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Abstract

We base a contracting theory for a start-up firm on an agency model with observ-
able but nonverifiable effort, and renegotiable contracts. Two essential restrictions
on simple contracts are imposed: the entrepreneur must be given limited liability,
and the investor’s earnings must not decrease in the realized profit of the firm. All
message game contracts with pure strategy equilibria (and no third parties) are
considered. Within this class of contracts/equilibria, and regardless of who has the
renegotiating bargaining power, debt and convertible debt maximize the entrepre-
neur’s incentives to exert effort. These contracts are optimal if the entrepreneur
has the bargaining power in renegotiation. If the investor has the bargaining power,
the same is true unless debt induces excessive effort. In the latter case, a non-debt
simple contract achieves efficiency — the non-contractibility of effort does not lower
welfare. Thus, when the non-contractibility of effort matters, our results mirror typ-
ical capital structure dynamics: an early use of debt claims, followed by a switch
to equity-like claims.
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1. Introduction

As is well known, the classical agency model of, e.g., Mirrlees (1999) and Holmström

(1979), fails to yield optimal schemes that resemble standard instruments like debt or

equity. The “security design” literature has therefore looked elsewhere to show that debt

(or equity) are optimal. For example, Townsend (1979) and Gale and Hellwig (1985)

consider “costly state verification” models in which output can be observed only at a

cost. Bolton and Scharfstein (1990), Berglof and von Thadden (1994), and Hart and

Moore (1994, 1998) consider “stealing models” in which output is entirely unverifiable,

but debt holders can seize assets in some contingencies. In Aghion and Bolton (1992),

and Dewatripont and Tirole (1994), output is costlessly verifiable, but actions that affect

continuation values are not contractible.

In this paper we derive a simple theory of capital structure dynamics for a start-up

firm. It is based on a model that, relative to those in the above papers, is closer to

the classical moral hazard paradigm. It departs from the classical paradigm in three

ways. First, contracts can be renegotiated after effort is chosen, but before output is

realized. This is an appropriate assumption when the input of the entrepreneur (agent)

is crucial to the initial business stage, before its fruits are realized. Our paper thus joins

the literature on renegotiating moral hazard contracts, as discussed below.

Second, although the entrepreneur’s effort remains noncontractable, it is observed

by the investor (principal). This abstraction from issues of imperfect observability is a

reasonable approximation when investors have expertise and engage in monitoring, as

venture capitalists frequently do (Kaplan and Stromberg, 2002). Our observability and

renegotiation assumptions resemble those of Hermalin and Katz (1991).

Third, feasible contracts must take account of the entrepreneur’s limited resources,

and give the investor a payoff that does not decrease in the firm’s output. The former

“limited liability” restriction holds naturally for an entrepreneur with little wealth. The

latter “monotonicity” restriction can be derived as an equilibrium outcome from ex post

moral hazard considerations. It arises, for example, if the investor can “burn output”
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in order to make the firm’s performance appear lower than it really was1. Alternatively,

it arises if the entrepreneur can secretly borrow from an outside lender in order to make

the firm’s performance appear greater than it really was. Assuming such ex post moral

hazards weakens the assumption that output is verifiable, but less so than in the costly

state verification models, and much less so than in the stealing models.

Under these liability and monotonicity restrictions, Innes (1990) shows that debt is

optimal if the parties are risk neutral. Debt gives the entrepreneur a return of zero —

the minimal possible return when he has limited liability — if the firm’s realized earnings

are lower than the face value of the debt. This property of debt is useful for giving the

entrepreneur incentives to choose an effort that lowers the probability of this low return.

But it also makes debt a poor risk-sharing scheme if the entrepreneur is risk averse, in

which case debt is not optimal in Innes’ no-renegotiation model.

On the other hand, if the debt can be renegotiated after the effort is chosen, possibly

it can be renegotiated to a better risk-sharing contract without destroying incentives. A

result like this is due to Hermalin and Katz (1991). They examine a model like ours, with

renegotiation, effort that is observable but not verifiable, and a risk averse entrepreneur

(but risk neutral investor). They show that if the entrepreneur has the renegotiation

bargaining power, then a riskless debt contract, i.e., a contract that pays the investor a

fixed amount regardless of the realized output, achieves a first-best outcome.2 Riskless

debt provides appropriate incentives, and it is renegotiated to an efficient risk-sharing

contract after the effort is chosen.

Riskless debt, however, will generally give the investor too low a return when the

limited liability of the entrepreneur prevents him from paying back more than the firm

earns. In this case, if the smallest possible output of the firm is less than the required

start-up investment, and if the investor has no bargaining power in the renegotiation,

1The investor could for example engage in sabotage activities, or play a negative role in the certifi-

cation process of the firm’s performance.

2This describes both the proof and statement of Proposition 3 in Hermalin and Katz (1991).

Matthews (1995) obtains a similiar result for unobservable effort. These results do not rely on the

monotone likelihood ratio propety, unlike unlike those of Innes (1990), and ours, regarding risky debt.
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any feasible riskless debt contract gives her a negative return on her investment. Our

task in this paper, therefore, is to determine the nature of an optimal contract that

gives the investor a higher payoff than would any feasible riskless debt contract.

