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1 Introduction

The efficiency of market processes has been a central concern in economics since its
inception. Auction mechanisms constitute a very important class of market processes,
yet the analysis of auctions has typically focused on their revenue generating prop-
erties rather than their efficiency properties. This is partly due to the fact that,
for many of the problems typically studied, efficiency is trivial. When bidders have
private values, a standard Vickrey auction guarantees that the object will be sold to
the buyer with the highest value for the object. In the case of pure common values —
that is, when all buyers have the same value for the object — any outcome that with
probability one assigns the object to some bidder will be efficient. The intermediate
case in which bidders’ values are not identical but may depend on other bidders’
signals is more problematic. When bidders’ values are interdependent in this way,
any single bidder’s value may depend on the information of other agents and, hence,
he may not even know his own value. It is not clear what it would mean for an agent
to bid his “true” value, even before we ask if it is optimal for him to do so.
Several papers have studied efficient auctions with interdependent values and inde-

pendent types.1 While this is a natural place to begin, the independence assumption
is not compelling for many problems. A prototypical problem is one in which an
object is to be sold, and individual bidders have private information about the object
(say the quantity or quality of oil in a tract to be sold) that affects other agents’ values
for the object. When bidders’ types include information about objective character-
istics of the object being sold, their types will typically not be independent. When
agents’ types are statistically dependent, we show that there exist efficient auction
mechanisms for interdependent value auction problems that are essentially Vickrey
auctions augmented by payments to (not from) the agents. Most importantly, we link
the payment made to an agent to that agent’s “informational size,” a concept for-
mulated in McLean and Postlewaite (2002). To explain informational size, suppose
that all agents are receiving signals correlated with the common but unobservable
value of the object. Informally, we can think of an agent as being informationally
small if that agent’s signal adds little to the information contained in the aggregate
of the other agents’ signals. That is, an agent is informationally small if it is unlikely
that the probability distribution of the objective characteristics of the object is very
sensitive to that agent’s information, given the information of others. When agents
are informationally small, the payments necessary for our augmented Vickrey auction
will be small. Hence, agents’ “informational rents” — as represented by the payments

1See, e.g., Maskin (1992), Dasgupta and Maskin (1998), and Perry and Reny (1998).
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made to them — are linked to their informational size. 2

In this paper, we use a technique related to that employed by Cremer and McLean
(1985,1988) in that we construct systems of lotteries (i.e., “side bets”) that facilitate
truthful revelation of types. Cremer and McLean showed that, when agents’ types
exhibit a certain statistical dependence, then mechanisms can be designed to induce
truthful revelation of private information, and that information can be used to ensure
efficient outcomes.3When agents’ types are not independent, the multidimensionality
of information poses no problems for Bayes-Nash implementation. However, mech-
anisms that rely on statistical dependence of types to extract the full surplus are
sometimes criticized on the grounds that in such mechanisms, the payments to and
from agents can be very large. The use of very large payments makes their usefulness
questionable in the presence of limited liability or nonlinear preferences over money.
Our lotteries will generally not extract the full surplus from the agents but we do
indentify conditions under which efficient outcomes can always be assured with small
augmented payments.
Our definition of informational size generalizes the concept of nonexclusive infor-

mation introduced in Postlewaite and Schmeidler (1986). Nonexclusive information
was introduced to characterize informational problems in which incentive compat-
ibility would not be an issue. Heuristically, this would be the case when, for any
agent and for any information he might have, that agent’s information is redundant
given the combined information of all other agents’. In the presence of nonexclusive
information, it is straightforward to induce truthful revelation. In this case, roughly
speaking, the agents’ reports will be inconsistent when a single agent misrepresents his
information, thus revealing that some agent misreported with probability one. One
can characterize this situation as one in which an agent has no ability to alter the
posterior distribution as he contemplates the type he will announce. Our measure of
informational size extends this concept in the sense that, when an agent has positive
informational size, the agent’s different types (typically) result in different posterior
distributions, given other agents’ reported types. When an agent is informationally
small, that agent is unlikely to have a large effect on the posterior given other agents’
reported types.
Our model is described in Section 2 and, in Section 3 we present an example with

a simple information structure in which agents receive conditionally independent sig-
nals of the state of nature. Section 4 provides an analysis of a more general problem
with information structures that include the conditionally independent structure of
the example in section 3 as a special case. The analysis in section 4 assumes that
agents’ types are exogenously specified in a form that separates the part of an agent’s

2However, we should emphasize that we are not proposing that agents are necessarily informa-
tionally small and, consequently, that efficient outcomes can always be assured with small augmented
payments.

3See also McAfee and Reny (1992) for subsequent work.
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information that affects other agents’ values from the part of the agent’s informa-
tion that affects only his own value. In Section 5, we show how the information
structure for general incomplete information problems can be represented in a way
that decomposes agents’ information into these two components. Since for many
asymmetric information problems these two aspects of an agent’s information are
qualitatively different, this decomposition is of some independent interest. Some con-
cluding comments are contained in Section 6 and the proofs are given in Section
7.

2 Auctions

LetΘ = {θ1, .., θm} represent the finite set of states of nature. Each θ ∈ Θ represents a
complete physical description of the object being sold (e.g., the amount and quality of
oil). Let Ti be a finite set of possible types of agent i. As stressed in the introduction,
an agent’s information may be of two qualitatively different kinds: information about
the objective characteristics of the object being sold, and idiosyncratic information
about the agent himself. The former is of interest to other agents - and consequently
is the cause of the interdependence of agents’ values - while the latter is irrelevant
to other agents in calculating their values. The state of nature is unobservable but
agent i0s information about the physical characteristics of the object to be sold will
be captured by the correlation between his type ti and nature’s choice of θ. His type
ti will also capture any idiosyncratic information he may have. Agent i

0s value is
represented by a function vi : Θ × Ti → R+. That is, agent i

0s value for the object
depends on the physical characteristics of the object θ, and his type ti.
Let (eθ,et1,et2, ...,etn) be an (n+1)-dimensional random vector taking values in Θ×

T (T ≡ T1 × · · · × T and T−i ≡ ×j 6=iTj) with associated distribution P where

P (θ, t1, .., tn) = Prob{eθ = θ,et1 = t1, ...,etn = tn}.
We will make the following full support assumptions regarding the marginal distri-
butions : P (θ) =Prob{eθ = θ} > 0 for each θ ∈ Θ and P (t) =Prob{et1 = t1, ...,etn =
tn} > 0 for each t ∈ T.
If X is a finite set, let ∆X denote the set of probability measures on X. The set of

probability measures on Θ× T satisfying the full support conditions will be denoted
∆∗Θ×T
In problems with differential information, it is standard to assume that agents have

utility functions wi : T → R+ that depend on other agents’ types. It is worthwhile
noting that, while our formulation takes on a different form, it is equivalent. Given
a problem as formulated in this paper, we can define wi(t) =

P
θ∈Θ [vi(θ, ti)P (θ|t)] .

