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1.  Prologue

Engle’s footsteps range widely.  His major contributions include early work on band-spectral

regression, development and unification of the theory of model specification tests (particularly Lagrange

multiplier tests), clarification of the meaning of econometric exogeneity and its relationship to causality,

and his later stunningly influential work on common trend modeling (cointegration) and volatility modeling

(ARCH, short for AutoRegressive Conditional Heteroskedasticity).2  More generally, Engle’s cumulative

work is a fine example of best-practice applied time-series econometrics:  he identifies important dynamic

economic phenomena, formulates precise and interesting questions about those phenomena, constructs

sophisticated yet simple econometric models for measurement and testing, and consistently obtains results

of widespread substantive interest in the scientific, policy, and financial communities.

Although many of Engle’s contributions are fundamental, I will focus largely on the two most

important:  the theory and application of cointegration, and the theory and application of dynamic volatility

models.  Moreover, I will discuss much more extensively Engle’s volatility models and their role in

financial econometrics, for several reasons.  First, Engle’s Nobel citation was explicitly “for methods of

analyzing economic time series with time-varying volatility (ARCH),” whereas Granger’s was for “for

methods of analyzing economic time series with common trends (cointegration).”  Second, the credit for



3 See also Engle’s recent interview in Econometric Theory (Diebold, 2003) for additional insights
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creating the ARCH model goes exclusively to Engle, whereas the original cointegration idea was

Granger’s, notwithstanding Engle’s powerful and well-known contributions to the development.  Third,

volatility models are a key part of the financial econometrics theme that defines Engle’s broader

contributions, whereas cointegration has found wider application in macroeconomics than in finance.  Last

and not least, David Hendry’s insightful companion review of Granger’s work, also in this issue of the

Scandinavian Journal, discusses the origins and development of cointegration in great depth.

In this brief and selective review, I attempt a description of “what happened and why” (as a

popular American talk show host puts it).  My approach has been intentionally to avoid writing a long

review, as several extensive surveys of the relevant literatures already exist.  In addition, I have de-

emphasized technical aspects, focusing instead on the intuition, importance, and nuances of the work.3  In

Section 2, I discuss cointegration in the context of Engle’s previous and subsequent work, which facilitates

the extraction of interesting and long-running themes, several  of which feature prominently in Engle’s

volatility models.  I discuss the basic ARCH volatility model in Section 3, and I discuss variations,

extensions and applications in Section 4.  I conclude in Section 5.

2.  Cointegration

Despite my declared intent to focus on volatility models, here I will highlight some aspects of

cointegration.  It is important to do so, because Engle’s work on cointegration (as well as his earlier work,

which I will also touch upon) reveals central and sometimes-subtle themes of the modeling approach that

permeates all of his work, including that on volatility modeling.  I give only the briefest possible intuitive

sketch of the cointegration idea; those hungry for details may consult any of several fine surveys, including



4 The collection edited by Engle and Granger (1991) also nicely illustrates many variations and
extensions of the basic theory, as well as the wide variety of applications.

-3-

Watson (1995) and Johansen (1995).4

Basic Structure

Engle and Granger (1987) is the seminal paper on cointegration and perhaps the most cited paper

in the history of econometrics, treating specification, representation, estimation, and testing.  The basic

specification is simple.  Consider, for example, two nonstationary series, x and y, both of which are

integrated of order 1, or I(1), and therefore have no tendency to revert to any fixed mean (e.g., two random

walks).  In general, there is no way to form a weighted average of x and y to produce a stationary mean-

reverting series integrated of order 0, or I(0), but in the special case where such a weighting does exist, we

say that x and y are cointegrated.  Suppose, for example, that,

(1)

where both  and  are white noise.  Both x and y are I(1), but they are cointegrated, because

, which is I(0).  Cointegration causes variables to move together in the long run, which produces

stationarity of the cointegrating combination (in this case ) despite the nonstationary of its

components.  The long-run comovements of variables in cointegrated systems is ultimately driven by their

dependence on underlying common stochastic trends (in this case ).  

Cointegration has strong and appealing economic motivation, because both theory and observation

suggest that common stochastic trends arise naturally in macroeconomics and finance.  In modern

macroeconomic models, for example, the equilibrium dynamics of a large number of observed variables are

typically driven by a small number of underlying shocks, or “factors” (e.g., technology shocks and

preference shocks).  This factor structure produces cointegration when the underlying shocks are I(1).  The

empirical facts accord with the theory:  the great macroeconomic ratios (consumption / output, investment /
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output, etc.) often appear stationary despite the fact that their components clearly are not.  Financial asset

prices behave similarly:  spreads or ratios (e.g., bond yield spreads across different maturities) often appear

stationary whereas their components do not.