1.1. Preview of Results

To investigate this problem, we first restrict attention to “simple contracts”, which are

contracts that specify a fixed rule for sharing the firm’s output. To ease the exposition

we start with the most tractable case of interest, that in which (i) the investor is

risk neutral, (ii) the entrepreneur is risk averse, and (iii) the entrepreneur has all the

bargaining power in the renegotiation stage. The main result is that, within the class

of simple contracts satisfying the liability and monotonicity restrictions, debt contracts

are optimal. Thus, risky, rather than riskless, debt emerges when the latter gives the

investor too low a payoff. The reason, roughly, is that within the set of simple contracts

that give the investor some payoff, a debt contract elicits the greatest effort. Unless the

debt is riskless, this effort is not high enough to be efficient, i.e., if effort were to be

contractible, prescribing a higher effort would make both parties better off.

We next consider a general setting in which (a) both parties may be risk averse, (b)

bargaining powers may be shared, and (c) contracts may require the parties to send

messages to the contract enforcer after the effort is chosen. These messages determine a

(possibly random) simple contract for sharing output; the prescribed (random) simple

contract can then be renegotiated. This is along the lines of the literature on mechanism

design with renegotiation, especially Maskin and Moore (1999) and Segal and Whinston

(2002). Within this broad class of contracts, an “investor-option contract” is one in

which only the investor sends a message; it is equivalent to a set of (random) simple

contracts from which the investor will select after the effort is chosen. Our first result

in this setting is that investor-option contracts are optimal, given a restriction to pure

strategy equilibria of the message game. There is thus, subject to the pure strategy

proviso, no need to consider contracts that require the entrepreneur to send a message.3

3Contracts in which both parties send messages may be of value if equilibria in mixed message
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This result holds for any renegotiation procedure that achieves an ex post efficient

outcome, and is continuous in the disagreement outcome.

We then revisit, in the general setting, the case in which the entrepreneur has all

the bargaining power. Our main result here is that no contract outperforms debt (again

restricting attention to pure strategies). As in the simpler setting, the basis of the result

is that debt provides the strongest incentives of all feasible contracts, and no feasible

contract provides enough incentives to achieve an efficient effort. Of course, an investor-

option contract containing debt may be payoff-equivalent to debt. Convertible debt is

such a contract: it is an investor-option contract that consists of a debt contract and the

simple contract to which, in equilibrium, it is renegotiated after the effort is chosen. In

the equilibrium of a convertible debt contract, the entrepreneur takes the same effort as

he would have given just the debt contract, and then the investor selects the alternative

simple contract instead of the debt. The entrepreneur is deterred from shirking by the

credible threat that it would cause the investor to select the debt contract. This is like

“converting” to equity some or all of the debt in a real convertible debt contract, if

the entrepreneur is observed to have performed well. The convertible debt contract,

unlike the simple debt contract, is not renegotiated in equilibrium; in this sense it is the

renegotiation-proof equivalent of the debt contract.

We next turn to the case in which the investor has bargaining power. We show that

then debt still provides the strongest incentives. However, the incentives provided by

debt may be too strong if the entrepreneur is risk averse. This is easiest to see when

the investor has all the bargaining power. In this case the entrepreneur does not gain

at all from renegotiation, and so cares about the riskiness of the initial contract. Debt

is very risky for him, since it gives him a zero return if the realized output is low. He

may therefore over-exert himself in order to lower the probability of low outputs. The

possibility that he might over-supply effort may seem surprising; the standard view is

that he should under-supply effort because he ignores the positive externality his effort

strategies can be implemented. This is considered in Appendix B.
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has on investors.4 Here, however, part of the entrepreneur’s motivation to raise effort is

that doing so reduces the riskiness of the debt contract. This has no social value, since

the contract will anyway be renegotiated to one that shares risk efficiently. His effort

can thus increase his payoff by reducing risks that are not socially costly.

Our main result for when the investor has all the bargaining power is that either

a simple contract that is not debt achieves an efficient outcome, or a debt contract

is optimal in the set of deterministic general contracts (again with the pure strategy

proviso). In the former case, the non-contractibility of effort does not lower welfare.

Debt is thus optimal whenever the non-contractibility of effort matters. We prove this

under strong but standard separability and concavity-like assumptions.

Lastly, we show that when both parties have bargaining power, debt still provides the

strongest incentives, given a simple “ray” bargaining solution and further separability

assumptions on the entrepreneur’s utility.

1.2. Links with the Literature

We have mentioned the connection between this paper and Hermalin and Katz (1991)

and Innes (1990). Other related papers consider renegotiation of incentive contracts

when the principal does not observe the agent’s effort. Fudenberg and Tirole (1990), Ma

(1991, 1994), and Matthews (1995) study such models without liability or monotonicity

restrictions. Matthews (2001) studies a model with these restrictions, in an environment

that is the same as in this paper except that his investor cannot observe the effort.

Restricting attention to simple contracts and to the case in which the entrepreneur has

all the bargaining power, Matthews (2001) shows that debt is optimal. The asymmetric

information make this result less robust than ours: multiple, non-equivalent equilibria

may exist, simple contracts that are not debt may also be optimal, and message game

contracts with pure strategy equilibria may outperform debt.

Our results also relate to the broader literature on renegotiation. The fact that a

4See, e.g., Jensen and Meckling (1976) or Myers (1977), and the ensuing literature on the “outside

equity” and “debt overhang” problems.
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simple contract without messages can be optimal is also true in Hart and Moore (1988),

and in some parts of Segal and Whinston (2002). Even the null contract is optimal in

Che and Hausch (1999), Segal (1999), Hart and Moore (1999), and Reiche (2001). It is

renegotiation that causes simple contracts to be optimal in these models as well as in

ours, for two reasons. First, equilibrium renegotiation “completes” the initial contract,

since the renegotiated contract can depend on observable but non-contractible variables.

