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Abstract
For games ofpublicreputation with uncertainty over types and imperfect

public monitoring, Cripps, Mailath, and Samuelson (2004) showed that an
informed player facing short-lived uninformed opponents cannot maintain
a permanent reputation for playing a strategy that isnot part of an equilib-
rium of the game without uncertainty over types. This paper extends that
result to games in which the uninformed player is long-lived and has private
beliefs, so that the informed player’s reputation isprivate. We also show
that the rate at which reputations disappear isuniformacross equilibria and
that reputations disappear in sufficiently long discounted finitely-repeated
games.Journal of Economic LiteratureClassification Numbers C70, C78.
Keywords: Reputation, Imperfect Monitoring, Repeated Games, Commit-
ment, Private Beliefs.
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1 Introduction

Reputation games capture settings in which a long-lived player benefits from the
perception that her characteristics may be different than they actually are. Rep-
utation effects arise most cleanly when a long-lived player faces a sequence of
short-lived players who believe the long-lived player might be committed to the
stage-game “Stackelberg” action. In such a setting, the Stackelberg payoff pro-
vides a lower bound on the long-lived player’s average payoff, provided she is
sufficiently patient (Fudenberg and Levine (1989), Fudenberg and Levine (1992)).

In an earlier paper (Cripps, Mailath, and Samuelson (2004)), we showed that
if monitoring is imperfect and the reputation of the long-lived player ispublic,
meaning that the public signals allow the long-lived player to infer the short-lived
players’ beliefs about the long-lived player’s type, then reputation effects eventu-
ally disappear. Almost surely, the short-lived player eventually learns the type of
the long-lived player.

Many long-run relationships involve two (or more) long-lived players. Rep-
utation effects arise in this setting as well, and can be more powerful than when
the uninformed player is short-lived. Intertemporal incentives can induce the un-
informed agent to choose actions even more advantageous to the informed long-
lived player than the myopic best reply to the Stackelberg action (Celentani, Fu-
denberg, Levine, and Pesendorfer (1996)). In addition, it is natural for an analysis
of long-lived uninformed players to encompassprivate reputations: the actions
of both players are not only imperfectly monitored, but the monitoring need not
have the special structure required for the informed player to infer the uninformed
player’s beliefs. Instead, the uninformed player’s beliefs can depend critically on
his own past actions, which the informed player cannot observe.1

In this paper, we show that reputations eventually disappear when the unin-
formed player is long-lived and beliefs are private.2 We also improve on our

1For example, the inferences a firm draws from market prices may depend upon the firm’s
output choices, which others do not observe. Because private reputations arise when the unin-
formed player privately observes hisown past actions, they occur most naturally with a single,
long-lived uninformed player rather than a sequence of short-lived players. In Cripps, Mailath,
and Samuelson (2004), we assumed that the short-run player’s actions are public, allowing a nat-
ural interpretation of the assumption that short-run players’ observed their predecessors’ actions,
but also ensuring that player 1’s reputation (player 2’s belief) is public.

2Cripps, Mailath, and Samuelson (2004, Theorem 6) is apartial result for the case of a long-
lived uninformed player whose beliefs arepublic. That result is unsatisfactory, even for the public-
reputation case, in that it imposes a condition on the behavior of the long-lived uninformed player
in equilibrium. See footnote 5 for more details.



July 28, 2004 2

earlier paper by showing that the rate at which reputations disappear isuniform
across equilibria (Theorem 3), and that reputations disappear in sufficiently long
discounted finitely-repeated games (Theorem 4).

In our analysis, the long-lived informed player (player 1) may be a commit-
ment type that plays an exogenously specified strategy or a normal type that max-
imizes expected payoffs. We show that if the commitment strategy isnot an equi-
librium strategy for the normal type in the complete-information game, then in any
Nash equilibrium of the incomplete-information repeated game, almost surely the
uninformed player (player 2) will learn that a normal long-lived player is indeed
normal. Thus, a long-lived player cannot indefinitely maintain a reputation for
behavior that is not credible given her type.

Establishing such a result for the case of public reputations and short-lived
uninformed players is relatively straightforward (Cripps, Mailath, and Samuel-
son (2004)). Since monitoring is imperfect, deviations from equilibrium play by
player 1 cannot be unambiguously detected by player 2, precluding the trigger-
strategy equilibria that support permanent reputations in perfect-monitoring games.
Instead, the long-run convergence of beliefs ensures that eventuallyany current
signal of play has an arbitrarily small effect on player 2’s beliefs. Thus, when rep-
utations are public, player 1 eventuallyknowsthat player 2’s beliefs have nearly
converged and hence that playing differently from the commitment strategy will
incur virtually no cost in terms of altered beliefs. Coupled with discounting, this
ensures that deviations from the commitment strategy have virtually no effect on
the payoffs from continuation play. But the long-run effect of many such devia-
tions from the commitment strategy would be to drive the equilibrium to full reve-
lation. Public reputations can thus be maintained only if the gains from deviating
from the commitment strategy are arbitrarily small, that is, only if the reputation
is for behavior that is part of an equilibrium of the complete-information game
corresponding to the long-lived player’s type.3

The situation is more complicated in the private-reputation case, where player
2’s beliefs arenot known by player 1. Now, player 1 may not know when de-
viations from the commitment strategy have relatively little effect on beliefs and
hence are relatively costless. Making the leap from the preceding intuition to
our main result thus requires showing that there is a set of histories under which
player 2’s beliefs have nearly converged,and under which player 1 is eventually

3This argument does not carry over to repeated games without discounting, where small
changes in beliefs, with implications only for distant behavior, can still have large payoff im-
plications.
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relatively certain player 2 has such beliefs.
In general, one cannot expect player 1’s beliefs about player 2’s beliefs to be

very accurate when the latter depend on private histories. A key step in our proof
is to show that whenever player 2’s private history induces him to act as if he is
convinced of some important characteristic of player 1, eventually player 1 must
become convinced that such a private history did indeed occur (Lemma 3). In
particular, if this private history ensured that player 2 is almost convinced that he
faces a commitment type, and acts on this belief, then this eventually becomes
known to player 1.

As in the case where player 1’s reputation is public, the impermanence of rep-
utation also arises at the behavioral level. Asymptotically, continuation play in
every Nash equilibrium is a correlated equilibrium of the complete-information
game (Theorem 5). While the set of Nash equilibrium payoffs in the game with
complete information is potentially very large when player 2 is sufficiently pa-
tient (suggesting that limiting behavior to that set imposes few restrictions), we
emphasize that our analysis holds forall degrees of patience of the players. When
player 2 is impatient, as in the extreme case of short-run player 2s, reputations can
ensure payoffs for player 1 that cannot be obtained under complete information.
Our result (that limiting behavior must be consistent with complete information)
shows that this effect is transitory.

More importantly, reputation arguments are also of interest for their ability to
restrict, rather than expand, the set of equilibrium outcomes. For example, repu-
tation arguments are important in perfect-monitoring games with patient players,
precisely because they impose tight bounds on (rather than expanding) the set of
equilibrium payoffs. Our results caution that one cannot assume that such selec-
tion effects are long-lasting.

For expositional clarity, this paper considers a long-lived informed player who
can be one of two possible types—a commitment and a normal type—facing a
single long-lived uninformed player, in a game of imperfect public monitoring.
The argument of Cripps, Mailath, and Samuelson (2004, Section 6.1) can be used
to extend our results to many possible commitment types. The final section of this
paper explains how our results can be extended to the case of private monitoring
(where reputations are necessarily private).

Our analysis subsumes a private-reputation model with a sequence of short-
lived uninformed players. In several places, the arguments for the latter case are
simpler and considerably more revealing, primarily because we can then restrict
attention to simpler commitment strategies. Accordingly, where appropriate, we
give the simpler argument for short-lived uninformed players as well as the more
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involved argument for the long-lived uninformed player.

2 The Complete-Information Game

We begin with an infinitely repeated game with imperfect public monitoring. The
stage game is a two-player simultaneous-move finite game of public monitoring.
Player1 chooses an actioni ∈ {1, 2, ..., I} ≡ I and player2 chooses an action
j ∈ {1, 2, ..., J} ≡ J . The public signal,y, is drawn from the finite setY . The
probability thaty is realized under the action profile(i, j) is given byρy

ij. The ex
post stage-game payoff to player1 (respectively,2) from the actioni (resp.,j) and
signaly is given byf1(i, y) (resp.,f2(j, y)). The ex ante stage game payoffs are
π1 (i, j) =

∑
y f1 (i, y) ρy

ij andπ2 (i, j) =
∑

y f2 (j, y) ρy
ij.

We assume the public signals have full support (Assumption 1), so every sig-
nal y is possible after any action profile. We also assume that with sufficiently
many observations, either player can correctly identify, from the frequencies of
the signals, any fixed stage-game action of their opponent (Assumptions 2 and 3).

Assumption 1 (FULL SUPPORT) ρy
ij > 0 for all (i, j) ∈ I × J andy ∈ Y .

Assumption 2 (IDENTIFICATION OF 1) For all j ∈ J , theI columns in the ma-
trix (ρy

ij)y∈Y,i∈I are linearly independent.

Assumption 3 (IDENTIFICATION OF 2) For all i ∈ I, theJ columns in the matrix
(ρy

ij)y∈Y,j∈J are linearly independent.

The stage game is infinitely repeated. Player 1 (“she”) is a long-lived player
with discount factorδ1 < 1. Player 2 (“he”) is either short-lived, in which case
a new player 2 appears in each period, or is also long-lived, in which case player
2’s discount factorδ2 may differ fromδ1. Each player observes the realizations
of the public signal and his or her own past actions. (If player 2 is short-lived,
he observes the actions chosen by the previous player2’s). Player 1 in period
t thus has aprivate history, consisting of the public signals and her own past
actions, denoted byh1t ≡ ((i0, y0), (i1, y1), . . . , (it−1, yt−1)) ∈ H1t ≡ (I × Y )t.
Similarly, a private historyfor player2 is denotedh2t ≡ ((j0, y0), (j1, y1), . . . ,
(jt−1, yt−1)) ∈ H2t ≡ (J × Y )t. Thepublic historyobserved by both players is
the sequence(y0, y1, . . . , yt−1) ∈ Y t. The filtration on(I × J × Y )∞ induced
by the private histories of player` = 1, 2 is denoted{H`t}∞t=0, while the filtration
induced by the public histories(y0, y1, ..., yt−1) is denoted{Ht}∞t=0.
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In Cripps, Mailath, and Samuelson (2004), we assumed that the public signal
included player 2’s action. This ensures that player 1 knows everything player
2 does, including player 2’s beliefs. Here, only player 2 observes his action,
breaking the link between 2’s beliefs and 1’s beliefs about those beliefs.

The long-lived players’ payoffs in the infinite horizon game are the averaged
discounted sum of stage-game payoffs,(1 − δ`)

∑∞
τ=0 δ

τ
`π`(iτ , jτ ) for ` = 1, 2.