Cointegrated vector autoregressions (VARs) turn out to be closely related to the error-correction

model long-associated with the “LSE School” of econometrics, thus unifying models and communities. 

Error-correction models involve long-run equilibrium relationships augmented with short-run adjustment

dynamics, in a way that captures the key idea that the sign and size of the current deviation from

equilibrium should impact the future evolution of the system.  

Consider again a two-variable system, and suppose that in long-run equilibrium y and x are related

by y=bx, so that the deviation from equilibrium is z=y-bx.  We acknowledge that the current deviation from

equilibrium may impact the future by modeling the change in each variable as a function of lagged changes

of all variables (to capture short-run dynamics in the standard VAR tradition), and the lagged value of z,

the so-called error-correction term (to capture adjustment toward long-run equilibrium).  Allowing for one

lag of )x and one lag of )y, we write

(2)

So long as one or both of  and  are nonzero, the system is very different from a VAR in first

differences; the key distinguishing feature is the inclusion of the error-correction term, so that the current

deviation from equilibrium affects the future evolution of the system.  As can be readily verified, for

example, the cointegrated system (1) has error-correction representation

(3)

where , , and .  This illustrates the central and much more general result

alluded to above, introduced by Granger (1981) and refined by Engle and Granger (1987):  cointegrated
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VARs and error-correction models are equivalent – a VAR is cointegrated if and only if it has an error-

correction representation.

Cointegration in the Context of Engle’s Broader Research Agenda

Engle’s work on cointegration lends insight into several central themes that run throughout his

research, including his research on volatility modeling.  First, it shows a keen interest in differences in

economic dynamics across frequencies.  That is, one sees a clear distinction between “long run” vs. “short

run” dynamics, “permanent” vs. “transitory” shocks, and so on.  A cointegrated VAR, for example, is

effectively an econometric implementation of the idea of long-run equilibrium supplemented with short-run

dynamics, producing higher coherence among variables at low frequencies than at high.  Engle’s early work

also emphasizes this idea of the decomposition of dynamics by frequency, with possibly different models

for different frequencies, as made starkly explicit in Engle’s band-spectral regression (e.g., Engle, 1973)

and unobserved-components models of trend, seasonal and cyclical dynamics (e.g., Engle, 1978).  The

theme continues to the present.  For example, Engle and Smith’s (1999) “StoPBreak” model allows for

endogenous time-variation in the persistence of the effects of shocks.  Similarly, Engle and Lee’s (1999)

unobserved components model for volatility facilitates decomposition of volatility fluctuations into

permanent and transitory components.  Finally, the analysis of ultra-high-frequency data pioneered by

Engle and Russell (1998) and Engle (2000) is intrinsically concerned with aspects of high-frequency

dynamics, such as microstructure noise, intra-day calendar effects, and the arrival of quotes and trades in

real time.

Second, awareness of the practical relevance yet econometric intractability of high-dimensional

systems, and the economic appeal and econometric convenience of factor structure as a potential solution,

permeates Engle’s work.  Factor structure is economically appealing because macroeconomic and financial

theorizing leads naturally to environments with far fewer underlying sources of dynamic variation than



5 For example, as has already been mentioned, macroeconomic models typically involve just a few
shocks, which determine a much larger number of variables in equilibrium.  Similarly, financial asset
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are three- or four-factor models.

6 If two variables have property X but there exists linear combination that does not, we say that
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variables observed.5  Factor structure is econometrically convenient because it implies that high-

dimensional dynamic modeling of hundreds or even thousands of variables, which in general would be

empirically intractable (indeed, absurdly so), can in fact be done quite simply:  beneath the superficial

appearance of a plethora of series, there are just a few parameters to be estimated.  Early on (e.g., Engle

and Watson, 1981; Engle, Lilien and Watson, 1985), Engle worked productively with dynamic factor

models.  Models of cointegration are also very explicit dynamic factor models, in which the common

factors are the I(1) common trends.  Engle’s subsequent work on “common features” (e.g., Engle and

Kozicki, 1993; Engle and Vahid, 1993) is a direct outgrowth of models of cointegration and hence factor

models.6  Finally, much of Engle’s work on high-dimensional volatility modeling proceeds by invoking

factor structure and closely-related ideas (e.g., Bollerslev and Engle, 1993).