Second, renegotiation makes any message game strictly competitive, and therefore of

limited use, because it ensures ex post efficiency. In our paper the simple contract that

emerges, debt, does so because it maximizes incentives. In the other papers, either a

simple profit-sharing rule or the null contract is optimal because contracting is unable

to strengthen incentives.5

Finally, our paper contributes to the corporate finance literature by developing a

simple theory of capital structure dynamics. It can be seen as describing an entrepreneur

who first obtains debt finance from a bank, but then later adopts equity finance by

going public. It also fits the case of an entrepreneur who issues convertible debt to a

venture capitalist. Real-world contracts are of course more complicated than the ones

we consider here, but the model nonetheless generates a dynamic pattern of financial

contracting, with debt first and (after conversion or renegotiation) a more equity-like

structure later on, that is fairly realistic despite its simplicity.6 Of course, this paper is

essentially a theoretical contribution. It would be interesting in future work to consider

the ideas it explores in a setting with more detailed firm financing and dynamics, as

in the literature on convertible securities in venture capital finance: Berglof (1994),

Bergemann and Hege (1997), Cornelli and Yosha (1997), Repullo and Suarez (1999),

Casamatta (2000), Schmidt (2000) or Dessi (2002).

5The optimal contract in Hart-Moore (1988) is a simple profit-sharing rule because trade cannot

be enforced ex post. The null contract is optimal in the other papers, either because of the presence

of direct investment externalities (Che-Hausch, 1999), or because the nature of the good to be traded

cannot be specifed (Segal, 1999, Hart and Moore, 1999, and Reiche, 2001).

6See Diamond (1991), Sahlman (1990) or Kaplan and Stromberg (2000, 2002) for facts on firm

financing patterns.
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1.3. Structure of the Paper

The paper is organized as follows. The environment is described in Section 2. The special

case in which the investor is risk neutral, and the entrepreneur has the renegotiation

bargaining power, is studied in Section 3. The case of general contracts and renegotiation

is analyzed in Section 4. Section 5 contains results for the general model when the

entrepreneur has all the bargaining power. Section 6 considers the case in which the

investor has some or all the bargaining power. Section 7 concludes. Appendix A contains

proofs. Appendix B shows how non-debt contracts may be better than debt if third

parties are introduced, or mixed message strategies can be implemented.

2. Preliminaries

An entrepreneur (agent) must contract with an investor (principal) to obtain the K

dollars required to start a project. After contracting, the entrepreneur chooses an effort

level e from an interval E = [e, ē] ⊂ R. His effort determines a probability distribution,
g(e) = (g1(e), . . . , gn(e)), over the set of possible (monetary) outputs, {π1, . . . ,πn}. We
assume n > 1 and πi < πi+1. Each gi is twice continuously differentiable and positive

on E. Output increases stochastically with effort in the sense of the strict monotone

likelihood ratio property:

(MLRP)
g0i(e)
gi(e)

increases in i for any e ∈ E.

The only contractible variable is output. Accordingly, a simple contract is a vector

r = (r1, . . . , rn) specifying a payment from the entrepreneur to the investor for each

possible output. An allocation is a pair (r, e).

Given an allocation (r, e), the entrepreneur’s utility if πi is realized is u(πi − ri, e).
His payoff (expected utility) from an allocation is

U(r, e) ≡P gi(e)u(πi − ri, e).7

7We omit the summation index if it is i = 1, . . . , n.
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The function u is twice continuously differentiable. With respect to income, the entre-

preneur’s utility increases, u1 > 0, and he is weakly risk averse: u11 ≤ 0. His utility
decreases with effort at all interior efforts: u2(·, e) < 0 for e ∈ (e, ē). Corner solutions
are eliminated by assuming u2(·, e) = 0 and u2(·, ē) = −∞.

The investor’s net utility is v(y) if she makes the start-up investment and receives

y dollars in return.8 The function v has continuous derivatives v0 > 0 and v00 ≤ 0. The
investor’s payoff from an allocation is

V (r, e) ≡P gi(e)v(ri).

We assume at least one party is risk averse: u11 < 0 or v00 < 0.

The timing and information structure of the game are as follows. After a contract is

adopted, the entrepreneur chooses effort. The investor observes the effort immediately.

The parties then send any messages that the contract may require. As a function of

these messages, the contract specifies a (possibly random) simple contract that, together

with the effort, determines a status quo allocation. The parties then renegotiate to

another simple contract. Finally, output is realized and payments made according to

the renegotiated contract.

At the heart of our model is a set of restrictions on what makes a simple contract

feasible. The first is a limited liability constraint for the entrepreneur:

(LE) ri ≤ πi for i ≤ n.

This standard constraint reflects the reality that because of their limited wealth, entre-

preneurs often cannot pay back more than the project earns. If the start-up investment

satisfies K > π1, then LE rules out the contract that pays back K after any output.