The random variableπ`t denotes average discounted payoffs in periodt,

π`t ≡ (1− δ`)
∞∑

τ=t

δτ−t
` π`(iτ , jτ ). (1)

If player 2 is short-lived, the period-t player 2 has payoffsπ2(it, jt).
A behavior strategy for player1 (respectively, 2) is a map,σ1 : ∪∞t=0H1t → ∆I

(resp.,σ2 : ∪∞t=0H2t → ∆J ), from all private histories to the set of distributions
over current actions. For` = 1, 2, σ` defines a sequence of functions{σ`t}∞t=0 with
σ1t : H1t → ∆I andσ2t : H2t → ∆J . Each functionσ`t denotes thetth period
behavior strategy ofσ`. The strategy profileσ = (σ1, σ2) induces a probability
distributionP σ over(I×J×Y )∞. LetEσ[ · | H`t] denote player̀’s expectations
with respect to this distribution conditional onH`t.

A Nash equilibrium for the case of two long-lived players requires player`’s
strategy to maximize the expected value ofπ`0, the discounted value of payoffs in
period zero:

Definition 1 A Nash equilibrium of the complete-information game with a long-
lived player 2is a strategy profileσ = (σ1, σ2) such thatEσ[π10] ≥ E(σ′1,σ2)[π10]
for all σ′1 andEσ[π20] ≥ E(σ1,σ′2)[π20] for all σ′2.

This requires that under the equilibrium profile, player`’s strategy maximizes
continuation expected utility after any positive-probability history. For example,
for player 1,Eσ[π1t|H1t] ≥ E(σ′1,σ2)[π1t|H1t] P

σ-almost surely for allσ′1 and all
t. The assumption of full-support monitoring ensures that all histories of public
signals occur with positive probability, and hence must be followed by optimal
behavior in any Nash equilibrium (with long-lived or short-lived player 2’s, and
complete or incomplete information). Consequently, any Nash equilibrium out-
come is also the outcome of a perfect Bayesian equilibrium.

For future reference, when player 2 is long-lived,

BRL(σ1) ≡ {σ2 : Eσ[π20] ≥ E(σ1,σ′2)[π20] ∀σ′2}

is the set of player 2’s best replies toσ1 in the game with complete information.
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When player 2 is short-lived, in equilibrium, player 2 plays a best response
after every equilibrium history. Player2’s strategyσ2 is then a best response toσ1

if, for all t,

Eσ[ π2(it, jt) | H2t] ≥ Eσ[ π2(it, j) | H2t], ∀j ∈ J P σ-a.s.

Denote the set of such best responses byBRS(σ1). The definition of a Nash
equilibrium for this case is:

Definition 2 A Nash equilibrium of the complete-information game with a short-
lived player 2is a strategy profileσ = (σ1, σ2) such thatEσ[π10] ≥ E(σ′1,σ2)[π10]
for all σ′1 andσ2 ∈ BRS(σ1).

3 The Incomplete-Information Game: Disappear-
ing Reputations

We now perturb the complete-information game by introducing incomplete infor-
mation about the type of player1. At time t = −1, Nature selects a type of player
1. With probability1 − p0 > 0, she is the “normal” type, denoted byn and with
the preferences described above, who plays a repeated game strategyσ̃1. With
probability p0 > 0, she is a “commitment” type, denoted byc, who plays the
repeated game strategyσ̂1.

A state of the world in the incomplete information game,ω, is a type for
player1 and a sequence of actions and signals. The set of states isΩ ≡ {n, c} ×
(I × J × Y )∞. The priorp0, the commitment strategŷσ1, and the strategy profile
σ̃ = (σ̃1, σ2), jointly induce a probability measureP on Ω, which describes how
an uninformed player expects play to evolve. The strategy profileσ̂ = (σ̂1, σ2)
(respectively,σ̃ = (σ̃1, σ2)) determines a probability measurêP (resp.,P̃ ) on
Ω, which describes how play evolves when player1 is the commitment (resp.,
normal) type. SincẽP and P̂ are absolutely continuous with respect toP , any
statement that holdsP -almost surely, also holds̃P - andP̂ -almost surely. We use
E(σ̃1,σ̂1,σ2)[ · ] to denote expectations taken with respect to the measureP . This
will usually be abbreviated toE[ · ] except where it is important to emphasize the
dependence on the strategies. Also, where appropriate, we useẼ[ · ] andÊ[ · ] to
denote the expectations taken with respect toP̃ andP̂ (instead ofE(σ̃1,σ2)[ · ] and
E(σ̂1,σ2)[ · ]). The filtrations{H`t}∞t=0 and{Ht}∞t=0 will be viewed as filtrations on
Ω in the obvious way.
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The normal type of player 1 has the same objective function as in the complete-
information game. Player2, on the other hand, uses the information he has ac-
quired from his timet private history to update his beliefs about player 1’s type
and actions, and then maximizes expected payoffs. Player2’s posterior belief in
periodt that player1 is the commitment type is theH2t-measurable random vari-
ableP (c|H2t) ≡ pt : Ω → [0, 1]. By Assumption 1, Bayes’ rule determines this
posterior after all histories. At any Nash equilibrium of this game, the beliefpt

is a bounded martingale with respect to the filtration{H2t}t and measureP . It
therefore convergesP -almost surely (and hencẽP - andP̂ -almost surely) to a ran-
dom variablep∞ defined onΩ. Furthermore, at any equilibrium the posteriorpt is
a P̂ -submartingale and ãP -supermartingale with respect to the filtration{H2t}t.

3.1 Uninformed Player is Short-Lived

When player 2 is short-lived, and we are interested in the lower bounds on player
1’s ex ante payoffs that arise from the existence of “Stackelberg” commitment
types (as in Fudenberg and Levine (1992)), it suffices to consider commitment
types who follow “simple” strategies. Consequently, when player 2 is short-lived,
we assumêσ1 specifies the same (possibly mixed) actionς1 ∈ ∆I in each period
independent of history (cf. Definition 4 below).

If ς1 is part of a stage-game equilibrium, reputations need not disappear—
we need only consider an equilibrium in which the normal and commitment type
both playς1, and player 2 plays his part of the corresponding equilibrium. We are
interested in commitment types who play a strategy that isnotpart of a stage-game
equilibrium:4

Assumption 4 (NON-CREDIBLE COMMITMENT ) Player2 has a unique best re-
ply to ς1 (denotedς2) andς ≡ (ς1, ς2) is not a stage-game Nash equilibrium.

Sinceς2 is the unique best response toς1, ς2 is pure andBRS(σ̂1) is the sin-
gleton{σ̂2}, whereσ̂2 is the strategy of playingς2 in every period. Assumption 4
implies that(σ̂1, σ̂2) is not a Nash equilibrium of the complete-information infinite
horizon game.

4If player 2 has multiple best responses, it is possible to construct equilibria of the complete
information game in which player 1 always playsς1 in each period, irrespective of history, even
if ς1 is not part of a stage-game equilibrium (for an example, see Cripps, Mailath, and Samuelson
(2004, Section 2)).
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Definition 3 A Nash equilibrium of the incomplete-information game with short-
lived uninformed playersis a strategy profile(σ̃1, σ2) such that for allσ′1, j ∈ J
andt = 0, 1, ...,

Ẽ [π10] ≥ E(σ′1,σ2) [π10] , and

E[ π2(it, jt) | H2t] ≥ E[ π2(it, j) | H2t], P−a.s.

Our main result, for short-lived uninformed players, is that reputations for
non-equilibrium behavior are temporary:

Theorem 1 Suppose the monitoring distributionρ satisfies Assumptions 1, 2, and
3 and the commitment actionς1 satisfies Assumption 4. In any Nash equilibrium
of the incomplete-information game with short-lived uninformed players,pt → 0
P̃ -almost surely.

3.2 Uninformed Player is Long-Lived

When player 2 is long-lived, non-simple Stackelberg types may give rise to higher
lower bounds on player 1’s payoff than do simple types. We accordingly introduce
a richer set of possible commitment types, allowing arbitrary public strategies.

Definition 4 (1) A behavior strategyσ`, ` = 1, 2, ispublic if it is measurable with
respect to the filtration induced by the public signals,{Ht}t.
(2) A behavior strategyσ`, ` = 1, 2, is simpleif it is a constant function.

A public strategy induces a mixture over actions in each period that only depends
on public histories. Any pure strategy is realization equivalent to a public strat-
egy. Simple strategies, which we associated with the commitment type in Section
3.1, play the same mixture over stage-game actions in each period, and hence are
trivially public.

Allowing the commitment type to play any public strategy necessitates im-
posing the noncredibility requirement directly on the infinitely repeated game of
complete information. Mimicking Assumption 4, we require that (i) player 2’s
best responsêσ2 be unique on the equilibrium path and (ii ) there exists a finite
timeT o such that, for everyt > T o, a normal player 1 would almost surely want
to deviate fromσ̂1, given player 2’s best response. That is, there is a period-t
continuation strategy for player 1 that strictly increases her utility. A strategyσ̂1

satisfying these criteria at least eventually loses its credibility, and hence is said to
have “no long-run credibility.”
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Definition 5 The strategŷσ1 has no long-run credibilityif there existsT o and
εo > 0 such that, for everyt ≥ T o,

(1) σ̂2 ∈ BRL(σ̂1) implies that withP (σ̂1,σ̂2)-probability one,̂σ2t is pure and

Eσ̂ [ π2t | H2t ] > E(σ̂1,σ′2) [ π2t | H2t ] + εo,

for all σ′2 attaching probability zero to the action played byσ̂2t(h2t) afterP (σ̂1,σ̂2)-
almost allh2t ∈ H2t, and

(2) there exists̃σ1 such that, for̂σ2 ∈ BRL(σ̂1), P (σ̂1,σ̂2)-almost surely,

E(σ̃1,σ̂2) [ π1t | H1t ] > Eσ̂ [ π1t | H1t ] + εo.

This definition captures the two main features of Assumption 4, a unique best
response and absence of equilibrium, in a dynamic setting. In particular, the stage-
game action of any simple strategy satisfying Definition 5 satisfies Assumption 4.
In assuming the best response is unique, we need to avoid the possibility that
there are multiple best responses to the commitment action “in the limit” (ast
gets large). We do so by imposing a uniformity condition in Definition 5.1, that
inferior responses reduce payoffs by at leastεo. The condition on the absence
of equilibrium in Definition 5.2 similarly ensures that for all larget, player 1
can strictly improve on the commitment action. Again it is necessary to impose
uniformity to avoid the possibility of an equilibrium in the limit.5

Any σ̂1 that doesnot satisfy Definition 5 must have (at least in the limit) peri-
ods and histories where, given player 2 is best responding toσ̂1, player 1 prefers
to stick to her commitment. In other words,σ̂1 is a credible commitment, in the
limit, at least some of the time.

Equilibrium when the uninformed player is long-lived is:

Definition 6 ANash equilibrium of the incomplete-information game with a long-
lived uninformed playeris a strategy profile(σ̃1, σ2) such that,

Ẽ [π10] ≥ E(σ′1,σ2) [π10] , ∀σ′1, and

E[π20] ≥ E(σ̃1,σ̂1,σ′2)[π20], ∀σ′2.
5Cripps, Mailath, and Samuelson (2004) show that reputations disappear when the commitment

strategy satisfies the second, but not necessarily the first, condition (such a strategy was said to be
never an equilibrium strategy in the long run). However, that result also requires the commitment
strategy to be implementable by a finite automaton, and more problematically, the result itself
imposed a condition on the behavior of player 2 in the equilibrium of the game with incomplete
information. We do neither here. Consequently, unlike our earlier paper, the long-lived player
result implies the result for short-lived players.
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Our result for games where player 2 is long-lived, which implies Theorem 1,
is:

Theorem 2 Supposeρ satisfies Assumptions 1, 2, and 3, and that the commitment
type’s strategŷσ1 is public and has no long run credibility. Then in any Nash
equilibrium of the game with incomplete information,pt → 0 P̃ -almost surely.

