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Abstract

For games of public reputation with uncertainty over types and
imperfect public monitoring, Cripps, Mailath, and Samuelson (2004)
showed that an informed player facing short-lived uninformed oppo-
nents cannot maintain a permanent reputation for playing a strategy
that is not part of an equilibrium of the game without uncertainty
over types. This paper extends that result to games in which the unin-
formed player is long-lived and has private beliefs, so that the informed
player�s reputation is private.
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1 Introduction

Reputation games capture settings in which a long-lived player bene�ts from
the perception that her characteristics may be di¤erent than they actually
are. Reputation e¤ects arise most cleanly when a long-lived player faces
a sequence of short-lived players who believe the long-lived player might
be committed to the stage-game �Stackelberg� action. In such a setting,
the Stackelberg payo¤ provides a lower bound on the long-lived player�s
average payo¤, provided she is su¢ ciently patient (Fudenberg and Levine
(1989), Fudenberg and Levine (1992)). In an earlier paper (Cripps, Mailath,
and Samuelson (2004)), we showed that if monitoring is imperfect and the
reputation of the long-lived player is public, meaning that the public signals
allow the long-lived player to infer the short-lived players�beliefs about the
long-lived player�s type, then reputation e¤ects disappear. Almost surely,
the short-lived player eventually learns the type of the long-lived player.

Many long-run relationships involve two (or more) long-lived players.
Reputation e¤ects arise in this setting as well, and can be more powerful
than when the uninformed player is short-lived. Intertemporal incentives can
induce the uninformed agent to choose actions even more advantageous to
the informed long-lived player than the myopic best reply to the Stackelberg
action (Celentani, Fudenberg, Levine, and Pesendorfer (1996)).

In this paper, we show that reputations also disappear when the unin-
formed player is long-lived.1 When considering long-lived uninformed play-
ers, it is natural for the analysis to encompass private reputations: the
actions of both players are not only imperfectly monitored, but the moni-
toring need not have the special structure required for the informed player
to infer the uninformed player�s beliefs. Instead, the uninformed player�s
beliefs depend critically on her own past actions, which the informed player
cannot observe.2

In our analysis, the long-lived informed player (player 1) may be a
commitment type that plays an exogenously speci�ed strategy or a nor-
mal type that maximizes expected payo¤s. We show that if the commit-
ment strategy is not an equilibrium strategy for the normal type in the

1Cripps, Mailath, and Samuelson (2004, Theorem 6) is a partial result for the case of a
long-lived uninformed player whose beliefs are public. That result is unsatisfactory in that
it imposes a condition on the behavior of the long-lived uninformed player in equilibrium.
See footnote 4 for more details.

2For example, the inferences a �rm draws from market prices may depend upon the
�rm�s output choices, which others do not observe. Because private reputations arise when
the uninformed player observes his own past actions, they occur most naturally with a
single, long-lived uninformed player rather than a sequence of short-lived players.
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complete-information game, then in any Nash equilibrium of the incomplete-
information repeated game, almost surely the uninformed player (player 2)
will learn that a normal long-lived player is indeed normal. Thus, a long-
lived player cannot inde�nitely maintain a reputation for behavior that is
not credible given her type.

Establishig such a result for the case of public reputations and short-
lived uninformed players is relatively straightforward (Cripps, Mailath, and
Samuelson (2004)). Since monitoring is imperfect, deviations from equilib-
rium play by player 1 cannot be unambiguously detected by player 2, pre-
cluding the trigger-strategy equilibria that support permanent reputations
in perfect-monitoring games. Instead, the long-run convergence of beliefs
ensures that eventually any current signal of play has an arbitrarily small
e¤ect on player 2�s beliefs. When reputations are public, player 1 eventually
knows that player 1�s beliefs have nearly converged and hence that play-
ing di¤erently from the commitment strategy will incur virtually no cost in
terms of altered beliefs. But the long-run e¤ect of many such deviations
from the commitment strategy would be to drive the equilibrium to full rev-
elation. Public reputations can thus be maintained only in the absence of
incentives to indulge in such deviations, that is, only if the reputation is for
behavior that is part of an equilibrium of the complete-information game
corresponding to the long-lived player�s type.

The situation is more complicated in the private-reputation case, where
player 2�s beliefs are not known by player 1. Now, player 1 may not know
when deviations from the commitment strategy have relatively little e¤ect on
beliefs and hence are relatively costless. Making the leap from the preceding
intuition to our main result thus requires showing that there is a set of
histories under which player 2�s beliefs have nearly converged, and that
player 1 is eventually relatively certain player 2 has such beliefs.

In general, one cannot expect player 1�s beliefs about player 2�s beliefs
to be very accurate when the latter depend on private histories. A key step
in our proof is to show that whenever player 2�s private history induces him
to act as if he is convinced of some important characteristic of player 1,
eventually player 1 must become convinced that such a private history did
indeed occur. In particular, if this private history ensured that player 2 is
almost convinced that he faces a commitment type, and acts on this belief,
then this eventually becomes known to player 1.

As in the case where player 1�s reputation is public, the impermanence of
reputation also arises at the behavioral level. Asymptotically, continuation
play in every Nash equilibrium is a correlated equilibrium of the complete-
information game.
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For expositional clarity, this paper considers a long-lived informed player
who can be one of two possible types� a commitment and a normal type�
facing a single long-lived uninformed player, in a game of imperfect public
monitoring. The argument of Cripps, Mailath, and Samuelson (2004, Section
6.1) can be used to extend our results to many possible commitment types.
The �nal section of this paper explains how our results can be extended to
the case of private monitoring (where reputations are necessarily private).

Our analysis subsumes a private-reputation model with a sequence of
short-lived uninformed players. In several places, the arguments for the
latter case are simpler and considerably more revealing, primarily because we
can then restrict attention to simpler commitment strategies. Accordingly,
where appropriate, we give the simpler argument for short-lived uninformed
players as well as the more involved argument for the long-lived uninformed
player.

2 The Complete-Information Game

We begin with an in�nitely repeated game with imperfect public monitoring.
The stage game is a two-player simultaneous-move �nite game of public
monitoring. Player 1 chooses an action i 2 f1; 2; :::; Ig � I and player 2
chooses an action j 2 f1; 2; :::; Jg � J . The public signal, y, is drawn
from the �nite set Y . The probability that y is realized under the action
pro�le (i; j) is given by �yij . The ex post stage-game payo¤ to player 1
(respectively, 2) from the action i (resp., j) and signal y is given by f1(i; y)
(resp., f2(j; y)). The ex ante stage game payo¤s are �1 (i; j) =

P
y f1 (i; y) �

y
ij

and �2 (i; j) =
P
y f2 (j; y) �

y
ij .

We assume the public signals have full support (Assumption 1), so every
signal y is possible after any action pro�le. We also assume that with suf-
�ciently many observations, either player can correctly identify, from the
frequencies of the signals, any �xed stage-game action of their opponent
(Assumptions 2 and 3).

Assumption 1 (Full Support) �yij > 0 for all (i; j) 2 I � J and y 2 Y .

Assumption 2 (Identification of 1) For all j 2 J , the I columns in
the matrix (�yij)y2Y;i2I are linearly independent.

Assumption 3 (Identification of 2) For all i 2 I, the J columns in
the matrix (�yij)y2Y;j2J are linearly independent.



March 1, 2004 4

The stage game is in�nitely repeated. Player 1 (�she�) is a long-lived
player with discount factor �1 < 1. Player 2 (�he�) is either short-lived,
in which case a new player 2 appears in each period, or is also long-lived,
in which case player 2�s discount factor �2 may di¤er from �1. Each player
observes the realizations of the public signal and his or her own past actions.
(If player 2 is short-lived, he observes the actions chosen by the previous
player 2�s). Player 1 in period t thus has a private history, consisting of the
public signals and her own past actions, denoted by h1t � ((i0; y0); (i1; y1);
: : : ; (it�1; yt�1)) 2 H1t � (I � Y )t. Similarly, a private history for player 2
is denoted h2t � ((j0; y0); (j1; y1); : : : ; (jt�1; yt�1)) 2 H2t � (J � Y )t. The
public history observed by both players is the sequence (y0; y1; : : : ; yt�1) 2
Y t. The �ltration on (I�J�Y )1 induced by the private histories of player
` = 1; 2 is denoted fH`tg1t=0, while the �ltration induced by the public
histories (y0; y1; :::; yt�1) is denoted fHtg1t=0.

In Cripps, Mailath, and Samuelson (2004), we assumed that the public
signal included player 2�s action. This ensures that player 1 knows every-
thing player 2 does, including player 2�s beliefs. Here, only player 2 observes
his action, breaking the link between 2�s beliefs and 1�s beliefs about those
beliefs.

The long-lived players�payo¤s in the in�nite horizon game are the av-
eraged discounted sum of stage-game payo¤s, (1� �`)

P1
�=0 �

�
`�`(i� ; j� ) for

` = 1; 2. The random variable �`t denotes average discounted payo¤s in
period t,

�`t � (1� �`)
1X
�=t

���t` �`(i� ; j� ): (1)

If player 2 is short-lived, the period-t player 2 has payo¤s �2(it; jt).
A behavior strategy for player 1 (respectively, 2) is a map, �1 : [1t=0H1t !