The second important restriction is a monotonicity constraint for the investor that

requires her income to weakly increase with the project’s output:

(MI) ri ≤ ri+1 for i < n.
8This v is a normalization of the investor’s utility function for income, v̂. If she keeps the K dollars,

her utility is v̂(K). If she invests it and receives y in return, her utility is v̂(y). So v(y) ≡ v̂(y) − v̂ (K)
is her net utility from making the investment.
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Introduced by Innes (1990), MI should be viewed as a result of various ex post moral

hazards we have not modeled explicitly. For example, MI is easily shown to be satisfied

by any implementable contract if the investor can engage in sabotage to distort the

apparent πi downwards. Alternatively, it is satisfied if the entrepreneur can borrow

secretly from another lender after a contract has been signed, thereby distorting the

apparent πi upwards.9 Note that the expected payback of any r satisfying MI increases

with effort: MLRP implies
P
g
0
i(e)ri ≥ 0, and the inequality is strict if the contract is

risky (so at least one of the inequalities ri ≤ ri+1 is strict).
We denote the set of feasible simple contracts as C, and assume it is defined by LE,

MI, and one other constraint:

C ≡ {r ∈ Rn | r satisfies LE, MI, and LI}.

The additional constraint,

(LI) ri ≥ r for i ≤ n,

is a limited liability constraint for the investor that imposes a lower bound (which can

be arbitrarily low) on how much she can be paid back. Its only role is to simplify the

analysis by insuring that C is compact. We assume r < π1, so that C has an interior.

It is also convex.

Debt contracts have a central role in this paper. A debt contract, δ(D), is defined,

for any face value D ≤ πn, by

δi(D) ≡ min(D,πi) for i ≤ n.

For simplicity we often denote δ(D) as δ. Note that δ ∈ C if and only if D ≥ r. The
debt is risky if δ1 < δn, which is equivalent to D > π1.

We define a riskless debt contract to be a contract that pays the investor the same

amount after any output. The one that pays an amount V is denoted δV ≡ (V, . . . , V ).
9 It may also be likely that the entrepreneur can destroy output, or the investor can inject cash

to inflate apparent profit. These moral hazards lead to the constraints πi − ri ≤ πi+1 − ri+1. Since
debt satisfies them, our Propositions 2 − 6 on debt carry over if these constraints are added. So does
Proposition 1 on investor-option contracts, as it does not rely on the specific nature of a feasible contract.
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Note that δV ∈ C if and only if r ≤ V so that it satisfies LI, and V ≤ π1 so that it

satisfies LE.

An efficient risk-sharing contract for a fixed effort e is a contract in C that solves

the following program, for some investor payoff V̂ :

H(V̂ , e) ≡ max
r∈C

U(r, e) such that V (r, e) ≥ V̂ . (1)

This is a “constrained efficiency” notion, taking as given the constraints that define

C. (We reserve the modifier “first-best” for outcomes that are efficient in the full, un-

constrained sense.) Any solution of (1) is unique, since at least one party is strictly

risk averse. The graph of H(·, e) is the Pareto frontier of possible payoff pairs given the
fixed effort. Lemma A1 in Appendix A shows that H(·, e) is concave, and has a negative
derivative, H1(·, e), on its domain.

An allocation (r∗, e∗) is efficient if e∗ maximizes H(V̂ , ·) for some V̂ , and r∗ solves
(1) when e = e∗. Such allocations set the welfare benchmark: they determine the

achievable Pareto frontier if effort as well as output were to be contractible, the parties

could commit not to renegotiate, and constraints MI, LE, and LI had to be respected.

3. The Case of a Risk Neutral Investor and Entrepreneur-Offer Bar-

gaining

We now give the key arguments for a simple canonical case defined by two restrictions.

First, the investor is risk neutral. Second, the entrepreneur has all the renegotiation

bargaining power, as though he can offer a new contract as an ultimatum.

As the investor is risk neutral, an efficient risk-sharing contract pays the entrepreneur

a fixed wage. The wage contract that pays wage w is denoted rw and defined by

rwi ≡ πi −w for i ≤ n.10

Since renegotiation occurs after both parties observe the effort, it yields an efficient

risk-sharing contract. So, in the present case, the entrepreneur renegotiates to a wage

10Because of the liability constraints, rw is feasible if and only if w ∈ [0,π1 − r].
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contract, i.e., he sells his entire stake in the firm to the investor.11 If it were adopted

initially, a wage contract would not be renegotiated, since it shares risk efficiently for

any effort. Wage contracts thus provide no incentives: they pay the entrepreneur a fixed

amount regardless of output, and so induce him to take the lowest effort.

3.1. Simple Contracts

Suppose the parties initially adopt a contract r ∈ C. The entrepreneur will then, after
he has chosen an effort e, offer the investor a wage contract rw that has the highest

wage she will agree to pay, i.e., the largest w satisfyingP
gi(e)πi −w ≥

P
gi(e)ri.

This constraint binds — the investor does not gain from the renegotiation. The resulting

wage is given by a wage function defined by

w∗(r, e) ≡P gi(e)(πi − ri). (2)

When he chooses effort, the entrepreneur knows his ultimate wage will be given by

w∗(r, ·). An equilibrium outcome of r is thus a solution, (e∗, w∗), of this program:

max
e,w

u(w, e) subject to w = w∗(r, e). (3)

The contract r provides incentives by determining the slope of w∗(r, ·). Renegotiation
allows the two functions of contracts to be separated: the initial contract provides the

incentives, and the final contract provides the risk sharing.

It is now easy to see that an equilibrium outcome of any riskless debt contract,

δV = (V, . . . , V ), is first-best efficient.12 Simply observe that w = w∗(δV , e) is the

equation for the indifference curve of pairs (e, w) that give the investor utility V.13

11 If the investor were risk averse, the final contract would be more like equity, since efficient risk-

sharing would require both parties’ earnings to increase in output (linearly if they had CARA utility).