We have followed the standard practice of working with commitment types
whose behavior is fixed. If we instead modeled commitment types as strate-
gic agents whose payoffs differed from those of normal types, we would obtain
the following: Under Assumptions 1–3, in any Nash equilibrium in which the
“commitment-payoff” type plays a public strategy with no long run credibility for
the “normal-payoff” type,pt → 0 P̃ -almost surely.

3.3 Uniform Disappearance of Reputations

Theorem 2 leaves open the possibility that while reputations do asymptotically
disappear in every equilibrium, for any periodT , there may be equilibria in which
reputations survive beyondT . We show here that that possibility cannot arise:
there is someT after which reputations have disappeared inall Nash equilibria.
Intuitively, a sequence of Nash equilibria with reputations persisting beyond pe-
riod T →∞ implies the (contradictory) existence of a limiting Nash equilibrium
with a permanent reputation.

Theorem 3 Supposeρ satisfies Assumptions 1, 2, and 3, and that the commit-
ment type’s strategŷσ1 is public and has no long run credibility. For allε > 0,
there existsT , such that for all Nash equilibria,σ, of the game with incomplete
information,

P̃ σ(pσ
t < ε, ∀t > T ) > 1− ε,

whereP̃ σ is the probability measure induced onΩ byσ and the normal type, and
pσ

t is the associated posterior of player2 on the commitment type.

Proof. Suppose not. Then there existsε > 0 such that for allT , there is a
Nash equilibriumσT such that

P̃ T (pT
t < ε, ∀t > T ) ≤ 1− ε,

where P̃ T is the measure induced by the normal type underσT and pT
t is the

posterior in periodt underσT .
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Since the space of strategy profiles is sequentially compact in the product
topology, there is a convergent subsequence{σTk}, with limit σ∗. We can relabel
this sequence so thatσk → σ∗ and

P̃ k(pk
t < ε, ∀t > k) ≤ 1− ε,

i.e.,
P̃ k(pk

t ≥ ε for somet > k) ≥ ε.

Since eachσk is a Nash equilibrium,pk
t → 0 P̃ k-a.s. (Theorem 2), and so

there existsKk such that

P̃ k(pk
t < ε, ∀t ≥ Kk) ≤ 1− ε/2.

Consequently, for allk,

P̃ k(pk
t ≥ ε, for somet, k < t < Kk) ≥ ε/2.

Let τ k denote the stopping time

τ k = min{t > k : pk
t ≥ ε},

andqk
t the associated stopped process,

qk
t =

{
pk

t , if t < τ k,
ε, if t ≥ τ k.

Note thatqk
t is a supermartingale under̃P k and that fort < k, qk

t = pk
t .

Observe that for allk andt ≥ Kk,

Ẽqk
t ≥ εP̃ k(τ k ≤ t) ≥ ε2/2.

Sinceσ∗ is a Nash equilibrium,p∗t → 0 P̃ ∗-a.s. (appealing to Theorem 2
again), and so there exists a dates such that

P̃ ∗(p∗s < ε2/12) > 1− ε2/12.

Then,

Ẽ∗p∗s ≤
ε2

12
(1− ε2

12
) +

ε2

12
<
ε2

6
.
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Sinceσk → σ∗ in the product topology, there is ak′ > s such that for allk ≥ k′,

Ẽkpk
s <

ε2

3
.

But sincek′ > s, qk
s = pk

s for k ≥ k′ and so for anyt ≥ Kk,

ε2

3
> Ẽkpk

s = Ẽkqk
s

≥ Ẽkqk
t ≥

ε2

2
, (2)

which is a contradiction.

3.4 Disappearing reputations in discounted finitely-repeated games

In this section we show that reputations also disappear in sufficiently long dis-
counted finitely-repeated games of incomplete information. We first describe the
finitely repeated game with incomplete information. If the commitment type plays
a simple strategy of playingς1 in every period, withς1 satisfying Assumption
4, then the description of the finitely repeated game for differing repetitions is
straightforward: The commitment type playsς1 in every period. More generally,
if σ̂T

1 is the commitment type’s strategy in theT -period game, we require that the
sequence{σ̂T

1 } converge to a strategŷσ1 of the infinitely repeated game that has
no long-run credibility.

Theorem 4 Supposeρ satisfies Assumptions 1, 2, and 3, andσ̂1 is a public strat-
egy of the infinitely repeated game with no long run credibility. LetGT denote the
T -period repeated game of incomplete information in which the commitment type
plays according tôσT

1 . Suppose for allt, σ̂T
1t → σ̂1t asT → ∞. For all ε > 0,

there existsT such that for allT ′ ≥ T and for all Nash equilibriaσ ofGT ′
,

P̃ σ(pσ
t < ε, ∀t ≥ T ) > 1− ε,

whereP̃ σ is the probability measure induced on(I × J × Y )T ′
byσ and the nor-

mal type, andpσ
t is the associated posterior of player2 on the commitment type.

Proof. Suppose not. Then there existsε > 0, such that for allT , there exists
T ′ ≥ T and a Nash equilibriumσT of theT ′-period finitely repeated game with

P̃ T (pT
t < ε, ∀t ≥ T ) ≤ 1− ε,
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whereP̃ T is the probability measure induced in theT ′-period repeated game by
σT and the normal type, andpT

t is the associated posterior.
A standard diagonalization argument yields a subsequence{σTk} and a strat-

egy profile in the infinitely repeated game,σ∗, with the property that for allt,
σTk

`t → σ∗`t for ` = 1, 2.6 Moreover, since eachσTk is a Nash equilibrium of in-
creasingly long finitely repeated games andσ̂Tk

1t → σ̂1t, σ∗ is a Nash equilibrium
of the infinitely repeated game with incomplete information in which the com-
mitment type playŝσ1. We can relabel this sequence so thatσk

t → σ∗t for eacht
and

P̃ k(pk
t < ε, ∀t > k) ≤ 1− ε.

Letting Tk be the length of the finitely repeated game corresponding toσk, we
have (recall that the initial period is period0)

P̃ k(pk
t ≥ ε, for somet, k < t < Tk) ≥ ε.

The proof now proceeds as that of Theorem 3, with (2) evaluated att = Tk−1.

3.5 Asymptotic Equilibrium Play

The impermanence of reputations has implications for behavior as well as beliefs.
In the limit, the normal type of player1 and player2 play a correlated equilib-
rium of the complete-information game. Hence, differences in the players’ beliefs
about how play will continue vanish in the limit. This is stronger than the con-
vergence tosubjectiveequilibria obtained by Kalai and Lehrer (1995, Corollary
4.4.1),7 though with stronger assumptions.

We present the result for the case of a long-run player 2, since only straightfor-
ward modifications are required (imposing the appropriate optimality conditions
period-by-period) to address short-run player 2’s. To begin, we describe some
notation for the correlated equilibrium of the repeated game with imperfect mon-
itoring. We use the termperiod-t continuation gamefor the game with initial
period in periodt.8 We use the notationt′ = 0, 1, 2, ... for a period of play in a

6For eacht, σTk
t andσ∗t are elements of the same finite dimensional Euclidean space.

7In a subjective correlated equilibrium, the measure in (3) can differ from the measure in (4).
8Since a strategy profile of the original game induces a probability distribution overt-period

histories,H1t×H2t, we can view the periodt continuation, together with a type spaceH1t×H2t

and induced distribution on that type space, as a Bayesian game. Different strategy profiles in the
original game induce different distributions over the type space in the continuation game.
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continuation game (which may be the original game) andt for the time elapsed
prior to the start of the period-t continuation game. A pure strategy for player1,
s1, is a sequence of mapss1t′ : H1t′ → I for t′ = 0, 1, . . ..9 Thus,s1t′ ∈ IH1t′ and
s1 ∈ I∪t′H1t′ ≡ S1, and similarlys2 ∈ S2 ≡ J∪t′H2t′ . The spacesS1 andS2 are
countable products of finite sets. We equip the product spaceS ≡ S1 × S2 with
theσ-algebra generated by the cylinder sets, denoted byS. Denote the players’
payoffs in the infinitely repeated game (as a function of these pure strategies) as
follows

u1(s1, s2) ≡ E(s1,s2)[ π10 ], and

u2(s1, s2) ≡ E(s1,s2)[ π20 ].

The expectation above is taken over the action pairs(it′ , jt′). These are random,
given the pure strategy profile(s1, s2), because the pure action played in periodt
depends upon the random public signals.

We follow Hart and Schmeidler (1989) in using the ex ante definition of cor-
related equilibria for infinite pure-strategy sets:

Definition 7 A correlated equilibriumof the complete-information game is a mea-
sureµ on (S,S) such that for allS-measurable functionsζ1 : S1 → S1 and
ζ2 : S2 → S2, ∫

S

[u1(s1, s2)− u1(ζ1(s1), s2)]dµ ≥ 0, and (3)∫
S

[u2(s1, s2)− u2(s1, ζ2(s2))]dµ ≥ 0. (4)

Let M denote the space of probability measuresµ on (S,S), equipped with
the product topology. Then, a sequenceµn converges toµ if, for eachτ ≥ 0, we
have

µn|I(I×Y )τ×J(J×Y )τ → µ|I(I×Y )τ×J(J×Y )τ .

Moreover,M is sequentially compact with this topology. Payoffs for players1
and2 are extended toM in the obvious way. Since payoffs are discounted, the
product topology is strong enough to guarantee continuity ofu` : M→R. The
set of mixed strategies for player` is denoted byM`.

Fix an equilibrium of the incomplete-information game with imperfect mon-
itoring. When player1 is the normal (respectively, commitment) type, the mon-
itoring technology and the behavior strategies(σ̃1, σ2) (resp.,(σ̂1, σ2)) induce a

9Recall thatσ1 denotes general behavior strategies.
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probability measurẽφt (resp.,̂φt) on thet-period histories(h1t, h2t) ∈ H1t×H2t.
If the normal type of player1 observes a private historyh1t ∈ H1t, her strategy,
σ̃1, specifies a behavior strategy in the period-t continuation game. This behavior

strategy is realization equivalent to a mixed strategyλ̃
h1t ∈ M1 for the period-t

continuation game. Similarly, the commitment type will play a mixed strategy

λ̂
h1t ∈ M1 for the continuation game and player2 will form his posteriorpt(h2t)

and play the mixed strategyλh2t ∈ M2 in the continuation game. Conditional
on player 1 being normal, the composition of the probability measureφ̃t and the

measures(λ̃
h1t
, λh2t) induces a joint probability measure,ρ̃t, on the pure strategies

in the continuation game and player2’s posterior (the spaceS× [0, 1]). Similarly,
conditional upon player1 being the commitment type, there is a measureρ̂t on
S × [0, 1]. Let µ̃t denote the marginal of̃ρt onS andµ̂t denote the marginal of̂ρt

onS.
At the fixed equilibrium, the normal type is playing in an optimal way from

time t onwards given her available information. This implies that for allS-
measurable functionsζ1 : S1 → S1,∫

S

u1(s1, s2)dµ̃t ≥
∫

S

u1(ζ1(s1), s2)dµ̃t. (5)

LetS × B denote the productσ-algebra onS× [0, 1] generated byS onS and the
Borelσ-algebra on[0, 1]. Player2 is also playing optimally from timet onwards,
which implies that for allS × B-measurable functionsξ2 : S2 × [0, 1] → S2,∫

S×[0,1]

u2(s1, s2)d(p0ρ̂t+(1−p0)ρ̃t) ≥
∫

S×[0,1]

u2(s1, ξ2(s2, pt))d(p0ρ̂t+(1−p0)ρ̃t).