Third, Engle’s work shows a preference for models that are parametric, parsimonious, and indeed

typically linear, estimated by (Gaussian) maximum likelihood.  The themes of unobserved components

modeling, factor models, cointegration, and common features all support this claim, as does Engle’s

prowess in state space modeling, Kalman filtering, and Gaussian likelihood evaluation via prediction-error

decomposition (e.g., Engle and Watson, 1985).  Engle’s volatility models, although nonlinear because they

involve variances, which are expectations of squares, are effectively just linear (and typically conditionally

Gaussian) models of squared variables.  Hence, when appropriately interpreted, they also fit the

linear/Gaussian mold.

Fourth, and intimately related to Engle’s preference for parametric, parsimonious models, is the
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concern with forecasting – a key task in practical policy, financial, and business applications – that runs

throughout Engle’s work.  Parsimonious models guard against in-sample overfitting, or “data mining,”

which typically produces models that fit well historically but perform miserably in out-of-sample

forecasting.  Hence the tightly parametric – and perhaps seemingly naive – approach favored by Engle is

intentional, and not at all naive.  Rather, his models are simultaneously sophisticated and simple, precisely

in keeping with Zellner’s (1992) version of the “KISS principle” (Keep It Sophisticatedly Simple).

Concern with forecasting has not only influenced Engle’s general approach, but also produced a

variety of specific forecasting contributions.  In the cointegration context, for example, Engle and Yoo

(1987) show that as the forecast horizon lengthens, optimal forecasts of cointegrated variables will satisfy

the cointegrating relationship(s) arbitrarily closely.  In the volatility context, the very essence of Engle’s

contribution is allowance for forecastable forecast-error variances.  From a traditional forecasting

viewpoint, this allows confidence intervals on forecasts appropriately to expand and contract as volatility

fluctuates.  The explosion of interest in Engle’s volatility models in financial contexts, moreover, reflects

interest not only in improved confidence intervals around point forecasts, but also, and crucially, intrinsic

interest in volatility forecastability, which profoundly influences fundamental financial tasks, including

asset pricing, portfolio allocation, and risk management.

3.  ARCH

Good dynamic economic theorists, like all good theorists, naturally want to get the facts straight

before theorizing.  Time-series tools are tailor-made for providing precise quantification of dynamics; hence

the explosive growth of time-series econometric methods and applications in the last forty years.  A short

list of active sub-fields – many of which were touched upon in section 2 – includes vector autoregressive

macroeconomic modeling, dynamic factor models, causality, integration and persistence, cointegration,

seasonality, unobserved-components models, state-space representations and the Kalman filter, regime-

switching models, nonlinear dynamics, and nonlinear filtering.  But all of those topics concern aspects of
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linear or nonlinear conditional mean dependence.  What about conditional variance dependence – that is,

what about conditional heteroskedasticity?

Historically, economists viewed heteroskedasticity as largely a cross-sectional, as opposed to a

time-series, phenomenon.  Hence economists are almost always introduced to heteroskedasticity in cross-

sectional contexts, such as when the variance of a cross-sectional regression disturbance depends on one or

more of the regressors.  A classic example is Engel curve estimation, in which the variance of the

disturbances in expenditure equations tend to grow with income.  It turns out, however, that

heteroskedasticity is pervasive in the time-series context of financial asset returns, in which volatility

clustering (that is, contiguous periods of high or low volatility) features prominently.7  Moreover, it also

turns out that acknowledgment and modeling of return volatility dynamics is crucially important for

financial economics.  Unfortunately, cross-sectional heteroskedasticity models are ill-suited to dynamic

environments, and specification and econometric treatment of an appropriate dynamic volatility model

involves many subtleties and is far from a trivial extension.

Engle’s ARCH model and subsequent volatility modeling research program provided a workable

and elegant solution, solving many problems and stimulating a huge amount of related research that

advanced not only the econometrics of dynamic volatility and correlation modeling, but also forecasting,

asset pricing, portfolio allocation, risk management, market microstructure modeling, duration modeling,

and ultra-high-frequency data analysis.  Hence any list of the last forty years’ crucial time-series

econometric developments must also include the dynamic volatility models pioneered by Engle.  Indeed, the

originality, importance and influence of Engle’s ARCH models put them at the top of the list, tied for first

place with Granger’s cointegration models.

The Basic ARCH Model
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Engle (1982), another of the most widely-cited papers in the history of econometrics, started it all. 

Surveys of the massive ensuing literature include Bollerslev, Chou and Kroner (1992), Gourieroux (1992),

Bera and Higgins (1993), Bollerslev, Engle and Nelson (1994), Diebold and Lopez (1996), Andersen,

Bollerslev and Diebold (2004), and Diebold (2004).  The collection edited by Engle (1995) nicely

illustrates many variations and extensions of the basic theory, as well as a wide variety of applications.