12This result is buried in the proof of Proposition 3 in Hermalin and Katz (1991). We show in Section

5 that if the investor is risk averse, riskless debt still achieves efficient (but not first-best) allocations.

13The (e, w) pairs that give the investor utility V are those that satisfy
P
gi(e)πi − w = V. As this

can be rewritten as w = w∗(δV , e), the graph of w∗(δV , ·) is the investor’s indifference curve.
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Thus, if the initial contract is δV , program (3) is the Pareto program that yields a

first-best outcome giving the investor utility V.

The non-contractibility of effort may therefore be irrelevant. Even if any (e,w)

could be directly enforced, it is impossible to make both parties better off than when

a riskless debt contract is adopted and renegotiated. The problem with this argument,

however, is that a feasible riskless debt contract may not compensate the investor enough

for investing K. (Recall that δV satisfies the entrepreneur’s liability constraint only if

V ≤ π1.) In this case the only feasible contracts to which she might agree are risky.

If the contract must be risky, the non-contractibility of effort does prevent the attain-

ment of an efficient allocation. Specifically, feasible risky contracts give inefficiently low

incentives. Recall that the expected payback to the investor of any risky r ∈ C strictly
increases in effort:

P
g0i(e)ri > 0. This diminishes the entrepreneur’s incentive to raise

effort. Let V be the investor’s payoff from an equilibrium of r. As we noted above, the

riskless debt contract δV provides efficient incentives. The marginal incentives that δV

and r provide the entrepreneur to raise effort are given by the wage derivatives w∗e(δ
V , ·)

and w∗e(r, ·), respectively. Those provided by δV are higher, since for any e ∈ E,

w∗e(δ
V , e)−w∗e(r, e) =

P
g0i(e)ri > 0.

From this it is easy to show that the effort achieved by r is less than the effort in any

efficient allocation that gives the investor the same payoff V.

A generalization of this argument from riskless to risky debt shows that within the

feasible set of contracts, debt provides the greatest incentives. Consider a non-debt

contract r ∈ C, and a debt contract δ, such that neither contract always pays more
than the other. Since r satisfies LE, ri ≤ δi for low outputs πi. But since r satisfies

MI, ri ≥ δi for high outputs. That is, δ pays the entrepreneur less for low outputs and

more for high outputs. It thus gives him a greater incentive to shift probability from

low to high outputs, which by MLRP he accomplishes by increasing effort. Formally,

if the wage curves w∗(δ, ·) and w∗(r, ·) ever cross, the former has a greater slope at the

12



point of crossing.14 This key single-crossing property implies that of all the contracts in

C that give the investor some equilibrium payoff V, it is a debt contract that achieves

the largest effort.

We use Figure 1 to now show the Pareto dominance of debt.

[INSERT FIGURE 1 HERE]

Contract r ∈ C is a non-debt contract, and (e∗, w∗) is an equilibrium outcome of

it. Contract δ is the debt contract satisfying w∗(δ, e∗) = w∗. By the single-crossing

property, w∗(δ, ·) is steeper than w∗(r, ·) at (e∗, w∗). Let V be the investor’s payoff at

this outcome. As shown above, w∗(δV , ·) is the investor’s indifference curve at (e∗, w∗),
and it is there the steepest of the three curves. An equilibrium outcome of δ must be

on the thick portion of w∗(δ, ·), which is in the lens between the parties’ indifference
curves. Thus, any outcome of δ Pareto dominates the outcome (e∗, w∗) of r.

3.2. More General Contracts

We now turn to contracts that require messages to be sent. Convertible debt, a standard

way of financing venture capital, is a prominent example. It is a debt security that the

investor has the option of converting to equity in the future. It is a contract that only

requires the investor to send a message. In this section we restrict attention to such

investor-option contracts, and assume the number of options is finite. (This is nearly

without loss of generality, as we show in Section 4.)

Such an investor-option contract can be represented as a finite set R ⊂ C. After a
contract R has been signed and the effort chosen, the investor selects a simple contract

from R. The entrepreneur may then offer a new simple contract to supplant it. (The

same results obtain if renegotiation instead occurs before the investor selects from R.)

Suppose the investor selects r ∈ R after effort e is chosen. The entrepreneur’s

equilibrium renegotiation offer is then the wage contract that gives the investor the

same payoff as would r, namely,
P
gi(e)ri. Foreseeing this, the investor selects r to

14This is a special case of Lemma A4 in Appendix A.
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maximize this expression. The resulting wage curve the entrepreneur faces is the lower

envelope of the wage curves generated by the simple contracts in R :

w∗(R, e) ≡P gi(e)πi −max
r∈R

P
gi(e)ri

= min
r∈R

w∗(r, e).

An equilibrium outcome (e,w) of R maximizes u(w, e) subject to w = w∗(R, e).

The possible value of an investor-option contract can be seen in Figure 2.

[INSERT FIGURE 2 HERE]

Contract ra leads to the low-effort outcome â. But the investor-option contract R =

{ra, rb} yields the high-effort outcome a. Given R, the investor selects rb if the entre-
preneur chooses a low effort; as rb then results in a low wage, the entrepreneur works

hard so that the the investor will select ra instead. Thus, packaging rb with ra results

in a higher effort than either simple contract would alone.