(6)
If we had metrizedM, a natural formalization of the idea that asymptoti-

cally, the normal type and player2 are playing a correlated equilibrium is that
the distance between the set of correlated equilibria and the induced equilibrium
distributionsµ̃t onS goes to zero. WhileM is metrizable, a simpler and equiv-
alent formulation is that the limit of every convergent subsequence of{µ̃t} is a
correlated equilibrium. This equivalence is an implication of the fact thatM is
sequentially compact, and hence every subsequence of{µ̃t} has a convergent sub-
subsequence. The proof of the following is in the Appendix:

Theorem 5 Fix a Nash equilibrium of the incomplete-information game and sup-
posept → 0 P̃ -almost surely. Let̃µt denote the distribution onS induced in
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period t by the Nash equilibrium. The limit of every convergent subsequence of
{µ̃t} is a correlated equilibrium of the complete-information game.

Since players have access to a coordination device, namely histories, in gen-
eral it is not true that Nash equilibrium play of the incomplete-information game
eventually looks like Nash equilibrium play of the complete-information game.10

Suppose the Stackelberg payoff is not a correlated equilibrium payoff of the
complete-information game. Recall that Fudenberg and Levine (1992) provide
a lower bound on equilibrium payoffs in the incomplete-information game (with
short-run players) of the following type: Fix the prior probability of the Stackel-
berg (commitment) type. Then, there is a value for the discount factor,δ̄, such that
if δ1 > δ̄, then in every Nash equilibrium, the long-lived player’s ex ante payoff
is essentially no less than the Stackelberg payoff. The reconciliation of this re-
sult with Theorem 5 lies in the order of quantifiers: while Fudenberg and Levine
(1992) fix the prior,p0, and then select̄δ (p0) large (withδ̄ (p0) → 1 asp0 → 0),
we fix δ1 and examine asymptotic play, so that eventuallypt is sufficiently small
thatδ1 < δ̄ (pt).

4 Proofs of Theorems 1 and 2

The short-lived uninformed player case is a special case of the long-lived player
case. However, the proof for the long-lived uninformed player is quite compli-
cated, while the short-lived player case illustrates many of the issues in a simpler
setting. In what follows, references to the incomplete information game without
further qualification refer to the game with the long-lived uninformed player, and
so the discussion also covers short-lived uninformed players (whereσ̂1(hs) = ς1
for all hs). Whenever it is helpful, however, we also give informative simpler
arguments for the case of short-lived uninformed players.

The basic strategy of our proof is to show that if player2 is not eventually
convinced that player1 is normal, then he must be convinced that player1 is
playing like the commitment type (Lemma 1) and hence player2 plays a best
response to the latter. Our earlier paper proceeded by arguing that the normal type

10We do not know if Nash equilibrium play in the incomplete-information game eventually
looks like a public randomization over Nash equilibrium play in the complete-information game.
As far as we are aware, it is also not known whether the result of Fudenberg and Levine (1994,
Theorem 6.1, part (iii)) extends to correlated equilibrium. That is, for moral hazard mixing games
and for largeδ, is it true that the long-run player’s maximumcorrelatedequilibrium payoff is
lower than when monitoring is perfect?
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then has an incentive to deviate from the commitment strategy (since the latter has
no long-run credibility), which forms the basis for a contradiction (with player
2’s belief that the two types of player1 are playing identically). The difficulty in
applying this argument in our current setting is that player1 needs to know player
2’s private historyh2t in order to predict2’s period-t beliefs and hence behavior.
Unfortunately, player1 knows only her own private historyh1t. Our argument thus
requires showing that player 1 eventually “almost” knows the relevant features of
player 2’s history.

4.1 Player 2’s Posterior Beliefs

The first step is to show thateither player 2’s expectation (given his private his-
tory) of the strategy played by the normal type is, in the limit, identical to his
expectation of the strategy played by the commitment type,or player 2’s poste-
rior probability that player1 is the commitment type converges to zero (given that
player 1 is indeed normal). This is an extension of a familiar merging-style argu-
ment to the case of imperfect monitoring. If, for a given private history for player
2, the distributions generating his observations are different for the normal and
commitment types, then he will be updating his posterior, continuing to do so as
the posterior approaches zero. His posterior converges to something strictly posi-
tive only if the distributions generating these observations are in the limit identical
for each private history.

The proof of Lemma 1 in Cripps, Mailath, and Samuelson (2004) applies to
the current setting without change:

Lemma 1 Suppose Assumptions 1 and 2 are satisfied andσ̂1 is public. In any
Nash equilibrium of the game with incomplete information,11

lim
t→∞

pt(1− pt)
∥∥∥σ̂1t − Ẽ[ σ̃1t | H2t ]

∥∥∥ = 0, P -a.s. (7)

Condition (7) says that almost surely either player 2’s best prediction of the
normal type’s behavior at the current stage is arbitrarily close to his best prediction
of the commitment type’s behavior (that is,‖σ̂1t − Ẽ[ σ̃1t | H2t ] ‖ → 0), or the
type is revealed (that is,pt(1 − pt) → 0). However,lim pt < 1 P̃ -almost surely,
and hence (7) implies a simple corollary:

11We use‖x‖ to denote thesup-norm onRI .
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Corollary 1 Suppose Assumptions 1 and 2 are satisfied andσ̂1 is public. In any
Nash equilibrium of the game with incomplete information,

lim
t→∞

pt

∥∥∥σ̂1t − Ẽ[ σ̃1t | H2t ]
∥∥∥ = 0, P̃ -a.s.

4.2 Player 2’s Beliefs about his Future Behavior

We now examine the consequences of the existence of aP̃ -positive measure set
of states on which reputations do not disappear, i.e.,limt→∞ pt(ω) > 0. The
normal and the commitment types eventually play the same strategy on these states
(Lemma 1). Consequently, we can show that on a positive probability subset of
these states, player 2 eventually attaches high probability to the event that in all
future periods he will play a best response to the commitment type.

As σ̂1 is public, player 2 has a best response toσ̂1 that is also public. Moreover,
this best response is unique on the equilibrium path for allt > T o (by Definition
5). We letj∗(ht) denote the action that is the pure best-response after the public
historyht, for all t > T o. Note thatj∗(ht) isHt-measurable. The event that player
2 plays a best response to the commitment strategy in all periods aftert > T o is
then defined as

Go
t ≡ {ω : σ

j∗(hs(ω))
2s (h2s(ω)) = 1,∀s ≥ t },

wherehs(ω) (respectively,h2s(ω)) is thes-period public (resp., 2’s private) history
of ω.

When the uninformed players are short-lived,σ̂1 is simple and player 2 has a
unique best reply,BRS(ς1) = {ς2}, so

Go
t = {ω : σ2s(h2s(ω)) = ς2,∀s ≥ t} .

With this in hand we can show that if player 2 does not eventually learn that
player 1 is normal, then he eventually attaches high probability to thereafter play-
ing a best response to the commitment type:

Lemma 2 Suppose the hypotheses of Theorem 2 hold,12 and suppose there is a
Nash equilibrium in which reputations do not necessarily disappear, i.e.,P̃ (A) >
0, whereA ≡ {pt 9 0}. There existsη > 0 andF ⊂ A, with P̃ (F ) > 0, such
that, for anyξ > 0, there existsT for which, onF ,

pt > η, ∀t ≥ T,

12This lemma does not require Assumption 3.
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and
P̃ (Go

t | H2t) > 1− ξ, ∀t ≥ T. (8)

Proof. SinceP̃ (A) > 0 andpt converges almost surely, there existsµ > 0 and
η > 0 such thatP̃ (D) > 2µ, whereD ≡ {ω : limt→∞ pt(ω) > 2η}. The random
variables‖σ̂1s − Ẽ[σ̃1t|H2t]‖ tend P̃ -almost surely to zero onD (by Corollary
1). Consequently, the random variablesZt ≡ sups≥t ‖σ̂1s − Ẽ[σ̃1s|H2s]‖ also
convergeP̃ -almost surely to zero onD. Thus, from Hart (1985, Lemma 4.24),
Ẽ[1DZt | H2t] converge almost surely to zero, where1D is the indicator for the
eventD. DefineAt ≡ {ω : Ẽ[1D | H2t](ω) > 1

2
}. TheH2t-measurable eventAt

approximatesD (because player 2 knows his own beliefs, the random variables
dt ≡ |1D − 1At| convergeP̃ -almost surely to zero). Hence

1DẼ[Zt | H2t] ≤ 1AtẼ[Zt | H2t] + dt

= Ẽ[1AtZt | H2t] + dt

≤ Ẽ[1DZt | H2t] + Ẽ[dt | H2t] + dt,

where the first and third lines useZt ≤ 1 and the second uses the measurability
of At with respect toH2t. All the terms on the last line convergẽP -almost surely
to zero, and sõE[Zt|H2t] → 0 P̃ -a.s. on the setD. Egorov’s Theorem (Chung
(1974, p. 74)) then implies that there existsF ⊂ D such thatP̃ (F ) > 0 on which
the convergence ofpt andẼ[Zt|H2t] is uniform.

To clarify the remainder of the argument, we present here the case of short-
lived player 2 (long-lived player 2 is discussed in Appendix A.2). This case is
particularly simple, because if player2 believed his opponent was “almost” the
commitment type, then in each period2 plays the same equilibrium action as if he
wascertainhe was facing the commitment simple type.

¿From the upper semi-continuity of the best response correspondence, there
existsψ > 0 such that for any historyh1s and anyζ1 ∈ ∆I satisfying‖ζ1 − ς1‖ ≤
ψ, a best response toζ1 is also a best response toς1, and so necessarily equalsς2.
The uniform convergence of̃E[Zt|H2t] on F implies that, for anyξ > 0, there
exists a timeT such that onF , for all t > T , pt > η and (sincêσ1s = ς1)

Ẽ

[
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|H2s]
∥∥∥∣∣∣∣H2t

]
< ξψ.