Alternatively, given utility functions wi : T → R+, we can define Θ ≡ T and define
vi(t, ti) = wi(t). Our formulation will be useful in that it highlights the nature of
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the interdependence: agents care about other agents’ types to the extent that they
provide additional information about the physical characteristics of the object being
sold.
An auction problem is a collection (v1, .., vn, P ) where P ∈ ∆∗Θ×T . An auction

mechanism is a collection {qi, xi}i∈N where qi : T → R+ is the probability that agent
i is awarded the object given a vector of announced types, and each xi : T → R is a
transfer function.
For any vector of types t ∈ T, let

v̂i(t) = v̂i(t−i, ti) =
X
θ∈Θ

vi(θ, ti)P (θ|t−i, ti).

Although v̂ depends on P , we suppress this dependence for notational simplicity. The
number v̂i(t) represents i

0s value for the object conditional on the informational state
t ∈ T.
Definition: An auction mechanism {qi, xi}i∈N is:
incentive compatible (IC) if for each i ∈ N,X

t−i

[qi(t−i, ti)v̂i(t−i, ti)− xi(t−i, ti)]P (t−i|ti) ≥
X
t−i

[qi(t−i, t0i)v̂i(t−i, ti)− xi(t−i, t0i)]P (t−i|ti)

whenever ti, t
0
i ∈ Ti.

ex post individually rational (XIR) if

qi(t)v̂i(t)− xi(t) ≥ 0 for all i and all t ∈ T.
ex post efficient (XE) if

v̂i(t) = max
j
{v̂j(t)} whenever qi(t) > 0.

For a given auction problem (v1, .., vn, P ), we will be interested in the second price
auction using the conditional values v̂i(t). For each t ∈ T, let

I(t) = {i ∈ N |v̂i(t) = max
j
v̂j(t)}

and define
wi(t) = max

j:j 6=i
v̂j(t).

Formally, we define a Vickrey auction with conditional values (Vickrey auction for
short) to be the auction mechanism {q∗i , x∗i}i∈N defined as follows:

q∗i (t) =

(
1

|I(t)| if i ∈ I(t)
0 if i /∈ I(t)
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and
x∗i (t) = q

∗
i (t)wi(t) .

It is straightforward to show that this Vickrey auction mechanism is ex post effi-
cient and ex post individually rational. It will generally not be incentive compatible.
However, as we will show below, it is often possible to modify the Vickrey auction
payments so as to make truthful revelation an equilibrium when agents are informa-
tionally small in a sense to be defined below.
Let {zi}i∈N be an n-tuple of functions zi : T → R+ each of which assigns to each

t ∈ T a nonnegative number, interpreted as a “reward” to agent i. The associated
augmented Vickrey auction with conditional values (augmented Vickrey auction for
short) is the auction mechanism {q∗i , x∗i − zi}i∈N .
We present an example in the next section that illustrates our notion of augmented

Vickrey auctions and the relationship between informational size and the payments
that agents receive. This example also illustrates the main ideas in the proofs of
Theorems 1 and 2 discussed in sections 4 and 5 below.

3 Example

Three wildcatters are competing for the right to drill for oil on a tract of land. It is
common knowledge that the amount of oil is either θL or θH , each equally likely with
θL < θH . We will abuse notation and denote the states by θL and θH ;let Θ = {θL, θH}.
Each wildcatter i performs a private test that provides information in the form of a
noisy signal of the state which we denote si. That is, agent i’s private test yields a
signal H (high) or L (low); for each i, let Si = {H,L}. The distribution of the signal
for agent i, conditional on the state, is given in the table below (ρ > 1/2).

state θL θH
signal
L ρ 1− ρ
H 1− ρ ρ

Agents’ signals are independent, conditional on the state θ.
In addition to the signal regarding the amount of oil, each of the wildcatters

has private information regarding his own cost of extraction. We assume that the
extraction cost ci of wildcatter i is drawn from a finite set. Hence, agent i’s type ti is
the pair (si, ci) comprising his privately observed extraction cost ci and his privately
observed signal si. We will assume that the vector of extraction costs (c1, c2, c3) is
independent of the state-signal vector (θ, s1, s2, s3). The price of oil is 1. Agent i’s
payoff vi as a function of the state θ and his type ti depends only on θ and his private
extraction cost ci. If ti = (ci, si), then his payoff should he obtain the right to drill is
given by:
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vi(θj, ti) = θj − ci, j = L,H

Consider the following auction mechanism. Agents announce their types and
the posterior distribution on Θ given the agents’ announcements of their signals,
PΘ(·|s1, s2, s3), is calculated. Next, compute the agents’ expected values v̂i for the
object, where

v̂i(t1, t2, t3) = v̂i(s1, s2, s3, ci) = vi(θL, ci)·PΘ(θL|s1, s2, s3)+vi(θH , ci)·PΘ(θH |s1, s2, s3).

The drilling rights are awarded to the agent i for whom v̂i(s1, s2, s3, ci) is highest
and that agent pays a price equal to the higher of the other two agents’ values. In
addition, any agent who has announced a signal equal to that announced by the
majority receives a (small) payment z̄ > 0.
Truth is generally not a dominant strategy for the unaugmented Vickrey mecha-

nism. If agent 3 (for example) announces L when he has in fact received signal H,
his announcement of L will lower the computed expected values of all agents. In
the event that agent 3 wins the object, he will pay a lower price by announcing L.
However, the introduction of the reward z̄ in the augmented mechanism will offset
this possible gain in expected utility when ρ is close to 1. When ρ ≈ 1, we make
two important observations. First, an agent who observes signal H (resp. L) places
probability close to one on the event that the other two agents have also seen H
(resp. L). Second, the conditional distributions PΘ(·|H,H,H) and PΘ(·|H,H,L) are
almost equal and the conditional distributions PΘ(·|L,L,L) and PΘ(·|L,L,H) are
almost equal. Combining these observations, it follows that an agent who sees signal
H will believe that, with high probability, an announcement of L will have little effect
on the posterior distribution on Θ. Agent 3 affects the computations of other agents’
values only through the posterior distribution on Θ. Since the values of agents are
continuous in this posterior, it follows that any expected gain that he may hope to
obtain by altering other agents’ values through misreporting will be small.
On the other hand, a misreported signal will, with probability close to 1, put

an agent in the minority and that agent will lose the reward z̄ paid to those in the
majority. On balance, the incentive provided by the small payment z̄ will offset the
small gain from misrepresenting when ρ is sufficiently close to 1. In summary, if ρ is
sufficiently close to 1, truthful revelation will be an equilibrium.4

