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Abstract

This paper presents some new results on the solution of the stochastic neoclassical
growth model with leisure. We use the method of Judd (2003) to explore how to
change variables in the computed policy functions that characterize the behavior of
the economy. We find a simple close-form relation between the parameters of the
linear and the loglinear solution of the model. We extend this approach to a general
class of changes of variables and show how to find the optimal transformation. We
report how in this way we reduce the average absolute Euler equation errors of the
solution of the model by a factor of three. We also demonstrate how changes of
variables correct for variations in the volatility of the economy even if we work with
first order policy functions and how we can keep a linear representation of the laws of
motion of the model if we use a nearly optimal transformation. We finish discussing
how to apply our results to estimate dynamic equilibrium economies.
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1. Introduction

This paper presents some new results on the solution of the stochastic neoclassical growth

model with leisure. In an important recent contribution Judd (2003) has provided formulae

to apply changes of variables to the solutions of dynamic equilibrium economies obtained

through the use of perturbation techniques. Standard perturbation methods provide a Tay-

lor expansion of the policy functions that characterize the equilibrium of the economy in

terms of the state variables of the model and a perturbation parameter. Judd’s derivations

allow moving from this Taylor expansion to any other series in terms of nonlinear transfor-

mations of the state variables without the need to recompute the whole solution. This second

approximation can be more accurate than the first because the change of variables induces

nonlinearities that can help to track the true but unknown policy functions.

Judd’s results are important for several reasons. First, we often want to solve problems

with a large number of state variables. Solving these models is difficult and costly. For

instance if we use perturbation methods, the number of derivatives required to compute the

parameters of the Taylor expansion of the solution quickly explodes as we increase the order of

the approximation (see Judd and Guu, 1997). One alternative strategy is to obtain a low order

expansion (even just a linear one) of the solution and move to a more accurate representation

using a change of variables. Computing this low order expansion and the change of variables

is relatively inexpensive. Consequently, if we are able to select an adequate transformation,

we can increase the accuracy of the solution enough to use our computation for quantitative

analysis despite the high dimensionality of the state space.

Second, researchers frequently exploit approximated solutions to understand the analytics

of dynamic equilibrium models. See for example the classical treatment of Campbell (1994)

with the neoclassical growth model or the recent work of Woodford (2003) with monetary

economies. Because of tractability considerations those analyses limit themselves to first

order expansions. Clearly the usefulness of this approach depends on the quality of the

approximation. Linear solutions, however, may perform poorly outside a small region around

which we linearize. More importantly, as pointed out by Benhabib, Schmitt-Grohé and

Uribe (2001), linear solutions may even lead to incorrect findings regarding the existence and
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uniqueness of equilibrium. An optimal change of variables can address both issues increasing

the accuracy of the solution and avoiding misleading local results while maintaining analytic

tractability.

Third, a change of variables can be useful to estimate dynamic equilibrium economies

using a likelihood approach. In general we do not know how to directly evaluate the likelihood

function of these economies and we need to either linearize the model and use the Kalman

filter (Schorfheide, 1999) or to resort to simulation methods that are expensive to implement

(see Fernández-Villaverde and Rubio-Ramírez, 2002)). However a change of variables may

deliver a representation of the economy suitable for efficient estimation while capturing some

of the non-linearities of the model.

Motivated by the arguments above, this paper applies Judd’s methodology to the sto-

chastic neoclassical growth model with leisure, the workhorse of dynamic macroeconomics.

First, we derive a simple close-form relation between the parameters of the linear and the

loglinear solution of the model. We extend this approach to a more general class of changes

of variables: those that generate a policy function with a power function structure.

Second, we study the effects of that last particular class of changes of variable on the size

of the Euler equation errors, i.e. those errors that appear in the optimality conditions of the

agents because of the use of approximated solutions instead of the exact ones. We search

for the optimal change of variable inside the class of power functions and report results for

a benchmark calibration of the model and for alternative parametrizations. In that way we

study the performance of the procedure both for a nearly linear case (the benchmark calibra-

tion) and for more nonlinear cases (for example those with higher variance of the productivity

shock). We find that for the benchmark calibration we reduce the average absolute Euler

equation errors by a factor of three. This reduction makes the new approximated solution of

the model competitive to much more involved nonlinear methods, such as Finite Elements or

Value Function Iteration, and to second order perturbations.

Third, sensitivity analysis reveals how the change of variables corrects for movements

in the exogenous variance of the economy through changes in the optimal values of the

parameters of the transformation. This is true even if we confine ourselves to a first order

policy function. In comparison a standard linear (or loglinear) solution can only provide
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a certainty equivalent approximation. We view this property as a key advantage of our

approach.