As Ẽ[Zt|H2t] < ξψ for all t > T onF andZt ≥ 0, P̃ ({Zt > ψ}|H2t) < ξ for all
t > T onF , implying (8).
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4.3 Player 1’s Beliefs about Player 2’s Future Behavior

Our next step is to show that, with positive probability, player 1 eventually expects
player 2 to play a best response to the commitment type for the remainder of the
game. We first show that, while player2’s private historyh2t is typically of use
to player 1 in predicting2’s period-s behavior fors > t, this usefullness vanishes
ass → ∞. The intuition is straightforward. If period-s behavior is eventually
(ass becomes large) independent ofh2t, then clearlyh2t is eventually of no use
in predicting that behavior. Suppose then thath2t is essential to predicting player
2’s behavior in all periodss > t. Then, player1 continues to receive information
about this history from subsequent observations, reducing the value of havingh2t

explicitly revealed. As time passes player 1 will figure out whetherh2t actually
occurred from her own observations, again reducing the value of independently
knowingh2t.

Denote byβ(A,B) the smallestσ-algebra containing theσ-algebrasA andB.
Thus,β (H1s,H2t) is theσ-algebra describing player1’s information at times if
she were to learn the private history of player2 at timet.

Lemma 3 Suppose Assumptions 1 and 3 hold. For anyt > 0 andτ ≥ 0,

lim
s→∞

∥∥∥Ẽ[σ2,s+τ |β(H1s,H2t)]− Ẽ[σ2,s+τ |H1s]
∥∥∥ = 0, P̃ -a.s.

Proof. We prove the result here forτ = 0. The case ofτ ≥ 1 is proved by
induction in Appendix A.3. SupposeK ⊂ J t is a set oft-period player2 action
profiles(j0, j1, ..., jt−1). We also denote byK the corresponding event (i.e., subset
of Ω). By Bayes’ rule and the finiteness of the action and signal spaces, we can
write the conditional probability of the eventK given the observation by player1
of h1,s+1 = (h1s, ys, is) as follows

P̃ [K|h1,s+1] = P̃ [K|h1s, ys, is]

=
P̃ [K|h1s]P̃ [ys, is|K,h1s]

P̃ [ys, is|h1s]

=
P̃ [K|h1s]

∑
j ρ

ys

isjẼ[σj
2(h2s)|h1s, K]∑

j ρ
ys

isjẼ[σj
2(h2s)|h1s]

,

where the last equality uses̃P [is|K,h1s] = P̃ [is|h1s].
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SubtractP̃ [K|h1s] from both sides to obtain

P̃ [K|h1,s+1]−P̃ [K|h1s] =
P̃ [K|h1s]

∑
j ρ

ys

isj

(
Ẽ[σj

2(h2s)|h1s, K]− Ẽ[σj
2(h2s)|h1s]

)
∑

j ρ
ys

isjẼ[σj
2(h2s)|h1s]

.

The term
∑

j ρ
ys

isjẼ[σj
2(h2s)|h1s] is player1’s conditional probability of observing

the period-s signalys given she takes actionis and hence is strictly positive and
less than one by Assumption 1. Thus,

∣∣∣P̃ [K|h1,s+1]− P̃ [K|h1s]
∣∣∣ ≥ P̃ [K|h1s]

∣∣∣∣∣∑
j

ρys

isj

(
Ẽ[σj

2(h2s)|h1s, K]− Ẽ[σj
2(h2s)|h1s]

)∣∣∣∣∣ .
Since the sequence of random variables{P̃ [K|H1s]}s is a martingale relative to
({H1s}s, P̃ ), it convergesP̃ -almost surely to a non-negative limit̃P [K|H1∞] as
s → ∞. Consequently, the left side of this inequality convergesP̃ -almost surely
to zero. The signals generated by player2’s actions satisfy Assumption 3, so an
identical argument to that given at the end of the proof of Lemma 1 in Cripps,
Mailath, and Samuelson (2004) establishes thatP̃ -almost everywhere onK,

lim
s→∞

P̃ [K|H1s]
∥∥∥Ẽ[σ2s|β (H1s, K)]− Ẽ[σ2s|H1s]

∥∥∥ = 0,

whereβ (A, B) is the smallestσ-algebra containing both theσ-algebraA and the
eventB. Moreover,P̃ [K|H1∞] (ω) > 0 for P̃ -almost allω ∈ K. Thus,P̃ -almost
everywhere onK,

lim
s→∞

∥∥∥Ẽ[σ2s|β(H1s, K)]− Ẽ[σ2s|H1s]
∥∥∥ = 0.

Since this holds for allK ∈ H2t,

lim
s→∞

‖Ẽ[σ2s|β(H1s,H2t)]− Ẽ[σ2s|H1s]‖ = 0, P̃ -a.s.,

giving the result forτ = 0.

Now we apply Lemma 3 to a particular piece of information player 2 could
have at timet. By Lemma 2, with positive probability, we reach a timet at which
player 2 assigns high probability to the event that all his future behavior is a best
reply to the commitment type. Intuitively, by Lemma 3, these period-t beliefs of
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player 2 about his own future behavior will, eventually, become known to player
1.

This step is motivated by the observation that, if player 1 eventually expects
player 2 to always play a best response to the commitment type, then the normal
type of player 1 will choose to deviate from the behavior of the commitment type
(which is not a best response to player 2’s best response to the commitment type).
At this point, we appear to have a contradiction between player 2’s belief on the
eventF (from Lemma 2) that the normal and commitment types are playing iden-
tically and player 1’s behavior on the eventF † (the event where player 1 expects
player 2 to always play a best response to the commitment type, identified in the
next lemma). This contradiction would be immediate ifF † was both a subset of
F and measurable for player 2. Unfortunately we have no reason to expect either.
However, the next lemma shows thatF † is in fact close to aH2s-measurable set
on which player 2’s beliefs that player 1 is the commitment type do not converge
to zero. In this case we will (eventually) have a contradiction: On all such histo-
ries, the normal and commitment types are playing identically. However, nearly
everywhere on a relatively large subset of these states, player 1 is deviating from
the commitment strategy in an identifiable way.

Recall thatj∗(hs) is the action played for sure in periods after the public his-
toryhs by player 2’s best response to the commitment type. Hence,Ẽ[σ

j∗(hs′ )
2s′ |H1s]

is the probability player 1 assigns in periods to the event that 2 best responds to
the commitment type in periods′ ≥ s. For the case of the short-lived unin-
formed players and the simple commitment type,j∗(hs) = ς2 for all hs,13 and

so
∥∥∥Ẽ[σ2s′|H1s]− ς2

∥∥∥ ≥ 1 − Ẽ[σ
j∗(hs′ )
2s′ |H1s]. So, in that case, (12) implies∥∥∥Ẽ[σ2s′|H1s]− ς2

∥∥∥ < ν.

Lemma 4 Suppose the hypotheses of Theorem 2 hold, and suppose there is a
Nash equilibrium in which reputations do not necessarily disappear, i.e.,P̃ ({pt 9
0}) > 0. Letη > 0 be the constant andF the positive probability event identified
in Lemma 2. For anyν > 0 and number of periodsτ > 0, there exists an event
F † and a timeT (ν, τ) such that for alls > T (ν, τ) there existsC†

s ∈ H2s with:

ps > η onC†
s , (9)

F † ∪ F ⊂ C†
s , (10)

P̃ (F †) > P̃ (C†
s)− νP̃ (F ), (11)

13Here we useς2 to denote the pure action receiving probability one underς2.
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and for anys′ ∈ {s, s+ 1, ..., s+ τ}, onF †,

Ẽ[ σ
j∗(hs′ )
2s′ | H1s ] > 1− ν, P̃ -a.s. (12)

Proof. Fix ν ∈ (0, 1) and a number of periodsτ > 0. Fix ξ < (1
4
νP̃ (F ))2,

and letT denote the critical period identified in Lemma 2 for this value ofξ.
Player 1’s minimum estimated probability onj∗(hs′) over periodss, . . . , s+ τ

can be written asfs ≡ mins≤s′≤s+τ Ẽ[σ
j∗(hs′ )
2s′ |H1s]. Notice thatfs > 1 − ν is a

sufficient condition for inequality (12).
The first part of the proof is to find a lower bound forfs. For anyt ≤ s, the

triangle inequality implies

1 ≥ fs ≥ min
s≤s′≤s+τ

Ẽ[σ
j∗(hs′ )
2s′ |β(H1s,H2t)]− kt

s,

wherekt
s ≡ maxs≤s′≤s+τ |Ẽ[σ

j∗(hs′ )
2s′ |β(H1s,H2t)]−Ẽ[σ

j∗(hs′ )
2s′ |H1s]| for t ≤ s. By

Lemma 3,lims→∞ kt
s = 0 P̃ -almost surely.

As σj∗(hs′ )
2s′ ≤ 1 and is equal to1 onGo

t , the above implies

fs ≥ P̃ (Go
t | β(H1s,H2t))− kt

s.

Moreover, the sequence of random variables{P̃ (Go
t |β(H1s,H2t))}s is a martin-

gale with respect to the filtration{H1s}s, and so converges almost surely to a limit,
gt ≡ P̃ (Go

t |β(H1∞,H2t)). Hence

1 ≥ fs ≥ gt − kt
s − `ts, (13)

where`ts ≡ |gt − P̃ (Go
t |β(H1s,H2t))| andlims→∞ `ts = 0 P̃ -almost surely.

The second step of the proof determines the setsC†
s and a set that we will use

to later determineF †. For anyt ≥ T , define

Kt ≡ {ω : P̃ (Go
t | H2t) > 1− ξ , pt > η} ∈ H2t.

Let F s
t denote the event∩s

τ=tKτ and setFt ≡ ∩∞τ=tKτ ; note thatlim infKt ≡
∪∞t=T ∩∞τ=t Kτ = ∪∞t=TFt. By Lemma 2,F ⊂ Kt for all t ≥ T , soF ⊂ F s

t ,
F ⊂ Ft, andF ⊂ lim infKt.

DefineNt ≡ {ω : gt ≥ 1 −
√
ξ}. SetC†

s ≡ F s
T ∈ H2s and define an

intermediate setF ∗ by F ∗ ≡ FT ∩NT . BecauseC†
s ⊂ Ks, (9) holds. In addition,

F ∗ ∪ F ⊂ C†
s , and hence (10) holds withF ∗ in the role ofF †. By definition,

P̃ (C†
s)− P̃ (F ∗) = P̃ (C†

s ∩ (FT ∩NT )) = P̃ ((C†
s ∩ F̄T ) ∪ (C†

s ∩ N̄T )),
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where we use bars to denote complements. By our choice ofC†
s , the eventC†

s∩N̄T

is a subset of the eventKT ∩ N̄T . Thus, we have the bound

P̃ (C†
s)− P̃ (F ∗) ≤ P̃ (C†

s ∩ F̄T ) + P̃ (KT ∩ N̄T ). (14)

We now find upper bounds for the two terms on the right side of (14). First notice
thatP̃ (C†

s ∩ F̄T ) = P̃ (F s
T )− P̃ (FT ). Sincelims→∞ P̃ (F s

T ) = P̃ (FT ), there exists
T ′ ≥ T such that

P̃ (C†
s ∩ F̄T ) <

√
ξ for all s ≥ T ′. (15)

Also, asP̃ (Go
t |Kt) > 1− ξ andKt ∈ H2t, the properties of iterated expectations

imply that1− ξ < P̃ (Go
t |Kt) = Ẽ[gt|Kt]. Sincegt ≤ 1, we have

1− ξ < Ẽ[gt | Kt] ≤ (1−
√
ξ)P̃ (N̄t | Kt) + P̃ (Nt | Kt)

= 1−
√
ξP̃ (N̄t | Kt).

