to player 2. On the other hard, is
approximated by’ (the analogous modification ¢fi, defined below), an event
known by player 2 in period. At the same time, we must still deal with the
random nature of(-; s) ands’(+; w).

To complete the argument then, suppose the assumptions of Liemma 6 (includ-
ing the bounds on andv) hold, and in addition

2)\p7

V<2>\£T+3 (18)



July 28, 2004 29

The set of states consistent with 2's information at timé€', and the “right”
continuation public history, i€} = {w € C! : hy(,(w) = h(w;s)}. Note that
P(CI\F?) < P(CI\F!), and since”! o Ff, Ct > F!. We also partitiorC? into
the subevents corresponding to the relevant period in which the actiarw; s)
is not optimal:C¥* = {w € O :i(w;s) =14, §'(w;s) = ¢t, hy(w) = h(w;s)}, SO
thatC# = UiET Ui CHE. Note thatC¥t € Hy, foralli € Tandt =s,...,5+ 7.

For eachw, leti® = i(w; s) ands® = s'(w; s). Now, for fixedw and implied
fixed actioni® and periods®, definef,(w) = 6\ (w) andf(w) = E [50.Hag] (w).
In the last expression, for fixed actiah and periods®, E [&}..|Hase] is the
conditional expected value df;,. In particular, foro € C¥#, s° = ¢ and
i© = i, and we can writef,(w) = &},(w) and fy(w) = E [5%,[Has] (w). Then,

2.(0) = supis, o1 = B [oultal | 2 |£u(0) = £iw)]
So,

E[Zs]_cg] > E [(fs — f5> X 1C§:| (19)

~ Y (.~ ) % 100]
t=s 1€l

= Y B [(h - B [slr]) 105
t=s 1€l

— i SOE[B[(6% - 54) Lo Ha] | (20)
t=s i€l

where the last equality follows froi¥ € H,;. Now, defineF¥ = {w € F :
i(w;s) =i, s'(w;s) = t, hy(w) = h(w;s)}, and soFF = UTT User FHE. Since
Ff c Ct, Fft c CFt, and so[(2D) is at least as large as

s+T s+T
SN E|E (64 - 55) gl Hae| | = S0 DT P (CEFE)
t=s i€l t=s i€l
S+T
- 8| (A1 - £ X 8] )| - 2
t=s icl

— B[f1,] - P(ChF)
> AP(F}) = P(CI\F), (21)
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where the last equality is an implication bf 6§t1FS¢it

Hzti| = (0 P-almost surely.
Hence, from the chain from (19) tp (21), we have

S

E[Z1.:) > A\p" P(F) — (P(CT) — P(FY))). (22)

Applying the bounds' P(F) > P(C!) — P(F!)andP(F!) > P(F)(1 —v) from
Corollary[2 to the right side of (22) gives

BlZ14] > (Ap"(1 —v) —v)P(F).

The bound[(1B) ensures thgt"(1 — v) — v > /2, and hence
8 1 -
B(Z:14) > GvP(F).

However, P(C}) > p"(1 — v)P(F) > 0 and sinceC? C {w : p, = 0},
Zly — 0 P-almost surely, the desired contradiction.

5 Imperfect Private Monitoring

In this section, we briefly sketch how our results can be extended to the case
of private monitoring. Instead of observing a public signalt the end of each
period, playen observes g@rivatesignald (drawn from a finite se®) and player

2 observes a private signél(drawn from a finite sef). A history for a player

is the sequence of his or her actions and private signals. Given the underlying
action profile(i, j), we letp,; denote a probability distribution ovér x Z. We

use,ofjC to denote the probability of the signal profile, ¢) conditional on(i, 7).
The marginal distributions aye; = >~ pis andpg; = 3, pi;. The case of public
monitoring is a special case: take= 7 andEeeepg’f = 1forall i, 5.

We now describe the analogs of our earlier assumptions on the monitoring
technology. The full-support assumption is:

Assumption 5 (FULL SUPPORY) pf;, p5; > Oforall 0 € ©, ( € Z, and all
(i,7) € I x J.