Incentive compatibility is obtained in the example when ρ ≈ 1 as a result of an
interplay of two ideas: informational size and the variability of agent’s beliefs. In
the example, each agent is informationally small when ρ ≈ 1 in the sense that, upon
observing the signal H, agents conclude that an announcement of L will with high

4It is not the unique equilibrium, however; all agents reporting signal L would be an equilibrium.
We discuss this in the last section.
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probability have only a small effect on the distribution over states conditioned on the
information of all three agents. Although this means that the gains from lying are
small, they are positive. That the reward z̄ for making an announcement that is in
the majority offsets, at least partially, this gain is due to the variability of agents’
beliefs, defined as the difference between the conditional distributions P (·, ·|H) and
P (·, ·|L) on S1×S2. Because agent 3’s probability distributions over the other agents’
signals, P (·, ·|H) and P (·, ·|L), are different, agent 3’s expected reward from truthfully
announcing his signal is greater than the expected reward from lying. How much
greater depends on the magnitude of the difference between P (·, ·|H) and P (·, ·|L).
If, for example, these conditional distributions were equal, then we could not find a
system of rewards that induced truthful revelation. To illustrate, if ρ ≈ 1/2, agents
would be informationally small, since their announcement would affect the posterior
distribution on Θ very little. However, as ρ gets closer to 1/2, the incentive to
truthfully report is decreasing, since an agent is nearly as likely to be in the majority
when he lies as when he announces truthfully. Whether a given reward will induce
truthful announcement depends on the relationship between informational size and
variability of beliefs.
The mechanism illustrates when agents’ information can be truthfully elicited at

low cost: when informational size is small relative to variability of beliefs. This is
possible because (by construction) each agent’s information is of little value given
other agents’ information, hence information rents are small. Once the information
about the physical characteristics is elicited, there is no residual interdependence and
a simple Vickrey auction can be used.
In the next section, we present a model that generalizes the insights of this example

and formalizes the concepts of informational size and variability.

4 Efficient Auction Mechanisms

4.1 The Model

In this section we will assume that the set of types for agent i has the special product
form Ti = Si × Ci where S1, ..., Sn and C1, ..., Cn are finite sets. An element si ∈ Si
will be referred to as agent i’s signal. An element ci ∈ Ci will be referred to as agent
i’s personal characteristic. Let S ≡ S1 × · · · × Sn and S−i ≡ ×j 6=iSj. The product
sets C and C−i are defined in a similar fashion. We will often write t = (s, c) and
ti = (si, ci) where s and c (si and ci) denote the respective projections of t (ti)
onto S and C (Si and Ci). Both the signal si and the personal characteristic ci are
private information to i with the following interpretations: si represents a signal that
is correlated with nature’s choice of θ and ci represents a set of other idiosyncratic
payoff relevant characteristics of agent i that provide no information about θ or s−i
beyond that contained in si. In our example, the extraction cost ci of each wildcatter
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corresponds to the agent’s personal characteristic and, since costs are assumed to
be independent of the state and the agents’ signals, it is certainly the case that ci
contains no information about θ or s−i beyond that contained in si. We assume5 that
the random vectors (θ̃, s̃) and c̃ are stochastically independent, i.e.,

P (θ, t) ≡ P (θ, s, c) = P (θ, s)P (c).

We denote by∆I
Θ×S×C denote the set of measures in∆

∗
Θ×S×C satisfying this stochastic

independence assumption.

4.2 Informational Size and Variability of Beliefs

We now formalize the idea of informational size discussed in section 3 above. Our ex-
ample indicates that a natural notion of an agent’s informational size is the degree to
which he can alter this posterior distribution on Θ when other agents are announcing
truthfully. Any vector of agents’ signals s = (s−i, si) ∈ S induces a conditional dis-
tribution on PΘ(·|s−i, si) on Θ and, if agent i unilaterally changes his announcement
from si to s

0
i, this conditional distribution will (in general) change. If i receives signal

si but announces s
0
i 6= si, the set

{s−i ∈ S−i| ||PΘ(·|s−i, si)− PΘ(·|s−i, s0i)|| > ε}
consists of those s−i for which agent i’s misrepresentation will have (at least) an “ε−
effect” on the conditional distribution. (Here and throughout the paper, || · || will
denote the 1-norm.) Let

νPi (si, s
0
i) = min{ε ∈ [0, 1]|Prob{ ||PΘ(·|s̃−i, si)− PΘ(·|s̃−i, s0i)|| > ε|s̃i = si} ≤ ε}.

To show that νPi (si, s
0
i) is well defined, let

F (ε) = Prob{||PΘ(·|s̃−i, si)− PΘ(·|s̃−i, s0i)|| ≤ ε|s̃i = si}.
Hence, the set {ε ∈ [0, 1]|1− F (ε) ≤ ε} is nonempty (since 1− F (1) ≤ 1), bounded
and closed (since F is right continuous with left hand limits.)
Finally, define the informational size of agent i as

νPi = max
si,s0i∈Si

νPi (si, s
0
i).

Note that νPi = 0 for every i if and only if PΘ(·|s) = PΘ(·|s−i) for every s ∈ S and
i ∈ N. 6

5This assumption can be weakened. See point 9 in the discussion section.
6This is essentially the case of nonexclusive information introduced by Postlewaite and Schmeidler

(1986) and is discussed further in the last section.
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There are two important features of this definition. First, an agent’s informational
size depends only on that part of his information that is useful in predicting θ, and
second, an informationally small agent may have very accurate information about the
state θ.
In our discussion of the example in section 3 above, we indicated that the ability

to give agent i an incentive to reveal his information will depend on the magnitude of
the difference between PS−i(·|si) and PS−i(·|s0i), the conditional distributions on S−i
given different signals for agent i. We will refer to this magnitude informally as the
variability of agents’ beliefs.
To define formally the measure of variability, we treat each conditional PS−i(·|si) ∈

∆S−i as a point in a Euclidean space of dimension equal to the cardinality of S−i.
Our measure of variability is defined as7

ΛP,Si = min
si∈Si

min
s0i∈Si\si

||PS−i(·|si)− PS−i(·|s0i)||2.

4.3 The Result

We now state our first result on the possibility of efficient mechanisms.

