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Abstract: We study the long-run sustainability of reputations
in games with imperfect public monitoring. It is impossible to
maintain a permanent reputation for playing a strategy that does
not play an equilibrium of the game without uncertainty about
types. Thus, a player cannot indefinitely sustain a reputation for
non-credible behavior in the presence of imperfect monitoring.
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1 Introduction

The adverse selection approach to reputations is central to the study of
long-run relationships. In the finitely-repeated prisoners’ dilemma or chain-
store game, for example, the intuitive expectation that cooperation or entry
deterrence occurs in early rounds is inconsistent with equilibrium. However,
incomplete information about a player’s characteristics can be exploited to
support an equilibrium reputation for cooperating or fighting entry (Kreps,
Milgrom, Roberts, and Wilson (1982), Kreps and Wilson (1982), Milgrom
and Roberts (1982)). In infinitely repeated games, the multiplicity of equi-
libria provided by the folk theorem contrasts with the intuitive attraction of
equilibria that provide relatively high payoffs. Reputation effects can again
rescue intuition by imposing lower bounds on equilibrium payoffs (Fuden-
berg and Levine (1989, 1992)).

This paper explores long-run reputation effects in games of imperfect
monitoring with a long-lived player facing a sequence of short-lived play-
ers. In the absence of incomplete information about the long-lived player,
her equilibrium payoff can be any value between her minmax payoff and an
upper bound (independent of her discount factor) strictly smaller than her
Stackelberg payoff. However, when there is incomplete information about
the long-lived player’s type, reputation effects imply that the equilibrium
payoff of a patient long-lived player must be arbitrarily close to her Stack-
elberg payoff (Fudenberg and Levine (1992)).

This powerful implication is a “short-run” reputation effect, concerning
the long-lived player’s expected average payoff calculated at the beginning of
the game. We show that this implication does not hold in the long run: A
long-lived player can maintain a permanent reputation for playing a com-
mitment strategy in a game with imperfect monitoring only if that strategy
plays an equilibrium of the corresponding complete-information stage game.

More precisely, the long-lived player in the incomplete-information game
is either a commitment type, who plays an exogenously specified stage-game
action, or a normal type, who maximizes payoffs. The actions, and hence
beliefs, of the uninformed short-lived players are public, so that the long-
lived player’s reputation is public. We show that if the commitment action
is not an equilibrium strategy for the normal type in the stage game, then in
any Nash equilibrium of the incomplete-information repeated game, almost
surely the short-lived players will learn the long-lived player’s type. Thus, a
long-lived player cannot indefinitely maintain a reputation for behavior that
is not credible given the player’s type.
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The assumption that monitoring is imperfect is critical.2 It is straight-
forward to construct equilibria under perfect monitoring that exhibit per-
manent reputations. Any deviation from the commitment strategy reveals
the type of the deviator and triggers a switch to an undesirable equilibrium
of the resulting complete-information continuation game. In contrast, under
imperfect monitoring, any deviation by the long-lived player neither reveals
the deviator’s type nor triggers a punishment. Instead, the long-run con-
vergence of beliefs ensures that eventually any current signal of play has an
arbitrarily small effect on the short-lived player’s beliefs. As a result, a long-
lived player ultimately incurs virtually no cost from a single small deviation
from the commitment strategy. But the long-run effect of many such small
deviations from the commitment strategy is to drive the equilibrium to full
revelation. Reputations can thus be maintained only in the absence of an
incentive to indulge in such deviations, that is, only if the reputation is for
behavior that is part of an equilibrium of the complete-information stage
game.

The impermanence of reputation arises at the behavioral as well as at
the belief level. Asymptotically, continuation play is a Nash equilibrium of
the complete-information game. Moreover, while the explicit construction
of equilibria in reputation games is difficult, we are able to provide a partial
converse (under a continuity hypothesis): for any strict Nash equilibrium of
the stage game and ε > 0, there is a Nash equilibrium of the incomplete-
information game such that if the long-lived player is normal, then with
probability at least 1 − ε, eventually the stage-game Nash equilibrium is
played in every period.3

While the short-run properties of equilibria are interesting, we believe
that the long-run equilibrium properties are relevant in many situations. For
example, an analyst may not know the age of the relationship to which the
model is to be applied. We do sometimes observe strategic interactions from
a well-defined beginning, but we also often encounter on-going interactions
whose beginnings are difficult to identify. Long-run equilibrium properties
may be an important guide to behavior in the latter cases. Alternatively,

2Our results do apply to games of perfect monitoring in which the commitment type
plays a mixed strategy (see the discussion at the conclusion of Section 4.1).

3Since these results hold for any discount factor, there is an apparent tension with
Fudenberg and Levine (1992). However, the typical exercise in the reputation literature is
to fix the prior probability of the commitment type, and then take the discount factor close
to one. We instead fix both the prior and the discount factor (which may be close to one,
given the prior), and examine long-run equilibrium behavior. The posterior probability of
the commitment type eventually becomes small given the discount factor.
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one might take the view of a social planner who is concerned with the con-
tinuation payoffs of the long-run player and with the fate of all short-run
players, even those in the distant future. Our analysis also suggests that the
short-run players may have definite preferences as to where they appear in
the queue of short-run players, offering a new perspective on the incentives
created by repeated games. Finally, interest often centers on the steady
states of models with incomplete information, again directing attention to
long-run properties.

We view our results as suggesting that a model of long-run reputations
should incorporate some mechanism by which the uncertainty about types
is continually replenished. For example, Holmström (1999), Cole, Dow, and
English (1995), Mailath and Samuelson (2001), and Phelan (2001) assume
that the type of the long-lived player is governed by a stochastic process
rather than being determined once and for all at the beginning of the game.
In such a situation, reputations can indeed have long-run implications.

The next section uses a simple motivating example to place our contri-
bution in the literature. Section 3 describes our model. Section 4 presents
the statements of the theorems, with the main result proven in Section 5.
For expositional clarity, most of the paper considers a long-lived player, who
can be one of two possible types—a commitment type who always plays the
same (possibly mixed) stage-game action and a normal type—facing a se-
quence of short-lived players whose actions are perfectly observed. Section
6 provides conditions under which our results continue to hold when there
are many possible commitment types, when these commitment types play
more complicated strategies, when the uninformed player is long-lived, and
when the short-run player’s actions are not observed.

2 Related Literature

Consider an infinitely-lived player 1 with discount factor δ playing a
simultaneous-move stage game with a succession of short-lived player 2’s
who each live for one period. The stage game is given by

(1)
1

2
L R

T 2, 3 0, 2
B 3, 0 1, 1

and has a unique Nash equilibrium, BR, which is strict.
Player 1’s action in any period is not observed by any player 2. There
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is, however, a public signal of player 1’s action, that takes on two possible
values, y′ and y′′, according to the distribution

Pr{ y = y′ | i } =
{
p, if i = T,
q, if i = B,

where p > q. Player 2’s actions are public. Player 1’s payoffs are as in
the above stage game (1), and player 2’s ex post payoffs (i.e., payoffs as a
function of the realized public signal and his own action) are given by

L R

y′ 3 (1− q) /(p− q) (1− 2q + p) /(p− q)

y′′ −3q/(p− q) (−2q + p) /(p− q)
.

Expected payoffs for player 2 are thus still given by (1). This structure of
ex post payoffs ensures that the information content of the public signal is
identical to that of player 2’s payoffs.

This game is an example of what Fudenberg and Levine (1994) call a
moral hazard mixing game. Even for large δ, the long-run player’s max-
imum Nash (or, equivalently, sequential) equilibrium payoff is lower than
when monitoring is perfect (Fudenberg and Levine (1994, Theorem 6.1, part
(iii))).4 For our example, it is straightforward to apply the methodology of
Abreu, Pearce, and Stacchetti (1990) to show that if 2p > 1 + q, the set of
Nash equilibrium payoffs for large δ is given by the interval

(2)
[
1, 2− (1− p)

(p− q)

]
.

Moreover, if 2δ (p− q) > 1, there is a continuum of particularly simple equi-
libria, with player 1 placing equal probability on T and on B in every period,
irrespective of history, and with player 2’s strategy having one period mem-
ory. Player 2 plays L with probability α′ after signal y′ and with probability
α′′ after signal y′′, with

2δ (p− q)
(
α′ − α′′

)
= 1.