Engle’s basic contribution cuts to the core of modern time series analysis.  To understand it, recall

that Wold's (1938) celebrated decomposition theorem establishes that any linearly indeterministic

covariance stationary process {xt} can be written as a one-sided moving average of (weak) white noise

innovations.  In an obvious notation,

(4)

(5)

where , , and .  The uncorrelated innovation sequence {gt} need not be

Gaussian and therefore need not be independent.  But in the Gaussian case, the lack of correlation does of

course imply independence, and for some four decades after Wold, the profession implicitly adopted a

Gaussian perspective, focusing almost exclusively on linear models of conditional mean dependence with

iid innovations.

To appreciate the limitations of the traditional linear/iid model, consider a Wold representation

with iid, as opposed to merely uncorrelated, innovations.  The unconditional mean and variance are

 and  both of which are constant, as must be the case under covariance

stationarity.  Now consider the conditional mean and variance.  The conditional mean naturally adapts to

the conditioning information and is given by

, (6)

where .  One would hope that the conditional variance would adapt to the conditioning

information as well, but unfortunately it does not.  Instead, it is constant:
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  (7)

This asymmetric treatment of conditional mean and conditional variance dynamics – allowance for flexible

linear conditional mean dynamics but no allowance for conditional variance dynamics – proves crippling in

financial contexts.

Now let us introduce Engle’s (1982) ARCH process by considering a richer Wold representation,

with ARCH innovations:

(8)

(9)

(10)

where , , , and , which satisfies Wold’s theorem (in particular, the

innovation  is serially uncorrelated) while nevertheless explicitly incorporating dynamic conditional

heteroskedasticity.  Both the unconditional mean and variance are constant, again as required for

covariance stationarity.  However, both the conditional mean and the conditional variance are time-varying: 

(11)

(12)

This model desirably treats conditional mean and variance dynamics in a symmetric fashion, by allowing

for movement in each. 

Interestingly, the serial correlation in volatility afforded by the ARCH conditional variance

function (10) had been observed empirically, decades earlier.  In his classic analysis of returns on

speculative markets, Mandelbrot (1963, p.418) was very clear, noting that “large changes tend to be

followed by large changes – of either sign – and small changes tend to be followed by small changes.”  But

Mandelbrot emphasized the unconditional non-normality of returns, rather than their volatility clustering. 

For the next twenty years volatility clustering generated little interest; instead, the literature focused
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primarily on the non-normality, and in particular the fat tails, of unconditional return distributions.8

In a huge conceptual advance, Engle’s work changed the situation radically, by proposing a

rigorous, probabilistic, likelihood-based framework for volatility estimation and forecasting.  Moreover,

Engle was not content with purely theoretical contributions.  Beginning with the original application to

U.K. inflation in Engle (1982), he actively pursued empirical applications in the macroeconometric context

of volatility dynamics in the price level, including Engle (1983) and Engle, Granger and Robins (1986). 

And crucially, when work such as Diebold (1988) and Bollerslev, Engle and Wooldridge (1988) revealed

very strong and pervasive ARCH effects in foreign exchange and equity markets (in contrast to aggregate

inflation and other macroeconomic variables, for which it had by then become clear that the evidence was

mixed), Engle quickly switched from macroeconomic to financial economic applications.  He recognized,

moreover, that many parts of financial economics would change fundamentally in the presence of

forecastable return volatility, and he followed through for some twenty years, building major parts of the

new field of financial econometrics.9

The appeal of the linear/ARCH framework (8)-(10) is essentially three-fold.  First, it reflects an

appreciation of the fact that the linear/iid framework embraces only a small part of Wold’s vision, because

it neglects the possibility of nonlinear dependence in .

Second, it reflects two implicit judgements, which turn out to be correct in many economic and

financial contexts.  The first is that the linear conditional mean dynamics associated with B(L) (or ARMA

approximations to B(L)) are likely to be roughly adequate approximations to the true conditional mean

dynamics, in which case nonlinear dependence in  would come primarily from higher-ordered conditional

moment dependence rather than from neglected nonlinear conditional mean dependence.  The second



10 See Taylor (1986) and Ghysels, Harvey and Renault (1996), and Shephard (2004).
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implicit judgement is that the key neglected conditional moment is the conditional variance.

Third, it uses a natural and powerfully simple strategy for modeling conditional variance dynamics,

which precisely parallels the Wold representation for the conditional mean, namely modeling the

conditional variance – the conditionally expected value of  – as a linear function of , , and so on.