�I (resp., �2 : [1t=0H2t ! �J), from all private histories to the set of distri-
butions over current actions. For ` = 1; 2, �` de�nes a sequence of functions
f�`tg1t=0 with �1t : H1t ! �I and �2t : H2t ! �J . Each function �`t denotes
the tth period behavior strategy of �`. The strategy pro�le � = (�1; �2) in-
duces a probability distribution P � over (I � J � Y )1. Let E�[ � j H`t]
denote player `�s expectations with respect to this distribution conditional
on H`t.

A Nash equilibrium for the case of two long-lived players requires player
`�s strategy to maximize the expected value of �`0, the discounted value of
payo¤s in period zero:

De�nition 1 A Nash equilibrium of the complete-information game with
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a long-lived player 2 is a strategy pro�le � = (�1; �2) such that E�[�10] �
E(�

0
1;�2)[�10] for all �01 and E

�[�20] � E(�1;�
0
2)[�20] for all �02.

This requires that under the equilibrium pro�le, player `�s strategy max-
imizes continuation expected utility after any positive-probability history.
For example, for player 1, E�[�1tjH1t] � E(�

0
1;�2)[�1tjH1t] P �-almost surely

for all �01 and all t. The assumption of full-support monitoring ensures that
all histories of public signals occur with positive probability, and hence must
be followed by optimal behavior in any Nash equilibrium (with long-lived
or short-lived player 2�s, and complete or incomplete information). Con-
sequently, any Nash equilibrium outcome is also the outcome of a perfect
Bayesian equilibrium.

For future reference, when player 2 is long-lived,

BRL(�1) � f�2 : E�[�20] � E(�1;�
0
2)[�20] 8�02g

is the set of player 2�s best replies to �1 in the game with complete infor-
mation.

When player 2 is short-lived, in equilibrium, player 2 plays a best re-
sponse after every equilibrium history. Player 2�s strategy �2 is then a best
response to �1 if, for all t,

E�[ �2(it; jt) j H2t] � E�[ �2(it; j) j H2t]; 8j 2 J P �-a.s.

Denote the set of such best responses by BRS(�1). The de�nition of a Nash
equilibrium for this case is:

De�nition 2 A Nash equilibrium of the complete-information game with
a short-lived player 2 is a strategy pro�le � = (�1; �2) such that E�[�10] �
E(�

0
1;�2)[�10] for all �01 and �2 2 BRS(�1).

3 The Incomplete-Information Game: Disappear-
ing Reputations

We now perturb the complete-information game by introducing incomplete
information about the type of player 1. At time t = �1, Nature selects a
type of player 1. With probability 1 � p0 > 0, she is the �normal� type,
denoted by n and with the preferences described above, who plays a repeated
game strategy ~�1. With probability p0 > 0, she is a �commitment� type,
denoted by c, who plays the repeated game strategy �̂1.
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A state of the world in the incomplete information game, !, is a type
for player 1 and sequence of actions and signals. The set of states is 
 �
fn; cg � (I � J � Y )1. The prior p0, the commitment strategy �̂1, and
the strategy pro�le ~� = (~�1; �2), jointly induce a probability measure P
on 
, which describes how an uninformed player expects play to evolve.
The strategy pro�le �̂ = (�̂1; �2) (respectively, ~� = (~�1; �2)) determines a
probability measure P̂ (resp., ~P ) on 
, which describes how play evolves
when player 1 is the commitment (resp., normal) type. Since ~P and P̂
are absolutely continuous with respect to P , any statement that holds P -
almost surely, also holds ~P - and P̂ -almost surely. We use E(~�1;�̂1;�2)[ � ]
to denote expectations taken with respect to the measure P . This will
usually be abbreviated to E[ � ] except where it is important to emphasize
the dependence on the strategies. Also, where appropriate, we use ~E[ � ] and
Ê[ � ] to denote the expectations taken with respect to ~P and P̂ instead of
E(~�1;�2)[ � ] and E(�̂1;�2)[ � ]. The �ltrations fH`tg1t=0 and fHtg1t=0 will be
viewed as �ltrations on 
 in the obvious way.

The normal type of player 1 has the same objective function as in the
complete-information game. Player 2, on the other hand, uses the informa-
tion he has acquired from his time t private history to update his beliefs
about player 1�s type and actions, and then maximizes expected payo¤s.
Player 2�s posterior belief in period t that player 1 is the commitment type
is the H2t-measurable random variable P (cjH2t) � pt : 
 ! [0; 1]. By
Assumption 1, Bayes�rule determines this posterior after all histories. At
any Nash equilibrium of this game, the belief pt is a bounded martingale
with respect to the �ltration fH2tgt and measure P . It therefore converges
P -almost surely (and hence ~P - and P̂ -almost surely) to a random vari-
able p1 de�ned on 
. Furthermore, at any equilibrium the posterior pt is
a P̂ -submartingale and a ~P -supermartingale with respect to the �ltration
fH2tgt.

3.1 Uninformed Player is Short-Lived

When player 2 is short-lived, and we are interested in the lower bounds
on player 1�s ex ante payo¤s that arise from the existence of �Stackelberg�
commitment types (as in Fudenberg and Levine (1992)), it su¢ ces to con-
sider commitment types who follow �simple�strategies. Consequently, when
player 2 is short-lived, we assume �̂1 speci�es the same (possibly mixed) ac-
tion &1 2 �I in each period independent of history (cf. De�nition 4 below).

If &1 is part of a stage-game equilibrium, reputations need not disappear�
we need only consider an equilibrium in which the normal and commitment
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type both player &1, and player 2 plays his part of the corresponding equi-
librium. We are interested in commitment types who play a strategy that
is not part of a stage-game equilibrium:3

Assumption 4 (Non-Credible Commitment) Player 2 has a unique
best reply to &1 (denoted &2) and & � (&1; &2) is not a stage-game Nash
equilibrium.

Since &2 is the unique best response to &1, &2 is pure and BRS(�̂1) is
the singleton f�̂2g, where �̂2 is the strategy of playing &2 in every period.
Assumption 4 implies that (�̂1; �̂2) is not a Nash equilibrium of the complete-
information in�nite horizon game.

De�nition 3 A Nash equilibrium of the incomplete-information game with
short-lived uninformed players is a strategy pro�le (~�1; �2) such that for all
�01, j 2 J and t = 0; 1; :::,

~E [�10] � E(�
0
1;�2) [�10] ; and

E[ �2(it; jt) j H2t] � E[ �2(it; j) j H2t]; P�a:s:

Our main result, for short-lived uninformed players, is that reputations
for non-equilibrium behavior are temporary:

Theorem 1 Suppose the monitoring distribution � satis�es Assumptions 1,
2, and 3 and the commitment action &1 satis�es Assumption 4. In any Nash
equilibrium of the incomplete-information game with short-lived uninformed
players, pt ! 0 ~P -almost surely.

3.2 Uninformed Player is Long-Lived

When player 2 is long-lived, non-simple Stackelberg types may give rise to
higher lower bounds on player 1�s payo¤ than do simple types. We accord-
ingly introduce a richer set of possible commitment types, allowing arbitrary
public strategies.

De�nition 4 (1) A behavior strategy �`, ` = 1; 2, is public if it is measur-
able with respect to the �ltration induced by the public signals, fHtgt.
(2) A behavior strategy �`, ` = 1; 2, is simple if it is a constant function.

3 If player 2 has multiple best responses, it is possible to construct equilibria of the
complete information game in which player 1 always plays &1 in each period, irrespective
of history, even if &1 is not part of a stage-game equilibrium (for an example, see Cripps,
Mailath, and Samuelson (2004, Section 2)).
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A public strategy induces a mixture over actions in each period that only
depends on public histories. Any pure strategy is realization equivalent to a
public strategy. Simple strategies, which we associated with the commitment
type in Section 3.1, play the same mixture over stage-game actions in each
period, and hence are trivially public.

Allowing the commitment type to play any public strategy necessitates
imposing the noncredibility requirement directly on the in�nitely repeated
game of complete information. Mimicking Assumption 4, we require that (i)
player 2�s best response �̂2 be unique on the equilibrium path and (ii) there
exists a �nite time T o such that, for every t > T o, a normal player 1 would
almost surely want to deviate from �̂1, given player 2�s best response. That
is, there is a period-t continuation strategy for player 1 that strictly increases
her utility. A strategy �̂1 satisfying these criteria at least eventually loses
its credibility, and hence is said to have �no long-run credibility.�

De�nition 5 The strategy �̂1 has no long-run credibility if there exists T o

and "o > 0 such that, for every t � T o,
(1) �̂2 2 BRL(�̂1) implies that with P (�̂1;�̂2)-probability one, �̂2t is pure

and
E�̂ [ �2t j H2t ] > E(�̂1;�

0
2) [ �2t j H2t ] + "o;

for all �02 attaching probability zero to the action played by �̂2t(h2t) after
P (�̂1;�̂2)-almost all h2t 2 H2t, and

(2) there exists ~�1 such that, for �̂2 2 BRL(�̂1), P (�̂1;�̂2)-almost surely,

E(~�1;�̂2) [ �1t j H1t ] > E�̂ [ �1t j H1t ] + "o:

This de�nition captures the two main features of Assumption 4, a unique
best response and absence of equilibrium, in a dynamic setting. In partic-
ular, the stage-game action of any simple strategy satisfying De�nition 5
satis�es Assumption 4. In assuming the best response is unique, we need
to avoid the possibility that there are multiple best responses to the com-
mitment action �in the limit� (as t gets large). We do so by imposing a
uniformity condition in De�nition 5.1, that inferior responses reduce payo¤s
by at least "o.4 The condition on the absence of equilibrium in De�nition

4Cripps, Mailath, and Samuelson (2004) show that reputations disappear when the
commitment strategy satis�es the second, but not necessarily the �rst, condition (such a
strategy was said to be never an equilibrium strategy in the long run). However, that result
also requires the commitment strategy to be implementable by a �nite automaton, and
more problematically, the result itself imposed a condition on the behavior of player 2 in the
equilibrium of the game with incomplete information. We do neither here. Consequently,
unlike our earlier paper, the long-lived player result implies the result for short-lived
players.
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5.2 similarly ensures that for all large t, player 1 can strictly improve on the
commitment action. Again it is necessary to impose uniformity to avoid the
possibility of an equilibrium in the limit.