The maximum payoff of 2− (1− p) / (p− q) is obtained by setting α′ = 1.
We introduce incomplete information by assuming there is a probability

p0 > 0 that player 1 is the Stackelberg type who plays T in every period.
4In other words, the folk theorem of Fudenberg, Levine, and Maskin (1994) does not

hold when there are short-lived players.
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Fudenberg and Levine (1992) show that for any payoff u < 2, there is δ
sufficiently close to 1 such that in every Nash equilibrium, the expected
average discounted payoff to player 1 is at least u. We emphasize that u
can exceed the upper bound in (2), so that the normal player 2 does strictly
better in every equilibrium of the incomplete-information game than the
best complete-information equilibrium.5

Our result is that the effect of the incomplete information about player
1, including the lower bounds placed on payoffs illustrated in this example,
is temporary. To develop intuition, consider a Markov perfect equilibrium,
with player 2’s belief that player 1 is the Stackelberg type (i.e., player 1’s
“reputation”) being the natural state variable. In any such equilibrium, the
normal type cannot play T for sure in any period: if she did, the posterior
after any signal in that period equals the prior, and hence continuation play
is independent of the signal. But then player 1 has no incentive to play T .
Thus, in any period of a Markov perfect equilibrium, player 1 must put pos-
itive probability on B. Consequently, the signals are continually informative
about player 1’s type, and so almost surely, when player 1 is normal, beliefs
converge to zero probability on the Stackelberg type.6 Our analysis exploits
this intuition, but we do not restrict attention to Markov perfect equilibria
and we generalize the result to more complicated commitment types.

While some of our arguments and results are reminiscent of the recent
literature on rational learning and merging, there are important differences.
For example, Jordan (1991) studies the asymptotic behavior of “Bayesian
strategy processes,” in which myopic players play a Bayes-Nash equilibrium
of the one-shot game in each period, players initially do not know the payoffs
of their opponents, and players observe past play. The central result is
that play converges to a Nash equilibrium of the complete-information stage
game. In contrast, the player with private information in our game is long-
lived and potentially very patient, introducing intertemporal considerations
that do not appear in Jordan’s model, while the information processing in
our model is complicated by the imperfect monitoring.

A key idea in our results (in particular, Lemma 1) is that if signals are
statistically informative about a player’s behavior, then nontrivial beliefs
about that players’s type can persist only if different types asymptotically

5For any u < 5/2, if the commitment type is a mixed commitment type, playing T
with a probability less than but sufficiently close to 1/2 and δ is sufficiently close to one,
then every Nash equilibrium average discounted payoff for player 1 must be at least u.

6Benabou and Laroque (1992) study the Markov perfect equilibrium of a game with
similar properties. They show that player 1 eventually reveals her type in any Markov
perfect equilibrium.
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play identically. Similar ideas play an important role in merging arguments
(e.g., Sorin (1999)), which provide conditions under which a stochastic pro-
cess and beliefs over that process converge. Kalai and Lehrer (1995) use
merging to provide a simple argument that in reputation games, asymptotic
continuation play is a subjective correlated equilibrium of the complete-
information game. This result is immediate in our context, since we begin
with a Nash equilibrium of the incomplete-information game (in contrast to
the weaker assumptions of Kalai and Lehrer (1995)).

Jackson and Kalai (1999) prove that if a finitely repeated normal-form
game with incomplete information (for which Fudenberg and Maskin (1986)
prove a reputation folk theorem) is itself repeated, with new players in each
repetition, then eventually, reputations cannot affect play in the finitely
repeated game. While they reach a similar conclusion, the model is quite
different. In particular, players in one round of the finitely repeated game
do not internalize the effects of their behavior on beliefs and so behavior
of players in future rounds, and there is perfect monitoring of actions in
each stage game. We exploit the imperfection of the monitoring to show
that reputations are eventually dissipated even when players recognize their
long-run incentives to preserve these reputations.

3 The Model

3.1 The Complete-Information Game

The stage game is a two-player simultaneous-move finite game of public mon-
itoring. Player 1 chooses an action i ∈ {1, 2, . . . , I} ≡ I and player 2 simulta-
neously chooses an action j ∈ {1, 2, . . . , J} ≡ J . The public signal, denoted
y, is drawn from a finite set, Y . The probability that y is realized under the
action profile (i, j) is given by ρy

ij . The ex post stage-game payoff to player 1
from the action profile (i, j) and signal y is given by f1(i, j, y). The ex ante
stage-game payoff for player 1 is then π1 (i, j) =

∑
y f1 (i, j, y) ρy

ij . The ex
post stage-game payoff to player 2 from the action j and signal y is given by
f2(j, y), and the ex ante stage payoff for player 2 is π2 (i, j) =

∑
y f2 (j, y) ρy

ij .
The stage game is infinitely repeated. Player 1 (“she”) is a long-lived

(equivalently, long-run) player with discount factor δ < 1. Her payoffs in the
infinite horizon game are the average discounted sum of stage-game payoffs,
(1− δ)

∑∞
t=0 δ

tπ1(it, jt). The role of player 2 (“he”) is played by a sequence
of short-lived (or short-run) players, each of whom only plays once.

The actions of player 2 are public, while player 1’s actions are pri-
vate. Player 1 in period t has a private history, consisting of the public
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signals and all past actions, denoted by h1t ≡ ((i0, j0, y0), (i1, j1, y1), . . . ,
(it−1, jt−1, yt−1)) ∈ H1t ≡ (I × J × Y )t. Let {H1t}∞t=0 denote the filtration
on (I×J×Y )∞ induced by the private histories of player 1. The public his-
tory, observed by both players, is the sequence ((j0, y0), (j1, y1), . . . , (jt−1, yt−1))
∈ (J×Y )t. Let {Ht}∞t=0 denote the filtration induced by the public histories.

We assume the public signals have full support (Assumption 1), so ev-
ery signal y is possible after any action profile. We also assume that with
sufficient observations player 2 can correctly identify, from the frequencies
of the signals, any fixed stage-game action of player 1 (Assumption 2).

Assumption 1 (Full Support): ρy
ij > 0 for all (i, j) ∈ I × J and y ∈ Y .

Assumption 2 (Identification): For all j ∈ J , the I columns in the
matrix (ρy

ij)y∈Y,i∈I are linearly independent.

A behavior strategy for player 1 is a map σ1 : ∪∞t=0H1t → ∆I , from
the set of private histories of lengths t = 0, 1, . . . to the set of distributions
over current actions. Similarly, a behavior strategy for player 2 is a map
σ2 : ∪∞t=0Ht → ∆J .

A strategy profile σ = (σ1, σ2) induces a probability distribution P σ over
(I × J × Y )∞. Let Eσ[·|H`t] denote player `’s expectations with respect to
this distribution conditional on H`t, where H2t = Ht.7

In equilibrium, the short-run player plays a best response after every
equilibrium history. Player 2’s strategy σ2 is a best response to σ1 if, for all
t,

Eσ[ π2(it, jt) | Ht] ≥ Eσ[ π2(it, j) | Ht], ∀j ∈ J P σ-a.s.

Denote the set of such best responses by BR(σ1).
The definition of a Nash equilibrium is completed by the requirement

that player 1’s strategy maximizes her expected utility:

Definition 1: A Nash equilibrium of the complete-information game is a
strategy profile σ∗ = (σ∗1, σ

∗
2) with σ∗2 ∈ BR(σ∗1) such that for all σ1:

Eσ∗

[
(1− δ)

∞∑
s=0

δsπ1(is, js)

]
≥ E(σ1,σ∗2)

[
(1− δ)

∞∑
s=0

δsπ1(is, js)

]
.

The assumption of full-support monitoring ensures that all finite se-
quences of public signals occur with positive probability, and hence must be

7This expectation is well-defined, since I, J , and Y are finite.
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followed by optimal behavior in any Nash equilibrium. The only public out-
of-equilibrium events are those in which player 2 deviates. Since player 2 is
a short-run player, he can never benefit from such a choice. Consequently,
any Nash equilibrium outcome is also the outcome of a perfect Bayesian
equilibrium.