Structure and Properties of the ARCH Process

Many features of the ARCH process are novel relative to more traditional setups.  For example,

and most obviously, the fact that the conditional variance, , is now a serially correlated random variable

has many implications.  For example, unlike the traditional linear/iid model, in which the conditional

prediction error variance depends only on the forecast horizon, it now depends on the conditioning

information set, and this dependence can be exploited to produce accurate volatility forecasts, which have

numerous uses in asset pricing, portfolio allocation, and risk management.

The conditional variance (12) of an ARCH process is a deterministic function of the conditioning

information.  This is entirely natural and appropriate, just as, for example, the conditional mean (11) is also

a deterministic function of conditioning information.  One can, however, entertain the possibility that a

separate stochastic “volatility shock” is also operative, which leads directly to the class of so-called

stochastic volatility models, which itself has been the focus of a huge research effort since the mid-1980s,

motivated by and spurred onward by Engle’s ARCH research.10

In addition to the fact that the ARCH conditional variance is a deterministic function of past

observations, the ARCH process is specified directly in terms of the conditional density, (9).  Hence, for

any given set of parameter values, the Gaussian likelihood can be evaluated trivially via a prediction-error

decomposition – that is, by recognizing that the likelihood, which is the joint density of the observed data, is

simply the product of the conditional densities (9) – and then maximized numerically.  Hence estimation of



11 The unconditional leptokurtosis of ARCH processes follows from the persistence in conditional
variance, which produces the clusters of “low volatility”and “high volatility” episodes associated with
observations in the center and in the tails of the unconditional distribution.  The reduction of leptokurtosis
under temporal aggregation follows from the facts that (1) a low-frequency change is simply the sum of the
corresponding high-frequency changes; for example, an annual change is the sum of the internal quarterly
changes, each of which is the sum of its internal monthly changes, and so forth, and (2) Gaussian central
limit theorems hold for sums of covariance stationary ARCH processes, as shown by Diebold (1988).
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ARCH models is in principle straightforward, in sharp contrast to the estimation of stochastic volatility

models, the estimation of which is notoriously challenging, due to the latency of the separate volatility

shock.

It is instructive to view ARCH from the vantage point of volatility proxy construction.  One

obvious proxy for the true underlying volatility, , is simply .  Define the corresponding measurement

error as .  Unfortunately, the variance of  (the noise) is generally large relative to the

variance of  (the signal).  One would like to find a way to reduce the noise, perhaps by smoothing, which

is precisely what the ARCH model does:  it replaces the noisy volatility proxy, , with a much less noisy

proxy, a weighted average of the history of , .  Indeed, the ARCH model is effectively an

autoregressive model for , and the ARCH conditional variance function is simply the conditional mean

function of the autoregressive model for .  To see this, substitute  into the ARCH conditional

variance function (10), which produces the autoregressive representation for ,

. (13)

Hence the name “ARCH.”

Finally, it can be shown that the implied unconditional distribution of even a conditionally

Gaussian ARCH process is leptokurtic (and of course conditionally fat-tailed ARCH processes are even

more unconditionally leptokurtic), and that the leptokurtosis vanishes under temporal aggregation.11  The

three key properties of ARCH processes – volatility clustering, fat-tailed unconditional distributions, and

reduction of those fat tails under temporal aggregation – match closely the properties of actual high-
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frequency financial asset returns.  Hence the ARCH process provides an appealing unification of the three

key properties – previously believed to be disparate – of financial asset return dynamics and distributions.

4.  Variations, Extensions and Applications

The ARCH idea is both simple and very powerful, and the huge and vibrant literature that it

stimulated continues its brisk pace of advance.  Here I will attempt to provide a feel for the flavor and

nuances of that literature.  Variations and extensions of the basic ARCH model are nicely intertwined with

applications, so I will discuss them simultaneously.

GARCH

Engle’s (1982) breakthrough launched a huge research program, with both theoretical and

empirical fronts.  On the theoretical front, steady progress was made on important tasks such as refining

the associated asymptotic theory, including quasi-maximum likelihood estimation and testing,

characterization of moment structure, calculation of diffusion limits, and so on.  Monte Carlo explorations

of small-sample properties of various estimators and tests also proved informative, as in Engle, Hendry and

Trumble (1985).