Note that we daot assume thap)s > 0 for all (i,j) € I x J and(6,¢) € ©?
(which would rule out public monitoring). Instead, the full-support assumption is
that each signal is observed with positive probability under every action profile.
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Assumption 6 (IDENTIFICATION 1) For all j € J, the columns in the matrix
(p5;)cez.ier are linearly independent.

Assumption 7 (IDENTIFICATION 2) For all i € I, theJ columns in the matrix
(p?;)oco,jes are linearly independent.

Even when monitoring iguly private, in the sense thaufjC > (O forall (4, 5) €
I x Jand(0,¢) € © x Z, reputations can have very powerful short-run effects.
This is established in Theorgm 6, which is a minor extension of Fudenberg and
Levine (1992114

Theorem 6 Suppose the game has imperfect private monitoring satisfying As-
sumption$ b and| 6. Suppose the commitment type plays the pure@dti@very
period. For allp, > 0 and alle > 0, there exist$ < 1 such that for all§; > 4,
player 1's expected average discounted payoff in any Nash equilibrium is at least

min (i, ) — &,
JEBRS (i*) 1( ‘7)
where
BR? (i) = argmax my (i, ]) .
jeJ

The proof of the following extension of Theor¢r 1 to the private monitoring
case is essentially identical to that of Theofgm 1 apart from the added notational
inconvenience of private signals.

Theorem 7 Suppose the imperfect private monitoring satisfies Assumgtions 5, 6,
and[7 ands, satisfies Assumptidr) 4. Then at any Nash equilibrigm;> 0 P-
almost surely.

Y4while Fudenberg and Levine (1992) explicitly assume public monitoring, under Assumption
[6, their analysis also covers imperfect private monitoring. This includes games where player 1
observes no informative signal. In such a case, when there is complete information, the one-period-
memory strategies that we describe as equilibria in Section 2 of Cripps, Mailath, and Samuelson
(2004) are also equilibria of the game with private monitoring. We thank Juuddion&ki for
showing us how to construct such equilibria.
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A Appendix

A.1 Proof of Theorem[5

Sincep, — 0 P-almost surely, we havg, — 1 P-almost surely. For any, v > 0
there exists & such that for alt > T, P(p; > ¢) + P(p; < 1 —¢) < v. Hence,
fort' > T,

0 < / [ua(s1, 52) — ua(s1, & (52, 2¢))|d(pop, + (1 — po)py)
Sx10,1]
<(p0) [ fualsrise) — ualon, & (se.p)
Sx[0,e]
+po/ [u2(517 52) - U2(51, 52(5272%))]65@ +2Mv,
Sx[l1—e,1]

where M is an upper bound on the magnitude of the stage-game payoffs and
the first inequality follows from[(6). Ag, is measurable with respect tp, we

can ensure that the final integral in the preceding expression is zero by setting
&5(s2,p) = so for p, > €, and hence, for any, v > 0 and for all¢,,

. 2Mv
[ st — s Glsamldp, = —222 (4
Sx[0,e] — Do
Again, becaus® (p, > ¢) < v, implies
. 2Mv
/ [ua(51, 52) = ua(s1, &x(52,21))]dpr 2 =7 —2Mv.
Sx[0,1] — Po
Integrating oup, implies that, for alk;, : Sy — Ss,
. 2Mv
[ lualons0) = wa(sn, sl = 1 =20y (A2)
S — PO

Consider now a convergent subsequence, denotedith limit /_,, and sup-
posefi,, is not a correlated equilibrium. Sindg (5) holds forzllit also holds in
the limit. If i, is not a correlated equilibrium, it must then be the case that for
someg, : Sy — Sy, there exists: > 0 so that

/S (st 52) — a1, €4(s2)))dfine < —r < 0.
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But then fort, sufficiently large,

/[Uz(sl, s) — ug(s1, (5 (s2))|dfty, < %ﬁ <0,
s

contradicting[(A.2) for sufficiently small.

A.2 Completion of the Proof of Lemma[2

Turning to the general case, 1&f = max;cs jeeeq1,2) |Te(i, j)|, SO thatM is an
upper bound on the magnitude of stage-game payoffsal-et=° /6 M, wheres°
is given by Definitionj b. 117, < «, player 2's expected continuation payoffsiat
under the strategy profiler,, 51, 02) are within2 M « of his continuation payoff
under the profildsy, 51, 02). Hence, ifZ, < « and historyh,, (for s > t > 7°)
occurs with positive probability, then

| E@7092) 1y | hgg) — ECYO072) [, | o] < 2M e (A.3)

for all o».