3.2 The Incomplete-Information Game

At time t = −1 a type of player 1 is selected. With probability 1−p0 > 0 she
is the “normal” type, denoted by n, with the preferences described above.
With probability p0 > 0 she is a “commitment” type, denoted by c, who
plays the same (possibly mixed) action ς1 ∈ ∆I in each period independent
of history.8 We assume:

Assumption 3: Player 2 has a unique best reply to ς1 (denoted ς2) and
ς ≡ (ς1, ς2) is not a stage-game Nash equilibrium.

Denote by σ̂1 the repeated-game strategy of playing ς1 ∈ ∆I in each
period independent of history. Since ς2 is the unique best response to ς1,
BR(σ̂1) is the singleton {σ̂2}, where σ̂2 is the strategy of playing ς2 in each
period independent of history. Since ς is not a stage game Nash equilib-
rium, (σ̂1, σ̂2) is not a Nash equilibrium of the complete-information infinite
horizon game.

The example from Section 2 illustrates the role of the assumption that
player 2 have a unique best response. The strategy that places equal prob-
ability on T and B (while not part of an equilibrium of the stage game)
is part of many equilibria of the complete-information game (as long as
δ > 1/ [2 (p− q)]), and consequently the normal type can have a permanent
reputation for playing like that commitment type. On the other hand, player
2 has a unique best response to any mixture in which player 1 randomizes
with probability of T strictly larger than 1

2 , and a strategy that always plays
such a mixture is not part of any equilibrium of the complete-information
game.

A state of the world is now a type for player 1 and sequence of actions
and signals. The set of states is Ω = {n, c} × (I × J × Y )∞. The prior
p0, commitment strategy σ̂1 and the strategy profile of the normal players
σ̃ = (σ̃1, σ2) induce a probability measure P over Ω, which describes how

8When we are interested in “Stackelberg” commitment types, and the attendant lower
bounds on player 1’s ex ante payoffs, it suffices to consider commitment types who follow
such simple strategies when player 2 is a short-run type. More complicated commitment
types are discussed in Section 6.2.
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an uninformed player expects play to evolve. The strategy profile σ̂ =
(σ̂1, σ2) (respectively, σ̃ = (σ̃1, σ2)) determines a probability measure P̂
(resp., P̃ ) over Ω, which describes how play evolves when player 1 is the
commitment (resp., normal) type. Since P̃ and P̂ are absolutely continuous
with respect to P , any statement that holds P -almost surely, also holds P̃ -
and P̂ -almost surely. Henceforth, we will use E[·] to denote unconditional
expectations taken with respect to the measure P . Ẽ[·] and Ê[·] are used to
denote conditional expectations taken with respect to the measures P̃ and P̂ .
Generic outcomes are denoted by ω. The filtrations {H1t}∞t=0 and {Ht}∞t=0

on (I × J × Y )∞ can also be viewed as filtrations on Ω in the obvious way;
we use the same notation for these filtrations (the relevant sample space will
be obvious).

For any repeated-game behavior strategy σ1 : ∪∞t=0H1t → ∆I , denote
by σ1t the tth period behavior strategy, so that σ1 can be viewed as the
sequence of functions (σ10, σ11, σ12, . . .) with σ1t : H1t → ∆I . We extend
σ1t from H1t to Ω in the obvious way , so that σ1t (ω) ≡ σ1t(h1t(ω)), where
h1t(ω) is player 1’s t-period history under ω. A similar comment applies to
σ2.

Given the strategy σ2, the normal type has the same objective func-
tion as in the complete-information game. Player 2, on the other hand, is
maximizing E[ π2(it, j) | Ht], so that after any history ht, he is updating
his beliefs over the type of player 1 that he is facing. The profile (σ̃1, σ2)
is a Nash equilibrium of the incomplete-information game if each player is
playing a best response.

At any equilibrium, player 2’s posterior belief in period t that player
1 is the commitment type is given by the Ht-measurable random variable
pt : Ω → [0, 1]. By Assumption 1, Bayes’ rule determines this posterior after
all sequences of signals. Thus, in period t, player 2 is maximizing

ptπ2(ς1, j) + (1− pt) Ẽ[ π2(it, j) | Ht]

P -almost surely. At any Nash equilibrium of this game, the belief pt is a
bounded martingale with respect to the filtration {Ht}t and measure P .9 It
therefore converges P -almost surely (and hence P̃ - and P̂ -almost surely) to
a random variable p∞ defined on Ω. Furthermore, at any equilibrium the
posterior pt is a P̂ -submartingale and a P̃ -supermartingale with respect to
the filtration {Ht}t.

A final word on notation: The expression Ẽ [σ1t|Hs] is the standard
conditional expectation, viewed as a Hs-measurable random variable on Ω,

9These properties are well-known. Proofs for the model with perfect monitoring (which
carry over to imperfect monitoring) can be found in Cripps and Thomas (1995).
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while Ẽ [σ1 (h1t) |hs] is the conditional expected value of σ1 (h1t) (with h1t

viewed as a random history) conditional on the observation of the public
history hs.

4 Impermanent Reputations

4.1 Asymptotic Beliefs

Our main result is:

Theorem 1: Suppose the monitoring distribution ρ satisfies Assumptions
1 and 2, and the commitment action ς1 satisfies Assumption 3. In any Nash
equilibrium of the game with incomplete information, pt → 0 P̃ -almost
surely.

The intuition is straightforward: Suppose there is a Nash equilibrium of
the incomplete-information game in which both the normal and the commit-
ment type receive positive probability in the limit (on a positive probability
set of histories). On this set of histories, player 2 cannot distinguish between
signals generated by the two types (otherwise player 2 could ascertain which
type he is facing), and hence must believe that the normal and commitment
types are playing the same strategies on average. But then player 2 must
play a best response to the commitment type. Since the commitment type’s
behavior is not a best reply for the normal type (to this player-2 behavior),
player 1 must eventually find it optimal to not play the commitment-type
strategy, contradicting player 2’s beliefs. The proof is in Section 5.

As we noted in the Introduction, our argument makes critical use of the
assumption of full-support imperfect monitoring. However, if monitoring is
perfect and the commitment type plays a mixed strategy, the game effec-
tively has imperfect monitoring (as Fudenberg and Levine (1992) observe).
For example, in the perfect monitoring version of the game described in Sec-
tion 2 (so that player 1’s action choice is public), if the commitment type
randomizes with probability 3/4 on T , then the realized action choice is a
noisy signal of the commitment type. Theorem 1 immediately applies to
the perfect monitoring case, as long as the commitment type plays a mixed
strategy with full support.

4.2 Asymptotic Equilibrium Play

Given Theorem 1, we should expect continuation play to converge to a Nash
equilibrium of the complete-information game. Our next theorem confirms

11



this result.
We use the term continuation game for the game with initial period in

period t, ignoring the period t histories. We use the notation t′ = 0, 1, 2, . . .
for a period of play in a continuation game (which may be the original game)
and t for the time elapsed prior to the start of the continuation game. A
pure strategy for player 1, s1, is a sequence of maps s1t′ : H1t′ → I for
t′ = 0, 1, . . .. Thus, s1t′ ∈ IH1t′ and s1 ∈ I∪t′H1t′ ≡ S1, and similarly
s2 ∈ S2 ≡ J∪t′Ht′ . The spaces S1 and S2 are countable products of finite
sets. We equip each space S`, ` = 1, 2, with the σ-algebra generated by the
cylinder sets, denoted by S`. The players’ payoffs in the infinitely repeated
game (as a function of pure strategies) are given by

u1(s1, s2) ≡ E[(1− δ)
∞∑

t′=0

δt′π1(it′ , jt′)], and

ut′
2 (s1, s2) ≡ E[π2(it′ , jt′)].

The expectation above is taken over the action pairs (it′ , jt′). These are
random, given the pure strategy profile (s1, s2), because the pure action
played in period t depends upon the random public signals.

For ` = 1, 2, let M` denote the space of probability measures µ` on
(S`,S`). We say a sequence of measures µn

1 ∈M1 converges to µ1 ∈M1 if,
for each τ , we have

(3) µn
1 |I(I×J×Y )τ → µ1|I(I×J×Y )τ

and a sequence of measures µn
2 ∈ M2 converges to µ2 ∈ M2 if, for each τ ,

we have

(4) µn
2 |J(J×Y )τ → µ2|J(J×Y )τ .