Fourth, sensitivity analysis also suggests that a particular change of variables that respects

the linearity of the solution is roughly optimal. We propose the use of this approximation

because of two reasons. First, because as explained before, such linearity allows researchers

to use the well understood toolbox of linear systems while achieving a level of accuracy not

possible with the standard linearization. Second because it facilitates taking the model to

the data. In addition to being linear, we show how this quasi-optimal approximated solution

also implies that the disturbances to the model are normally distributed. Consequently we

can write the economy in a state-space form and use the Kalman filter to perform likelihood

based inference.

The rest of the paper is organized as follows. Section 2 presents the canonical stochastic

neoclassical growth model. Section 3 outlines how we solve for the standard linear representa-

tion of the model policy functions in levels. Section 4 discusses changes of variables in general

terms. Section 5 derives the relation between the linear and loglinear solution of the model.

Section 6 explores the optimal change of variables within a flexible class of functions and

reports a sensitivity analysis exercise. Section 7 discusses the use of the change of variables

for estimation and section 8 offers some concluding remarks.

2. The Stochastic Neoclassical Growth Model

As mentioned above we want to explore how the approximated solutions of the stochastic

neoclassical growthmodel with leisure respond to nonlinear changes of variables. Three reason

lead us to use this model. First, its popularity (directly or with small changes) to address

a large number of questions (see Cooley, 1995) makes it a natural laboratory to explore the

potential of Judd’s contribution. Second, because of this importance any analytical result

regarding the (approximated) solution of the model is of interest in itself. Finally, since this

model is nearly linear for a benchmark calibration, its use provides a particularly difficult

laboratory for the change of variables approach: it bounds tightly the improvements we can

obtain. We argue that even for this case we find important advantages of the technique and
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that those improvements are likely to be higher for more nonlinear economies.1

Since the model is well known (see Cooley and Prescott, 1995) we provide only the min-

imum exposition required to fix notation. There is a representative agent in the economy,

whose preferences over stochastic sequences of consumption ct and leisure 1 − lt are repre-
sentable by the utility function

E0

∞X
t=0

βtU(ct, lt) (1)

where β ∈ (0, 1) is the discount factor, E0 is the conditional expectation operator and U(·, ·)
satisfies the usual technical conditions.

There is one good in the economy, produced according to the aggregate production func-

tion yt = eztkαt l
1−α
t where kt is the aggregate capital stock, lt is the aggregate labor input and

zt is a stochastic process representing random technological progress. The technology follows

a first order process zt = ρzt−1+ ²t with |ρ| < 1 and ²t ∼ N (0,σ2). Capital evolves according
to the law of motion kt+1 = (1− δ)kt + it where δ is the depreciation rate and the economy

must satisfy the resource constraint yt = ct + it.

Since both welfare theorems hold in this economy, in order to determine the competitive

equilibrium allocations and prices we can solve directly for the social planner’s problem. We

maximize the utility of the household subject to the production function, the evolution of

the stochastic process, the law of motion for capital, the resource constraint and some initial

conditions for capital and the stochastic process.

The solution to this problem is fully characterized by the equilibrium conditions:

Uc(t) = βEt
©
Uc(t+ 1)

¡
1 + αezt+1kα−1t+1 l

1−α
t+1 − δ

¢ª
(2)

Uc(t) = Ul(t) (1− α) eztkαt l
−α
t (3)

ct + kt+1 = eztkαt l
1−α
t + (1− δ) kt (4)

zt = ρzt−1 + εt (5)

1Note that the special case of the model with log utility function, no leisure and total depreciation is not
very informative regarding the usefulness of a change of variables: we already know that the exact solution
of that case is loglinear. What we want to do is to evaluate the performance of those changes of variables in
the general situation where we do not have an analytical solution.
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given some initial capital k0. The first equation is the standard Euler equation that relates

current and future marginal utilities from consumption, the second one is the static first

order condition between labor and consumption and the last two equations are the resource

constraint of the economy and the law of motion of technology.

Solving for the equilibrium of this economy amounts to finding two policy functions for

next period’s capital k0 (·, ·, ·), and labor l (·, ·, ·) that deliver the optimal choice of these
controls as functions of the two state variables, capital and technology level, and the standard

deviation of the innovation to the productivity level σ.2 The only point to notice is that we

include the perturbation parameter as one explicit variable in the policy functions. That

notation is useful in the very next section.

3. Solving the Model using a Perturbation Approach

The system of equations listed above does not have a known analytical solution and we need

to use a numerical method to solve it. In a series of seminal papers Judd and coauthors (see

Judd and Guu, 1992, Judd and Guu, 1997 and the textbook exposition in Judd, 1998, among

others) have proposed to build a Taylor series expansion of the policy functions k0 (·, ·, ·), and
l (·, ·, ·) around the deterministic steady state where z = 0 and σ = 0.