We now show that iZ; < « fort > T, then player 2 plays the pure action
j*(hs) in all future periods. Suppose instead that the equilibriunplays; #
J*(hs) with positive probability in periods under a historyh,,. Defined?, to be
identical too, except that, after the history, it places zero probability weight
on the action;*(h,) and increases the probability of all other actions played by
oy by equal weight. Let, be player 2's best response to the commitment type.
Then, if Z, < a we haviy

E@10102) [, | hy] = E@wo 02)[7T2 | has]
< B9, | by + 2Ma
< Euo ‘72)[7T | hos] —€° 4+ 2M
< EBO1010) [, | hy,] — € + 4Ma

As 4Ma < €°, 64 is a profitable deviation after the histofy, for player 2—
a contradiction. Hence on the everit < « player 2 playsj*(h;) in all future
periods. Equivalently, we have shoWw; < a} C G¢. Choos€l’ > T° such
thatp; > n andE[Zt|H2t] < o forall ¢t > T. Condition @3) now follows from
P{Z; > a} | Hy] < £forallt > T onF.

15The equality applies the fact that in equilibrium, player 2 is indifferent between actions played
with positive probability. The first inequality appligs (A.3). The second inequality applies Defini-
tion[3.1. The third inequality appliefs (A.3) again.
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A.3 Completion of the Proof of Lemma[3

The proof forr > 1 follows by induction. In particular, we have

Pr[K|h1,s+T+1] = Pr[K|h157 Ys, Z.S7 oy Ys+ry 7:8-‘1-7']
_ Pr[K|his) Prlys, is, - -+ Ysir, bsir | K, Pas]
P [ysa is; ey Ysr, is+7—’hls]

PriK|h ) 1220, ﬂw Eloy(ha:) s, K]
HS+TZ pzzj [02(h22)|h18] 7

whereh, .1 = (hi.,y.,1,). Hence,

[Pr{K B srria] — PriK|ha]|

S+T s+
> Pr(K | |T]D ot Elod (hos) |hae, K] = T D 2 Elod (ha2) [had]]| -
z=s J z=s j

The left side of this inequality converges to zePealmost surely, and hence so
does the right side. Moreover, applying the triangle inequality and rearranging,
we find that the right side is larger than

s+7—1
Pr(K |hy] H me [0 (h22) ]
yb+T E 02 h2 ,S+T |h'157 ZPZT:JE h2 5+T)|hls]
s+7—1 ~ s+7-1 B
— Pr[K|hy] H Zp [0} (ha2) s, K H Zp (05 (ha2) B

ZP?S:JE 0-2 h? s+7’)|hlsaK]‘ .

¢,From the induction hypothesis thaE[o. |5 (H1s, Ha)] — E[oa.|H1s)|| con-
verges to zerd-almost surely for every € {s, ..., s + 7 — 1}, the negative term
also converges to zerB-almost surely. But then the first term also converges to
zero, and, as above, the result holdsfet s + 7.
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A.4 Proof of Lemmal8

Sinced, is public, player 2 has a best repty that is public, and so player 1 has
a public best replyﬂ to 5,. By Definition|5.2, for every-period public history
hs, s > T°, we have

E©@22) [y, |hy] > E@7) [y, |hy] + £°. (A.4)

Sinceo! is a best response &, player 1's payoffE("Iﬁ?) [m1s]hs] is unchanged
if the periods mixtureaI (hs) is replaced by any other mixture that remains within
the support ofr| (1,), and thereafter play continues accordingfo

Fors > T° andhs € H,, let Y(h,) be the set of public historigs,, s > s,
that are continuations @f, ands’ is the first period in which there is an actioniin
receiving positive probability undeér; but receiving zero probability undeﬁ
Note thatY (hs) is at most countable. In addition, there are no two elements of
T (hs) with the property that one is a continuation of the other. korc T (hy),
s’ > s, in periods, every action that receives positive probability under strategy
o, also receives positive probability unde}r, and so the comment after equation