Theorem 1: Let (v1, .., vn) be a collection of payoff functions.

(i) If P ∈ ∆I
Θ×S×C satisfies ΛP,Si > 0 for each i, then there exists an incen-

tive compatible Augmented Vickrey auction {q∗i , x∗i − zi}i∈N for the auction problem
(v1, .., vn, P ).

(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆I
Θ×S×C satisfies

max
i

νPi ≤ δmin
i

ΛP,Si ,

there exists an incentive compatible Augmented Vickrey auction {q∗i , x∗i − zi}i∈N for
the auction problem (v1, .., vn, P ) satisfying 0 ≤ zi(t) ≤ ε for every i and t.

Part (i) of Theorem 1 states that, if ΛP,Si is positive for each agent i, then there
exists an incentive compatible augmented Vickrey mechanism for the auction problem
(v1, .., vn, P ). The hypotheses of part (i) only require that each ΛP,Si be positive and
places no lower bound on the magnitude of ΛP,Si . Furthermore, the informational size
of the agents is not important. On the other hand, the conclusion of part (i) places
no upper bound on the size of the reward zi. These rewards can be quite large.
Part (ii) of the theorem states that there exists an incentive compatible augmented

Vickrey mechanism with small payments if, for each i, ΛP,Si is large enough relative to
the informational size of agent i. To illustrate part (ii), consider again the example
in section 3 where we showed the following: for every ε > 0, there exists a ρ̃ > 0 such

7See McLean and Postlewaite (2002) for further discussion of informational size and variability.
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that, whenever ρ̃ < ρ < 1, there exists an incentive compatible augmented Vickrey
auction {q∗i , x∗i − zi}i∈{1,2,3} satisfying 0 ≤ zi(t) ≤ ε for all t. This result can now
be deduced as an application of (ii) since, in the example, each νPi → 0 and each
ΛP,Si → 1 as ρ→ 1.
While the technical details of the proof are deferred until the last section, we can

sketch the ideas here for the special case in which Ti = Si (i.e., each Ci is a singleton).
Let

M = max
θ
max
i
max
si
vi(θ, si)

and define
U∗i (s−i, s

0
i) = q

∗
i (s−i, s

0
i)v̂i(s)− x∗i (s−i, s0i).

There are two key steps. First, we show (see Lemmas A.1 and A.2) that for all i , all
si, s

0
i ∈ Si and all s−i ∈ S−i,

U∗i (s−i, si)− U∗i (s−i, s0i) ≥ −M ||PΘ(·|s−i, si)− PΘ(·|s−i, s0i)||.
This Lipschitz-like property is of some interest in its own right. For example, if θ̃
and s̃ are independent, then v̂i(s) depends only on si. In this case, ||PΘ(·|s−i, si) −
PΘ(·|s−i, s0i)|| = 0 for all i , all si, s

0
i ∈ Ti and all s−i ∈ S−i and we deduce the

classic result for Vickrey auctions: truthful reporting is a dominant strategy with
pure private values.
Of course, ||PΘ(·|s−i, si)−PΘ(·|s−i, s0i)|| is generally not uniformly small. However,

we can use the concept of informational size to show thatX
s−i

[U∗i (s−i, si)− U∗i (s−i, s0i)]P (s−i|si) ≥ −3M ν̂Pi .

If all agents are informationally small, then truthful reporting is “approximately”
incentive compatible in the (unaugmented) Vickrey mechanism {q∗i , x∗i }. If zi(s) is
the reward to i when the bidders announce s, then the associated augmented Vickrey
auction {q∗i , x∗i − zi} will be incentive compatible ifX

s−i

[zi(s−i, si)− zi(s−i, s0i)]P (s−i|si)− 3M ν̂Pi ≥ 0

for each si, s
0
i ∈ Si. Irrespective of an agent’s informational size, such a collection

of zi’s can be found if Λ
P,S
i > 0. This is the content of Part (i) of the theorem.

However, these zi’s can be large. If we desire small rewards (as in Part (ii)), then the
situation is more delicate and we require that each ΛP,Si be large enough relative to
the informational size of agent i.
We now explain briefly the relationship of our paper to those of Cremer and

McLean on full surplus extraction (1985,1988). The main point of the Cremer-
McLean papers is that correlation of agents’ types allows full surplus extraction.
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In the models in those papers (as in the present paper), players’ payoffs include pay-
ments that depend on other agents’ types. In the Cremer-McLean setup, the type
of correlation (for example, the full rank condition in their 1985 paper) permits the
construction of announcement dependent lotteries, where truthful revelation gener-
ates a lottery with zero conditional expected value while a lie generates negative
conditional expected value. If the lotteries are appropriately rescaled, then the incen-
tive for truthful reporting can be made arbitrarily large and an incentive compatible
mechanism that extracts the full surplus can be found.
We should note that we require a somewhat weaker condition than is used in

those papers: that the conditional distribution on T−i be different for different t0is.
That is, we only require that ΛP,Si be positive. This is weaker than the full rank
condition (and is also weaker than the cone condition in their 1988 paper) and the
implication is concomitantly weaker. Our assumption only permits the construction
of announcement dependent lotteries where truthful revelation generates a lottery
whose conditional expected value exceeds the conditional expected value from a lie.
Using the full rank condition and some additional assumptions on the conditional
payoff v̂(t), Cremer-McLean construct a mechanism that extracts the full surplus
from bidders (see Corollary 2 in Cremer-McLean, 1985). This mechanism is neces-
sarily ex post efficient. Under the weaker conditions of this paper, we construct a
mechanism that is ex post efficient but which may not extract the full surplus. In
addition, the payments in a Cremer-McLean mechanism can be positive or negative
and they can be large in absolute value. Our paper differs in that we introduce only
nonnegative payments. Hence, our techniques do not require unlimited liability on
the part of buyers (although the seller may be constrained by the necessary payments
that would induce incentive compatibility). Further, they allow us to induce incentive
compatibility with small payments when agents are informationally small.