Any �̂1 that does not satisfy De�nition 5 must have (at least in the
limit) periods and histories where, given player 2 is best responding to �̂1,
player 1 prefers to stick to her commitment. In other words, �̂1 is a credible
commitment, in the limit, at least some of the time.

Equilibrium when the uninformed player is long-lived is:

De�nition 6 A Nash equilibrium of the incomplete-information game with
a long-lived uninformed player is a strategy pro�le (~�1; �2) such that,

~E [�10] � E(�
0
1;�2) [�10] ; 8�01; and

E[�20] � E(~�1;�̂1;�
0
2)[�20]; 8�02:

Our result for games where player 2 is long-lived, which implies Theorem
1, is:

Theorem 2 Suppose � satis�es Assumptions 1, 2, and 3, and that the com-
mitment type�s strategy �̂1 is public and has no long run credibility. Then
in any Nash equilibrium of the game with incomplete information, pt ! 0
~P -almost surely.

3.3 Asymptotic Equilibrium Play

The impermanence of reputations has implications for behavior as well as
beliefs. In the limit, the normal type of player 1 and player 2 play a corre-
lated equilibrium of the complete-information game. Hence, di¤erences in
the players�beliefs about how play will continue vanish in the limit. This
is stronger than the convergence to subjective equilibria obtained by Kalai
and Lehrer (1995, Corollary 4.4.1),5 though with stronger assumptions.

We present the result for the case of a long-run player 2, since only
straightforward modi�cations are required (imposing the appropriate op-
timality conditions period-by-period) to address short-run player 2�s. To
begin, we describe some notation for the correlated equilibrium of the re-
peated game with imperfect monitoring. We use the term period -t continua-

5 In a subjective correlated equilibrium, the measure in (2) can di¤er from the measure
in (3).
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tion game for the game with initial period in period t.6 We use the notation
t0 = 0; 1; 2; ::: for a period of play in a continuation game (which may be the
original game) and t for the time elapsed prior to the start of the period-t
continuation game. A pure strategy for player 1, s1, is a sequence of maps
s1t0 : H1t0 ! I for t0 = 0; 1; : : :.7 Thus, s1t0 2 IH1t0 and s1 2 I[t0H1t0 � S1,
and similarly s2 2 S2 � J[t0H2t0 . The spaces S1 and S2 are countable
products of �nite sets. We equip the product space S � S1 � S2 with the
�-algebra generated by the cylinder sets, denoted by S. Denote the players�
payo¤s in the in�nitely repeated game (as a function of these pure strategies)
as follows

u1(s1; s2) � E(s1;s2)[ �10 ]; and

u2(s1; s2) � E(s1;s2)[ �20 ]:

The expectation above is taken over the action pairs (it0 ; jt0). These are
random, given the pure strategy pro�le (s1; s2), because the pure action
played in period t depends upon the random public signals.

We follow Hart and Schmeidler (1989) in using the ex ante de�nition of
correlated equilibria for in�nite pure-strategy sets:

De�nition 7 A correlated equilibrium of the complete-information game is
a measure � on (S;S) such that for all S-measurable functions �1 : S1 ! S1
and �2 : S2 ! S2,Z

S
[u1(s1; s2)� u1(�1(s1); s2)]d� � 0; and (2)Z

S
[u2(s1; s2)� u2(s1; �2(s2))]d� � 0: (3)

Let M denote the space of probability measures � on (S;S), equipped
with the product topology. Then, a sequence �n converges to � if, for each
� � 0, we have

�njI(I�Y )��J(J�Y )� ! �jI(I�Y )��J(J�Y )� :
6Since a strategy pro�le of the original game induces a probability distribution over

t-period histories, H1t �H2t, we can view the period t continuation, together with a type
space H1t�H2t and induced distribution on that type space, as a Bayesian game. Di¤erent
strategy pro�les in the original game induce di¤erent distributions over the type space in
the continuation game.

7Recall that �1 denotes general behavior strategies.
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Moreover,M is sequentially compact with this topology. Payo¤s for players
1 and 2 are extended to M in the obvious way. Since payo¤s are dis-
counted, the product topology is strong enough to guarantee continuity of
u` :M!R. The set of mixed strategies for player ` is denoted byM`.

Fix an equilibrium of the incomplete-information game with imperfect
monitoring. When player 1 is the normal (respectively, commitment) type,
the monitoring technology and the behavior strategies (~�1; �2) (resp., (�̂1; �2))
induce a probability measure ~�t (resp., �̂t) on the t-period histories (h1t; h2t) 2
H1t�H2t. If the normal type of player 1 observes a private history h1t 2 H1t,
her strategy, ~�1, speci�es a behavior strategy in the period-t continuation
game. This behavior strategy is realization equivalent to a mixed strat-

egy ~�
h1t 2 M1 for the period-t continuation game. Similarly, the commit-

ment type will play a mixed strategy �̂
h1t 2 M1 for the continuation game

and player 2 will form his posterior pt(h2t) and play the mixed strategy
�h2t 2M2 in the continuation game. Conditional on player 1 being normal,

the composition of the probability measure ~�t and the measures (~�
h1t
; �h2t)

induces a joint probability measure, ~�t, on the pure strategies in the con-
tinuation game and player 2�s posterior (the space S � [0; 1]). Similarly,
conditional upon player 1 being the commitment type, there is a measure
�̂t on S � [0; 1]. Let ~�t denote the marginal of ~�t on S and �̂t denote the
marginal of �̂t on S.

At the �xed equilibrium, the normal type is playing in an optimal way
from time t onwards given her available information. This implies that for
all S-measurable functions �1 : S1 ! S1,Z

S
u1(s1; s2)d~�t �

Z
S
u1(�1(s1); s2)d~�t: (4)

Let S � B denote the product �-algebra on S � [0; 1] generated by S on S
and the Borel �-algebra on [0; 1]. Player 2 is also playing optimally from
time t onwards, which implies that for all S � B-measurable functions �2 :
S2 � [0; 1]! S2,Z
S�[0;1]

u2(s1; s2)d(p0�̂t+(1�p0)~�t) �
Z
S�[0;1]

u2(s1; �2(s2; pt))d(p0�̂t+(1�p0)~�t):

(5)
If we had metrizedM, a natural formalization of the idea that asymp-

totically, the normal type and player 2 are playing a correlated equilibrium
is that the distance between the set of correlated equilibria and the induced
equilibrium distributions ~�t on S goes to zero. While M is metrizable, a
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simpler and equivalent formulation is that the limit of every convergent sub-
sequence of f~�tg is a correlated equilibrium. This equivalence is an implica-
tion of the fact thatM is sequentially compact, and hence every subsequence
of f~�tg has a convergent sub-subsequence. The proof of the following is in
the Appendix:

Theorem 3 Fix a Nash equilibrium of the incomplete-information game
and suppose pt ! 0 ~P -almost surely. Let ~�t denote the distribution on S
induced in period t by the Nash equilibrium. The limit of every convergent
subsequence of f~�tg is a correlated equilibrium of the complete-information
game.

Since players have access to a coordination device, namely histories,
in general it is not true that Nash equilibrium play of the incomplete-
information game eventually looks like Nash equilibrium play of the complete-
information game.8

Suppose the Stackelberg payo¤ is not a correlated equilibrium payo¤ of
the complete-information game. Recall that Fudenberg and Levine (1992)
provide a lower bound on equilibrium payo¤s in the incomplete-information
game (with short-run players) of the following type: Fix the prior proba-
bility of the Stackelberg (commitment) type. Then, there is a value for the
discount factor, ��, such that if �1 > ��, then in every Nash equilibrium, the
long-lived player�s ex ante payo¤ is essentially no less than the Stackelberg
payo¤. The reconciliation of this result with Theorem 3 lies in the order
of quanti�ers: while Fudenberg and Levine (1992) �x the prior, p0, and
then select �� (p0) large (with �� (p0) ! 1 as p0 ! 0), we �x �1 and examine
asymptotic play, so that eventually pt is su¢ ciently small that �1 < �� (pt).

4 Proofs of Theorems 1 and 2

The short-lived uninformed player case is a special case of the long-lived
player case. However, the proof for the long-lived uninformed player is
quite complicated, while the short-lived player case illustrates many of the
issues in a simpler setting. In what follows, references to the incomplete

8We do not know if Nash equilibrium play in the incomplete-information game even-
tually looks like a public randomization over Nash equilibrium play in the complete-
information game. As far as we are aware, it is also not known whether the result of
Fudenberg and Levine (1994, Theorem 6.1, part (iii)) extends to correlated equilibrium.
That is, for moral hazard mixing games and for large �, is it true that the long-run player�s
maximum correlated equilibrium payo¤ is lower than when monitoring is perfect?
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information game without further quali�cation refer to the game with the
long-lived uninformed player, and so the discussion also covers short-lived
uninformed players (where �̂1(hs) = &1 for all hs). Whenever it is helpful,
however, we also give informative simpler arguments for the case of short-
lived uninformed players.