On the empirical front, applications were initially hindered by the fact that estimation of the

ARCH(4) model (10) is of course infeasible in practice, and simple low-ordered truncation of

invariably appeared inadequate in financial market contexts, in which volatility tends to be highly

persistent.  Hence early empirical studies often adopted high-ordered ARCH(p) models, truncated at some

point for tractability rather then realism, often with constraints on the lag weights such as linear decay,

again for tractability rather than realism.  Bollerslev’s (1986) GARCH model quickly remedied this

unfortunate situation.

To understand and appreciate GARCH, recall that ARMA processes can be viewed as

approximations to infinite-ordered autoregressive processes, in which infinite-ordered autoregressive lag

operator polynomials are approximated by ratios of low-ordered lag operator polynomials.  This is useful



12 GARCH stands for generalized ARCH.  It is actually a specialization, not a generalization, of
the ARCH(4) model (10), although it is of course a generalization of a finite-ordered ARCH process.  The
point is that although it is a specialization of (10), it is tremendously useful empirically, whereas (10) is
not.
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when modeling conditional mean dynamics in economic time series if the required autoregressive lag

operator polynomial turns out to be very high-ordered, which sometimes happens.  The accuracy of such

rational approximations, which motivates the use of ARMA processes, led to Bollerslev’s (1986) brilliant

parallel proposal for ARCH processes:  approximate the infinite-ordered ARCH autoregressive lag

operator polynomial  by the ratio of two low-ordered lag operator polynomials,  of order p, say,

and  of order q.  Doing so produces the GARCH(p,q) process,12

(14)

where  ,   GARCH is to ARCH (for

conditional variance dynamics) as ARMA is to AR (for conditional mean dynamics).  Indeed, it can be

shown that if a series  is GARCH(p,q), then  is ARMA((max(p,q), p).  Interestingly, the simple

GARCH(1,1) model,

(15)

is so often empirically adequate that it has achieved something of a canonical status.

Asymmetric Response and the Leverage Effect

Numerous alternative functional forms for the conditional variance function (14) have been

suggested, several of which allow for an asymmetric volatility response to the lagged squared innovations,

depending on their sign, so that the effect of a negative innovation on volatility may differ from that of a

positive innovation.  This allowance for asymmetric response proves useful for modeling the “leverage

effect” often observed in stock returns, in which a negative innovation boosts volatility by more than a

positive innovation of the same absolute magnitude.  Engle and Ng (1993) go much farther, with a

contribution that has subsequently found use in numerous contexts.  Instead of allowing for a single
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threshold, with differing effects on each side of zero, they allow for piecewise linear “news impact curves”

with many kinks, rather than just one kink at zero.  Visual examination of such curves often proves

revealing and is now a standard empirical tool.

Non-Gaussian Conditional Densities

It is sometimes desirable to allow for non-Gaussian conditional densities in the GARCH model,

because it is sometimes found that the Gaussian GARCH model does not explain all of the leptokurtosis in

asset returns.  That is, although conditionally Gaussian GARCH processes are unconditionally fat-tailed,

their implied unconditional densities are sometimes not fat-tailed enough to match the unconditional

distribution of actual high-frequency asset returns.  Hence various proposals have been made for allowing

for non-Gaussian conditional densities.  One of the most interesting is by Engle and González-Rivera

(1991), who propose a semiparametric methodology in which the conditional variance function is

parametrically specified and consistently estimated by quasi-ML in the usual fashion, after which the

conditional density is then estimated nonparametrically from the standardized returns.

Very High Volatility Persistence

GARCH volatility persistence is governed by the dominant root of , and roots near

unity are common in high-frequency financial data.  Thus, motivated by the 1980s research boom in

conditional-mean unit-root dynamics, Bollerslev and Engle (1986) proposed and explored a special case of

the GARCH model, the so-called integrated GARCH (IGARCH) model.  Roughly, IGARCH is to GARCH

as ARIMA is to ARMA, although there are some interesting twists (e.g., IGARCH processes remain

strictly stationary).

Although conditional variance dynamics are often empirically found to be highly persistent, it is

difficult to ascertain whether they are actually integrated.13  However, circumstantial evidence against
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IGARCH arises from consideration of temporal aggregation.  Because of the infinite unconditional second

moment of IGARCH processes, temporal aggregation does not produce unconditional normality, whereas

actual series displaying GARCH effects seem to approach normality when temporally aggregated. 

Thus began the search for richer models of highly-persistent volatility, which actively continues to

this day.  Prominently featured in the ensuing literature are models of long memory volatility, which are

covariance stationary but display persistence stronger than that achievable within the covariance stationary

GARCH class.  One route to long memory is through superposition of conventional short-memory volatility

models – that is, through multi-factor volatility models – as emphasized for example in Barndorff-Nielsen

and Shephard (2001).  Interestingly, the permanent-transitory component model of Engle and Lee (1999) –

written many years before it was eventually published – is roughly in that spirit.