However, an investor-option contract cannot improve on debt. The argument is

basically the same as before. In Figure 1, replace r by R, so that the curve w∗(r, ·)
becomes w∗(R, ·). Let (e∗, w∗) be the outcome of R, and δ be the debt contract satisfying
w∗(δ, e∗) = w∗. Our single-crossing property still implies that w∗(δ, ·) and w∗(R, ·) can
cross only at (e∗, w∗), and that w∗(δ, ·) is then the steeper of the two curves at this
point. Hence, δ induces the entrepreneur to choose an effort, say eδ, no less than e∗. If

eδ = e∗, the outcome of δ is the same as that of R. If eδ > e∗, the entrepreneur must be

better off with the debt contract (by revealed preference, as he could have chosen e∗),

and the investor is also better off because her indifference curve through (e∗, w∗) is at

least as steep as w∗(δ ,·). So δ Pareto dominates R, at least weakly.
Of course, an investor-option contract containing debt may achieve the same out-

come as would the debt alone. A striking example is convertible debt. Let δ be debt,15

with an equilibrium outcome (e,w). Consider the investor-option contract Rδ = {δ, rw},
where rw is the wage contract with wage w. This Rδ can be interpreted as convertible

15Assume the face value of δ is less than πn, so that w∗(δ, e) strictly increases in e.
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debt, i.e., a security that executes the debt contract δ unless the investor exercises

her option of “converting” it to rw.16 Since the two wage curves w∗(δ, ·) and w∗(rw, ·)
intersect at (e,w), this outcome is on w∗(Rδ, ·). In addition, since (e, w) is the entre-
preneur’s optimal point on w∗(δ, ·), which is everywhere at least as high as the lower
envelope w∗(Rδ, ·), (e, w) is also his optimal point on the latter curve. Thus, (e,w) is
an equilibrium outcome of Rδ : the entrepreneur takes effort e, the investor then se-

lects rw, and it is not renegotiated. The convertible debt contract is in this sense the

renegotiation-proof equivalent to the debt contract.17

4. The General Model

We now consider general “message game” contracts, in the general model in which both

parties may be risk averse. We make no assumptions here about the distribution of

bargaining power. Furthermore, the results of this section do not depend on our specific

definition of a feasible simple contract: they hold for any feasible set C ⊂ R that is

non-empty and compact, and leads to a downward sloping Pareto function H(·, e). The
main result is that any pure strategy equilibrium outcome of a general contract is also

an equilibrium outcome of an investor-option contract.

A general contract (game form, mechanism) is a function

f :ME ×MI → ∆C,

where ME and MI are sets of messages that the entrepreneur and investor can respec-

16One way Rδ differs from convertible debt is that rw is not equity. This is due in part to the investor’s

assumed risk neutrality. If she too were risk averse, the relevant investor-option contract would be {δ, r},
where is r is the efficient risk-sharing contract to which δ would be renegotiated. This r would be linear

in output, i.e., equity, if both parties had CARA utility.

17Renegotiation occurs if the entrepreneur takes an effort ê < e. Since w∗(δ, ê) < w∗(rw, ê) = w, this

effort choice causes the investor to select δ instead of rw from Rδ. (It is this threat that in equilibrium

deters the entrepreneur from taking efforts less than e.) As δ does not share risk efficiently, it would be

renegotated to a wage contract (with a lower wage than w).
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tively send, and∆C is the space of probability distributions on C.18 LetM =ME×MI ,

and denote a message pair as m = (mE,mI). When m is sent, the contract prescribes

a random simple contract, r̃ = f(m) ∈ ∆C that would, if it were not renegotiated,

determine the entrepreneur’s payment to the investor.

Bargaining and renegotiation occur according to the following time line:

contract effort messages r̃ = f(m) π realized,

f signed e taken m sent renegotiated payments made

↓ ↓ ↓ ↓ ↓
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Two features are noteworthy. First, renegotiation takes place ex post, after messages

are sent. This is assumed only for simplicity. So long as the parties cannot commit

to not renegotiate at this ex post date, our results still hold if renegotiation is also

possible at the interim date that occurs after effort is chosen but before messages are

sent. This is made clear below. Second, renegotiation occurs before the randomness in

the mechanism’s prescribed r̃ is realized. This is the same convention as in Segal and

Whinston (2002), but differs from that in Maskin and Moore (1999).19

We let V̂ (r̃, e) and Û(r̃, e) denote the post-renegotiation payoffs of the investor and

entrepreneur, respectively, when effort e has been taken and messagesm have been sent,

where r̃ = f(m). We assume that renegotiation is efficient,

Û(r̃, e) = H(V̂ (r̃, e), e) for all (r̃, e) ∈ ∆C ×E, (4)

and that the post-renegotiation payoffs are continuous in the prescribed outcome:

V̂ (·, ·) and Û(·, ·) are continuous on ∆C ×E. (5)

The efficient renegotiation assumption (4) implies that r̃ is renegotiated to an efficient

risk sharing contract; any randomness in r̃ has no efficiency consequence. The con-

18Endow ∆C with the topology of weak convergence. It is compact, since C is compact in Rn.

19 In Maskin and Moore (1999), the parties can commit not to renegotiate during the time interval

between the sending of messages and the realization of the contract’s random outcome.
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tinuity assumption (5) is weaker than the continuity and differentiability assumed in

the quasilinear framework of Segal and Whinston (2002), and it holds fairly generally.