The basic strategy of our proof is to show that if player 2 is not eventually
convinced that player 1 is normal, then he must be convinced that player
1 is playing like the commitment type (Lemma 1) and hence player 2 plays
a best response to the latter. Our earlier paper proceeded by arguing that
the normal type then has an incentive to deviate from the commitment
strategy (since the latter has no long-run credibility), which forms the basis
for a contradiction (with player 2�s belief that the two types of player 1 are
playing identically). The di¢ culty in applying this argument in our current
setting is that player 1 needs to know player 2�s private history h2t in order
to predict 2�s period-t beliefs and hence behavior. Unfortunately, player 1
knows only her own private history h1t. Our argument thus requires showing
that player 1 eventually �almost�knows the relevant features of player 2�s
history.

4.1 Player 2�s Posterior Beliefs

The �rst step is to show that either player 2�s expectation (given his private
history) of the strategy played by the normal type is, in the limit, identical
to his expectation of the strategy played by the commitment type, or player
2�s posterior probability that player 1 is the commitment type converges to
zero (given that player 1 is indeed normal). This is an extension of a familiar
merging-style argument to the case of imperfect monitoring. If, for a given
private history for player 2, the distributions generating his observations are
di¤erent for the normal and commitment types, then he will be updating his
posterior, continuing to do so as the posterior approaches zero. His posterior
converges to something strictly positive only if the distributions generating
these observations are in the limit identical for each private history.

The proof of Lemma 1 in Cripps, Mailath, and Samuelson (2004) applies
to the current setting without change:

Lemma 1 Suppose Assumptions 1 and 2 are satis�ed and �̂1 is public. In
any Nash equilibrium of the game with incomplete information,9

lim
t!1

pt(1� pt)
�̂1t � ~E[ ~�1t j H2t ]

 = 0; P -a.s. (6)

9We use kxk to denote the sup-norm on RI .
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Condition (6) says that almost surely either player 2�s best prediction
of the normal type�s behavior at the current stage is arbitrarily close to
his best prediction of the commitment type�s behavior (that is, k�̂1t �
~E[ ~�1t j H2t ] k ! 0), or the type is revealed (that is, pt(1 � pt) ! 0).
However, lim pt < 1 ~P -almost surely, and hence (6) implies a simple corol-
lary:

Corollary 1 Suppose Assumptions 1 and 2 are satis�ed and �̂1 is public.
In any Nash equilibrium of the game with incomplete information,

lim
t!1

pt

�̂1t � ~E[ ~�1t j H2t ]
 = 0; ~P -a.s.

4.2 Player 2�s Beliefs about his Future Behavior

We now examine the consequences of the existence of a ~P -positive measure
set of states on which reputations do not disappear, i.e., limt!1 pt(!) > 0.
The normal and the commitment types eventually play the same strategy
on these states (Lemma 1). Consequently, we can show that on a positive
probability subset of these states, player 2 eventually attaches high proba-
bility to the event that in all future periods he will play a best response to
the commitment type.

As �̂1 is public, player 2 has a best response to �̂1 that is also public.
Moreover, this best response is unique on the equilibrium path for all t >
T o (by De�nition 5). We let j�(ht) denote the action that is the pure
best-response after the public history ht, for all t > T o. Note that j�(ht)
is Ht-measurable. The event that player 2 plays a best response to the
commitment strategy in all periods after t > T o is then de�ned as

Got � f! : �
j�(hs(!))
2s (h2s(!)) = 1;8s � t g;

where hs(!) (respectively, h2s(!)) is the s-period public (resp., 2�s private)
history of !.

When the uninformed players are short-lived, �̂1 is simple and player 2
has a unique best reply, BRS(&1) = f&2g, so

Got = f! : �2s(h2s(!)) = &2;8s � tg :

With this in hand we can show that if player 2 does not eventually learn
that player 1 is normal, then he eventually attaches high probability to
thereafter playing a best response to the commitment type:
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Lemma 2 Suppose the hypotheses of Theorem 2 hold,10 and suppose there
is a Nash equilibrium in which reputations do not necessarily disappear, i.e.,
~P (A) > 0, where A � fpt 9 0g. There exists � > 0 and F � A, with
~P (F ) > 0, such that, for any � > 0, there exists T for which, on F ,

pt > �; 8t � T;

and
~P (Got j H2t) > 1� �; 8t � T: (7)

Proof. Since ~P (A) > 0 and pt converges almost surely, there exists
� > 0 and � > 0 such that ~P (D) > 2�, where D � f! : limt!1 pt(!) > 2�g.
The random variables k�̂1s � ~E[~�1tjH2t]k tend ~P -almost surely to zero on
D (by Corollary 1). Consequently, the random variables Zt � sups�t k�̂1s�
~E[~�1sjH2s]k also converge ~P -almost surely to zero on D. Thus, from Hart
(1985, Lemma 4.24), ~E[1DZt j H2t] converge almost surely to zero, where
1D is the indicator for the event D. De�ne At � f! : ~E[1D j H2t](!) > 1

2g.
The H2t-measurable event At approximates D (because player 2 knows his
own beliefs, the random variables dt � j1D � 1At j converge ~P -almost surely
to zero). Hence

1D ~E[Zt j H2t] � 1At ~E[Zt j H2t] + dt
= ~E[1AtZt j H2t] + dt
� ~E[1DZt j H2t] + ~E[dt j H2t] + dt;

where the �rst and third lines use Zt � 1 and the second uses the measur-
ability of At with respect to H2t. All the terms on the last line converge
~P -almost surely to zero, and so ~E[ZtjH2t]! 0 ~P -a.s. on the set D. Egorov�s
Theorem (Chung (1974, p. 74)) then implies that there exists F � D such
that ~P (F ) > 0 on which the convergence of pt and ~E[ZtjH2t] is uniform.

To clarify the remainder of the argument, we present here the case of
short-lived player 2 (long-lived player 2 is discussed in Appendix A.2). This
case is particularly simple, because if player 2 believed his opponent was
�almost�the commitment type, then in each period 2 plays the same equi-
librium action as if he was certain he was facing the commitment simple
type.

From the upper semi-continuity of the best response correspondence,
there exists  > 0 such that for any history h1s and any �1 2 �I satisfying
k�1 � &1k �  , a best response to �1 is also a best response to &1, and so

10This lemma does not require Assumption 3.
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necessarily equals &2. The uniform convergence of ~E[ZtjH2t] on F implies
that, for any � > 0, there exists a time T such that on F , for all t > T ,
pt > � and (since �̂1s = &1)

~E

�
sup
s�t

&1 � ~E[~�1sjH2s]
����H2t� < � :

As ~E[ZtjH2t] < � for all t > T on F and Zt � 0, ~P (fZt >  gjH2t) < � for
all t > T on F , implying (7).

4.3 Player 1�s Beliefs about Player 2�s Future Behavior

Our next step is to show, with positive probability, player 1 eventually ex-
pects player 2 to play a best response to the commitment type for the re-
mainder of the game. We �rst show that, while player 2�s private history h2t
is typically of use to player 1 in predicting 2�s period-s behavior for s > t, this
usefullness vanishes as s!1. The intuition is straightforward. If period-s
behavior is eventually (as s becomes large) independent of h2t, then clearly
h2t is eventually of no use in predicting that behavior. Suppose then that
h2t is essential to predicting player 2�s behavior in all periods s > t. Then,
player 1 continues to receive information about this history from subsequent
observations, reducing the value of having h2t explicitly revealed. As time
passes player 1 will �gure out whether h2t actually occurred from her own
observations, again reducing the value of independently knowing h2t.

Denote by �(A;B) the smallest �-algebra containing the �-algebras A
and B: Thus, � (H1s;H2t) is the �-algebra describing player 1�s information
at time s if she were to learn the private history of player 2 at time t.

Lemma 3 Suppose Assumptions 1 and 3 hold. For any t > 0 and � � 0,

lim
s!1

 ~E[�2;s+� j�(H1s;H2t)]� ~E[�2;s+� jH1s]
 = 0; ~P -a.s.