Moreover, each M` is sequentially compact in the topology of this conver-
gence. Payoffs for players 1 and 2 are extended to M = M1 ×M2 in the
obvious way. Since player 1’s payoffs are discounted, the inherited product
topology is strong enough to guarantee continuity of u1 : M→R. Each
player 2’s payoff is trivially continuous.

Fix an equilibrium of the incomplete-information game. If the normal
type of player 1 observes a private history h1t ∈ H1t, her strategy σ̃1 specifies
a behavior strategy in the continuation game. This behavior strategy is
realization equivalent to a mixed strategy µ̃h1t

1 ∈ M1 for the continuation
game. For a given public history, ht, there are many possible such mixed
strategies that the normal type could be playing. We let µ̃ht

1 denote the
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expected value of µ̃h1t
1 , conditional on the public history ht. From the point

of view of player 2, who observes only the public history, µ̃ht
1 is the strategy

of the normal player 1 following history ht. We let µht
2 ∈M2 denote player

2’s mixed strategy in the continuation game.
If we had metrized M, a natural formalization of the idea that asymp-

totically the normal type and player 2 are playing a Nash equilibrium is
that the distance between the set of Nash equilibria and the induced dis-
tributions (µ̃ht

1 , µ
ht
2 ) goes to zero. While M is metrizable, a simpler and

equivalent formulation is that the limit of every convergent subsequence of
(µ̃ht

1 , µ
ht
2 ) is a Nash equilibrium.10 Section A.1 proves:

Theorem 2: Suppose the monitoring distribution ρ satisfies Assumptions
1 and 2, and the commitment action ς1 satisfies Assumption 3. For any
Nash equilibrium of the incomplete-information game and for P̃ -almost all
sequences of histories {ht}t, every cluster point of the sequence of continua-
tion profiles {(µ̃ht

1 , µ
ht
2 )}t is a Nash equilibrium of the complete-information

game with normal player 1.

Suppose the Stackelberg payoff is not a Nash equilibrium payoff of the
complete-information game. Recall that Fudenberg and Levine (1992) pro-
vide a lower bound on equilibrium payoffs in the incomplete-information
game of the following type: Fix the prior probability of the Stackelberg
(commitment) type. Then, there is a value for the discount factor, δ̄, such
that if δ > δ̄, then in every Nash equilibrium, the long-lived player’s ex ante
payoff is essentially no less than the Stackelberg payoff. The reconciliation of
this result with Theorem 2 lies in the order of quantifiers: while Fudenberg
and Levine fix the prior, p0, and then select δ̄ (p0) large (with δ̄ (p0) → 1
as p0 → 0), we fix δ and examine asymptotic play, so that eventually pt is
sufficiently small that δ̄ (pt) > δ.

4.3 Asymptotic Restrictions on Behavior

This section provides a partial converse to Theorem 2. We identify a class
of equilibria of the complete-information game to which (under a continu-
ity hypothesis) equilibrium play of the incomplete-information game can
converge.11 The proof is in Section A.2.

10This equivalence is an implication of the sequential compactness of M, since every
subsequence of (µ̃ht

1 , µht
2 ) has a convergent sub-subsequence.

11We conjecture this hypothesis is redundant, given the other conditions of the theorem,
but have not been able to prove it.
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Recall that in the example of Section 2, the stage game has a (unique)
strict Nash equilibrium BR. It is a straightforward implication of Fudenberg
and Levine (1992) that the presence of the commitment type ensures that,
as long as player 1 is sufficiently patient, every equilibrium in this example
begins with a long sequence of play close to TL. On the other hand, an im-
plication of Theorem 3 below is that for the same parameters (in particular,
the same prior probability of the commitment type), there is an equilibrium
in which, with arbitrarily high probability under P̃ , BR is eventually played
in every period.

The construction of such an equilibrium must address the following two
issues. First, as we just observed, reputation effects may ensure that for
a long period of time, equilibrium play will be very different from BR.
Theorem 3 is consistent with this, since it only claims that in the equilibrium
of interest, BR is eventually played in every period with high probability.
Second, even if reputation effects are not currently operative (because the
current belief that player 1 is the commitment type is low), with positive
probability (albeit small), a sequence of signals will arise that increases the
posterior that player 1 is the commitment type and hence makes reputation
effects a recurring possibility.

Theorem 3: Suppose the monitoring distribution ρ satisfies Assumptions
1 and 2, and the commitment action ς1 satisfies Assumption 3. Suppose the
stage game has a strict Nash equilibrium, (i∗, j∗). Suppose that for all ε > 0,
there exists η and an equilibrium of the complete-information game, σ(0),
such that for all p0 ∈ (0, η), the game with incomplete-information with
prior p0 has an equilibrium whose payoff to player 1 is within ε of u1(σ(0)).
Given any prior p0 and any δ, for all ε > 0, there exists a Nash equilibrium
of the incomplete-information game in which the P̃ -probability of the event
that eventually (i∗, j∗) is played in every period is at least 1− ε.

5 Proof of Theorem 1

5.1 Player 2’s Posterior Beliefs

The first step is to show that either player 2’s expectation (given the public
history) of the strategy played by the normal type is in the limit identical to
the strategy played by the commitment type, or player 2’s posterior prob-
ability that player 1 is the commitment type converges to zero (given that
player 1 is indeed normal).

This is an extension of a familiar merging-style argument to the case of
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imperfect monitoring. If the distributions generating player 2’s observations
are different for the normal and commitment types, then he will be updating
his posterior, continuing to do so as the posterior approaches zero. His
posterior converges to something strictly positive only if the distributions
generating these observations are in the limit identical. In the statement
of the following Lemma, h1t is to be interpreted as a function from Ω to
(I × Y )t.

Lemma 1: At any Nash equilibrium of a game satisfying Assumptions 1 and
2,12

(5) lim
t→∞

pt(1− pt)
∥∥∥ς1 − Ẽ[ σ̃1t | Ht ]

∥∥∥ = 0, P -a.s.

Proof: Let pt+1(ht; jt, yt) denote player 2’s belief in period t + 1 after
playing jt in period t, observing the signal yt in period t, and given the
history ht. By Bayes’ rule,

pt+1(ht; jt, yt) =
pt Pr[yt | ht, jt, c]

pt Pr[yt | ht, jt, c] + (1− pt) Pr[yt | ht, jt, n]
.

The probability player 2 assigns to observing the signal yt from the commit-
ment type is

∑
i∈I ς

i
1ρ

yt

ijt
, and from the normal type is Ẽ[

∑
i∈I σ̃

i
1(h1t)ρ

yt

ijt
|ht].

Using the linearity of the expectations operator, we write pt+1(ht; jt, yt) as

pt+1(ht; jt, yt) =
pt

∑
i∈I ρ

yt

ijt
ς i1∑

i∈I ρ
yt

ijt

(
ptς i1 + (1− pt)Ẽ[σ̃i

1(h1t)|ht]
) .

Rearranging,

(6)
pt+1

pt

∑
i∈I

ρyt

ijt

(
ptς

i
1 + (1− pt)Ẽ[σ̃i

1(h1t)|ht]
)

=
∑
i∈I

ρyt

ijt
ς i1.

Denote the summation on the left by A and note that A < maxi ρ
yt

ijt
< 1.

Repeating the derivation of (6) for 1 − pt+1, the probability that player 1
is normal, gives (1 − pt+1)A/(1 − pt) =

∑
i∈I ρ

yt

ijt
Ẽ[σ̃i

1(h1t)|ht]. Taking the
difference of this expression and (6) yields

A

∣∣∣∣pt+1

pt
− 1− pt+1

1− pt

∣∣∣∣ =

∣∣∣∣∣∑
i∈I

ρyt

ijt

(
ς i1 − Ẽ[σ̃i

1(h1t)|ht]
)∣∣∣∣∣ .