It requires the bargaining powers of the parties in the renegotiation game not to shift

discontinuously in (r̃, e), the allocation that determines their disagreement payoffs.

Given a contract f, the message game following effort e is the game in which the

strategies are messages, and the payoff functions are Û(f(·), e) and V̂ (f(·), e). This game
is “strictly competitive”, which means that the two players have opposing preferences

on the set of message pairs. This is because renegotiation is efficient, and so any mes-

sage profile results in a post-renegotiation payoff pair on the downward-sloping Pareto

frontier for the given effort. In particular, since

Û(f(m), e) = H(V̂ (f(m), e), e),

the entrepreneur’s best reply to any mI minimizes the investor’s payoff V̂ (f(·,mI), e).
Until Appendix B, we restrict attention to pure strategy equilibria of the message game.

Consider an equilibrium m∗(e) of the message game. Denote the corresponding

equilibrium payoffs as V ∗(e) and U∗(e) = H(V ∗(e), e). Because the message game is

strictly competitive, m∗(e) is also an equilibrium of the zero-sum game in which the

investor’s payoff is V̂ (f(m), e) and the entrepreneur’s is −V̂ (f(m), e). (This is not true
of mixed strategy equilibria, as we discuss below.) Therefore, by a standard “maxmin”

argument,

V ∗(e) = sup
mI

inf
mE

V̂ (f(mI ,mE), e).
20 (6)

A (subgame perfect) equilibrium of (the game generated by) contract f is a pair

(e∗,m∗(·)), where e∗ is an effort that maximizes the entrepreneur’s equilibrium contin-

uation payoff in the message game:21

e∗ ∈ argmax
e∈E

U∗(e). (7)

20Since m∗(e) is an equilibrium, the “sup” in (6) can be replaced by “max”.

21Given our goal of characterizing the best equilibria, our focus on equilibria in which the entrepreneur

uses a pure effort strategy is without loss of generality. Suppose an equilibrium of f is (σ,m∗(·)) , where
σ is a mixed effort strategy with compact support. The continuation equilibrium payoffs are U∗(e) and

V ∗(e) for any e. Let e∗ maximize V ∗ (·) on the support of σ. Then, (e∗,m∗(·)) is another equilibrium,

17



We now prove that an investor-option contract performs as well as any general

contract. For a quasilinear model the result is Proposition 9 in Segal and Whinston

(2002). The heuristic argument is the following. Consider an equilibrium (e∗,m∗(·))
of a contract f . Define an investor-option contract f I : MI → ∆C by holding the

entrepreneur’s message fixed at m∗E(e
∗) :

fI(mI) = f(m
∗
E(e

∗),mI).

Given this option contract, after any effort the investor can obtain a payoff at least as

large as she would get from the equilibrium of the message game determined by f . This

is because, as we discussed above, the entrepreneur chooses a message to minimize the

investor’s payoff when the contract is f . But fI does not allow him to choose a message

to harm the investor in this way. Hence, if fI generates equilibrium payoffs V I(e) and

UI(e), we have V I(·) ≥ V ∗(·), with equality at e∗ because m∗I(e∗) is a best reply to
m∗E(e

∗). Efficient renegotiation then implies UI(·) ≤ U∗(·), with equality at e∗. Thus,
since it maximizes U∗(·), e∗ indeed maximizes UI(·).

The unwarranted assumption in this heuristic proof is that fI has an equilibrium.

A correct proof is given in Appendix A.

Proposition 1. Given any equilibrium of any contract, an investor-option contract

exists that has the same equilibrium payoffs and effort.

Proposition 1 also holds if the parties can renegotiate at the interim stage, after

effort is chosen but before messages are sent, so long as they can also renegotiate ex

post. This is because the Proposition refers to equilibria that are in pure strategies,

and so yield continuation payoffs (V ∗(e), U∗(e)) on the Pareto frontier given the chosen

e. Knowing that these payoffs will obtain when the contract is not renegotiated, every

interim renegotiation proposal by one party will be rejected by the other. Whether the

parties can commit not to renegotiate at the interim date is thus irrelevant.

with a pure effort strategy, since the entrepreneur is indifferent between all effort levels in the support

of σ. And (e∗,m∗(·)) weakly Pareto dominates (σ,m∗(·)) , since the entrepreneur is indifferent between
them, and V ∗(e∗) ≥ V ∗(e) for all e in the support of σ.
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5. Entrepreneur-Offer Renegotiation

We now show in the general model that if the entrepreneur has all the bargaining

power in the renegotiation stage, then any general contract is weakly Pareto dominated

by debt. Furthermore, a debt contract is a limit point of the set of simple contracts

prescribed by any Pareto optimal general contract as its messages vary; only such gen-

eralized convertible debt contracts are optimal.

Since the entrepreneur has the bargaining power, the investor receives the same

payoff regardless of whether she agrees to renegotiate. Thus, after an effort e is taken

and a message pairm is sent, renegotiation of the prescribed r̃ = f(m) yields an efficient

risk-sharing contract for e that gives the investor the same payoff as does r̃. Her post-

renegotiation payoff is

V̂ (r̃, e) = V (r̃, e) = Er̃ {
P
gi(e)v(r̃i)} , (8)

and the entrepreneur’s is

Û(r̃, e) = H(V (r̃, e), e). (9)

The two assumptions made in Section 4 are satisfied: renegotiation is efficient, and the

post-renegotiation payoffs are continuous in r̃.