Proof. We prove the result here for � = 0. The case of � � 1 is proved
by induction in Appendix A.3. Suppose K � J t is a set of t-period player
2 action pro�les (j0; j1; :::; jt�1). We also denote by K the corresponding
event (i.e., subset of 
). By Bayes�rule and the �niteness of the action and
signal spaces, we can write the conditional probability of the event K given
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the observation by player 1 of h1;s+1 = (h1s; ys; is) as follows

~P [Kjh1;s+1] = ~P [Kjh1s; ys; is]

=
~P [Kjh1s] ~P [ys; isjK;h1s]

~P [ys; isjh1s]

=
~P [Kjh1s]

P
j �
ys
isj
~E[�j2(h2s)jh1s;K]P

j �
ys
isj
~E[�j2(h2s)jh1s]

;

where the last equality uses ~P [isjK;h1s] = ~P [isjh1s].
Subtract ~P [Kjh1s] from both sides to obtain

~P [Kjh1;s+1]� ~P [Kjh1s] =
~P [Kjh1s]

P
j �
ys
isj

�
~E[�j2(h2s)jh1s;K]� ~E[�j2(h2s)jh1s]

�
P
j �
ys
isj
~E[�j2(h2s)jh1s]

:

The term
P
j �
ys
isj
~E[�j2(h2s)jh1s] is player 1�s conditional probability of ob-

serving the period-s signal ys given she takes action is and hence is strictly
positive and less than one by Assumption 1. Thus,

��� ~P [Kjh1;s+1]� ~P [Kjh1s]
��� � ~P [Kjh1s]

������
X
j

�ysisj

�
~E[�j2(h2s)jh1s;K]� ~E[�j2(h2s)jh1s]

������� :
Since the sequence of random variables f ~P [KjH1s]gs is a martingale rel-
ative to (fH1sgs; ~P ), it converges ~P -almost surely to a non-negative limit
~P [KjH11] as s ! 1. Consequently, the left side of this inequality con-
verges ~P -almost surely to zero. The signals generated by player 2�s actions
satisfy Assumption 3, so an identical argument to that given at the end of
the proof of Lemma 1 in Cripps, Mailath, and Samuelson (2004) establishes
that ~P -almost everywhere on K,

lim
s!1

~P [KjH1s]
 ~E[�2sj� (H1s;K)]� ~E[�2sjH1s]

 = 0,
where � (A; B) is the smallest �-algebra containing both the �-algebra A
and the event B. Moreover, ~P [KjH11] (!) > 0 for ~P -almost all ! 2 K.
Thus, ~P -almost everywhere on K,

lim
s!1

 ~E[�2sj�(H1s;K)]� ~E[�2sjH1s]
 = 0:

Since this holds for all K 2 H2t,

lim
s!1

k ~E[�2sj�(H1s;H2t)]� ~E[�2sjH1s]k = 0; ~P -a.s.;
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giving the result for � = 0.

Now we apply Lemma 3 to a particular piece of information player 2
could have at time t. By Lemma 2, with positive probability, we reach a
time t at which player 2 assigns high probability to the event that all his
future behavior is a best reply to the commitment type. Intuitively, by
Lemma 3, these period-t beliefs of player 2 about his own future behavior
will, eventually, become known to player 1.

This step is motivated by the observation that, if player 1 eventually
expects player 2 to always play a best response to the commitment type,
then the normal type of player 1 will choose to deviate from the behavior
of the commitment type (which is not a best response to player 2�s best
response to the commitment type). At this point, we appear to have a
contradiction between player 2�s belief on the event F (from Lemma 2)
that the normal and commitment types are playing identically and player
1�s behavior on the event F y (the event where player 1 expects player 2
to always play a best response to the commitment type, identi�ed in the
next lemma). This contradiction would be immediate if F y was both a
subset of F and measurable for player 2. Unfortunately we have no reason
to expect either. However, the next lemma shows that F y is in fact close
to a H2s-measurable set on which player 2�s beliefs that player 1 is the
commitment type do not converge to zero. In this case we will (eventually)
have a contradiction: On all such histories, the normal and commitment
types are playing identically. However, nearly everywhere on a relatively
large subset of these states, player 1 is deviating from the commitment
strategy in an identi�able way.

Recall that j�(hs) is the action played for sure in period s after the public
history hs by player 2�s best response to the commitment type. Hence,
~E[�

j�(hs0 )
2s0 jH1s] is the probability player 1 assigns in period s to the event

that 2 best responds to the commitment type in period s0 � s. For the
case of the short-lived uninformed players and the simple commitment type,

j�(hs) = &2 for all hs,11 and so
 ~E[�2s0 jH1s]� &2 � 1� ~E[�

j�(hs0 )
2s0 jH1s]. So,

in that case, (11) implies
 ~E[�2s0 jH1s]� &2 < �.

Lemma 4 Suppose the hypotheses of Theorem 2 hold, and suppose there is
a Nash equilibrium in which reputations do not necessarily disappear, i.e.,
~P (fpt 9 0g) > 0. Let � > 0 be the constant and F the positive probability
event identi�ed in Lemma 2. For any � > 0 and number of periods � > 0,
11Here we use &2 to denote the pure action receiving probability one under &2.
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there exists an event F y and a time T (�; �) such that for all s > T (�; �)

there exists Cys 2 H2s with:

ps > � on Cys ; (8)

F y [ F � Cys ; (9)
~P (F y) > ~P (Cys)� � ~P (F ); (10)

and for any s0 2 fs; s+ 1; :::; s+ �g, on F y,

~E[ �
j�(hs0 )
2s0 j H1s ] > 1� �; ~P -a.s. (11)

Proof. Fix � 2 (0; 1) and a number of periods � > 0. Fix � <
(14�

~P (F ))2, and let T denote the critical period identi�ed in Lemma 2 for
this value of �.

Player 1�s minimum estimated probability on j�(hs0) over periods s; : : : ; s+

� can be written as fs � mins�s0�s+� ~E[�
j�(hs0 )
2s0 jH1s]. Notice that fs > 1��

is a su¢ cient condition for inequality (11).
The �rst part of the proof is to �nd a lower bound for fs. For any t � s,

the triangle inequality implies

1 � fs � min
s�s0�s+�

~E[�
j�(hs0 )
2s0 j�(H1s;H2t)]� kts;

where kts � maxs�s0�s+� j ~E[�
j�(hs0 )
2s0 j�(H1s;H2t)]� ~E[�

j�(hs0 )
2s0 jH1s]j for t � s.

By Lemma 3, lims!1 kts = 0
~P -almost surely.

As �j
�(hs0 )
2s0 � 1 and is equal to 1 on Got , the above implies

fs � ~P (Got j �(H1s;H2t))� kts:

Moreover, the sequence of random variables f ~P (Got j�(H1s;H2t))gs is a mar-
tingale with respect to the �ltration fH1sgs, and so converges almost surely
to a limit, gt � ~P (Got j�(H11;H2t)). Hence

1 � fs � gt � kts � `ts; (12)

where `ts � jgt � ~P (Got j�(H1s;H2t))j and lims!1 `ts = 0
~P -almost surely.

The second step of the proof determines the sets Cys and a set that we
will use to later determine F y. For any t � T , de�ne

Kt � f! : ~P (Got j H2t) > 1� � ; pt > �g 2 H2t:
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Let F st denote the event \s�=tK� and set Ft � \1�=tK� ; note that lim infKt �
[1t=T \1�=t K� = [1t=TFt. By Lemma 2, F � Kt for all t � T , so F � F st ,
F � Ft, and F � lim infKt.

De�ne Nt � f! : gt � 1 �
p
�g. Set Cys � F sT 2 H2s and de�ne an

intermediate set F � by F � � FT \ NT . Because Cys � Ks, (8) holds. In
addition, F � [ F � Cys , and hence (9) holds with F � in the role of F y. By
de�nition,

~P (Cys)� ~P (F �) = ~P (Cys \ (FT \NT )) = ~P ((Cys \ �FT ) [ (Cys \ �NT ));

where we use bars to denote complements. By our choice of Cys , the event
Cys \ �NT is a subset of the event KT \ �NT . Thus, we have the bound

~P (Cys)� ~P (F �) � ~P (Cys \ �FT ) + ~P (KT \ �NT ): (13)

We now �nd upper bounds for the two terms on the right side of (13). First
notice that ~P (Cys \ �FT ) = ~P (F sT ) � ~P (FT ). Since lims!1 ~P (F sT ) =

~P (FT ),
there exists T 0 � T such that

~P (Cys \ �FT ) <
p
� for all s � T 0: (14)

Also, as ~P (Got jKt) > 1 � � and Kt 2 H2t, the properties of iterated expec-
tations imply that 1� � < ~P (Got jKt) = ~E[gtjKt]. Since gt � 1, we have

1� � < ~E[gt j Kt] � (1�
p
�) ~P ( �Nt j Kt) + ~P (Nt j Kt)

= 1�
p
� ~P ( �Nt j Kt):

The extremes of the above inequality imply that ~P ( �NtjKt) <
p
�. Hence,

taking t = T we get
~P (KT \ �NT ) <

p
�: (15)

Using (14) and (15) in (13), ~P (Cys)� ~P (F �) < 2
p
� for all s � T 0. Given

F � Cys , the bound on �, and � < 1, it follows that

~P (F �) > ~P (F )� 2
p
� >

1

2
~P (F ) > 0:

Finally, we combine the two steps above to obtain F y. As ~P (F �) > 0
and kTs + `Ts converges almost surely to zero, by Egorov�s Theorem, there
exists F y � F � such that ~P (F � n F y) <

p
� and a time T 00 > T such that

kT
0

s + `
T 0
s <

p
� on F y for all s � T 00. Since F y[F � F �[F � Cys , (9) holds.

Let T (�; �) � maxfT 00; T 0g. Also, gT � 1 �
p
� on F y, because F y � NT .
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Hence on F y, by (12), fs > 1�2
p
� for all s > T (�; �). This, and the bound

on �, implies (11). Moreover, as ~P (F �nF y) <
p
� and ~P (Cys)� ~P (F �) < 2

p
�,

(10) holds for all s > T (�; �).

When player 2 is long-lived, it will be convenient to know that the con-
clusions of Lemma 4 hold on a sequence of cylinder sets:

Corollary 2 Assume the conditions of Lemma 4. De�ne F ys = f! 2 
 :
projs(!) = projs(!

0) for some !0 2 F yg, where projs(!) is the projection of
! onto (I � J � Y )s. Then, (9), (10), and (11) hold for F ys replacing F y.

Proof. The proof follows from the observation that, for all s, F y � F ys �
Cys (since C

y
s 2 H2s) and (11) is a condition that is H1s-measurable.