The extremes of the above inequality imply thatP̃ (N̄t|Kt) <
√
ξ. Hence, taking

t = T we get
P̃ (KT ∩ N̄T ) <

√
ξ. (16)

Using (15) and (16) in (14),̃P (C†
s) − P̃ (F ∗) < 2

√
ξ for all s ≥ T ′. Given

F ⊂ C†
s , the bound onξ, andν < 1, it follows that

P̃ (F ∗) > P̃ (F )− 2
√
ξ >

1

2
P̃ (F ) > 0.

Finally, we combine the two steps above to obtainF †. As P̃ (F ∗) > 0 and
kT

s + `Ts converges almost surely to zero, by Egorov’s Theorem, there existsF † ⊂
F ∗ such thatP̃ (F ∗ \ F †) <

√
ξ and a timeT ′′ > T such thatkT ′

s + `T
′

s <
√
ξ on

F † for all s ≥ T ′′. SinceF † ∪ F ⊂ F ∗ ∪ F ⊂ C†
s , (10) holds. LetT (ν, τ) ≡

max{T ′′, T ′}. Also, gT ≥ 1 −
√
ξ onF †, becauseF † ⊂ NT . Hence onF †, by

(13), fs > 1 − 2
√
ξ for all s > T (ν, τ). This, and the bound onξ, implies (12).

Moreover, asP̃ (F ∗ \ F †) <
√
ξ andP̃ (C†

s) − P̃ (F ∗) < 2
√
ξ, (11) holds for all

s > T (ν, τ).

When player2 is long-lived, it will be convenient to know that the conclusions
of Lemma 4 hold on a sequence of cylinder sets:

Corollary 2 Assume the conditions of Lemma 4. DefineF †
s = {ω ∈ Ω : projs(ω) =

projs(ω
′) for someω′ ∈ F †}, whereprojs(ω) is the projection ofω onto(I × J × Y )s.

Then, (10), (11), and (12) hold forF †
s replacingF †.

Proof. The proof follows from the observation that, for alls, F † ⊂ F †
s ⊂ C†

s

(sinceC†
s ∈ H2s) and (12) is a condition that isH1s-measurable.
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4.4 Toward a Contradiction

We have shown that when reputations do not necessarily disappear, there exists a
setF † on which (12) holds andF † ⊂ C†

s ∈ H2s. The remaining argument is more
transparent in the setting of the short-lived player 2s of Theorem 1. Accordingly,
we first prove Theorem 1, and then give the distinct argument needed when player
2 is long-lived and the commitment strategy is not simple.

In broad brushstrokes, the argument proving Theorem 1 is as follows. First,
we conclude that onF †, the normal type will not be playing the commitment
strategy. To be precise—onF † there will exist a stage-game action played byς1
but not by the normal type. This will bias player 2’s expectation of the normal
type’s actions away from the commitment strategy onC†

s , because there is little
probability weight onC†

s \ F †. We then get a contradiction, because the fact that
ps > η onC†

s implies player 2 must believe the commitment type’s strategy and
the normal type’s average strategy are the same onC†

s .
The argument proving Theorem 2 must deal with the nonstationary nature of

the commitment strategy (and the nonstationary nature of the failure of credibil-
ity). As in the simple case, we have found a set of statesF † where, for alls
sufficiently large, the normal type attaches high probability to player 2 best re-
sponding to the commitment type for the nextτ periods. The normal type’s best
response to this is not the commitment strategy, and hence the normal type does
not play the commitment strategy. We will derive a contradiction by showing that
player 2 almost comes to know this.

The complication is that it may be very difficult for player 2 to predict just how
the normal type’s strategy deviates from the commitment strategy. When working
with the stationary commitment strategy of Theorem 1, we can be certain there
is a stage-game action played by the commitment type which the normal type’s
strategy would (eventually) not play after any private history. In the setting of
Theorem 2, however, the normal type’s deviation from the nonstationary commit-
ment strategy may be much more complicated, and may depend on private (rather
than just public) information.

4.5 Proof of Theorem 1

Suppose, en route to the contradiction, that there is a Nash equilibrium in which
reputations do not necessarily disappear. ThenP̃ ({pt 9 0}) > 0. Let ς

1
≡

mini∈I{ς i1 : ς i1 > 0}, that is,ς
1

is the smallest non-zero probability attached to an
action under the commitment strategyς1. Since(ς1, ς2) is not a Nash equilibrium,
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ς1 plays an action that is suboptimal by at leastγ > 0 when player 2 uses any
strategy sufficiently close toς2. That is, there existsγ > 0, i′ ∈ I with ς i

′
1 > 0 and

ν̄ > 0 such that

γ < min
‖σ2−ς2‖≤ν̄

(
max
i∈I

π1(i, σ2)− π1(i
′, σ2)

)
.

Finally, for a given discount factorδ1 < 1 there exists aτ sufficiently large such
that the loss ofγ for one period is larger than any feasible potential gain deferred
by τ periods:(1− δ1)γ > δτ

12 maxij |π1(i, j)|.
Fix the eventF from Lemma 2. Forν < min{ν̄, 1

2
ς
1
} andτ above, letF † and,

for s > T (ν, τ),C†
s be the events described in Lemma 4. Now consider the normal

type of player 1 in periods > T (ν, τ) at some state inF †. By (12), she expects
player 2 to play withinν < ν̄ of ς2 for the nextτ periods. Playing the actioni′

is conditionally dominated in periods, since the most she can get from playing
i′ in periods is worse than playing a best response toς2 for τ periods and then
being minmaxed. Thus, onF † the normal type plays actioni′ with probability
zero:σi′

1s = 0.
Now we calculate a lower bound on the difference between player 2’s beliefs

about the normal type’s probability of playing actioni′ in periods, Ẽ[σi′
1s|H2s],

and the probability the commitment type plays actioni′ on the set of statesC†
s :

Ẽ
[ ∣∣∣ς i′1 − Ẽ[σi′

1s|H2s]
∣∣∣1C†

s

]
≥ Ẽ

[(
ς i

′

1 − Ẽ[σi′

1s|H2s]
)

1C†
s

]
≥ ς

1
P̃ (C†

s)− Ẽ
[
σi′

1s1C†
s

]
≥ ς

1
P̃ (C†

s)−
(
P̃ (C†

s)− P̃ (F †)
)

≥ ς
1
P̃ (C†

s)− νP̃ (F )

≥ 1

2
ς
1
P̃ (F ). (17)

The first inequality above follows from removing the absolute values. The second
inequality appliesς i

′
1 ≥ ς

1
, uses theH2s-measurability ofC†

s and applies the
properties of conditional expectations. The third applies the fact thatσi′

1s = 0
on F † andσi′

1s ≤ 1. The fourth inequality applies (11) in Lemma 4. The fifth
inequality followsν < 1

2
ς
1

andF ⊂ C†
s (by (10)).

¿From Corollary 1,ps‖ς1− Ẽ(σ̃1s|H2s)‖ → 0 P̃ -almost surely. It follows that

ps|ς i
′

1 − Ẽ(σ̃i′

1s|H2s)|1C†
s
→ 0, P̃−a.s.
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But, by Lemma 4,ps > η on the setC†
s , and so

|ς i′1 − Ẽ(σ̃i′

1s|H2s)|1C†
s
→ 0, P̃−a.s.

This concludes the proof of Theorem 1, since we now have a contradiction with
P̃ (F ) > 0 (from Lemma 2) and (17), which holds for alls > T (ν, τ).

4.6 Proof of Theorem 2

We first argue that, after any sufficiently long public history, there is one continu-
ation public history after which the commitment type will play some actionio ∈ I
with positive probability, but after which the normal type will choose not to play
io, regardless of her private history. To find such a history, notice thatσ̂2 (player
2’s best response to the commitment strategy) is pure and therefore public, ensur-
ing that the normal player 1 has a public best response toσ̂2 and that it is not̂σ1.
Hence, there exists a public history where 1’s public best response differs from the
commitment strategy, for all private histories consistent with this public history.
If we can show this preference is strict, this will still hold when player 2 is just
playing close to a best response, which will open the door to a contradiction. The
formal statement is (the proof is in Appendix A.4):

Lemma 5 Supposêσ1 is a public strategy with no long-run credibility (with an
associatedT o), andσ̂2 is player 2’s public best reply. Then, player 1 has a public
best reply,σ†1, to σ̂2. There existŝτ ∈ N, λ > 0, andκ > 0 such that for all
s > T o and eachhs ∈ Hs, there is an actionio, a periods′ ≤ s+ τ̂ , and a public
continuation historyho

s′ of hs, such that

1. σ̂io

1s′(h
o
s′) ≥ λ,

2. the actionio receives zero probability underσ†1(h
o
s′), and

3. player 1’s payoff from playingio and continuing with strategŷσ1 is at least
κ less that what she gets from playingσ†1 at ho

s′, i.e.,

E(σ†1,σ̂2)[π1s′|ho
s′ ]− E(σ̂1,σ̂2) [(1− δ1)π1(i

o, js′) + δ1π1,s′+1|ho
s′ ] ≥ κ.

For s > T o, Lemma 5 describes how player 1’s best response toσ̂2 differs
from σ̂1. In the game with incomplete information, Lemma 5 defines threeHs-
measurable functions,i(·; s) : Ω → I, s′(·; s) : Ω → {t : s ≤ t ≤ s + τ},
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andh(·; s) : Ω → ∪∞t=0Y
t as follows: Associated with each stateω ∈ Ω is the

implieds-period public history,hs. The action-period pair(i(ω; s), s′(ω; s)) is the
action-period pair(io, s′) from Lemma 5 for the public historyhs. Finally,h(ω; s)
is thes′(ω; s)-period continuation historyho

s′ of hs from Lemma 5. We emphasize
thath(ω; s) is typicallynot thes′(ω; s)-period public history ofω (for a start, it is
Hs-measurable); while the firsts-periods ofh(ω; s) are thes-period public history
of ω, the nexts′(ω; s)− s periods describe the public signals from Lemma 5.

With these functions in hand, we can describe how player 1’s behavior differs
from that of the commitment type when she is sufficiently confident that player 2
is best responding to the commitment type (whereρ ≡ miny,i,j ρ

y
ij > 0 andλ is

from Lemma 5; the proof is in Appendix A.5):

Lemma 6 Suppose the hypotheses of Theorem 2 hold, and suppose there is a
Nash equilibrium in which reputations do not necessarily disappear, i.e.,P̃ ({pt 9
0}) > 0. Let τ̂ , λ, and κ be the constants identified in Lemma 5, andM ≡
maxi∈I,j∈J,`∈{1,2} |π`(i, j)|. Supposeτ > τ̂ satisfies12Mδτ

1 < κ, ν > 0 satisfies
12Mν < κρτ , and{F †

s }s is the sequence of events identified in Corollary 2. For
all s ≥ T (ν, 2τ),

1. σ̂i(ω;s)
1,s′(ω;s)(h(ω; s)) ≥ λ,

2. the setF ‡
s ≡ {ω ∈ F †

s : hs′(ω;s)(ω) = h(ω; s)} has probabilityP̃ (F ‡
s ) ≥

ρτ P̃ (F †
s ) > 0, and

3. for all ω ∈ F ‡
s ,

σ̃
i(ω;s)
1,s′(ω;s)(h1,s′(ω;s)(ω)) = 0.