If k0 is equal to the value of the capital stock in the deterministic steady state and the

policy function for labor is smooth, we can use a Taylor approximation to approximate this

policy function around (k0, 0, 0) with the form

lp(k, z,σ) '
X
i,j,m

∂i+j+mlp(k, z,σ)

∂ki∂zj∂σm

¯̄̄̄
k0,0,0

(k − k0)i zjσm. (6)

where the subscript p stands for perturbation approximation. The policy function for next

period capital will have an analogous representation.

The key idea of the perturbation methods is to vary the parameter σ to find a case where

the model can be solved analytically and to exploit implicit-function theorems to pin down

the unknown coefficients ∂i+j+mlp(k,z,σ)
∂ki∂zj∂σm

¯̄̄
k0,0,0

in a recursive fashion.

2Using the budget constraint c (·, ·, ·) is a function of k (·, ·, ·) and l (·, ·, ·).
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The do so the first step is to linearize the equilibrium conditions of the model around

the deterministic steady state, i.e. when σ = 0. Then we substitute capital and labor by

the values given by the first order expansion of the policy function and we solve for the

unknown coefficients. The next step is to find the second order expansion of the equilibrium

conditions, again around the deterministic steady state, plug in the quadratic approximation

of the policy function (evaluated with the first order coefficients found before) and solve for

the unknown second order coefficients. We can then iterate on this procedure as many times

as desired to get an approximation of arbitrary order. For a more detailed explanation of

these steps we refer the reader to Judd and Guu (1992) and Aruoba, Fernández-Villaverde

and Rubio-Ramírez (2003).

Since perturbations only deliver an asymptotically locally correct expression for the policy

functions, the accuracy achieved by the method may be poor either away from the determin-

istic steady state or when the order of the expansion is low.

Several routes have been proposed to correct for these problems. One, by Collard and

Juillard (2000), uses bias correction to find the approximation of the solution around a more

suitable point that the deterministic steady state. The second one, suggested by Judd (2003),

changes the variables in terms of which we express the computed solution of the model. We

review Judd’s proposal in next section.

4. The Change of Variables

The first order perturbation solution to the stochastic neoclassical growth model can be

written as

f (x) ' f (a) + (x− a) f 0 (a)

where x = (k, z,σ) are the variables of the expansion, a = (k0, 0, 0) is the deterministic

steady state value of those variables and f (x) =
¡
k0p(k, z,σ), lp(k, z,σ)

¢
is the unknown

policy function of the model.3

Let us now transform both the domain and the range of f (x). Thus, to express some

3Higher order perturbation solutions could easily be considered but we concentrate in the first order
approximations because of exposition reasons.
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nonlinear function of f (x), h (f (x)) : <2 → <2 as a polynomial in some transformation of
x, Y (x) : <2 → <2, we can use the Taylor series of g(y) = h (f (X (y))) around b = Y (a),
where X (y) is the inverse of Y (x).

Using tensor notation Judd (2003) shows that

g (y) = h (f (X (y))) = g (b) + gα (b) (Y
α (x)− bα) (7)

where gα = hAfAi X
i
α comes from the application of the chain rule. From this expression it is

easy to see that if we have computed the values of fAi , then it is straightforward to find the

value of gα.

In the next two section we obtain particular values for this general transformation, one

for moving between a solution in levels and in logs and a second for a more general class of

power functions.

5. A Particular Case: The Loglinearization

Since the exact solution of the stochastic neoclassical growth model in the case of log utility,

total depreciation and no leisure choice is loglinear, a large share of practitioners have favored

the loglinearization of the equilibrium conditions of the model over linearization in levels.4

This practice generates the natural question of finding the relation between the coefficients

on both representations. We use (7) to get a simple closed-form answer to this question.

A first order perturbation produces an approximated policy function in levels of the form:5

(k0 − k0) = a1 (k − k0) + b1z
(l − l0) = c1 (k − k0) + d1z

4The wisdom of this practice is disputable. Some evidence in Christiano (1990) and Den Haan and Marcet
(1994) suggest that this is the right choice in simpler version of the model. Aruoba, Fernández-Villaverde
and Rubio-Ramírez (2003) find the opposite result using a model with leisure. They document that a linear
solution in levels delivers systematically lower Euler equation errors.