4.4 Toward a Contradiction

We have shown that when reputations do not necessarily disappear, there
exists a set F y on which (11) holds and F y � Cys 2 H2s. The remaining
argument is more transparent in the setting of the short-lived player 2s
of Theorem 1. Accordingly, we �rst prove Theorem 1, and then give the
distinct argument needed when player 2 is long-lived and the commitment
strategy is not simple.

In broad brushstrokes, the argument proving Theorem 1 is as follows.
First, we conclude that on F y, the normal type will not be playing the com-
mitment strategy. To be precise� on F y there will exist a stage-game action
played by &1 but not by the normal type. This will bias player 2�s expec-
tation of the normal type�s actions away from the commitment strategy on
Cys , because there is little probability weight on C

y
s nF y. We then get a con-

tradiction, because the fact that ps > � on Cys implies player 2 must believe
the commitment type�s strategy and the normal type�s average strategy are
the same on Cys .

The argument proving Theorem 2 must deal with the nonstationary
nature of the commitment strategy (and the nonstationary nature of the
failure of credibility). As in the simple case, we have found a set of states F y

where, for all s su¢ ciently large, the normal type attaches high probability
to player 2 best responding to the commitment type for the next � periods.
The normal type�s best response to this is not the commitment strategy,
and hence the normal type does not play the commitment strategy. We will
derive a contradiction by showing that player 2 almost comes to know this.
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The complication is that it may be very di¢ cult for player 2 to predict
just how the normal type�s strategy deviates from the commitment strat-
egy. When working with the stationary commitment strategy of Theorem
1, we can be certain there is a stage-game action played by the commitment
type which the normal type�s strategy would (eventually) not play after any
private history. In the setting of Theorem 2, however, the normal type�s
deviation from the nonstationary commitment strategy may be much more
complicated, and may depend on private (rather than just public) informa-
tion.

4.5 Proof of Theorem 1

Suppose, en route to the contradiction, that there is a Nash equilibrium in
which reputations do not necessarily disappear. Then ~P (fpt 9 0g) > 0.
Let &1 � mini2If& i1 : & i1 > 0g, that is, &1 is the smallest non-zero probability
attached to an action under the commitment strategy &1. Since (&1; &2) is
not a Nash equilibrium, &1 plays an action that is suboptimal by at least
 > 0 when player 2 uses any strategy su¢ ciently close to &2. That is, there
exists  > 0, i0 2 I with & i01 > 0 and �� > 0 such that

 < min
k�2�&2k���

�
max
i2I

�1(i; �2)� �1(i0; �2)
�
:

Finally, for a given discount factor �1 < 1 there exists a � su¢ ciently large
such that the loss of  for one period is larger than any feasible potential
gain deferred by � periods: (1� �1) > ��12maxij j�1(i; j)j.

Fix the event F from Lemma 2. For � < minf��; 12 &1g and � above, let F
y

and, for s > T (�; �), Cys be the events described in Lemma 4. Now consider
the normal type of player 1 in period s > T (�; �) at some state in F y. By
(11), she expects player 2 to play within � < �� of &2 for the next � periods.
Playing the action i0 is conditionally dominated in period s, since the most
she can get from playing i0 in period s is worse than playing a best response
to &2 for � periods and then being minmaxed. Thus, on F y the normal type
plays action i0 with probability zero: �i

0
1s = 0.

Now we calculate a lower bound on the di¤erence between player 2�s
beliefs about the normal type�s probability of playing action i0 in period s,
~E[�i

0
1sjH2s], and the probability the commitment type plays action i0 on the
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set of states Cys :

~E
h ���& i01 � ~E[�i

0
1sjH2s]

���1Cysi � ~E
h�
& i
0
1 � ~E[�i

0
1sjH2s]

�
1
Cys

i
� &1

~P (Cys)� ~E
h
�i

0
1s1Cys

i
� &1

~P (Cys)�
�
~P (Cys)� ~P (F y)

�
� &1

~P (Cys)� � ~P (F )

� 1

2
&1
~P (F ): (16)

The �rst inequality above follows from removing the absolute values. The
second inequality applies & i

0
1 � &1, uses the H2s-measurability of C

y
s and

applies the properties of conditional expectations. The third applies the
fact that �i

0
1s = 0 on F

y and �i
0
1s � 1. The fourth inequality applies (10) in

Lemma 4. The �fth inequality follows � < 1
2 &1 and F � Cys (by (9)).

From Corollary 1, psk&1 � ~E(~�1sjH2s)k ! 0 ~P -almost surely. It follows
that

psj& i
0
1 � ~E(~�i

0
1sjH2s)j1Cys ! 0; ~P�a:s:

But, by Lemma 4, ps > � on the set Cys , and so

j& i01 � ~E(~�i
0
1sjH2s)j1Cys ! 0; ~P�a:s:

This concludes the proof of Theorem 1, since we now have a contradiction
with ~P (F ) > 0 (from Lemma 2) and (16), which holds for all s > T (�; �).

4.6 Proof of Theorem 2

We �rst argue that, after any su¢ ciently long public history, there is one
continuation public history after which the commitment type will play some
action io 2 I with positive probability, but after which the normal type will
choose not to play io, regardless of her private history. To �nd such a history,
notice that �̂2 (player 2�s best response to the commitment strategy) is pure
and therefore public, ensuring that the normal player 1 has a public best
response to �̂2 and that it is not �̂1. Hence, there exists a public history
where 1�s public best response di¤ers from the commitment strategy, for
all private histories consistent with this public history. If we can show this
preference is strict, this will still hold when player 2 is just playing close to
a best response, which will open the door to a contradiction. The formal
statement is (the proof is in Appendix A.4):
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Lemma 5 Suppose �̂1 is a public strategy with no long-run credibility (with
an associated T o), and �̂2 is player 2�s public best reply. Then, player 1
has a public best reply, �y1, to �̂2. There exists �̂ 2 N, � > 0, and � > 0
such that for all s > T o and each hs 2 Hs, there is an action io, a period
s0 � s+ �̂ , and a public continuation history hos0 of hs, such that

1. �̂i
o

1s0(h
o
s0) � �,

2. the action io receives zero probability under �y1(h
o
s0), and

3. player 1�s payo¤ from playing io and continuing with strategy �̂1 is at
least � less that what she gets from playing �y1 at h

o
s0, i.e.,

E(�
y
1;�̂2)[�1s0 jhos0 ]� E(�̂1;�̂2)

�
(1� �1)�1(io; js0) + �1�1;s0+1jhos0

�
� �:

For s > T o, Lemma 5 describes how player 1�s best response to �̂2 di¤ers
from �̂1. In the game with incomplete information, Lemma 5 de�nes three
Hs-measurable functions, i(�; s) : 
 ! I, s0(�; s) : 
 ! ft : s � t � s + �g,
and h(�; s) : 
! [1t=0Y t as follows: Associated with each state ! 2 
 is the
implied s-period public history, hs. The action-period pair (i(!; s); s0(!; s))
is the action-period pair (io; s0) from Lemma 5 for the public history hs.
Finally, h(!; s) is the s0(!; s)-period continuation history hos0 of hs from
Lemma 5. We emphasize that h(!; s) is typically not the s0(!; s)-period
public history of ! (for a start, it is Hs-measurable); while the �rst s-periods
of h(!; s) are the s-period public history of !, the next s0(!; s)� s periods
describe the public signals from Lemma 5.

With these functions in hand, we can describe how player 1�s behav-
ior di¤ers from that of the commitment type when she is su¢ ciently con-
�dent that player 2 is best responding to the commitment type (where
� � miny;i;j �

y
ij > 0 and � is from Lemma 5; the proof is in Appendix

A.5):

Lemma 6 Suppose the hypotheses of Theorem 2 hold, and suppose there is
a Nash equilibrium in which reputations do not necessarily disappear, i.e.,
~P (fpt 9 0g) > 0. Let �̂ , �, and � be the constants identi�ed in Lemma 5.
Suppose � > �̂ satis�es 12M��1 < �, � > 0 satis�es 12M� < ��� , and fF ys gs
is the sequence of events identi�ed in Corollary 2. For all s � T (�; 2�),

1. �̂i(!;s)1;s0(!;s)(h(!; s)) � �,
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2. the set F zs � f! 2 F ys : hs0(!;s)(!) = h(!; s)g has probability ~P (F zs ) �
�� ~P (F ys ) > 0, and

3. for all ! 2 F zs ,
~�
i(!;s)
1;s0(!;s)(h1;s0(!;s)(!)) = 0:

If the events F zs were known to player 2 in period s, then the argument
is now complete, since there would be a contradiction between player 2�s
belief that the normal and commitment type play the same way on F zs and
player 1�s actual behavior. However, F zs is not known to player 2. On the
other hand, F zs is approximated by C

z
s (the analogous modi�cation of C

y
s ,

de�ned below), an event known by player 2 in period s. At the same time,
we must still deal with the random nature of i(�; s) and s0(�;!).