12We use ‖x‖ to denote the sup-norm on RI .
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As A < 1 for any fixed realization y of the signal yt, it follows that for all
ht and jt,

(7) max
y
|pt+1(ht; jt, y)− pt(ht)| ≥

pt(ht)(1− pt(ht))

∣∣∣∣∣∑
i∈I

ρy
ijt

(
ς i1 − Ẽ[σ̃i

1(h1t)|ht]
)∣∣∣∣∣ .

Since pt is a P -almost sure convergent sequence, it is Cauchy P -almost
surely.13 So the right hand side of (7) converges to zero P -almost surely.
Thus, for any y,

(8) pt(1− pt)

∣∣∣∣∣∑
i∈I

ρy
ijt

(
ς i1 − Ẽ[σ̃i

1t|Ht]
)∣∣∣∣∣ → 0, P -a.s.

Hence, if both types are given positive probability in the limit then the
frequency that any signal is observed is identical under the two types.

We now show that (8) implies (5). Let Πjt be a |Y | × |I| matrix whose
yth row, for each signal y ∈ Y , contains the terms ρy

ijt
for i = 1, . . . , |I|.

Then as (8) holds for all y (and Y is finite), it can be restated as

(9) pt(1− pt)
∥∥∥Πjt

(
ς1 − Ẽ[σ̃1t|Ht]

)∥∥∥ → 0, P -a.s.,

where ‖.‖ is the supremum norm. By Assumption 2, the matrices Πjt have
I linearly independent columns for all jt, so x = 0 is the unique solution
to Πjtx = 0 in RI . In addition, there exists a strictly positive constant
b = infj∈J,x 6=0 ‖Πjx‖/‖x‖. Hence ‖Πjx‖ ≥ b‖x‖ for all x ∈ RI and all j ∈ J .
From (9), we then get

pt(1− pt)
∥∥∥Πjt

(
ς1 − Ẽ[σ̃1t|Ht]

)∥∥∥
≥ pt(1− pt)b

∥∥∥ς1 − Ẽ[σ̃1t|Ht]
∥∥∥ → 0, P -a.s.,

which implies (5). Q.E.D.

Condition (5) says that either player 2’s best prediction of the normal
type’s behavior is eventually identical to the commitment type’s behavior
(that is, ‖ ς1 − Ẽ[ σ̃1t | Ht ] ‖ → 0 P -almost surely), or the type is revealed

13Note that the analysis is now global, rather than local, in that we treat all the expres-
sions as functions on Ω.
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(that is, p∞(1 − p∞) = 0 P -almost surely). However, p∞ < 1 P̃ -almost
surely, and hence (5) implies a simple corollary:14

Corollary 1: At any equilibrium of a game satisfying Assumptions 1 and
2,

lim
t→∞

pt

∥∥∥ς1 − Ẽ[ σ̃1t | Ht ]
∥∥∥ = 0, P̃ -a.s.

5.2 Beliefs about Player 2’s Beliefs

Corollary 1 implies that if pt 6→ 0 on a set of states with positive measure,
then (on this set of states) player 2 must think that the normal type’s
strategy is arbitrarily close to that of the commitment type. Since player 1
is better informed than player 2, player 1 must know that player 2 believes
this:

Lemma 2: Suppose Assumptions 1 and 2 are satisfied. Suppose there exists
A ⊂ Ω such that P̃ (A) > 0 and p∞(ω) > 0 for all ω ∈ A. Then, for
sufficiently small η > 0, there exists F ⊂ A with P̃ (F ) > 0 such that, for
any ξ > 0, there exists T for which

(10) pt > η, ∀t > T

and

(11) Ẽ

[
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ ∣∣∣∣ Ht

]
< ξ, ∀t > T

for all ω ∈ F and, for all ψ > 0,

(12) P̃

(
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ < ψ

∣∣∣∣ Ht

)
→ 1,

where the convergence is uniform on F .

Proof: Define the event Dη = {ω ∈ A : p∞(ω) > 2η}. Because the set
A on which p∞(ω) > 0 has P̃ -positive measure, for any η > 0 sufficiently
small, we have P̃ (Dη) > 2µ, for some µ > 0. On the set of states Dη the
random variable ‖ς1− Ẽ[σ̃1t|Ht]‖ tends P̃ -almost surely to zero (by Lemma

14Since the odds ratio pt/(1− pt) is a P̃ -martingale, p0/(1− p0) = Ẽ[pt/(1− pt)] for all
t. The left side of this equality is finite, so lim pt < 1 P̃ -almost surely.
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1). Therefore, on Dη the random variable Zt = sups≥t ‖ς1 − Ẽ[σ̃1s|Hs]‖
converges P̃ -almost surely to zero and hence (Hart (1985, Lemma 4.24))

(13) Ẽ[ Zt | Ht ] → 0 P̃ − almost surely.

Egorov’s Theorem (Chung (1974, p.74)) then implies that there exists F ⊂
Dη such that P̃ (F ) ≥ µ on which the convergence of pt and Ẽ[Zt|Ht] is uni-
form. Hence, for any ξ > 0, there exists a time T such that the inequalities
in (10) and (11) hold everywhere on F for all t > T .

Fix ψ > 0. Then, for all ξ′ > 0, (11) holds for ξ = ξ′ψ, which implies
that, uniformly on F ,

P̃

(
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ < ψ

∣∣∣∣ Ht

)
→ 1.

Q.E.D.

5.3 Completion of the Proof of Theorem 1

The proof of Theorem 1 is completed by showing that, on a subset of the
states F in Lemma 2, player 2 believes he should be playing a best response
to the commitment strategy. The normal type of player 1 will best respond
to this player-2 best response with high probability, ensuring that the nor-
mal and commitment types of player 1 play differently, contradicting the
assumption that pt 6→ 0 on F .

Define β ≡ mini{ς i1 : ς i1 > 0} and γ ≡ miny,i,j ρ
y
ij , where the latter is

strictly positive by Assumption 1. Since ς1 is not a best reply for the normal
type to ς2 (the myopic best reply to ς1), there exists η > 0 such that for any
repeated-game strategy for player 2 that attaches probability at least 1− η
to σ̂2 (i.e., to always playing ς2), ς1 is suboptimal for the normal type in
period 1.

As ς2 is the unique best response to ς1, it is strict and so there exists
ψ > 0 such that ς2 is the unique best response to any action of player 1, ς ′1,
satisfying ‖ς ′1 − ς1‖ < ψ.

Suppose that there is a positive P̃ -probability set of outcomes A on which
p∞ > 0. Choose ξ, ζ such that ζ < βγ and ξ < min {ψ, β − ζγ}. By (12),
there is a P̃ -positive measure set F ⊂ A and T such that, on F and for any
t > T ,

(14) P̃

(
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ < ξ

∣∣∣∣ Ht

)
> 1− ηζ.
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Hence, on F ,

(15)
∥∥∥ ς1 − Ẽ[σ̃1t|Ht]

∥∥∥ < ξ P̃ a.s.

Set

gt ≡ P̃

(
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ < ξ

∣∣∣∣ H1t

)
and κt ≡ P̃ (gt > 1− η | Ht). As {H1t}t is a finer filtration than {Ht}t,

P̃

(
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ < ξ

∣∣∣∣ Ht

)
= Ẽ[ gt | Ht ]

= Ẽ [gt | gt ≤ 1− η,Ht] (1− κt) + Ẽ [gt | gt > 1− η,Ht]κt

≤ (1− η) (1− κt) + κt.(16)

Combining the inequalities (14) and (16) we get that for almost every state
in F , κt > 1− ζ. That is, for all t > T and for almost every state in F ,

(17) P̃

(
P̃

(
sup
s≥t

∥∥∥ς1 − Ẽ[σ̃1s|Hs]
∥∥∥ < ξ

∣∣∣∣H1t

)
> 1− η

∣∣∣∣ Ht

)
> 1− ζ,

and so player 2 assigns a probability of at least 1 − ζ to player 1 believing
with probability at least 1 − η that player 2 believes player 1’s strategy is
within ξ of the commitment strategy.