5 Efficient Auction Mechanisms: The General Case

The mechanism in the previous section is successful in achieving an efficient outcome
because it deals differently with the component of an agent’s information that affects
other agents’ values and with the component that affects only his own value. Since
second-price auction techniques handle the latter, one need only extract the former to
achieve efficient outcomes. The information structure in the previous section assumed
that the set of types of an agent could be expressed as the Cartesian product of signals
and personal characteristics and that the information structure satisfied stochastic
independence. Stated differently, we assumed that agents’ types were exogenously
decomposed into “private” and “common” components. General information struc-
tures will typically not have this form, and consequently the result in the previous
section may not apply. In this section, we show how the information structure for
general incomplete information problems, even those without a product structure,
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can be represented in a way that decomposes agents’ information into “signals” and
“private characteristics.”
In order to extend the ideas of the special model of section 4 to the general problem

defined in section 2, we need to define the appropriate generalizations of informational
size and variability of beliefs. Let

νPi (ti, t
0
i) = min{ε ∈ [0, 1]|Prob{ ||PΘ(·|t̃−i, ti)− PΘ(·|t̃−i, t0i)|| > ε|t̃i = ti} ≤ ε}

and define the informational size of agent i as

νPi = max
ti,t0i∈Ti

νPi (ti, t
0
i).

This is the definition introduced in McLean and Postlewaite (2002). If Ti = Si × Ci
and if P ∈ ∆I

Θ×S×C , then the definition of ν
P
i given above coincides with the definition

of informational size given in section 4.
To extend the notion of variability of beliefs, we begin with the definition of

information decomposition.
Definition: An information decomposition (ID) of P ∈ ∆∗Θ×T is a collection D

consisting of sets R1, .., Rn and surjections gi : Ti → Ri satisfying:

(i) for all i, for all ti, t
0
i ∈ Ti and for all t−i ∈ T−i,

gi(ti) = gi(t
0
i) ⇒ PΘ(·|t−i, ti) = PΘ(·|t−i, t0i).

(ii) for all i, for all ti, t
0
i ∈ Ti and for all r−i ∈ R−i,

gi(ti) = gi(t
0
i)⇒ Prob{gj(t̃j) = rj∀j 6= i|t̃i = ti} = Prob{gj(t̃j) = rj∀j 6= i|t̃i = t0i}.

We interpret gi(ti) as that “part” of an agent’s information that is “information-
ally relevant” for predicting the state of nature θ. Condition (i) has the following
interpretation: given a type profile t−i ∈ T−i, a type ti ∈ Ti contains no information
that is useful in predicting the state θ beyond that contained in the informationally
relevant part gi(ti). Condition (ii) states that a specific type ti ∈ Ti contains no infor-
mation beyond that contained in gi(ti) that is useful in predicting the informationally
relevant profile of other agents.
Every measure P has at least one information decomposition: this is the trivial

decomposition in which Ti = Ri and gi = id. It may be the case that for a given
information structure, the trivial decomposition is the only decomposition; this would
be the case, for example, when agents’ private information consisted solely of noisy
signals about the state θ, with no “private characteristic”. However, a measure P can
have in addition a nontrivial information decomposition. If each Ti = Si × Ci as in
section 4 and if P ∈ ∆I

Θ×S×C , then P has a second information decomposition where
Ri = Si and gi is the projection of Ti onto Si.

13



Given an information decomposition D = {Ri, gi}i∈N for P ∈ ∆∗Θ×T , we let P
D

denote the distribution on R = R1 × · · · × Rn induced by the map (t1, .., tn) 7→
(g1(t1), .., gn(tn)). That is, for each (r1, .., rn) ∈ R,

PD(r1, .., rn) = Prob{t̃i ∈ g−1i (ri) ∀i ∈ N}.

Given an information decomposition D, let

ΛP,D = min
ri∈Ri

min
r0i∈Ri\ri

||PDR−i(·|ri)− PDR−i(·|r0i)||2.

If each Ti = Si × Ci, Ri = Si and gi is the projection of Ti onto Si, then ΛP,Di
coincides with ΛP,Si as defined in section 4. Minimal information decompositions are
important for representing an information structure since it will typically be the case
our measure of variability will be 0 for information structures that are not minimal.
Using these definitions of informational size and variability of beliefs, we can

generalize Theorem 1 as follows.

Theorem 2: Let (v1, .., vn) be a collection of payoff functions.

(i) Let P ∈ ∆∗Θ×T . If there exists an information decomposition D for P with

ΛP,Di > 0 for each i, then there exists an incentive compatible Augmented Vickrey
auction {q∗i , x∗i − zi}i∈N for the auction problem (v1, .., vn, P ).

(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T satisfies

max
i

νPi ≤ δmin
i

ΛP,Di

for some information decomposition D of P , there exists an incentive compatible
Augmented Vickrey auction {q∗i , x∗i − zi}i∈N for the auction problem (v1, .., vn, P )
satisfying 0 ≤ zi(t) ≤ ε for every i and t.

Theorem 1 is an immediate corollary of Theorem 2. It is possible that a measure
P has only one ID, the trivial decomposition (denoted D0) where Ti = Ri and gi = id.
For this decomposition, it follows from the definitions that

ΛP,D
0

i = min
ti∈Ti

min
t0i∈Ti\ti

||PT−i(·|ti)− PT−i(·|t0i)||2

where PT−i(·|ti) is the conditional on T−i given t̃i = ti. For the trivial ID D0, we have
the following corollary to Theorem 2.

Corollary 1: Let (v1, .., vn) be a collection of payoff functions.

(i) If P ∈ ∆∗Θ×T satisfies PT−i(·|ti) 6= PT−i(·|t0i) for each i = 1, ..., n and for each
ti, t

0
i ∈ Ti with ti 6= t0i, then there exists an incentive compatible Augmented Vickrey

auction {q∗i , x∗i − zi}i∈N for the auction problem (v1, .., vn, P ).
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(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T satisfies

max
i

νPi ≤ δmin
i

ΛP,D
0

i ,

there exists an incentive compatible Augmented Vickrey auction {q∗i , x∗i − zi}i∈N for
the auction problem (v1, .., vn, P ) satisfying 0 ≤ zi(t) ≤ ε for every i and t.

As a final remark on the relationship between our results, we note that Corollary
1 can also be deduced as a special case of Theorem 1 in which each Ci is a singleton
and Ti is identified with Si. If each Ci is a singleton, then stochastic independence is
trivially satisfied and Corollary 1 follows from Theorem 1.