Another route to long memory is completely nonparametric estimation of volatility from the high-

frequency return data that is increasingly available.  This approach, which in principle can produce

arbitrarily accurate volatility and correlation estimates, is the focus of the rapidly growing “realized

volatility” literature, surveyed by Andersen, Bollerslev and Diebold (2004).  The methods of this new

literature – and its emphasis on long memory – very much stand on the shoulders of Engle’s path-breaking

work, in this case Ding, Granger and Engle (1993), who showed clear evidence of long memory in daily

absolute returns.

Multivariate Models, Dimensionality Reduction, and Factor Structure

From the beginning, it was widely recognized that extension of the GARCH model to the

multivariate case was crucial, due to the centrality of correlation structures in financial applications.  It

took ten years of hard work for Engle and Kroner (1995) to provide a fully general treatment, with what is

now known as the BEKK model, in reference to Baba, Engle, Kraft and Kroner (Baba and Kraft made

important early contributions but eventually withdrew to pursue other interests).  The BEKK model is

useful for predicting covariance matrices in low-dimensional situations.  In all but the lowest-dimensional



14 In a diagonal model, variances depend only on own lagged variances and own lagged squared
innovations, and covariances depend only on own lagged covariances and own lagged cross products.
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situations, however, unrestricted volatility models quickly become unworkable, due to the huge number of

parameters that must be estimated by numerical optimization.  Not surprisingly, then, various strategies for

facilitating high-dimensional volatility modeling emerged at the top of the research agenda.

Initial ad hoc attempts at dimensionality reduction such as the “diagonal model” of Bollerslev,

Engle and Wooldridge (1988), although major advances at the time, ultimately proved less than fully

satisfying.14  What was needed was economic guidance for dimensionality reduction.  Factor structure,

which is at the heart of modern financial asset pricing, delivered the goods, as formalized in the “factor

GARCH” model of Bollerslev and Engle (1993).  Factor GARCH is effectively a model of cointegration in

variance, or more generally, a model of a common feature (persistence) in variance, as for example in

Engel and Susmel’s (1993) application to common volatility in international equity markets.  Note the

beautiful continuity and coherence in the sequence from integration to cointegration, to common features, to

integrated GARCH, to cointegration in variance, to co-persistence in variance.  Progress continues to be

made, as for example in Engle (2002a, 2002b).

Time-varying Risk Premia, Options Pricing, and the Value of Volatility Forecasts

When financial asset return volatility varies, one naturally suspects that time-varying risk premia

may be operative, and huge literatures have used GARCH methods to quantify and test hypotheses

concerning risk premia in stock, bond, foreign exchange, and commodities markets.  Bollerslev, Engle and

Wooldridge (1988) provide an early and important stock market application, implementing a conditional

capital asset pricing model with time-varying covariance structure, and ultimately time-varying market

betas.  In a parallel series of path-breaking bond market applications, Engle models time-varying risk

premia in the term structure of bond yields using the Engle, Lilien and Robins (1987) ARCH-in-mean

model, which allows the conditional variance of a yield also to affect its conditional mean.  Successful



15 See also Engle and Rothschild (1992).
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modeling of term premia premia promotes successful forecasting of future spot interest rates, as in Engle,

Ng and Rothschild (1990), despite the fact that forward interest rates do not provide good forecasts

(precisely because of the time-varying risk premia).15  Finally, GARCH perspectives also produce very

general approaches to empirical asset pricing, as with the empirical pricing kernels of Engle and Rosenberg

(2002).

GARCH methods prove useful not only for spot asset pricing, but also for derivative asset pricing;

indeed, the impressive cross-fertilization between GARCH econometrics and asset pricing is even more

pronounced in options contexts.  The key object in option pricing is a forecast of the underlying asset’s

volatility path over the course of the option’s life.  This suggests that GARCH models should be useful for

improved pricing of options and related derivative products, and subsequent research supports that

conjecture.  One strand of literature (e.g., Engle, Hong, Kane and Noh, 1993; Engle, Kane and Noh, 1994),

compares the returns on options-based trading strategies implemented using GARCH volatility forecasts to

those from strategies implemented using alternative volatility forecasts.  The results generally indicate

superior risk-adjusted returns from the GARCH-based strategies, implying superiority of the GARCH

volatility forecasts under a highly-relevant loss function.