Since ξ < ψ, player 2 plays ς2, the unique best response to the com-
mitment action, whenever he believes that 1’s strategy is within ξ of the
commitment strategy. Hence, in any period t > T , player 2 assigns a prob-
ability of at least 1− ζ to player 1 believing that player 2’s subsequent play
is σ̂2 with at least probability 1 − η. Thus, player 2 assigns probability at
least 1− ζ to player 1’s subsequent play being a best response to player 2’s
best response to σ̂1. But η was chosen so that there is then an action in
the support of σ̂1, say i′, that is not optimal in period t. Player 2 must
accordingly believe that i′ is played with a probability of no more than ζ in
period t. But since β − ζ > ξ, this contradicts (15). Q.E.D.

6 Extensions

6.1 Many Commitment Types

To extend the preceding analysis to the case in which there are many com-
mitment types, let T be a set of possible commitment types. The com-
mitment type c plays the repeated-game strategy σ̂c

1 that plays the fixed
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stage-game action ςc1 ∈ ∆I in each period. We assume T is either finite or
countably infinite, and ςc1 6= ςc

′
1 for all c 6= c′ ∈ T . At time t = −1 a type

of player 1 is selected. With probability pc
0 > 0, she is commitment type c,

and with probability pn
0 = 1 −

∑
c∈T p

c
0 > 0 she is the “normal” type. A

state of the world is, as before, a type for player 1 and sequence of actions
and signals. The set of states is then Ω = T × (I × J × Y )∞. We denote by
P̂ c the probability measure induced on Ω by the commitment type c ∈ T ,
and as usual, we denote by P̃ the probability measure on Ω induced by the
normal type. Finally, we denote by pc

t player 2’s period t belief that player
1 is the commitment type c.

To deal with many types of player 1, we first argue that it is impossible
for two different commitment types to be given positive probability in the
limit.

Lemma 3: At any Nash equilibrium of a game satisfying Assumptions 1 and
2, for all c 6= c′ ∈ T ,

pc
tp

c′
t → 0 P−a.s.

Proof: Derive (6) for each of the types c and c′. Take the difference of
these two equations, repeat the remaining part of the proof of Lemma 1,
and use ςc1 6= ςc

′
1 . Q.E.D.

Theorem 4: Suppose ρ satisfies Assumptions 1 and 2. Let T ∗ be the set
of commitment types c ∈ T for which player 2 has a unique best response
ςc2 to ςc1, with (ςc1, ς

c
2) not a Nash equilibrium of the stage game. Then in

any Nash equilibrium, pc
t → 0 for all c ∈ T ∗ P̃ -almost surely.

The proof duplicates that of Theorem 1, with the following change. Fix
some type c′ ∈ T ∗. In the proof, reinterpret P̃ as P−c′ =

∑
c 6=c′ p

c
0P̂

c +pn
0 P̃ ,

the unconditional measure on Ω implied by the normal type and all the
commitment types other than c′. The only point at which it is important
that P̃ is indeed the measure induced by the normal type is at the end of
the proof, when the normal type has a profitable deviation that contradicts
player 2’s beliefs. We now apply Lemma 3. Since we are arguing on a P̃ -
positive probability subset where pc′

t is not converging to zero, every other
commitment type is receiving little weight in 2’s beliefs. Consequently, from
player 2’s point of view, eventually the measures P−c′ and P̃ are sufficiently
close to obtain the same contradiction.
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6.2 Complicated Commitment Types

We have followed the common practice of considering simple commitment
types who repeat a fixed stage-game mixture in each period. The results
extend to commitment types whose strategies are not stationary, as long as
their behavior is eventually incompatible with equilibrium.

Definition 2: The strategy σ̄1 is never an equilibrium strategy in the long
run, if there exists T̄ and ε > 0 such that, for every σ̄2 ∈ BR(σ̄1) and for
every t ≥ T̄ , there exists σ̃1 such that P σ̄-a.s,

Eσ̄

[
(1− δ)

∞∑
s=t

δs−tπ1(is, js)

∣∣∣∣∣H1t

]
+ε < E(σ̃1,σ̄2)

[
(1− δ)

∞∑
s=t

δs−tπ1(is, js)

∣∣∣∣∣H1t

]
.

A strategy σ1 is simple if it plays the same stage-game (possibly mixed)
action after every history. A strategy σ1 is public if it is measurable with
respect to {Ht}t, so that the mixture over actions in each period depends
only upon the public history. A strategy σ1 is publicly implementable by a
finite automaton if there exists a finite set W , an action function d : W →
∆I , a transition function ϕ : W × Y → W , and an initial element w0 ∈ W ,
such that σ1 (ht) = d (w (ht)), where w (ht) is the state reached from w0

under the public history ht and transition rule ϕ.
It is straightforward to show that if a simple strategy plays the stage-

game mixture ς ∈ ∆I , to which player 2 has a unique best response, then the
strategy is never an equilibrium strategy in the long run if and only if ς is
not part of a stage-game Nash equilibrium. Similarly, suppose σ̄1 is publicly
implementable by the finite automaton (W,d, ϕ,w0), with every state in W
reachable from every other state in W under ϕ. If player 2 has a unique
best reply to d (w) for all w ∈ W , then σ̄1 is never an equilibrium strategy
in the long run if and only if σ̄1 is not part of a Nash equilibrium of the
complete-information game.15

Theorem 5: Suppose ρ satisfies Assumptions 1 and 2. Suppose σ̂1 is a
public strategy with finite range (i.e., ∪ht σ̂1 (ht) is finite) that is never an

15The only if direction of this statement is obvious. So, suppose σ̄1 is not a Nash
equilibrium of the complete-information game. Since player 2 always has a unique best
reply to d (w), σ2 is public, and can also be represented as a finite-state automaton, with
the same set of states and transition function as σ̄1. Since σ̄1 is not a Nash equilibrium,
there is some state w′ ∈ W , and some action i′ not in the support of d (w′) such that when
the state is w′, playing i′ and then following σ̄1 yields a payoff that is strictly higher than
following σ̄1 at w′. Since the probability of reaching w′ from any other state is strictly
positive (and so bounded away from zero), σ̄1 is never an equilibrium in the long run.
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equilibrium strategy in the long run. In any Nash equilibrium of any game
with incomplete information, pt → 0 P̃ -almost surely.

Proof: Since σ̂1 is never an equilibrium strategy in the long run, there
exists T̄ such that after any positive probability history of length at least
T̄ , σ̂1 is not a best response to any strategy σ2 ∈ BR(σ̂1) of player 2 that
best responds to σ̂1. Indeed, there exists η > 0 such that this remains true
for any strategy of player 2 that attaches probability at least 1 − η to any
strategy in BR(σ̂1).

The argument in Section 5.3 now applies, with the following three changes:
First, redefine β as β ≡ mini,ht{σ̂i

1 (ht) : σ̂i
1 (ht) > 0} (which is strictly pos-

itive, since σ̂1 has finite range). Second, T must be larger than T̄ . Third,
the last two paragraphs of that section are replaced by the following:

We now argue that there is a period t ≥ T and an outcome in F such that
σ̂1 is not optimal for the normal player 1 in period t. Given any outcome
ω ∈ F and a period t ≥ T , let ht be its t-period public history. There is
a K > 0 such that for any t large, there is a public history yt, . . . , yt+k,
0 ≤ k ≤ K, under which σ̂1(ht, yt, . . . , yt+k) puts positive probability on
a suboptimal action. (Otherwise, no deviation can increase the period-t
expected continuation payoff by at least ε.) Moreover, by full support,
any K sequence of signals has probability at least λ > 0. If the public
history (ht, yt, . . . , yt+k) is consistent with an outcome in F , then we are
done. So, suppose there is no such outcome. That is, for every t ≥ T ,
there is no outcome in F for which σ̂1 attaches positive probability to a
suboptimal action within the next K periods. Letting Ct(F ) denote the
t-period cylinder set of F , P̃ (F ) ≤ P̃ (Ct+K(F )) ≤ (1− λ) P̃ (Ct (F )) (since
the public history of signals that leads to a suboptimal action has probability
at least λ). Proceeding recursively from T , we have P̃ (F ) ≤ P̃ (CT+`K(F )) ≤
(1− λ)` P̃ (CT (F )), and letting `→∞, we have P̃ (F ) = 0, a contradiction.