6 Discussion

1. As pointed out in the example, truthful revelation is an equilibrium for our aug-
mented Vickrey auction mechanisms, but not the unique equilibrium. One should
be able to use the techniques in the literature on exact implementation to construct
nonrevelation games that eliminate the multiplicity of equilibria.8

2. In this paper, we focus on the augmented Vickrey auction and show that an
efficient outcome can be assured with payments to the agents that depend on the
agents’ informational size. The mechanism that we analyze will not, in general, max-
imize the net revenue to the seller. In proving our theorem, we demonstrate that
for any limit on the total payments to the agents, we can guarantee a structure of
payments depending on agents’ announcements that will assure incentive compatibil-
ity if agents are sufficiently informationally small. Although the payments that we
construct will not typically be the minimal payments that induce truthful announce-
ment, it must be the case that any increase in expected net revenue to the seller that
can be achieved through optimizing the structure of payments to agents is limited by
the total payments identified in our result.
There is a second way the mechanism we analyze may be inefficient that may

be more important, however. In our mechanism agents announce their types, and
these types are used to calculate agents’ conditional values. The agent with the
highest conditional value obtains the object at the second highest conditional value,
and the difference between the first and second highest values constitutes a rent to
the winning bidder. Suppose agents’ types consist of a signal about θ and a private
characteristic. The winning bidder’s rent will then depend on his private characteristic
and the private characteristic of the agent with second highest conditional value.
While the seller may not be able to eliminate this rent when the private characteristics
are stochastically independent, we have not made any assumptions regarding such
independence. If private characteristics are not independent, there may be scope for

8See, e.g., Postlewaite and Schmeidler (1986), or the surveys of Moore (1992) and Palfrey (1992).
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extending our techniques to extract this rent. Of course, the possibility of extracting
this rent has no bearing on whether the auction mechanism is efficient, which is the
focus of this paper.

3. In section 4, we assume that agents’ type sets are finite. If the signals and personal
characteristics of agents’ information are separated, it is only the signal sets that need
to be finite. The set of personal characteristics can be finite, a continuum or some
combination without affecting the possibility of efficient mechanisms.

4. As mentioned in the introduction, McLean and Postlewaite (2002) introduced a
notion of informational size similar to that used in this paper. That paper deals
with pure exchange economies with private information in which an agent’s utility
function depends only on the realized state θ ∈ Θ. The preferences in the present
paper are more general in the sense that agent i’s utility may depend on his type ti as
well as the state θ. The extension of our methods to this case is possible because of
the properties of the Vickrey auction for which there are no counterparts in a general
equilibrium environment.

5. We treated the case of a single object to be sold. Our techniques can be extended to
the problem of auctioning K identical objects when bidders’ values exhibit “decreasing
marginal utility,” i.e., when vi(k+1, θ, ti)−vi(k, θ, ti) ≥ vi(k+2, θ, ti)−vi(k+1, θ, ti)
where vi(k, θ, ti) is the payoff to bidder when the state is θ, his type is ti and he is
awarded k objects.

6. While many auction papers restrict attention to symmetric problems in which bid-
ders’ types are drawn from the same distribution, we do not make such assumptions.
In our results, the distributional hypotheses relate an agent’s informational size to
the variaboility of his beliefs. Several papers analyzing interdependent value auction
problems make assumptions regarding the impact of a bidder’s information on his
own value relative to other bidders’ values (see, e.g., Maskin (1992), Dasgupta and
Maskin (1998) and Perry and Reny (1998). We make no such assumptions.

7. The general mechanism design approach that we use in this paper has been crit-
icized on the grounds that revelation games are unrealistic for many problems. The
examples used to illustrate mechanisms typically have simple information structures,
as in our example in section 3, in which an agent’s type is simply a pair of numbers
- the quantity of oil and the cost of extracting it. In general, however, an agent’s
type encompasses all information he may have, including his beliefs about all relevant
characteristics of the object, his beliefs about others’ beliefs, etc. When types are
realistically described, it seems unlikely that the revelation game could actually be
played.
We are sympathetic to this argument, but we want to stress that the underlying

logic by which efficient outcomes are obtained in our model does not depend on the
particular revelation game we used; similar outcomes might be obtained through a
non-revelation game. Consider first the following two-stage game. The second stage
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is a standard Vickrey auction. In the first stage, agents forecast the highest bid in
the second stage, excluding their own bid, and these forecasts are made common
knowledge prior to the second stage. An agent is rewarded if the error is his forecast
is smaller than some specified level.
Suppose that agents with favorable private information about the value of the

object to others forecast high bids. When these forecasts are made public, each
agent may be able to infer other agents’ information from their forecasts. If they
are able to do this, the asymmetry of information will have been eliminated, and the
second stage Vickrey auction will assure an efficient outcome. Of course, agents might
“manipulate” the system by making strategic rather than naive forecasts that will take
into account the effects of their announcements in the second stage auction. However,
the effect of strategic forecasting will be small if agents are informationally small.
Hence, as in the case our mechanism, the reward for correct forecasting will dominate
the potential benefits from strategic forecasting when bidders are informationally
small.9

8. In this paper we investigated the general problem of the conflict between the
extraction of information from agents and the use of that information to ensure
efficient allocations. Pesendorfer and Swinkels (2000) analyze a model in which a
number of objects are to be auctioned off to a number of bidders. They assume an
informational structure that is similar to ours: each agent gets information about a
personal taste parameter and a signal about a common value component. Pesendorfer
and Swinkels study the problem when the number of agents increases and provide
conditions under which the objects are allocated efficiently in the limit. It is easy
to see that in their framework, each agent’s informational size goes to zero as the
number of agents goes to infinity.

9. Theorem 1 of Section 4 assumed that the random vectors (θ̃, s̃) and c̃ were stochas-
tically independent. However, the conclusions of Theorem 1 will hold under a weaker
condition that we call Informational Independence. Formally, a probability measure
P ∈ ∆∗Θ×S×C satisfies Informational Independence if for each (θ, s, c) ∈ Θ × S × C,
(i) PΘ(θ|s, c) = PΘ(θ|s, c−i) and (ii) PS−i(s−i|si, ci) = PS−i(s−i|si). Obviously, in-
formational independence is weaker than the stochastic independence assumption of
section 4. Furthermore, it can be shown that, if P ∈ ∆∗Θ×S×C satisfies informational
independence, then P admits an information decomposition D = {gi, Ri}i∈N where
Ri = Si and gi is the projection of Ti onto Si. As a result, Theorem 1 will still hold
under the assumption of Informational Independence.

10. It is straightforward to see that for many situations in which the number of
agents becomes large, it is likely that each agent will become informationally small.
Consequently, each agent’s “informational rent” will become small. This does not

9See McLean and Postlewaite (2001) for an investigation of such a mechanism. Roust (2002)
reports on experiments that are motivated by this mechanism.
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imply, of course, that the agents’ aggregate informational rents get small. McLean and
Postlewaite (2003) investigate the conditions under which aggregate informational
rents asymptotically go to zero as the economy is replicated.

7 Proofs:

7.1 Preparations for the Proof of Theorem 2:

In this section, we begin with two lemmas that are of some independent interest.