(A.4) implies

B [y |hs] = 7 [y =

~1 ol . &1.6 .
> 61 (h)or |[BH m (e, )] = B [y g (e, )]

iel

Applying this reasoning iteratively allows us to rewrite (A.4) as

0 < Z O(hy|hs)ds = |:E(Ul 02) (1119 |hy] — E©102) [ms/lhs'}] (A.5)
h €Y (hs)

whereQ(hy |h,) is the probability ot givenh, under(é, &)1
Chooser such tha M §] < €°/3. The terms in ) corresponding to his-
tories longer thas + 7 can then collectively contribute at mast/3 to the sum.

16BecausenT is a best response to,, there must exist such histories, since otherwise every
action accorded positive probab|I|ty By would be optimal, contradmtm@ 4).

1t is possible thad ),  cv;.) Qs [hs) < 1. However, expected payoffs under!, 5,) and
(61,052) are equal after any hlstory not M(hs), and so such histories can then be omitted from

A3).
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The remaining terms must then sum to at |€asy3. Letting Y (h,; 7) denote the
set of histories if(' (k) no longer thars 4 7, we have

Z Olh|he)d2 = [ECL02) (1, |hy] — E@192) [ms,ms,]].
T(hsi?

Let Y*(h; 7) be the histories iff' (hy; 7) satisfying

B[y hy] — B2 [y |hy] > (A-6)

5_
3
Then, .

< QT (i P)[h)2M + (1= Q(T* (ki ) |h)) 5

[\
)
Q

and so

o

A 9
T*(hy: 7)|he =__°
QU (i P)lhs) > 4 = ——

(the denominator is positive, since Definitign 5 impli€s< 2.1).

There are at most™ histories inT*(h,; 7). In the last period of each such
history, there is an actione [ that is played with positive probability by, and
zero probability bya} Since there are at mostsuch actions, there is a history
he (hs) € Y*(hs;7) and actioni®(h,) such that, undefs,, 55), the probability
that the historyhr?, (hs) occurs and is followed by actioif(h;) is at least\ =
q/(IY7). Trivially, then,s?, (%) > A.

Finally, since

B [mglhg] < AECYD (1= 61)mi (i€ jiy) + 611,911 |Y]
+(1 = N EC) [y, by,

from (A.6), we have

t

~ A 1 60
E(U1702)[ﬂ-ls,|hg,] — E(Ul’(m) [(1 — 51)71'1( y Js ) + 01y 8! +1’h ] Q)

3\

=K.

A.5 Proof of Lemmal@

We prove only the second and third assertions (the first being an immediate impli-
cation of Lemma b and the definitionsofs’, andb).

Sincew € FI andproj,(w') = proj,(w) impliesw’ € FI, for any s-period
public history consistent with a state i, and anys’-period (s’ > s) public
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continuation of that history, there is at least one staté’irconsistent with that
continuation. Consequently, since evergeriod public history has probability at
leastp”, P(F¥) > p" P(F]) > p"(1 — v)P(F) > 0.

After any public history, the normal type’s payoffs undef, d,) are indepen-
dent of her private histories—she is playing her public best response to a public
strategy. At states i}, from Corollary| 2, unde#,, player 1 expects player 2's
future play (over the periods s+1, ..., s+ 27) to be withinv of his best response
to the commitment strategy,,. Hence, onF*, player 1 expects that player 2’s
future play (over the periods, s + 1, ..., s + 27) to be withinvp~" of his best
response to the commitment strategyy, irrespective of her play in those periods.
Discounted to the periodl < s+ 7, payoffs from periods after + 27 can differ
by at mosM§7. Hence, for states if, and for anyr,

|EC 7 [y | Hig) — B [my | Hag]| < (vp™7 +67)2M < k/3.

Lemma@.B and the restrictions erandv then imply, forw € F¥,

T R 5 . .
E(U1,U2){7T18,|H131] Z § + E(01,0'2)[<1 _ 61)71'(2(&), S)7JS’) -+ (517T18/+1‘H151].

Hence, after the public histoffy(w; s), no private history for player 1 (consistent
with F'¥) makes playing actioi(w) profitable.
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