5See Uhlig (1999) for details. Remember that this solution is the same as the one generated by a Linear
Quadratic approximation of the utility function (Kydland and Prescott, 1982), the Eigenvalue Decomposition
(Blanchard and Kahn, 1980 and King, Plosser and Rebelo, 2002), Generalized Schur Decomposition (Klein,
2000) or the QZ decomposition (Sims, 2002b) among others. Subject to applicability, all methods need to
find the same policy functions since the linear space approximating a nonlinear space is unique.
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where k and z are the current states of the economy, l0 is steady state value for labor and where

for convenience we have dropped the subscript p where no ambiguity exists.6 Analogously a

loglinear approximation of the policy function will take the form:

log k0 − log k0 = a2 (log k − log k0) + b2z
log l − log l0 = c2 (log k − log k0) + d2z

or in equivalent notation:

bk0 = a2bk + b2zbl = c2bk + d2z
where bx = log x − log x0 is the percentage deviation of the variable x with respect to its
steady state.

How do we go from one approximation to the second one? First we follow Judd’s (2003)

notation and write the linear system in levels as:

k0p(k, z,σ) = f1(k, z,σ) = f1 (k0, 0, 0) + f
1
1 (k0, 0, 0) (k − k0) + f12 (k0, 0, 0) z

lp(k, z,σ) = f2(k, z,σ) = f2 (k0, 0, 0) + f
2
1 (k0, 0, 0) (k − k0) + f22 (k0, 0, 0) z

where:

f1 (k0, 0, 0) = k0 f11 (k0, 0, 0) = a1 f12 (k0, 0, 0) = b1

f2 (k0, 0, 0) = l0 f21 (k0, 0, 0) = c1 f22 (k0, 0, 0) = d1

Second we propose the changes of variables:

h1 = log f1 Y 1 (x) = log x1 X1 = exp y1

h2 = log f2 Y 2 = x2 X2 = y2

6It can be shown that the coefficients on σ are zero in the first order perturbation.
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Judd’s (2003) formulae for this particular example imply: log k0 (log k, z)

log l (log k, z)

 = g (log k, z) =

 log f1 (k0, 0, 0)

log f2 (k0, 0, 0)

+
 log k − log k0 z − z0
log k − log k0 z − z0




1
k0

³
f11 (k0, 0, 0) f12 (k0, 0, 0)

´ k0

1


1
l0

³
f21 (k0, 0, 0) f22 (k0, 0, 0)

´ k0

1



 ,

and thus:

log k0 − log k0 = f11 (k0, 0, 0) (log k − log k0) +
1

k0
f12 (k0, 0, 0) z

log l − log l0 =
k0
l0
f21 (k0, 0, 0) (log k − log k0) +

1

l0
f22 (k0, 0, 0) z

We equating coefficients we obtain a nice and simple closed-form relation between the

parameters of both representations:7

a2 = a1 b2 =
1
k0
b1

c2 =
k0
l0
c1 d2 =

1
l0
d1

Note that we have not used any assumption on the utility or production functions except

that they satisfy the general technical conditions of the neoclassical growth model. Also

moving from one coefficient set to the other one is an operation that only involves k0 and l0,

7An alternative heuristic argument that delivers the same result is as follows. Take the system

(k0 − k0) = a1 (k − k0) + b1z
(l − l0) = c1 (k − k0) + d1z

and divide on both sides by the steady state value of the control variable:

k0 − k0
k0

= a1
k − k0
k0

+
1

k0
b1z

l − l0
l0

= c1
k − k0
l0

+
1

l0
d1z

and noticing that x0−x0
x0

' log x− log x0 we get back the same relation that the one presented in the paper.
Of course our argument is more general and does not depend on an additional approximation.
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values that we need to find anyway to compute the linearized version in levels. Therefore,

once you have the linear solution, obtaining the loglinear one is immediate.

6. The Optimal Change of Variables

In the last section we showed how to find a loglinear approximation to the solution of the

neoclassical growth model directly from its linear representation. Now we use the same

approach to generalize our result to encompass the relationship between any power function

approximation and the linear coefficients of the policy function. Also we search for the optimal

change of variable inside this class of power functions and we report how the Euler equation

errors improve with respect to the linear representation.

6.1. A Power Function Transformation

Before we argued that some practitioners have defended the use of loglinearizations to capture

some of the nonlinearities in the data. This practice can be push one step ahead. We can

generalize the log function into a general class of power function of the form:

k0p (k, z; γ, ζ, µ,ϕ)
γ − kγ0 = a3

³
kζ − kζ0

´
+ b3z

ϕ

lp (k, z; γ, ζ, µ,ϕ)
µ − lµ0 = c3

³
kζ − kζ0

´
+ d3z

ϕ

with ϕ ≥ 1. The last constraint assures that we will have real values for the power zϕ.
This class of functions is attractive because it provides a lot of flexibility in shapes with few

free parameters while including the log transformation as the limit case when the coefficients

γ, ζ and µ tend to zero and ϕ is equal to 1. Also a similar power function with only two

parameters is proposed by Judd (2003) in a simple optimal growth model without leisure and

stochastic perturbations. His finding of notable improvements in the accuracy of the solution

when he optimally selects the value of these parameters is suggestive of the advantages of

using this parametric family.