If the eventsF ‡
s were known to player 2 in periods, then the argument is

now complete, since there would be a contradiction between player 2’s belief
that the normal and commitment type play the same way onF ‡

s and player 1’s
actual behavior. However,F ‡

s is not known to player 2. On the other hand,F ‡
s is

approximated byC‡
s (the analogous modification ofC†

s , defined below), an event
known by player 2 in periods. At the same time, we must still deal with the
random nature ofi(·; s) ands′(·;ω).

To complete the argument then, suppose the assumptions of Lemma 6 (includ-
ing the bounds onτ andν) hold, and in addition

ν <
2λρτ

2λρτ + 3
. (18)
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The set of states consistent with 2’s information at times, C†
s , and the “right”

continuation public history, isC‡
s ≡ {ω ∈ C†

s : hs′(ω)(ω) = h(ω; s)}. Note that
P̃ (C‡

s\F ‡
s ) ≤ P̃ (C†

s\F †
s ), and sinceC†

s ⊃ F †
s ,C‡

s ⊃ F ‡
s . We also partitionC‡

s into
the subevents corresponding to the relevant period in which the actioni = i(ω; s)
is not optimal:C‡it

s ≡ {ω ∈ C†
s : i(ω; s) = i, s′(ω; s) = t, ht(ω) = h(ω; s)}, so

thatC‡
s = ∪s+τ

t=s ∪i∈I C
‡it
s . Note thatC‡it

s ∈ H2t for all i ∈ I andt = s, . . . , s+ τ .
For eachω, let io = i(ω; s) andso = s′(ω; s). Now, for fixedω and implied

fixed actionio and periodso, definef̂s(ω) ≡ σ̂io

1so(ω) andf̃s(ω) ≡ Ẽ
[
σ̃io

1so |H2so

]
(ω).

In the last expression, for fixed actionio and periodso, Ẽ
[
σ̃io

1so |H2so

]
is the

conditional expected value of̃σio

1so . In particular, forω ∈ C‡it
s , so = t and

io = i, and we can writêfs(ω) ≡ σ̂i
1t(ω) and f̃s(ω) ≡ Ẽ

[
σ̃i

1t|H2t

]
(ω). Then,

Zs(ω) ≡ supt≥s

∥∥∥σ̂1t − Ẽ [σ̃1t|H2t]
∥∥∥ ≥ ∣∣∣f̂s(ω)− f̃s(ω)

∣∣∣.
So,

Ẽ[Zs1C‡
s
] ≥ Ẽ

[(
f̂s − f̃s

)
× 1C‡

s

]
(19)

=
s+τ∑
t=s

∑
i∈I

Ẽ
[(
f̂s − f̃s

)
× 1C‡it

s

]
=

s+τ∑
t=s

∑
i∈I

Ẽ
[(
σ̂i

1t − Ẽ
[
σ̃i

1t|H2t

])
× 1C‡it

s

]
=

s+τ∑
t=s

∑
i∈I

Ẽ
[
Ẽ
[(
σ̂i

1t − σ̃i
1t

)
1C‡it

s
|H2t

]]
, (20)

where the last equality follows fromC‡t
s ∈ H2t. Now, defineF ‡it

s ≡ {ω ∈ F †
s :

i(ω; s) = i, s′(ω; s) = t, ht(ω) = h(ω; s)}, and soF ‡
s = ∪s+τ

t=s ∪i∈I F
‡it
s . Since

F †
s ⊂ C†

s , F ‡it
s ⊂ C‡it

s , and so (20) is at least as large as

s+τ∑
t=s

∑
i∈I

Ẽ
[
Ẽ
[(
σ̂i

1t − σ̃i
1t

)
1F ‡it

s
|H2t

]]
−

s+τ∑
t=s

∑
i∈I

P̃
(
C‡it

s \F ‡it
s

)
= Ẽ

[(
f̂s1F ‡

s
−

s+τ∑
t=s

∑
i∈I

Ẽ
[
σ̃i

1t1F ‡it
s
|H2t

])]
− P̃

(
C‡

s\F ‡
s

)
= Ẽ

[
f̂s1F ‡

s

]
− P̃

(
C‡

s\F ‡
s

)
> λP̃ (F ‡

s )− P̃ (C†
s\F †

s ), (21)
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where the last equality is an implication ofẼ
[
σ̃i

1t1F ‡it
s
|H2t

]
= 0 P̃ -almost surely.

Hence, from the chain from (19) to (21), we have

Ẽ[Zs1C‡
s
] > λρτ P̃ (F †

s )− (P̃ (C†
s)− P̃ (F †

s )). (22)

Applying the boundsνP̃ (F ) > P̃ (C†
s)− P̃ (F †

s ) andP̃ (F †
s ) > P̃ (F )(1− ν) from

Corollary 2 to the right side of (22) gives

Ẽ[Zs1C‡
s
] > (λρτ (1− ν)− ν)P̃ (F ).

The bound (18) ensures thatλρτ (1− ν)− ν > ν/2, and hence

Ẽ[Zs1C‡
s
] >

1

2
νP̃ (F ).

However,P̃ (C‡
s) > ρτ (1 − ν)P̃ (F ) > 0 and sinceC‡

s ⊂ {ω : pt 9 0},
Zs1C‡

s
→ 0 P̃ -almost surely, the desired contradiction.

5 Imperfect Private Monitoring

In this section, we briefly sketch how our results can be extended to the case
of private monitoring. Instead of observing a public signaly at the end of each
period, player1 observes aprivatesignalθ (drawn from a finite setΘ) and player
2 observes a private signalζ (drawn from a finite setZ). A history for a player
is the sequence of his or her actions and private signals. Given the underlying
action profile(i, j), we letρij denote a probability distribution overΘ × Z. We
useρθζ

ij to denote the probability of the signal profile(θ, ζ) conditional on(i, j).

The marginal distributions areρθ
ij =

∑
ζ ρ

θζ
ij andρζ

ij =
∑

θ ρ
θζ
ij . The case of public

monitoring is a special case: takeΘ = Z andΣθ∈Θρ
θθ
ij = 1 for all i, j.

We now describe the analogs of our earlier assumptions on the monitoring
technology. The full-support assumption is:

Assumption 5 (FULL SUPPORT) ρθ
ij, ρ

ζ
ij > 0 for all θ ∈ Θ, ζ ∈ Z, and all

(i, j) ∈ I × J .

Note that we donot assume thatρθζ
ij > 0 for all (i, j) ∈ I × J and(θ, ζ) ∈ Θ2

(which would rule out public monitoring). Instead, the full-support assumption is
that each signal is observed with positive probability under every action profile.
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Assumption 6 (IDENTIFICATION 1) For all j ∈ J , theI columns in the matrix
(ρζ

ij)ζ∈Z,i∈I are linearly independent.

Assumption 7 (IDENTIFICATION 2) For all i ∈ I, theJ columns in the matrix
(ρθ

ij)θ∈Θ,j∈J are linearly independent.

Even when monitoring istruly private, in the sense thatρθζ
ij > 0 for all (i, j) ∈

I × J and(θ, ζ) ∈ Θ × Z, reputations can have very powerful short-run effects.
This is established in Theorem 6, which is a minor extension of Fudenberg and
Levine (1992).14

Theorem 6 Suppose the game has imperfect private monitoring satisfying As-
sumptions 5 and 6. Suppose the commitment type plays the pure actioni∗ in every
period. For allp0 > 0 and all ε > 0, there exists̄δ < 1 such that for allδ1 > δ̄,
player 1’s expected average discounted payoff in any Nash equilibrium is at least

min
j∈BRS(i∗)

π1 (i∗, j)− ε,

where
BRS (i) = argmax

j∈J
π2 (i, j) .

The proof of the following extension of Theorem 1 to the private monitoring
case is essentially identical to that of Theorem 1 apart from the added notational
inconvenience of private signals.

Theorem 7 Suppose the imperfect private monitoring satisfies Assumptions 5, 6,
and 7 andς1 satisfies Assumption 4. Then at any Nash equilibrium,pt → 0 P̃ -
almost surely.

14While Fudenberg and Levine (1992) explicitly assume public monitoring, under Assumption
6, their analysis also covers imperfect private monitoring. This includes games where player 1
observes no informative signal. In such a case, when there is complete information, the one-period-
memory strategies that we describe as equilibria in Section 2 of Cripps, Mailath, and Samuelson
(2004) are also equilibria of the game with private monitoring. We thank Juuso Välimäki for
showing us how to construct such equilibria.
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A Appendix

A.1 Proof of Theorem 5

Sincept → 0 P̃ -almost surely, we havept → 1 P̂ -almost surely. For anyε, ν > 0
there exists aT such that for allt > T , P̃ (pt > ε) + P̂ (pt < 1− ε) < ν. Hence,
for t′ > T ,

0 ≤
∫

S×[0,1]

[u2(s1, s2)− u2(s1, ξ2(s2, pt))]d(p0ρ̂t + (1− p0)ρ̃t)

≤ (1− p0)

∫
S×[0,ε]

[u2(s1, s2)− u2(s1, ξ2(s2, pt))]dρ̃t

+p0

∫
S×[1−ε,1]

[u2(s1, s2)− u2(s1, ξ2(s2, pt))]dρ̂t + 2Mν,

whereM is an upper bound on the magnitude of the stage-game payoffs and
the first inequality follows from (6). Asξ2 is measurable with respect topt, we
can ensure that the final integral in the preceding expression is zero by setting
ξ2(s2, pt) = s2 for pt > ε, and hence, for anyε, ν > 0 and for allξ2,∫

S×[0,ε]

[u2(s1, s2)− u2(s1, ζ2(s2, pt))]dρ̃t ≥ − 2Mν

1− p0

. (A.1)

Again, becausẽP (pt > ε) < ν, (A.1) implies∫
S×[0,1]

[u2(s1, s2)− u2(s1, ξ2(s2, pt))]dρ̃t ≥ − 2Mν

1− p0

− 2Mν.

Integrating outpt implies that, for allξ′2 : S2 → S2,∫
S

[u2(s1, s2)− u2(s1, ξ
′
2(s2))]dµ̃t ≥ − 2Mν

1− p0

− 2Mν. (A.2)

Consider now a convergent subsequence, denotedµ̃tk
with limit µ̃∞, and sup-

poseµ̃∞ is not a correlated equilibrium. Since (5) holds for allt′, it also holds in
the limit. If µ̃∞ is not a correlated equilibrium, it must then be the case that for
someξ′′2 : S2 → S2, there existsκ > 0 so that∫

S

[u2(s1, s2)− u2(s1, ξ
′′
2(s2))]dµ̃∞ < −κ < 0.
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But then fortk sufficiently large,∫
S

[u2(s1, s2)− u2(s1, ζ
′′
2(s2))]dµ̃tk

<
−κ
2

< 0,

contradicting (A.2) forν sufficiently small.