To complete the argument then, suppose the assumptions of Lemma 6
(including the bounds on � and �) hold, and in addition

� <
2���

2��� + 3
: (17)

The set of states consistent with 2�s information at time s, Cys , and the
�right�continuation public history, is Czs � f! 2 Cys : hs0(!)(!) = h(!; s)g.
Note that ~P (CzsnF zs ) � ~P (CysnF ys ), and since Cys � F ys , C

z
s � F zs . We also

partition Czs into the subevents corresponding to the relevant period in which
the action i = i(!; s) is not optimal: Czits � f! 2 Cys : i(!; s) = i; s0(!; s) =

t; ht(!) = h(!; s)g, so that Czs = [s+�t=s [i2I C
zit
s . Note that C

zit
s 2 H2t for

all i 2 I and t = s; : : : ; s+ � .
For each !, let io = i(!; s) and so = s0(!; s). Now, for �xed ! and

implied �xed action io and period so, de�ne f̂s(!) � �̂i
o

1so(!) and ~fs(!) �
~E
�
~�i
o

1so jH2so
�
(!). In the last expression, for �xed action io and period

so, ~E
�
~�i
o

1so jH2so
�
is the conditional expected value of ~�i

o

1so . In particu-

lar, for ! 2 Czits , so = t and io = i, and we can write f̂s(!) � �̂i1t(!)

and ~fs(!) � ~E
�
~�i1tjH2t

�
(!). Then, Zs(!) � supt�s

�̂1t � ~E [~�1tjH2t]
 ����f̂s(!)� ~fs(!)

���.
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So,

~E[Zs1Czs
] � ~E

h�
f̂s � ~fs

�
� 1

Czs

i
(18)

=

s+�X
t=s

X
i2I

~E
h�
f̂s � ~fs

�
� 1

Czits

i
=

s+�X
t=s

X
i2I

~E
h�
�̂i1t � ~E

�
~�i1tjH2t

��
� 1

Czits

i
=

s+�X
t=s

X
i2I

~E
h
~E
h�
�̂i1t � ~�i1t

�
1
Czits

jH2t
ii
; (19)

where the last equality follows from Czts 2 H2t. Now, de�ne F zits � f! 2
F ys : i(!; s) = i; s0(!; s) = t; ht(!) = h(!; s)g, and so F zs = [s+�t=s [i2I F

zit
s .

Since F ys � Cys , F
zit
s � Czits , and so (19) is at least as large as

s+�X
t=s

X
i2I

~E
h
~E
h�
�̂i1t � ~�i1t

�
1
F zits

jH2t
ii
�
s+�X
t=s

X
i2I

~P
�
Czits nF zits

�
= ~E

" 
f̂s1F zs

�
s+�X
t=s

X
i2I

~E
h
~�i1t1F zits

jH2t
i!#

� ~P
�
CzsnF zs

�
= ~E

h
f̂s1F zs

i
� ~P

�
CzsnF zs

�
> � ~P (F zs )� ~P (CysnF ys ); (20)

where the last equality is an implication of ~E
h
~�i1t1F zits

jH2t
i
= 0 ~P -almost

surely. Hence, from the chain from (18) to (20), we have

~E[Zs1Czs
] > ��� ~P (F ys )� ( ~P (Cys)� ~P (F ys )): (21)

Applying the bounds � ~P (F ) > ~P (Cys) � ~P (F ys ) and ~P (F ys ) > ~P (F )(1 � �)
from Corollary 2 to the right side of (21) gives

~E[Zs1Czs
] > (��� (1� �)� �) ~P (F ):

The bound (17) ensures that ��� (1� �)� � > �=2, and hence

~E[Zs1Czs
] >

1

2
� ~P (F ):

However, ~P (Czs) > �� (1 � �) ~P (F ) > 0 and since Czs � f! : pt 9 0g,
Zs1Czs

! 0 ~P -almost surely, the desired contradiction.
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5 Imperfect Private Monitoring

In this section, we brie�y sketch how our results can be extended to the case
of private monitoring. Instead of observing a public signal y at the end of
each period, player 1 observes a private signal � (drawn from a �nite set �)
and player 2 observes a private signal � (drawn from a �nite set Z). A history
for a player is the sequence of his or her actions and private signals. Given the
underlying action pro�le (i; j), we let �ij denote a probability distribution

over � � Z. We use ���ij to denote the probability of the signal pro�le

(�; �) conditional on (i; j). The marginal distributions are ��ij =
P
� �

��
ij and

��ij =
P
� �

��
ij . The case of public monitoring is a special case: take � = Z

and ��2����ij = 1 for all i, j.
We now describe the analogs of our earlier assumptions on the monitoring

technology. The full-support assumption is:

Assumption 5 (Full Support) ��ij ; �
�
ij > 0 for all � 2 �, � 2 Z, and all

(i; j) 2 I � J .

Note that we do not assume that ���ij > 0 for all (i; j) 2 I � J and (�; �) 2
�2 (which would rule out public monitoring). Instead, the full-support
assumption is that each signal is observed with positive probability under
every action pro�le.

Assumption 6 (Identification 1) For all j 2 J , the I columns in the
matrix (��ij)�2Z;i2I are linearly independent.

Assumption 7 (Identification 2) For all i 2 I, the J columns in the
matrix (��ij)�2�;j2J are linearly independent.

Even when monitoring is truly private, in the sense that ���ij > 0 for all
(i; j) 2 I � J and (�; �) 2 �� Z, reputations can have very powerful short-
run e¤ects. This is established in Theorem 4, which is a minor extension of
Fudenberg and Levine (1992).12

12While Fudenberg and Levine (1992) explicitly assume public monitoring, under As-
sumption 6, their analysis also covers imperfect private monitoring. This includes games
where player 1 observes no informative signal. In such a case, when there is complete
information, the one-period-memory strategies that we describe as equilibria in Section
2 of Cripps, Mailath, and Samuelson (2004) are also equilibria of the game with private
monitoring. We thank Juuso Välimäki for showing us how to construct such equilibria.
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Theorem 4 Suppose the game has imperfect private monitoring satisfying
Assumptions 5 and 6. Suppose the commitment type plays the pure action
i� in every period. For all p0 > 0 and all " > 0, there exists �� < 1 such that
for all �1 > ��, player 1�s expected average discounted payo¤ in any Nash
equilibrium is at least

min
j2BRS(i�)

�1 (i
�; j)� ";

where
BRS (i) = argmax

j2J
�2 (i; j) :

The proof of the following extension of Theorem 1 to the private moni-
toring case is essentially identical to that of Theorem 1 apart from the added
notational inconvenience of private signals.

Theorem 5 Suppose the imperfect private monitoring satis�es Assump-
tions 5, 6, and 7 and &1 satis�es Assumption 4. Then at any Nash equilib-
rium, pt ! 0 ~P -almost surely.

A Appendix

A.1 Proof of Theorem 3

Since pt ! 0 ~P -almost surely, we have pt ! 1 P̂ -almost surely. For any
"; � > 0 there exists a T such that for all t > T , ~P (pt > ")+P̂ (pt < 1�") < �.
Hence, for t0 > T ,

0 �
Z
S�[0;1]

[u2(s1; s2)� u2(s1; �2(s2; pt))]d(p0�̂t + (1� p0)~�t)

� (1� p0)
Z
S�[0;"]

[u2(s1; s2)� u2(s1; �2(s2; pt))]d~�t

+p0

Z
S�[1�";1]

[u2(s1; s2)� u2(s1; �2(s2; pt))]d�̂t + 2M�;

whereM is an upper bound on the magnitude of the stage-game payo¤s and
the �rst inequality follows from (5). As �2 is measurable with respect to pt,
we can ensure that the �nal integral in the preceding expression is zero by
setting �2(s2; pt) = s2 for pt > ", and hence, for any "; � > 0 and for all �2,Z

S�[0;"]
[u2(s1; s2)� u2(s1; �2(s2; pt))]d~�t � �

2M�

1� p0
: (A.1)
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Again, because ~P (pt > ") < �, (A.1) impliesZ
S�[0;1]

[u2(s1; s2)� u2(s1; �2(s2; pt))]d~�t � �
2M�

1� p0
� 2M�:

Integrating out pt implies that, for all �02 : S2 ! S2,Z
S
[u2(s1; s2)� u2(s1; �02(s2))]d~�t � �

2M�

1� p0
� 2M�: (A.2)

Consider now a convergent subsequence, denoted ~�tk with limit ~�1, and
suppose ~�1 is not a correlated equilibrium. Since (4) holds for all t0, it also
holds in the limit. If ~�1 is not a correlated equilibrium, it must then be the
case that for some �002 : S2 ! S2, there exists � > 0 so thatZ

S
[u2(s1; s2)� u2(s1; �002(s2))]d~�1 < �� < 0:

But then for tk su¢ ciently large,Z
S
[u2(s1; s2)� u2(s1; � 002(s2))]d~�tk <

��
2

< 0;

contradicting (A.2) for � su¢ ciently small.

A.2 Completion of the Proof of Lemma 2

Turning to the general case, let M � maxi2I;j2J;`2f1;2g j�`(i; j)j, so that M
is an upper bound on the magnitude of stage-game payo¤s. Let � = "o=6M ,
where "o is given by De�nition 5. If Zt � �, player 2�s expected continuation
payo¤s at h2s under the strategy pro�le (~�1; �̂1; �2) are within 2M� of his
continuation payo¤ under the pro�le (�̂1; �̂1; �2). Hence, if Zt � � and
history h2s (for s � t � T o) occurs with positive probability, then���E(~�1;�̂1;�2)[�2s j h2s]� E(�̂1;�̂1;�2)[�2s j h2s]��� < 2M�: (A.3)

for all �2.
We now show that if Zt � � for t � T o, then player 2 plays the pure

action j�(hs) in all future periods. Suppose instead that the equilibrium �2
plays j 6= j�(hs) with positive probability in period s under a history h2s.
De�ne �02 to be identical to �2 except that, after the history h2s, it places
zero probability weight on the action j�(hs) and increases the probability
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of all other actions played by �2 by equal weight. Let �̂2 be player 2�s best
response to the commitment type. Then, if Zt � � we have13

E(~�1;�̂1;�2)[�2s j h2s] = E(~�1;�̂1;�
0
2)[�2s j h2s]

� E(�̂1;�̂1;�
0
2)[�2s j h2s] + 2M�

� E(�̂1;�̂1;�̂2)[�2s j h2s]� "o + 2M�

� E(~�1;�̂1;�̂2)[�2s j h2s]� "o + 4M�:

As 4M� < "o, �̂2 is a pro�table deviation after the history h2s for player
2� a contradiction. Hence on the event Zt � � player 2 plays j�(hs) in
all future periods. Equivalently, we have shown fZt � �g � Got . Choose
T � T o such that pt > � and ~E[ZtjH2t] < �� for all t > T . Condition (7)
now follows from ~P [fZt > �g j H2t] < � for all t > T on F .