The changes of variables for this family of functions are given by :
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h1 = (f1)
γ
Y 1 = (x1)

ζ
X1 = (y

1)
1
ζ

h2 = (f1)
µ

Y2 = (x
2)

ϕ
X2 = (y

2)
1
ϕ

Following the same reasoning than in the previous section we derive a form for the system

in term of the original coefficients:

k0p (k, z; γ, ζ, µ,ϕ)
γ − kγ0 =

γ

ζ
kγ−ζ0 a1

³
kζ − kζ0

´
+

γ

ϕ
kγ−10 b1z

ϕ

lp (k, z; γ, ζ, µ,ϕ)
µ − lµ0 =

µ

ζ
lµ−10 k1−ζ0 c1

³
kζ − kζ0

´
+
µ

ϕ
lµ−10 d1z

ϕ

Therefore, the relation of between the new and the old coefficients is again very simple to

compute:

a3 =
γ
ζ
kγ−ζ0 a1 b3 =

γ
ϕ
kγ−10 b1

c3 =
µ
ζ
lµ−10 k1−ζ0 c1 d3 =

µ
ϕ
lµ−10 d1

As we pointed out before when γ, ζ and µ tend to zero and ϕ is equal to 1 we get back

the transformation derived in the previous section to move from the linear into the loglinear

solution of the model.

6.2. Searching for the Optimal Transformation

One difference between the transformation from linear into a loglinear solution and the current

transformation into a power law is that we have four free parameters γ, ζ, µ and ϕ. How do

we select optimal values for those?

A reasonable criterion (and indeed part of the motivation for this whole exercise) is to

select them in order to improve the accuracy of the solution of the model. This desideratum

raises a question. How do we measure this accuracy, conditional on the fact that we do not

know the true solution of the model?

Judd (1992) solves this problem evaluating the normalized Euler equation errors.8 Note

that in our model intertemporal optimality implies that:

Uc(t) = βEt
©
Uc(t+ 1)

¡
1 + αezt+1kα−1t+1 l

1−α
t+1 − δ

¢ª
. (8)

8See also the discussion in Santos (2000) and the very similar approach in an statistical framework of Den
Hann and Marcet (1994).
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Since the solutions are not exact, condition (8) will not hold exactly when evaluated using the

computed decision rules. Instead, for any choice of γ, ζ, µ,and ϕ, and its associated policy

rules k0p (·, ·; γ, ζ, µ,ϕ) and lp (·, ·; γ, ζ, µ,ϕ) we can define the normalized absolute value Euler
equation errors as:

EE (k, z;Ξ) =

¯̄̄̄
1− (U

−1
c (EtUc(t+ 1)βR

0 (k, z;Ξ) , lp (k, z;Ξ)))
cp (k, z;Ξ)

¯̄̄̄
(9)

where Ξ = (γ, ζ, µ,ϕ), R0 (k, z;Ξ) =
¡
1 + αezt+1k0 (k, z;Ξ)α−1 l0 (k, z;Ξ)1−α − δ

¢
is the gross

return on capital next period and where we have used the static optimality condition to

substitute labor by its optimal choice.

This expression evaluates the (unit free) error in the Euler equation measured as a fraction

of cp (·, ·;Ξ) as a function of the current states k, and z and the change of variables defined
by the four parameters γ, ζ, µ, and ϕ. Judd and Guu (1997) interpret this function as the

mistake, in dollars, incurred by each dollar spent. For example, EE (k, z;Ξ) = 0.01 means

that the consumer makes 1 dollar mistake for each 100 dollar spent.

A reasonable criterion is then to select values of Ξ to minimize the Euler error function.

But here we face another problem. This function depends not only on the parameters Ξ

but also on the values of the state variables. How do we eliminate that dependency? Do

we minimize the Euler equation error at one particular point of the state space like the

deterministic steady state? Do we better minimize some weighted mean of it?

A first choice could be the criterion:

min
Ξ

Z
EE (k, z;Ξ) dΦ

where Φ is the stationary distribution of k and z. This choice is intuitive. We would weight

each Euler equation error by the percentage of the time that the economy spends in that

particular point: we would want to nail down the Euler equation errors for those parts of

the stationary distribution where most of the action would happen while we would care less

about accuracy in those points not frequently visited. The difficulty of the criterion is that we

do not know that true stationary distribution (at least for capital) before we find the policy
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functions of the model.