Lemma A.1: Let (v1, .., vn) be a collection of payoff functions and let {q∗i , x∗i }i∈N
be the associated Vickrey auction mechanism. For every i ∈ N and for each t ∈ T
and t0i ∈ Ti,

(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i)) ≥ −|wi(t−i, t0i)− wi(t−i, ti)|.
Proof: Choose t ∈ T and t0i ∈ Ti.
Case 1: Suppose that v̂i(t−i, t0i) < wi(t−i, t

0
i). Then

q∗i (t−i, t
0
i) = x

∗
i (t−i, t

0
i) = 0

so

(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))
= q∗i (t)v̂i(t)− x∗i (t)
≥ 0

≥ −|wi(t−i, t0i)− wi(t−i, ti)|.
Case 2: Suppose that v̂i(t−i, t0i) > wi(t−i, t

0
i). Then

q∗i (t−i, t
0
i)v̂i(t)− x∗i (t−i, t0i) = v̂i(t)− wi(t−i, t0i).

If v̂i(t−i, ti) > wi(t−i, ti), then

q∗i (t)v̂i(t)− x∗i (t) = v̂i(t)− wi(t−i, ti).
If v̂i(t−i, ti) ≤ wi(t−i, ti), then

q∗i (t)v̂i(t)− x∗i (t) = 0 ≥ v̂i(t)− wi(t−i, ti).
Therefore,

(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))
≥ (v̂i(t)− wi(t−i, ti))− (v̂i(t)− wi(t−i, t0i))
= wi(t−i, t0i)− wi(t−i, ti)
≥ −|wi(t−i, t0i)− wi(t−i, ti)|.
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Case 3: Suppose that v̂i(t−i, t0i) = wi(t−i, t
0
i). Then

q∗i (t−i, t
0
i)v̂i(t)− x∗i (t−i, t0i) =

1

|I(t−i, t0i)|
(v̂i(t)− wi(t−i, t0i)) .

If v̂i(t−i, ti) > wi(t−i, ti), then

q∗i (t)v̂i(t)− x∗i (t) = v̂i(t)− wi(t−i, ti) ≥
1

|I(t−i, t0i)|
(v̂i(t)− wi(t−i, ti)) .

If v̂i(t−i, ti) ≤ wi(t−i, ti), then

q∗i (t)v̂i(t)− x∗i (t) = 0 ≥
1

|I(t−i, t0i)|
(v̂i(t)− wi(t−i, ti)) .

Therefore,

(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))
≥ 1

|I(t−i, t0i)|
(v̂i(t)− wi(t−i, ti))− 1

|I(t−i, t0i)|
(v̂i(t)− wi(t−i, t0i))

=
1

|I(t−i, t0i)|
(wi(t−i, t0i)− wi(t−i, ti))

≥ − 1

|I(t−i, t0i)|
|wi(t−i, t0i)− wi(t−i, ti)|

≥ −|wi(t−i, t0i)− wi(t−i, ti)|.
This completes the proof of Lemma 1.

If each v̂i(t) is a function of ti only, then |wi(t−i, t0i)− wi(t−i, ti)| = 0 and Lemma
A.1 yields the familiar result for Vickrey auctions with pure private values: it is a
dominant strategy to truthfully report one’s type.

Lemma A.2: Let (v1, .., vn) be a collection of payoff functions and let {q∗i , x∗i }i∈N
be the associated Vickrey auction mechanism. Let

M = max
θ
max
i
max
ti
vi(θ, ti)

and let P ∈ ∆∗Θ×T . For every i ∈ N and for each t−i ∈ T−i , ti ∈ Ti and t0i ∈ Ti,

|wi(t−i, t0i)− wi(t−i, ti)| ≤M ||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||.
Proof: Choose t−i, ti, t0i, j 6= i and j0 6= i so that

wi(t−i, ti) = max
k 6=i

X
θ∈Θ

[vk(θ, tk)PΘ(θ|t−i, ti)] =
X
θ∈Θ

[vj(θ, tj)PΘ(θ|t−i, ti)]
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and

wi(t−i, t0i) = max
k 6=i

X
θ∈Θ

[vk(θ, tk)PΘ(θ|t−i, t0i)] =
X
θ∈Θ

[vj0(θ, tj0)PΘ(θ|t−i, t0i)] .

Note that tj and tj0 are, respectively, the j and j
0 components of the vector t−i. From

the definitions of tj and tj0 , it follows thatX
θ∈Θ

[vj(θ, tj)− vj0(θ, tj0)]PΘ(θ|t−i, ti) ≥ 0

and X
θ∈Θ

[vj(θ, tj)− vj0(θ, tj0)]PΘ(θ|t−i, t0i) ≤ 0.

Therefore,X
θ∈Θ

vj0(θ, tj0) [PΘ(θ|t−i, ti)− PΘ(θ|t−i, t0i)]

≤
X
θ∈Θ

vj0(θ, tj0) [PΘ(θ|t−i, ti)− PΘ(θ|t−i, t0i)] +
X
θ∈Θ

[vj(θ, tj)− vj0(θ, tj0)]PΘ(θ|t−i, ti)

= wi(t−i, ti)− wi(t−i, t0i)
=

X
θ∈Θ

vj(θ, tj) [PΘ(θ|t−i, ti)− PΘ(θ|t−i, t0i)] +
X
θ∈Θ

[vj(θ, tj)− vj0(θ, tj0)]PΘ(θ|t−i, t0i)

≤
X
θ∈Θ

vj(θ, tj) [PΘ(θ|t−i, ti)− PΘ(θ|t−i, t0i)]

and we conclude that

|wi(t−i, ti)− wi(t−i, t0i)| ≤M ||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||.
This completes the proof of Lemma 2.

We prove one final technical result.

Lemma A.3: Let X be a finite set with cardinality k ≥ 2 and let p, q ∈ ∆X .
Then ·

p

||p||2 −
q

||q||2

¸
· p ≥ k−

5
2

4(k − 1) [||p− q||1]
2

where || · ||2 denotes the 2-norm and || · || denotes the 1-norm.
Proof: Let e denote the k-vector of ones and define fi(z) = zi/e · z. If z 6= 0, then

∂jf(z) = −1/ (e · z)2 if j 6= i and ∂if(z) = (e · z − zi) / (e · z)2 . Therefore,

||∇fi(z)||2 =
vuut kX

j=1

∂jf(z)2 =
1

(e · z)2
q
k − 1 + (e · z − zi)2.
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Let C := {z ∈ <k+|e ·z ≥ 1, ||z||2 = 1}. Note that C is convex and that C is contained
in an open set that does not include the origin. Choose x ∈ <k+ and y ∈ <k+ with
||x||2 = ||y||2 = 1. Applying the Mean Value Theorem, we conclude that there exists
a ci ∈ C with ci 6= 0 such that

fi(x)− fi(y) = ∇fi(ci) · (x− y).
Since ci ∈ C, it follows that 1 ≤ (e · ci)2 ≤ k and (e · ci − cii)2 ≤ k − 1. Hence, we
conclude that ||∇fi(ci)||2 ≤

p
2(k − 1). Combining these observations, it follows that

| xi
e · x −

yi
e · y | ≤ ||∇fi(c

i)||2||x− y||2 ≤
p
2(k − 1)||x− y||2.