A.3 Completion of the Proof of Lemma 3

The proof for � � 1 follows by induction. In particular, we have

Pr[Kjh1;s+�+1] = Pr[Kjh1s; ys; is; :::; ys+� ; is+� ]

=
Pr[Kjh1s] Pr[ys; is; : : : ; ys+� ; is+� jK;h1s]

Pr[ys; is; : : : ; ys+� ; is+� jh1s]

=
Pr[Kjh1s]

Qs+�
z=s

P
j �
yz
izj
~E[�j2(h2z)jh1s;K]Qs+�

z=s

P
j �
yz
izj
~E[�j2(h2z)jh1s]

;

where h1;z+1 = (h1z; yz; iz). Hence,

jPr[Kjh1;s+�+1]� Pr[Kjh1s]j

� Pr[Kjh1s]

������
s+�Y
z=s

X
j

�yzizj
~E[�j2(h2z)jh1s;K]�

s+�Y
z=s

X
j

�yzizj
~E[�j2(h2z)jh1s]

������ :
The left side of this inequality converges to zero ~P -almost surely, and hence
so does the right side. Moreover, applying the triangle inequality and rear-

13The equality applies the fact that in equilibrium, player 2 is indi¤erent between actions
played with positive probability. The �rst inequality applies (A.3). The second inequality
applies De�nition 5.1. The third inequality applies (A.3) again.
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ranging, we �nd that the right side is larger than

Pr[Kjh1s]

������
s+��1Y
z=s

X
j

�yzizj
~E[�j2(h2z)jh1s]

������
�

������
X
j

�
ys+�
is+� j

~E[�j2(h2;s+� )jh1s;K]�
X
j

�
ys+�
is+� j

~E[�j2(h2;s+� )jh1s]

������

�Pr[Kjh1s]

������
s+��1Y
z=s

X
j

�yzizj
~E[�j2(h2z)jh1s;K]�

s+��1Y
z=s

X
j

�yzizj
~E[�j2(h2z)jh1s]

������
�

������
X
j

�
ys+�
is+� j

~E[�j2(h2;s+� )jh1s;K]

������ :
From the induction hypothesis that k ~E[�2zj� (H1s;H2t)]� ~E[�2zjH1s]k con-
verges to zero ~P -almost surely for every z 2 fs; :::; s + � � 1g, the negative
term also converges to zero ~P -almost surely. But then the �rst term also
converges to zero, and, as above, the result holds for z = s+ � .

A.4 Proof of Lemma 5

Since �̂1 is public, player 2 has a best reply �̂2 that is public, and so player
1 has a public best reply �y1 to �̂2. By De�nition 5.2, for every s-period
public history hs, s > T o, we have

E(�
y
1;�̂2) [�1sjhs] > E(�̂1;�̂2) [�1sjhs] + "o: (A.4)

Since �y1 is a best response to �̂2, player 1�s payo¤ E
(�y1;�̂2) [�1sjhs] is un-

changed if the period-s mixture �y1(hs) is replaced by any other mixture
that remains within the support of �y1(hs), and thereafter play continues
according to �y1.

For s > T o and hs 2 Hs, let �(hs) be the set of public histories hs0 ,
s0 � s, that are continuations of hs and s0 is the �rst period in which
there is an action in I receiving positive probability under �̂1 but receiving
zero probability under �y1.

14 Note that �(hs) is at most countable. In

14Because �y1 is a best response to �̂2, there must exist such histories, since otherwise
every action accorded positive probability by �̂1 would be optimal, contradicting (A.4).
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addition, there are no two elements of �(hs) with the property that one is a
continuation of the other. For hs0 2 �(hs), s0 > s, in period s, every action
that receives positive probability under strategy �̂1 also receives positive
probability under �y1, and so the comment after equation (A.4) implies

E(�
y
1;�̂2) [�1sjhs]� E(�̂1;�̂2) [�1sjhs] =X

i2I
�̂i1(hs)�1

h
E(�

y
1;�̂2) [�1;s+1j(hs; i)]� E(�̂1;�̂2) [�1;s+1j(hs; i)]

i
:

Applying this reasoning iteratively allows us to rewrite (A.4) as

"o <
X

hs02�(hs)
Q̂(hs0 jhs)�s

0�s
1

h
E(�

y
1;�̂2) [�1s0 jhs0 ]� E(�̂1;�̂2) [�1s0 jhs0 ]

i
(A.5)

where Q̂(hs0 jhs) is the probability of hs0 given hs under (�̂1; �̂2).15
Choose �̂ such that 2M��̂1 < "o=3. The terms in (A.5) corresponding to

histories longer than s+ �̂ can then collectively contribute at most "o=3 to
the sum. The remaining terms must then sum to at least 2"o=3. Letting
�(hs; �̂) denote the set of histories in �(hs) no longer than s+ �̂ , we have

2"o

3
<

X
�(hs;�̂)

Q̂(hs0 jhs)�s
0�s
1

h
E(�

y
1;�̂2) [�1s0 jhs0 ]� E(�̂1;�̂2) [�1s0 jhs0 ]

i
:

Let ��(hs; �̂) be the histories in �(hs; �̂) satisfying

E(�
y
1;�̂2)[�1s0 jhs0 ]� E(�̂1;�̂2) [�1s0 jhs0 ] �

"o

3
: (A.6)

Then,
2"o

3
< Q̂(��(hs; �̂)jhs)2M + (1� Q̂(��(hs; �̂)jhs))

"o

3
;

and so

Q̂(��(hs; �̂)jhs) > q � "o

6M � "o

(the denominator is positive, since De�nition 5 implies "o � 2M).
There are at most Y �̂ histories in ��(hs; �̂). In the last period of each

such history, there is an action i 2 I that is played with positive probability
by �̂1 and zero probability by �

y
1. Since there are at most I such actions,

15 It is possible that
P

hs02�(hs)
Q̂(hs0 jhs) < 1. However, expected payo¤s under (�y1; �̂2)

and (�̂1; �̂2) are equal after any history not in �(hs), and so such histories can then be
omitted from (A.5).
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there is a history hos0(hs) 2 ��(hs; �̂) and action io(hs) such that, under
(�̂1; �̂2), the probability that the history hos0(hs) occurs and is followed by
action io(hs) is at least � � q=(IY �̂ ). Trivially, then, �̂i

o

1s0(h
o
s0) � �.

Finally, since

E(�̂1;�̂2) [�1s0 jhos0 ] � �E(�̂1;�̂2)
�
(1� �1)�1(io; js0) + �1�1;s0+1jhos0

�
+(1� �)E(�

y
1;�̂2)[�1s0 jhs0 ];

from (A.6), we have

E(�
y
1;�̂2)[�1s0 jhos0 ]� E(�̂1;�̂2)

�
(1� �1)�1(io; js0) + �1�1;s0+1jhos0

�
� "o

3�
� �:

A.5 Proof of Lemma 6

We prove only the second and third assertions (the �rst being an immediate
implication of Lemma 5 and the de�nitions of i, s0, and h).

Since ! 2 F ys and projs(!0) = projs(!) implies !0 2 F
y
s , for any s-period

public history consistent with a state in F ys , and any s0-period (s0 > s) public
continuation of that history, there is at least one state in F ys consistent with
that continuation. Consequently, since every � period public history has
probability at least �� , ~P (F zs ) � �� ~P (F ys ) > �� (1� �) ~P (F ) > 0.

After any public history, the normal type�s payo¤s under (�y1; �̂2) are
independent of her private histories� she is playing her public best response
to a public strategy. At states in F zs , from Corollary 2, under ~�1, player 1
expects player 2�s future play (over the periods s; s+1; :::; s+2�) to be within
� of his best response to the commitment strategy, �̂2. Hence, on F

z
s , player

1 expects that player 2�s future play (over the periods s; s+1; :::; s+2�) to be
within ���� of his best response to the commitment strategy, �̂2, irrespective
of her play in those periods. Discounted to the period s0 � s + � , payo¤s
from periods after s + 2� can di¤er by at most 2M��1 . Hence, for states in
F zs , and for any �1,���E(�1;�2)[�1s0 j H1s0 ]� E(�1;�̂2)[�1s0 j H1s0 ]��� � (���� + ��1)2M < �=3:

Lemma 5.3 and the restrictions on � and � then imply, for ! 2 F zs ,

E(�
y
1;�2)[�1s0 jH1s0 ] �

�

3
+ E(�̂1;�2)[(1� �1)�(i(!; s); js0) + �1�1s0+1jH1s0 ]:

Hence, after the public history h(!; s), no private history for player 1 (con-
sistent with F zs ) makes playing action i(!) pro�table.
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