Of course we could solve a fixed-point problem where we get some approximation of the

model, compute a stationary distribution, resolve the minimization problem, find the new

stationary distribution and continue until convergence. This approach faces two problems.

First it would be very expensive in terms of computing time. Second there is no known

theory result that guaranties the convergence of such iteration to the right set of values for

the parameters of the transformation.

Given the difficulties of the previous approach we do not follow that path. Instead we use

a simpler strategy. Inspired by collocation schemes in projection methods we minimize the

Euler equation errors over a grid of points of k and z:9

min
Ξ
SEE (Ξ) = min

Ξ

X
k,z

EE (k, z;Ξ) . (10)

Setting this grid around the deterministic steady state (big enough to be representative of the

stationary distribution of the economy but not too wide to avoid minimization over regions

not very frequently visited) may achieve our desire goal of improving the accuracy of the

solution.10

Inspection of (10) reveals that this problem depends, in general, on the values of the

structural parameters of the model, i.e. those describing preferences and technology. As a

consequence we need to take a stand on those before we can report any result. Our approach

will be to calibrate of the model to match basic observations of the U.S. economy following the

common strategy in macroeconomics and later to perform sensitivity analysis. That choice

9As an alternative we also tried to solve the following problem:

min
Ξ

X
k,z

π (z)EE (k, z;Ξ)

where π (z) is the ergodic distribution of shocks. The results, not reported in the paper, are very similar.
10When judging this scheme we need to remember that we do not look for the absolute best change of

variables (although certainly finding it would be nice) but just for an improvement in the accuracy of the
solution that can be easily found. This point can be important in models with dozens of state variables, where
a multivariate maximization may be very costly. We can use a use a simulation procedure like a Markov chain
Monte Carlo method to find an improvement “sufficiently good”. Those approaches are easy to code and get
close to a global maximum (although not exactly at it) fairly quickly. In this paper however we can solve the
problem using a simple Newton algorithm implemented in a Mathematica notebook that is available online
at the following URL http://www.econ.upenn.edu/~jesusfv
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allows us to evaluate how much accuracy we win in a “real life” situation by applying our

change of variables and how confident we are in our results.

First we select as our utility function the CRRA form

³
cθt (1− lt)1−θ

´1−τ
1− τ

(11)

where τ determines the elasticity of intertemporal substitution and θ controls labor supply.

Then we pick the benchmark calibration values as follows. The discount factor β = 0.9896

matches an annual interest rate of 4% (see McGrattan and Prescott (2000) for a justification

of this number based on their measure of the return on capital and on the risk-free rate of

inflation-protected U.S. Treasury bonds). The parameter that governs risk aversion τ = 2

is a common choice in the literature. θ = 0.357 matches the microeconomic evidence of

labor supply to 0.31 of available time in the deterministic steady state. We set α = 0.4 to

match labor share of national income (after the adjustments to National Income and Product

Accounts suggested by Cooley and Prescott (1995)). The depreciation rate δ = 0.0196 fixes

the investment/output ratio and ρ = 0.95 and σ = 0.007 follow the stochastic properties of

the Solow residual of the U.S. economy. Table 6.2.1 summarizes the discussion

6.2.1: Calibrated Parameters

Parameter β τ θ α δ ρ σ

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.007

Also we need to define the set of points for k and z over which we are going to sum

the normalized absolute value Euler equation errors. We define a grid of 21 capital points

covering ±30% above and below the steady state capital and a grid of 21 perturbation points
using Tauchen (1986) procedure.11

We report our main findings in Table 6.2.2 below. The last entry of the second row is

the value of SEE (1, 1, 1, 1), i.e. for the linear approximation for the Benchmark calibration.

The third row is the solution to (10).

11Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003) report that the stationary distribution of the
model, computed using highly accurate nonlinear methods, spends nearly all its time fluctuating between
values of capital of 21 and 25. Our grid covers over 99% of the stationary distribution.
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Table 6.2.2: Euler Equation Errors

γ ζ µ ϕ SEE (Ξ)

1 1 1 1 0.0856279

0.986534 0.991673 2.47856 1 0.0279944

We highlight several points from our optimal choice of parameter values. First, the para-

meters γ and ζ are both very close to one suggesting that the nonlinearities in capital are of

little importance (although not totally absent, since SEE (Ξ) suffers a bit when we impose

that both parameters are equal to one). That result is confirmed by inspecting the nearly

linear policy functions for capital found by very accurate but expensive nonlinear methods