Hence, there is a period t ≥ T and an outcome in F such that one of the
actions in the support of σ̂1, i′ say, is not optimal in period t. That is, any
best response assigns zero probability to i′ in period t. From (17), player
2’s beliefs give a probability of at least 1 − ζ to a strategy of player 1 that
best responds to 2’s best response to σ̂1, which means that player 2 believes
that i′ is played with a probability of no more than ζ. But since β − ζ > ξ,
this contradicts (15). Q.E.D.

6.3 Two Long-Lived Players

We now extend the analysis to the case of a long-lived player 2. The second
and third paragraphs of Section 5.3 are the only places where the assump-
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tion that player 2 is short-lived makes an appearance. When player 2 is
short-lived, player 2 is myopically best responding to the current play of
player 1, and so as long as player 2 is sufficiently confident that he is facing
the commitment type, he will best respond to the commitment type. On
the other hand, if player 2 is long-lived, like player 1, then there is no guar-
antee that this is still true. For example, player 2 may find experimentation
profitable. Nonetheless, reputation effects can still be present (Celentani,
Fudenberg, Levine, and Pesendorfer (1996)).

The following result (proven in the Appendix) shows that if the com-
mitment type and the normal type are behaving sufficiently similarly, then
player 2 will be playing a best response to the commitment type for arbitrar-
ily many periods. (The notation (W,d, ϕ,w0) is described above Theorem
5.)

Lemma 4: Suppose σ̂1 is publicly implementable by the finite automaton
(W,d, ϕ,w0), andBR (σ̂1;w′) is the set of best replies for player 2 to (W,d, ϕ,w′).
For any history ht, let w (ht) ∈ W be the state reached from w0 under the
public history consistent with ht. Let (σ̃1, σ2) be Nash equilibrium strate-
gies in the incomplete-information game where player 2 is long-lived with
discount factor δ2 ∈ [0, 1). Suppose ∃κ > 0 such that for all ht, if σj

2(ht) > 0
then σj

2(ht) > κ. Then, then for all T > 0 there exists ψ > 0 such that if
player 2 observes a history ht so that

(18) P

(
sup
s≥t

∥∥∥Ê[σ̂1s|Hs]− Ẽ[σ̃1s|Hs]
∥∥∥ < ψ

∣∣∣∣ht

)
> 1− ψ,

then for some σ′2 ∈ BR (σ̂1;w (ht)), the continuation strategy of σ2 after the
history ht agrees with σ′2 for the next T periods.

If player 2’s posterior that player 1 is the commitment type fails to
converge to zero on a set of states of positive P̃ -measure, then the same
argument as in Lemma 2 shows that (18) holds (note that (11) in Lemma 2
uses P̃ rather than P to evaluate the probability of the event of interest).

With this result in hand, the proof of Theorem 1 goes through as before,
establishing:

Theorem 6: Suppose ρ satisfies Assumptions 1 and 2. Suppose σ̂1 is pub-
licly implementable by a finite automaton and is never an equilibrium strat-
egy in the long run. Let (σ̃1, σ2) be Nash equilibrium strategies in the
incomplete-information game where player 2 is long-lived with discount fac-
tor δ2 ∈ [0, 1). Suppose ∃κ > 0 such that for all ht, if σj

2(ht) > 0 then

σj
2(ht) > κ. Then, pt → 0 P̃ -almost surely.
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6.4 Private Actions

Our results continue to hold when player 2’s actions are private, as long
as player 1 can infer player 2’s posterior belief pt from the public signals.16

This will be the case if
ρy

ijρ
y
i′j′ = ρy

i′jρ
y
ij′

for all y ∈ Y , i, i′ ∈ I, and j, j′ ∈ J . This holds, for example, if the public
signal y is a vector (y1, y2) ∈ Y1 × Y2 = Y , with y1 a signal of player 1’s
action and y2 an independent signal of player 2’s action. In this case, action
i induces a probability distribution ρi over Y1 while action j induces ρj over
Y2, with

(19) ρy
ij = ρy1

i ρ
y2
j ∀i, j, y.

The full-support Assumption 1 is replaced by the requirement that, for all
i and y1 ∈ Y1,

ρy1
i > 0.

Assumption 2, in the presence of (19), is equivalent to the requirement that
there are I linearly independent columns in the matrix

(ρy1
i )y1∈Y1,i∈I .

Cripps, Mailath, and Samuelson (2003) addresses the case where player
2’s actions are not known to player 1 and his posterior depends upon his
actions as well as the public signals. In this case, the long-lived player’s
reputation is private, since the public signals do not allow player 1 to infer
2’s posterior beliefs. This complicates the analysis, since it is now harder
to show that the convergence of player 2’s beliefs implies that the normal
player 1 knows she has a profitable deviation from the commitment strategy.
In the course of coping with the potential uninformativeness of the public
signals, we extend the results to the case of purely private monitoring.

Olin School of Business, Washington University in St. Louis, St. Louis,
MO 63130-4899; cripps@olin.wustl.edu;

Department of Economics, University of Pennsylvania, 3718 Locust Walk,
Philadelphia, PA 19104-6297; gmailath@econ.upenn.edu;

and

Department of Economics, University of Wisconsin, 1180 Observatory
Drive, Madison, WI 53706-1320; LarrySam@ssc.wisc.edu.

16Indeed, each player 2’s action choices can be completely private, so that future player
2’s do not learn the choice of the active player 2.
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A Appendix

A.1 Proof of Theorem 2

Proof: At the given equilibrium, the normal type is playing in an optimal
way from time t onwards given her (private) information. Thus, for each
history h1t, derived public history ht, and strategy s′1 ∈ S1,

E
(µ̃

h1t
1 ,µ

ht
2 )

[u1(s1, s2)] ≥ E
µ

ht
2

[u1(s′1, s2)].

The subscripts on the expectation operator are the measures on (s1, s2).
Moreover, for the derived public history ht and any strategy s′1 ∈ S1,

(A.1) E
(µ̃

ht
1 ,µ

ht
2 )

[u1(s1, s2)] ≥ E
µ

ht
2

[u1(s′1, s2)].

Player 2 is also playing optimally from time t onwards given the public
information, which implies that for all s′2 ∈ S2, all ht′ and all t′ > 0,

(A.2) E
(ptµ̂

ht
1 +(1−pt)µ̃

ht
1 ,µ

ht
2 )

[ut′
2 (s1, s2)] ≥ E

ptµ̂
ht
1 +(1−pt)µ̃

ht
1

[ut′
2 (s1, s′2)],

where µ̂ht
1 is the play of the commitment type. Since player 2 is a short-run

player, this inequality is undiscounted and holds for all t′.
From Theorem 1, pt → 0 P̃ -almost surely. Suppose {ht}t is a sequence

of public histories with pt → 0, and suppose {(µ̃ht
1 , µ

ht
2 )}∞t=1 → (µ̃∗1, µ

∗
2) on

this sequence. We need to show that (µ̃∗1, µ
∗
2) satisfies (A.1) and (A.2) (the

latter for all t′ > 0). It suffices that the expectations E(µ1,µ2)[u1(s1, s2)]
and E(µ1,µ2)[u2(s1, s2)] are continuous in (µ1, µ2). The continuity required
is established in the proof of Theorem 4.4 in Fudenberg and Tirole (1991).

Q.E.D.

A.2 Proof of Theorem 3

We begin by focusing on games that are “close” to the complete-information
game. All the Lemmas assume the hypotheses of Theorem 3.

Lemma A: For all T , there exists η̂ > 0 such that for all p0 ∈ (0, η̂), there is
a Nash equilibrium of the incomplete-information game in which the normal
type plays i∗ and player 2 plays j∗ for the first T periods, irrespective of
history.

Proof: Let ε′ = 1
2 [π1 (i∗, j∗)−maxi6=i∗ π1(i, j∗)] > 0. By assumption,

there exists η > 0 and a Nash equilibrium of the complete-information game,
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σ (0), such that for each belief p ∈ (0, η), there is a Nash equilibrium of the
incomplete-information game, σ (p), satisfying |Epu1 (σ (p))− E0u1 (σ (0))| <
ε′

2 , where Ep denotes taking expectations with probability p on the commit-
ment type. Hence, for p, p′ < η,

∣∣Epu1 (σ (p))− Ep′u1 (σ (p′))
∣∣ < ε′.