If p, q ∈ ∆X , then we can set x = p/||p|| and y = q/||q|| and conclude that

||p− q||1 =
kX
i=1

|pi − qi| ≤ k
p
2(k − 1)

°°°° p

||p||2 −
q

||q||2

°°°°
2

.

To complete the proof, it is easy to verify the identity°°°° p

||p||2 −
q

||q||2

°°°°2
2

=
2

||p||2

·
p

||p||2 −
q

||q||2

¸
· p.

Since ||p||2 ≥ 1/
√
k, we conclude that

||p− q||21 ≤
£
4k5/2(k − 1)¤ · p

||p||2 −
q

||q||2

¸
· p.

7.2 Proof of Theorem 2:

We prove part (ii) first. Choose ε > 0. Let

M = max
θ
max
i
max
ti
vi(θ, ti),

let |T | denote the cardinality of T and define

K =
|T |− 5

2

4(|T |− 1)
Choose δ so that

0 < δ <
εK

3M
.

Suppose that P ∈ ∆∗Θ×T has an information decomposition satisfying

max
i

νPi ≤ δmin
i

ΛP,Di .

21



Define ν̂P = maxi ν
P
i and ΛP,D = miniΛ

P,D
i . Therefore ν̂P ≤ δΛP,D.

Next, define

ζi(r−i, ri) =
PDR−i(r−i|ri)
||PDR−i(·|ri)||2

for each (r1, .., rn) ∈ R1 × · · · ×Rn and note that

0 ≤ ζi(r−i, ri) ≤ 1

for all i, r−i and ri. Now we define an augmented Vickrey auction mechanism. For
each t ∈ T, let

zi(t) := εζi(g1(t1), .., gn(tn)).

The mechanism {q∗i , x∗i − zi}i∈N is clearly ex post efficient. Individual rationality
follows from the observations that

q∗i (t)v̂i(t)− x∗i (t) ≥ 0

and
zi(t−i, ti) ≥ 0.

To prove incentive compatibility, we consider two cases. First suppose that gi(ti) =
gi(t

0
i). From part (i) of the definition of information decomposition, it follows that

|wi(t−i, t0i) − wi(t−i, ti)| = 0 for all t−i ∈ T−i and incentive compatibility is a conse-
quence of Lemma A.1.
Now suppose that gi(ti) = ri and gi(t

0
i) = r

0
i with ri 6= r0i . The proof of incentive

compatibility will follow from the next two claims.

Claim 1: X
t−i

(zi(t−i, ti)− zi(t−i, t0i))P (t−i|ti) ≥ εKΛP,D.

Proof of Claim 1: Part (ii) of the definition of information decomposition implies
that X

t−i∈T−i
:g−i(t−i)=r−i

P (t−i|t̂i) = PDR−i(r−i|r̂i)

whenever gi(t̂i) = r̂i. Therefore,X
t−i

(zi(t−i, ti)− zi(t−i, t0i))P (t−i|ti)

=
X
t−i

(ζi(g−i(t−i), gi(ti))− ζi(g−i(t−i), gi(t0i)))P (t−i|ti)
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= ε
X
r−i

[ζi(r−i, ri)− ζi(r−i, r0i)]

 X
t−i∈T−i

:g−i(t−i)=r−i

P (t−i|ti)


= ε

X
A−i

[ζi(r−i, ri)− ζi(r−i, r0i)]P
D
R−i(r−i|ri)

= ε
X
A−i

"
PDR−i(r−i|ri)
||PDR−i(·|ri)||2

− PDR−i(r−i|r0i)
||PDR−i(·|r0i)||2

#
PDR−i(r−i|ri)

≥ εK
h
||PDR−i(·|ri)− PDR−i(·|r0i)||

i2
≥ εKΛP,Di

where the last inequality is an application of Lemma A.3.

Claim 2:X
t−i

[(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))]P (t−i|ti) ≥ −3M ν̂P

Proof of Claim 2: Define

Si(t
0
i, ti) = {t−i ∈ T−i| ||PΘ(·|t−i, ti)− PΘ(·|t−it0i)|| > ν̂P}.

Since νPi ≤ ν̂P , we conclude that

Prob{t̃−i ∈ Si(t0i, ti)|t̃i = ti} ≤ νPi ≤ ν̂P .

If t−i /∈ Si(t0i, ti), then Lemmas A.1 and A.2 imply thatX
t−i /∈Si(t0i,ti)

[(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))]P (t−i|ti) ≥ −M ν̂P .

Finally, note that
|q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i)| ≤M

for all i, ti, t
0
i and t−i.

Combining these observations , we conclude thatX
t−i

[(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))]P (t−i|ti)

=
X

t−i∈Si(t0i,ti)
[(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))]P (t−i|ti)

+
X

t−i /∈Si(t0i,ti)
[(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))]P (t−i|ti)

≥ −M ν̂P − 2M ν̂P

= −3M ν̂P
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and the proof of claim 2 is complete.

Applying Claims 1 and 2, it follows that

X
t−i

[(q∗i (t)v̂i(t)− x∗i (t))− (q∗i (t−i, t0i)v̂i(t)− x∗i (t−i, t0i))]P (t−i|ti)

+
X
t−i

(zi(t−i, ti)− zi(t−i, t0i))P (t−i|ti)

≥ εKΛP,D − 3M ν̂P

≥ 0.

and the proof of part (ii) is complete.
Part (i) follows from the computations in part (ii). We have shown that, for any

information decomposition D of P and for any positive number α, there exists an
augmented Vickrey auction {q∗i , x∗i − zi}i∈N satisfyingX
t−i

[(qi(t)v̂i(t)− xi(t))− (qi(t−i, t0i)v̂i(t)− xi(t−i, t0i))]P (t−i|ti) ≥ αKΛP,Di − 3M ν̂P

for each i and each ti, t
0
i. If Λ

P,D
i > 0 for each i, then α can be chosen large enough so

that incentive compatibility is satisfied. This completes the proof of part (i).
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