(see the results reported in Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003)). Sec-

ond, µ is very far away from zero. Again the interpretation is that the labor supply function

is much more nonlinear in capital and allowing the policy function to capture that behavior

increases the accuracy of the solution. Third the coefficient on the technology shock, ϕ, stays

at the constrained value of 1.12

The last column of the Table 6.2.2 shows that the optimal change of variables improves

the average absolute value Euler equation error by a factor of around three. This means that

for each mistake of three dollars made using the linear approximation the consumer would

only have made a one dollar mistake using the optimal change of variable, a sizeable (but

not dramatic) improvement in accuracy. This same result is shown in Figure 6.2.1 where we

plot the decimal log of the absolute Euler equation errors at z = 0 for the ordinary linear

solution and the optimal change of variable.13 In this graph we observe that when only one

dimension is considered, the optimal change of variable can improve Euler equation errors

from around 1 dollar every 10.000 dollars to 1 dollar every 1.000.000 dollars (an even more

in some points).

We explore how the optimal change of variable compares with other more conventional

nonlinear methods in terms of accuracy. In Figure 6.2.2 we replicate Figure 5.4.8. of Aruoba,

12We checked that this finding was not a product of a particular initial guess. For very different initial
guesses ϕ the minimization routine always pushed us back to a value of one.
13The use of decimal logs eases the reading of the graph. A value of -3 in the vertical axis represents an

error of 1 dollar out of each 1000 dollars, a value of -4 an error of 1 dollar out of each 10000 dollars and so
on.
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Fernández-Villaverde, and Rubio-Ramírez (2003) adding the optimal change of variable solu-

tion as reported in Table 6.2.2. This figure plots the Euler equation errors for several linear

an nonlinear solution methods applied to the stochastic neoclassical growth model with the

same calibration than the one presented in this paper.

In this graph we can see how the optimal change of variable solution pushes a first order

approximation to the accuracy level delivered by Finite Elements or Value Function Iteration

for most of the interval. If we consider the cost of implementing the Finite Elements method or

Value Function iteration, this result provides strong evidence in favor of using a combination

of linear solution and optimal change of variable as a solution method for macroeconomic

models.

We finish the discussion by pointing out how the new approximation is roughly comparable

in terms of accuracy with a second order approximation of the policy function, a correction

by variance and quadratic terms defended by Sims (2002a) and Schmitt-Grohé and Uribe

(2002).14

6.3. Sensitivity Analysis

How does the solution to (10) depend on the chosen calibration? Are the optimal parameters

values in Ξ robust to changes in the values of the structural parameters of the economy?

We analyzed in detail how the optimal change of variables depends on the different para-

meter values. We report only a sample of our findings with the most interesting results. We

discuss the effect of changes in the share of capital α (table 6.3.1), in the parameter governing

the intertemporal elasticity of substitution τ (table 6.3.2) and in the standard deviation of

the technology shock σ (table 6.3.3). Note that since our minimization problem always found

ϕ = 1 (regardless of the initial guess for that parameter) we omit this last parameter.15

14In addition the change of variables has the advantage of suffering much less from the problem of explosive
behavior of simulations present in the second order approximation. See the explanation for this explosive
behavior and a possible solution in Kim et al. (2003).
15Although we do not have a good intuition for this result we conjecture that it is a consequence of constant

returns of scale in the production function.
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Table 6.3.1: Optimal Parameters for different α’s

α γ ζ µ

0.2 1.05064 1.06714 0.90284

0.4 0.98653 0.99167 2.47856

0.6 0.97704 0.97734 2.47796

0.8 0.94991 0.94889 2.47811

In Table 6.3.1 we see how γ and ζ stay close to 1 although some variation in their values is

induced by the changes in the capital share. On the other hand µ changes quite substantially

from 0.9 to 2.47. Interestingly all of this change happens when we move from α = 0.2 to

α = 0.4. This drastic change is due to the fact that the steepness of the marginal productivity

of capital changes rapidly for values of α around this range.

Table 6.3.2: Optimal Parameters for different τ ’s

τ γ ζ µ

4 1.02752 1.03275 2.47922

10 1.04207 1.04671 2.47830

50 1.01138 1.01638 2.47820

Table 6.3.2 shows the results are much more robust to changes in τ . This result is

important because it documents that the change of variables has a difficult time to capture

the effects of large risk aversion.

Table 6.3.3: Optimal Parameters for different σ’s

σ γ ζ µ

0.014 0.98140 0.98766 2.47753

0.028 1.04804 1.05265 1.73209

0.056 1.23753 1.22394 0.77869

Table 6.3.3 shows the effects of changing σ from its benchmark case of 0.07 to 0.014, 0.028

and 0.056. Here we observe more action: γ and ζ move a bit and µ goes all the way down

from 2.48 to 0.78. Higher variance of the productivity shock increases the precautionary
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motive for consumers and induces strong nonlinearities in the policy functions of the model

(see for details, Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2003).