A.2 Completion of the Proof of Lemma 2

Turning to the general case, letM ≡ maxi∈I,j∈J,`∈{1,2} |π`(i, j)|, so thatM is an
upper bound on the magnitude of stage-game payoffs. Letα = εo/6M , whereεo

is given by Definition 5. IfZt ≤ α, player 2’s expected continuation payoffs ath2s

under the strategy profile(σ̃1, σ̂1, σ2) are within2Mα of his continuation payoff
under the profile(σ̂1, σ̂1, σ2). Hence, ifZt ≤ α and historyh2s (for s ≥ t ≥ T o)
occurs with positive probability, then∣∣E(σ̃1,σ̂1,σ2)[π2s | h2s]− E(σ̂1,σ̂1,σ2)[π2s | h2s]

∣∣ < 2Mα. (A.3)

for all σ2.
We now show that ifZt ≤ α for t ≥ T o, then player 2 plays the pure action

j∗(hs) in all future periods. Suppose instead that the equilibriumσ2 playsj 6=
j∗(hs) with positive probability in periods under a historyh2s. Defineσ′2 to be
identical toσ2 except that, after the historyh2s, it places zero probability weight
on the actionj∗(hs) and increases the probability of all other actions played by
σ2 by equal weight. Let̂σ2 be player 2’s best response to the commitment type.
Then, ifZt ≤ α we have15

E(σ̃1,σ̂1,σ2)[π2s | h2s] = E(σ̃1,σ̂1,σ′2)[π2s | h2s]

≤ E(σ̂1,σ̂1,σ′2)[π2s | h2s] + 2Mα

≤ E(σ̂1,σ̂1,σ̂2)[π2s | h2s]− εo + 2Mα

≤ E(σ̃1,σ̂1,σ̂2)[π2s | h2s]− εo + 4Mα.

As 4Mα < εo, σ̂2 is a profitable deviation after the historyh2s for player 2—
a contradiction. Hence on the eventZt ≤ α player 2 playsj∗(hs) in all future
periods. Equivalently, we have shown{Zt ≤ α} ⊂ Go

t . ChooseT ≥ T o such
thatpt > η andẼ[Zt|H2t] < αξ for all t > T . Condition (8) now follows from
P̃ [{Zt > α} | H2t] < ξ for all t > T onF .

15The equality applies the fact that in equilibrium, player 2 is indifferent between actions played
with positive probability. The first inequality applies (A.3). The second inequality applies Defini-
tion 5.1. The third inequality applies (A.3) again.
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A.3 Completion of the Proof of Lemma 3

The proof forτ ≥ 1 follows by induction. In particular, we have

Pr[K|h1,s+τ+1] = Pr[K|h1s, ys, is, ..., ys+τ , is+τ ]

=
Pr[K|h1s] Pr[ys, is, . . . , ys+τ , is+τ |K,h1s]

Pr[ys, is, . . . , ys+τ , is+τ |h1s]

=
Pr[K|h1s]

∏s+τ
z=s

∑
j ρ

yz

izjẼ[σj
2(h2z)|h1s, K]∏s+τ

z=s

∑
j ρ

yz

izjẼ[σj
2(h2z)|h1s]

,

whereh1,z+1 = (h1z, yz, iz). Hence,

|Pr[K|h1,s+τ+1]− Pr[K|h1s]|

≥ Pr[K|h1s]

∣∣∣∣∣
s+τ∏
z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s, K]−

s+τ∏
z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s]

∣∣∣∣∣ .
The left side of this inequality converges to zeroP̃ -almost surely, and hence so
does the right side. Moreover, applying the triangle inequality and rearranging,
we find that the right side is larger than

Pr[K|h1s]

∣∣∣∣∣
s+τ−1∏

z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s]

∣∣∣∣∣
×

∣∣∣∣∣∑
j

ρ
ys+τ

is+τ jẼ[σj
2(h2,s+τ )|h1s, K]−

∑
j

ρ
ys+τ

is+τ jẼ[σj
2(h2,s+τ )|h1s]

∣∣∣∣∣
− Pr[K|h1s]

∣∣∣∣∣
s+τ−1∏

z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s, K]−

s+τ−1∏
z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s]

∣∣∣∣∣
×

∣∣∣∣∣∑
j

ρ
ys+τ

is+τ jẼ[σj
2(h2,s+τ )|h1s, K]

∣∣∣∣∣ .
¿From the induction hypothesis that‖Ẽ[σ2z|β (H1s,H2t)] − Ẽ[σ2z|H1s]‖ con-
verges to zerõP -almost surely for everyz ∈ {s, ..., s+ τ − 1}, the negative term
also converges to zerõP -almost surely. But then the first term also converges to
zero, and, as above, the result holds forz = s+ τ .
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A.4 Proof of Lemma 5

Sinceσ̂1 is public, player 2 has a best replyσ̂2 that is public, and so player 1 has
a public best replyσ†1 to σ̂2. By Definition 5.2, for everys-period public history
hs, s > T o, we have

E(σ†1,σ̂2) [π1s|hs] > E(σ̂1,σ̂2) [π1s|hs] + εo. (A.4)

Sinceσ†1 is a best response tôσ2, player 1’s payoffE(σ†1,σ̂2) [π1s|hs] is unchanged
if the period-smixtureσ†1(hs) is replaced by any other mixture that remains within
the support ofσ†1(hs), and thereafter play continues according toσ†1.

For s > T o andhs ∈ Hs, let Υ(hs) be the set of public historieshs′, s′ ≥ s,
that are continuations ofhs ands′ is the first period in which there is an action inI
receiving positive probability under̂σ1 but receiving zero probability underσ†1.

16

Note thatΥ(hs) is at most countable. In addition, there are no two elements of
Υ(hs) with the property that one is a continuation of the other. Forhs′ ∈ Υ(hs),
s′ > s, in periods, every action that receives positive probability under strategy
σ̂1 also receives positive probability underσ†1, and so the comment after equation
(A.4) implies

E(σ†1,σ̂2) [π1s|hs]− E(σ̂1,σ̂2) [π1s|hs] =∑
i∈I

σ̂i
1(hs)δ1

[
E(σ†1,σ̂2) [π1,s+1|(hs, i)]− E(σ̂1,σ̂2) [π1,s+1|(hs, i)]

]
.

Applying this reasoning iteratively allows us to rewrite (A.4) as

εo <
∑

hs′∈Υ(hs)

Q̂(hs′|hs)δ
s′−s
1

[
E(σ†1,σ̂2) [π1s′|hs′ ]− E(σ̂1,σ̂2) [π1s′|hs′ ]

]
(A.5)

whereQ̂(hs′|hs) is the probability ofhs′ givenhs under(σ̂1, σ̂2).17

Choosêτ such that2Mδτ̂
1 < εo/3. The terms in (A.5) corresponding to his-

tories longer thans + τ̂ can then collectively contribute at mostεo/3 to the sum.

16Becauseσ†1 is a best response tôσ2, there must exist such histories, since otherwise every
action accorded positive probability bŷσ1 would be optimal, contradicting (A.4).

17It is possible that
∑

hs′∈Υ(hs) Q̂(hs′ |hs) < 1. However, expected payoffs under(σ†1, σ̂2) and
(σ̂1, σ̂2) are equal after any history not inΥ(hs), and so such histories can then be omitted from
(A.5).
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The remaining terms must then sum to at least2εo/3. LettingΥ(hs; τ̂) denote the
set of histories inΥ(hs) no longer thans+ τ̂ , we have

2εo

3
<
∑

Υ(hs;τ̂)

Q̂(hs′|hs)δ
s′−s
1

[
E(σ†1,σ̂2) [π1s′|hs′ ]− E(σ̂1,σ̂2) [π1s′|hs′ ]

]
.

Let Υ∗(hs; τ̂) be the histories inΥ(hs; τ̂) satisfying

E(σ†1,σ̂2)[π1s′|hs′ ]− E(σ̂1,σ̂2) [π1s′|hs′ ] ≥
εo

3
. (A.6)

Then,
2εo

3
< Q̂(Υ∗(hs; τ̂)|hs)2M + (1− Q̂(Υ∗(hs; τ̂)|hs))

εo

3
,

and so

Q̂(Υ∗(hs; τ̂)|hs) > q ≡ εo

6M − εo

(the denominator is positive, since Definition 5 impliesεo ≤ 2M ).
There are at mostY τ̂ histories inΥ∗(hs; τ̂). In the last period of each such

history, there is an actioni ∈ I that is played with positive probability bŷσ1 and
zero probability byσ†1. Since there are at mostI such actions, there is a history
ho

s′(hs) ∈ Υ∗(hs; τ̂) and actionio(hs) such that, under(σ̂1, σ̂2), the probability
that the historyho

s′(hs) occurs and is followed by actionio(hs) is at leastλ ≡
q/(IY τ̂ ). Trivially, then,σ̂io

1s′(h
o
s′) ≥ λ.

Finally, since

E(σ̂1,σ̂2) [π1s′|ho
s′ ] ≤ λE(σ̂1,σ̂2) [(1− δ1)π1(i

o, js′) + δ1π1,s′+1|ho
s′ ]

+(1− λ)E(σ†1,σ̂2)[π1s′|hs′ ],

from (A.6), we have

E(σ†1,σ̂2)[π1s′|ho
s′ ]− E(σ̂1,σ̂2) [(1− δ1)π1(i

o, js′) + δ1π1,s′+1|ho
s′ ] ≥

εo

3λ
≡ κ.

A.5 Proof of Lemma 6

We prove only the second and third assertions (the first being an immediate impli-
cation of Lemma 5 and the definitions ofi, s′, andh).

Sinceω ∈ F †
s andprojs(ω

′) = projs(ω) impliesω′ ∈ F †
s , for anys-period

public history consistent with a state inF †
s , and anys′-period (s′ > s) public
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continuation of that history, there is at least one state inF †
s consistent with that

continuation. Consequently, since everyτ period public history has probability at
leastρτ , P̃ (F ‡

s ) ≥ ρτ P̃ (F †
s ) > ρτ (1− ν)P̃ (F ) > 0.

After any public history, the normal type’s payoffs under(σ†1, σ̂2) are indepen-
dent of her private histories—she is playing her public best response to a public
strategy. At states inF ‡

s , from Corollary 2, under̃σ1, player 1 expects player 2’s
future play (over the periodss, s+1, ..., s+2τ ) to be withinν of his best response
to the commitment strategy,̂σ2. Hence, onF ‡

s , player 1 expects that player 2’s
future play (over the periodss, s + 1, ..., s + 2τ ) to be withinνρ−τ of his best
response to the commitment strategy,σ̂2, irrespective of her play in those periods.
Discounted to the periods′ ≤ s + τ , payoffs from periods afters + 2τ can differ
by at most2Mδτ

1. Hence, for states inF ‡
s , and for anyσ1,∣∣E(σ1,σ2)[π1s′ | H1s′ ]− E(σ1,σ̂2)[π1s′ | H1s′ ]

∣∣ ≤ (νρ−τ + δτ
1)2M < κ/3.

Lemma 5.3 and the restrictions onτ andν then imply, forω ∈ F ‡
s ,

E(σ†1,σ2)[π1s′|H1s′ ] ≥
κ

3
+ E(σ̂1,σ2)[(1− δ1)π(i(ω; s), js′) + δ1π1s′+1|H1s′ ].

Hence, after the public historyh(ω; s), no private history for player 1 (consistent
with F ‡

s ) makes playing actioni(ω) profitable.
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