Another strand of the literature examines not the GARCH pricing of options portfolios, but rather

the complementary issue of GARCH hedging of options portfolios, with similar success.  For example,

Engle and Rosenberg (1995, 2000) show that delta-gamma hedging of options (using GARCH gamma)

outperforms traditional delta hedging, both in simple situations involving a single maturity of fluctuating

volatility, and in more complicated situations involving complex fluctuations of the entire volatility term

structure.

Finally, although the discussion thus far has focused on using GARCH econometrics for superior
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results in financial markets, one can reverse direction, using financial markets for potentially improved

GARCH econometrics, an idea that has also met with success.  For example, Engle and Mustafa (1992)

develop an estimation procedure for GARCH models in the spirit of indirect inference, proceeding by

finding the GARCH parameters that make implied model-based options prices maximally close to observed

market options prices.

Financial Market Microstructure

A central concern in international finance is the cross-market transmission of shocks.  The

volatility models pioneered by Engle facilitate the study of cross-market transmission of volatility shocks. 

In an important series of papers that memorably phrase the question in terms of “heat waves vs. meteor

showers,” Engle investigates whether volatility bursts tend to stay in one place as the earth turns (like a

heat wave) or whether they tend to move across the earth from market to market (like the appearance of a

meteor shower), documenting strong volatility spillovers across international equity markets (e.g., Engle,

Ito and Lin, 1990, 1992, 1994; Engle and Susmel, 1994).

Focus on cross-market volatility interactions in the world economy leads naturally to consideration

of cross-asset interactions in a single market, such as individual stocks on an exchange, which, particularly

when one approaches the transactions level, raises a host of important questions in the general area of

financial market microstructure.  In addition, when one considers that transactions data are now quite

commonly available due to improvements in electronic markets, data processing, and data storage, it is easy

to understand the recent explosion of interest in the analysis of ultra-high-frequency return data and its

links to microstructural concerns.  Not surprisingly, Engle has also led this charge, producing important

tools for analyzing irregularly-spaced transactions data, with emphasis on modeling and forecasting intra-

quote and intra-trade durations, quote-trade linkages, price impacts of trades, and market depth.  

Engle and Russell (1998) provide a key contribution, the autoregressive conditional duration



16 See also Engle and Russell (1997), Engle (2000), and Engle and Russell (2004).

17 Subsequent and important work includes extensions to modeling the bivariate point process of
trades and quotes, as in Engle and Lunde (2003) and Engle and Patton (2004), and related analyses of
aspects of liquidity, including market depth and the price impacts of trades, as in Engle and Lange (2001)
and Dufour and Engle (2000).
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(ACD) model.16,17  The ACD model assumes Poisson transactions arrivals, in which the Poisson intensity

rate varies in an autoregressive fashion.  Maximum likelihood estimation of the model is readily achieved

by prediction-error decomposition of the likelihood, precisely as with the GARCH model.  As subsequently

became clear, moreover, the ACD and GARCH models are related in much more than the mere mechanics

of estimation.  In particular, the persistence of the time-varying ACD transaction arrival intensity produces

transactions clustering, which corresponds to volatility clustering in calendar time.  Roughly speaking,

then, ACD duration clustering in transaction time corresponds to ARCH volatility clustering in calendar

time!

5.  Epilogue

In the past forty years, time-series econometrics developed from infancy to relative maturity.  A

significant part of that development is due to Robert F. Engle, whose rigorous yet immensely practical

work is distinguished by exceptional creativity in empirical dynamic modeling, particularly volatility

modeling in financial contexts.  Engle’s contributions spawned a huge amount of additional work – indeed

they spawned new literatures, both theoretical and applied – with contributions not only by leading

established econometricians worldwide, but also by a large army of Engle’s graduate students, a list of

whom now reads like a who’s who in the younger generation of time-series econometricians.  Engle’s

contributions form a key pillar of a new discipline, financial econometrics, which is now taught routinely in

economics departments and business schools worldwide, and they have been spectacularly successful in

bridging academics and industry, influencing modern asset pricing, portfolio allocation, and risk

management.
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The Nobel Memorial Prize for Engle and Granger is a long-awaited and well-deserved prize for

time-series econometrics in general – appropriately paralleling the earlier Heckman-McFadden prize for

microeconometrics – and for two of its most important contributions in particular:  models of volatility

(ARCH) and common trends (cointegration).  Of crucial importance is the fact that the Engle-Granger

prize, like the Heckman-McFadden prize, is a prize for economic research that is not only scientifically

path-breaking, but also of great and immediate practical relevance.  It is no exaggeration to assert that

millions of people, worldwide, have been made better off by the work of Robert F. Engle and Clive W.J.

Granger.
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