Since j∗ is player 2’s strict best response to i∗, there exists η′ > 0 so
that for all pt < η′, j∗ is still a best response to the normal type playing i∗.
For any T there exists η̂ > 0 so that if p0 < η̂, then pt < min{η, η′} in all
periods t ≤ T , by Assumption 1. The equilibrium strategy profile is to play
(i∗, j∗) for the first T periods (ignoring history), and then play according
to the strategy profile identified in the previous paragraph for the belief pT ,
σ (pT ). By construction, no player has an incentive to deviate and so the
profile is indeed a Nash equilibrium. Q.E.D.

While, for T large, the equilibrium just constructed yields payoffs to
player 1 that are close to π1(i∗, j∗), the equilibrium guarantees nothing about
asymptotic play. The equilibrium of the next Lemma does.

Lemma B: For all ε > 0, there exists η∗ > 0 such that for all p0 ∈ (0, η∗],
there is a Nash equilibrium of the incomplete-information game, σ∗∗(p0), in
which the P̃ -probability of the event that (i∗, j∗) is played in every period
is at least 1− ε.

Proof: Fix ζ = 1
3 [π1 (i∗, j∗)−maxi6=i∗ π1(i, j∗)] > 0, and choose T large

enough so that δTM < ζ
2 (recall that M is an upper bound for stage game

payoffs) and that the average discounted payoff to player 1 from T periods
of (i∗, j∗) is within ζ

2 of π1 (i∗, j∗). Denote by η̂ the upper bound on beliefs
given in Lemma A. For any prior p ∈ (0, η̂) that player 1 is the commitment
type, let σ∗(p) denote the equilibrium of Lemma A. By construction, σ∗(p)
yields player 1 an expected payoff within ζ of π1 (i∗, j∗).

There exists η′′ < η̂ such that if pt < η′′, then the posterior after T peri-
ods, pt+T (pt), is necessarily below η̂. Consider the following strategy profile,
consisting of two phases. In the first phase, play (i∗, j∗) for T periods, ignor-
ing history. In the second phase, behavior depends on the posterior beliefs
of player 2, pt+T (pt). If pt+T (pt) > η′′, play σ∗(pt+T (pt)). If pt+T (pt) ≤ η′′,
begin the first phase again.

By construction, the continuation payoffs at the end of the first phase
are all within ζ of π1(i∗, j∗), and so for any prior satisfying p0 < η′′, the
strategy profile is an equilibrium.

Fix p0, and let p†t be the beliefs of player 2 under the strategy profile
in which (i∗, j∗) is played in every period, irrespective of history. It is
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immediate that p†t → 0 P †-almost surely (where P † is the measure implied by
(i∗, j∗) in every period), and so supt′≥t p

†
t′ → 0 P †-almost surely. Moreover,

if p†τ ≤ η′′ for all τ ≤ t, then p†τ = pτ for all τ ≤ t. By Egorov’s Theorem,
there exists a t∗ such that P †{supt′≥t∗ p

†
t′ ≤ η′′} > 1− ε. But then for some

public history, ht∗ , P †{supt′≥t∗ p
†
t′ ≤ η′′|ht∗} > 1 − ε. The monotonicity of

p†t as a function of p0 implies that, for some η∗ > 0, if p0 < η∗, p†t ≤ η′′

for all t ≤ t∗. Moreover, the set {supt′≥t∗ p
†
t′ ≤ η′′} cannot shrink as p0 is

reduced, and so P †{supt p
†
t ≤ η′′} > 1− ε. Hence, for p0 < η∗, P̃{supt pt ≤

η′′} = P †{supt p
†
t ≤ η′′} > 1− ε. Q.E.D.

Proof of Theorem 3:
We first construct an equilibrium of an artificial game, and then argue that
this equilibrium induces an equilibrium with the desired properties in the
original game.

Fix ε and the corresponding η∗ from Lemma B. In the artificial game,
player 2 has the action space J × {g, e} × [0, 1], where we interpret g as
“go,” e as “end,” and p ∈ [0, 1] as an announcement of the posterior belief
of player 2. The game is over immediately when player 2 chooses e. The
payoffs for player 2 when player 2 ends the game with the announcement of
p depend on the actions as well as on the type of player 1 (recall that n is
the normal type and c is the commitment type):

π∗2 (i, j, e, p;n) = π2 (i, j) + η∗ − p2

and
π∗2 (i, j, e, p; c) = π2 (i, j)− (1− η∗)− (1− p)2 ,

where η∗ > 0 is from Lemma B. The payoffs for player 2 while the game
continues are:

π∗2 (i, j, g, p;n) = π2 (i, j)− p2

and
π∗2 (i, j, e, p; c) = π2 (i, j)− (1− p)2 .

The payoffs for the normal type of player 1 from the outcome {(is, js, g, ps)}∞s=0

(note that player 2 has always chosen g) are as before (in particular, the be-
lief announcements are irrelevant):

(1− δ)
∞∑

s=0

δsπ1(is, js).
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For the outcome
{

(is, js, g)
t−1
s=0 , (it, jt, e, pt)

}
, the payoffs for player 1 are

(1− δ)
t∑

s=0

δsπ1(is, js) + δtu1(σ∗∗(pt)),

where u1(σ∗∗ (pt)) is player 1’s equilibrium payoff under σ∗∗(pt) from Lemma
B.

Since player 2 chooses an announcement p ∈ [0, 1] to minimize (1−pt)p2+
pt(1 − p)2, he always finds it strictly optimal to announce his posterior.
Moreover, again by construction, player 2 ends the game if and only if his
posterior is less than η∗. Moreover, the artificial game has an equilibrium
(σ∗1, σ

∗
2) (by Fudenberg and Levine (1983, Theorem 6.1)).

The desired equilibrium in the original game is given by (σ∗1, σ
∗
2), with

the modification that should (σ∗1, σ
∗
2) call for player 2 to announce e, then

play proceeds according to the equilibrium specified in Lemma B for the
corresponding value of ρ (< η∗). It follows from Lemma B that this is an
equilibrium of the original game. It then follows from Theorem 1 that P̃ -
almost surely, the probability of the event that (i∗, j∗) is played eventually
is at least 1− ε. Q.E.D.

A.3 Proof of Lemma 4

Proof: Fix T > 0. Since W is finite, it is enough to argue that for each
w ∈ W , there is ψw > 0 such that if player 2 observes a history ht so that
w = w (ht) and

(A.3) P

{
sup
s≥t

∥∥∥Ê[σ̂1s|Hs]− Ẽ[σ̃1s|Hs]
∥∥∥ < ψw

∣∣∣∣ht

}
> 1− ψw,

then for some σ′2 ∈ BR (σ̂1;w), the continuation strategy of σ2 after the
history ht agrees with σ′2 for the next T periods.

Fix a public history, h′t. Let σ̂1 (hs) denote the play of the finite au-
tomaton (W,d, ϕ,w (h′t)) after the public history hs, where h′t is the initial
segment of hs. Since player 2 is discounting, there exists T ′ such for any
w ∈W , there is εw > 0 such that if for s = t, . . . , t+ T ′ and for all h2s with
initial segment h′t,

(A.4)
∥∥∥σ̂1 (hs)− Ẽ [σ̃1s|hs]

∥∥∥ < εw,

then for some σ′2 ∈ BR (σ̂1;w (h′t)), the continuation strategy of σ2 after the
history h′t agrees with σ′2 for the next T periods.
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By assumption, ∃κ > 0 such that if σj
2(ht) > 0 then σj

2(ht) > κ. Recall

that γ ≡ miny,ij ρ
y
ij and set ψw = 1

2 min
{
εw, (κγ)T ′

}
. Suppose (A.3) holds

with this ψw. We claim that (A.4) holds for s = t, . . . , t+ T ′ and for all hs

with initial segment h′t. Suppose not. The assumption on σ2 implies that
the probability of the continuation history hs, conditional on the history h′t,
is at least (κγ)T ′

. Thus,

P

{
sup
s≥t

∥∥∥Ê[σ̂1s|Hs]− Ẽ[σ̃1s|Hs]
∥∥∥ ≥ ψw

∣∣∣∣ht

}
≥ (κγ)T ′

,

contradicting (A.3), since (κγ)T ′
> ψw. Q.E.D.
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