The variation in optimal parameter values is a very significant result. It shows how the

change of variables allows for a correction based on the level of uncertainty existing in the

economy. This correction cannot be achieved by the basic linear approach since that one

produces a certainty equivalent approximation. We find this ability to adapt to different

volatilities while keeping a first order structure in the solution a key advantage of the change

of variables.

We conclude from our sensitivity analysis that the choices of optimal parameter values of

γ, ζ and ϕ are stable across very different parametrizations and that the only relevant change

is for the value of µ when we vary capital share of the variance of the technology shock.

6.4. A Linear Representation of the Solution

Our previous findings motivate the following observation. Since γ and ζ are roughly equal

and ϕ = 1 across different parametrizations, instead of working with a four parameter change

of variables, we can confine ourselves to the two parameter transformation:

k0γ − kγ0 = a3 (k
γ − kγ0 ) + b3z

lµ − lµ0 = c3 (k
γ − kγ0 ) + d3z

while keeping nearly all the same level of accuracy obtained by the more general case.

To illustrate our point we plot the Euler Equation error for this restricted optimal case

in figure 6.2.3. with γ = 1.11498 and µ = 0.948448. Comparing with the optimal change we

can appreciate how we keep nearly all the increment in accuracy (more formally the SEE (Ξ)

moves now to 0.0420616).

The proposed two parameter transformation is very convenient because if we define bk =
kγ − kγ0 and bl = lµ − lµ0 we can rewrite the equations as:

bk0 = a3bk + b3zbl = c3bk + d3z
19



producing a linear system of difference equations.

This implies that we can study the neoclassical growth model (or a similar dynamic

equilibrium economy) in the following way. First we find the equilibrium conditions of the

economy. Second we linearize them (or loglinearize if it is easier) and solve the resulting

problem using standard methods. Third we transform the variables (leaving the parameters of

the transformation undertermined until the final numerical analysis) and study the qualitative

properties of the new system using standard techniques. If the transformation captures some

part of the nonlinearities of the problem we may be able to avoid the problems singled out

by Benhabib, Schmitt-Grohé and Uribe (2001). Fourth, if we want to study the quantitative

behavior of the economy we pick values for the parameters according to (10) and simulate

the economy using the transformed system.

7. Changes of Variables for Estimation

Often dynamic equilibriummodels can be written in a state-space representation, with a tran-

sition equation that determines the law of motion for the states and a measurement equation

that relates states and observables. It is well known that models with this representation are

easily estimated using the Kalman Filter (see Harvey, 1989).

As a consequence a common practice to take the stochastic neoclassical growth model to

the data has been to linearize the equilibrium conditions in levels or in logs to get a transition

and a measurement equation, use the Kalman Formulae to evaluate the implied likelihood

and then either to maximize it (in a classical perspective) or to draw from the posterior (from

a Bayesian approach).

The variation that we propose is to use bk0 = a3bk + b3z in the transition equation and
(possibly) bl = c3bk + d3z in the measurement equation instead of the usual linear or loglinear
relations. Since both equations are still linear in the transformed variables, the conditional

distributions of the variables is normal and we can use the Kalman Filter to evaluate the

likelihood. The only difference now will be that, in addition to depend on the structural

parameters of the model, the likelihood will also be a function of the parameters γ and ζ.

This approach allows us to keep a linear representation suitable for efficient estimation
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while capturing an important part of the non-linearities of the model and avoiding the use

of expensive simulation methods like the ones described in Fernández-Villaverde and Rubio-

Ramírez (2002).

8. Concluding Remarks

This paper has explored the effects of changes of variables in the policy function of the

stochastic neoclassical growth model as first proposed by Judd (2003). We have shown how

this change of variables helps to obtain a more accurate solution to the model both for

analytical and empirical applications.

The procedure proposed is conceptually straightforward and simple to implement yet

powerful enough to substantially increase the quality of our solution to the neoclassical growth

model. For our benchmark calibration the average Euler equation error is divided by three and

the new policy function has a performance comparable with the policy functions generated

by fully nonlinear methods. In addition, within the class of power functions considered in

the paper, the optimal change of variables allows us to keep a linear structure of the model.

This is useful for analytical and estimation purposes.

Several questions remain to be explored further. What is the optimal class of parametric

families to use in the changes of variables? Are those optimal families robust across different

dynamic equilibrium models? How big is the increment in accuracy in other types of models

of interest to macroeconomist? How much do we gain in accuracy of our estimates by using a

transformed linear state space representation of the model? We plan to address these issues

in our future research.
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Figure 6.2.1 : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Figure 6.2.2 : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Figure 6.2.3. : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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