We first dispense with random contracts. The investor’s certainty equivalent for

r̃ ∈ ∆C is the rc ∈ Rn defined by v(rci ) ≡ Er̃v(r̃i). Since V (rc, ·) = V (r̃, ·), we see from
(8) and (9) that for any effort, rc and r̃ yield the same post-renegotiation payoffs. Thus,

for any contract f, an equivalent deterministic contract f̄ is defined by letting f̄(m)

be the investor’s certainty equivalent for f(m). The contracts f and f̄ have the same

equilibrium efforts and payoffs. Since the certainty equivalent of any r̃ ∈ ∆C is in C,22

we have proved the following.

Lemma 1. The equilibrium efforts and payoffs of any contract f : M → ∆C are the

same as those of a contract f̄ : M → C defined by letting f̄(m) be the investor’s

certainty equivalent for f(m).

22 In particular, rci satisfies MI because v(rcii+1)−v(rcii ) = Er̃ [v(r̃i+1)− v(r̃i)] ≥ 0, since any realization
of r̃ satisfies MI because it is in C.
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In light of Proposition 1 and Lemma 1, we can restrict attention to deterministic

investor-option contracts. The revelation principle allows us to further restrict attention

to revelation mechanisms for the investor, r∗ : E → C, that are incentive compatible.

Given such an r∗, its truthful equilibrium yields post-renegotiation payoffs

V ∗(e) = V (r∗(e), e) and U∗(e) = H(V ∗(e), e). (10)

Any maximizer of U∗(·) is an equilibrium effort.

It is now easy to see that when the entrepreneur has the bargaining power, an

equilibrium of a riskless debt contract is efficient. Suppose that for all possible reports,

r∗(·) specifies a riskless debt contract, δD ≡ (D, . . . ,D). By (10), the investor’s post-
renegotiation payoff is then V (δD, e) = v(D), which is independent of e. The equilibrium

effort maximizes U∗(·) = H(v(D), ·), and is hence the effort component of the efficient
allocation that gives the investor payoff v(D). This efficient allocation is the equilibrium

outcome, since renegotiation is efficient and does not benefit the investor.

Of course, as we observed in Section 3, a riskless debt contract that is acceptable to

the investor may not be feasible. We accordingly turn to debt contracts that may be

risky. The following lemma establishes a single-crossing property which will imply that

debt provides the greatest incentives of all contracts in C.

Lemma 2. For any (r, e) ∈ C×E such that r is not debt, a unique debt contract δ ∈ C
exists for which V (r, e) = V (δ, e). Furthermore,

(i) Ve(r, e) > Ve(δ, e), and

(ii) (e− ê) (V (r, ê)− V (δ, ê)) < 0 for all ê 6= e.

We now prove the first main result of this section: any equilibrium of a general

contract is weakly Pareto dominated by an equilibrium of a debt contract. Again con-

sidering the investor-option incentive-compatible revelation mechanism r∗(·) and its
equilibrium effort e∗, the desired debt contract is defined by

V (δ, e∗) = V (r∗(e∗), e∗). (11)
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If δ is adopted and effort e taken, the equilibrium post-renegotiation payoffs are

V δ(e) = V (δ, e) and Uδ(e) = H(V (δ, e), e). (12)

It follows from (10)− (12) that when δ is adopted, e∗ yields the same payoffs as it does
when r∗(·) is adopted:

V δ(e∗) = V ∗(e∗) and Uδ(e∗) = U∗(e∗). (13)

The entrepreneur therefore weakly prefers any equilibrium of δ to the given one of r∗(·),
since any equilibrium effort of δ maximizes Uδ(·). The investor has the same preference,
provided that the equilibrium effort of δ, say eδ, is not less than e∗. This is because

V δ(eδ) = V (δ, eδ) ≥ V (δ, e∗) = V ∗(e∗),

where the inequality follows from the monotonicity of δ, MLRP, and eδ ≥ e∗. The proof
is complete once eδ ≥ e∗ is proved; this is done in Appendix A using Lemma 2.

Proposition 2. Assume entrepreneur-offer renegotiation. Then, given any equilibrium

of any general contract, a debt contract exists that has an equilibrium with a weakly

greater effort, and which both parties weakly prefer.

Proposition 2 leaves open the possibility that a contract quite unlike debt has an

equilibrium with a Pareto optimal outcome. The following proposition shows this is not

true. It shows that in an equilibrium of any optimal general contract, the equilibrium

messages following any effort prescribe a simple contract that converges to either a

debt contract, or to a probability distribution over riskless debt contracts, as the effort

converges to the equilibrium effort from below. Any optimal investor-option contract

is, in this sense, a generalized convertible debt contract. One implication is that if

the contract specifies only a finite number of simple contracts, in equilibrium it must

prescribe a debt contract following the choice of any effort in some interval that has the

equilibrium effort as its upper endpoint. If the contract is simple, it must be debt.
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Proposition 3. Assume entrepreneur-offer renegotiation. Suppose an equilibrium,

(e∗,m∗(·)), of a general contract f is not Pareto dominated by an equilibrium of a

debt contract, and e∗ ∈ int(E). Then the left hand limit,

r̃∗ = lim
e→e∗− f(m

∗(e)),

exists in ∆C, and it puts all probability either on a debt contract δ, or on a set of

riskless debt contracts.

6. Investor Bargaining Power

In this section we suppose the investor has some bargaining power in the renegotiation.

As we shall see, in this case the riskiness of the initial contract matters for incentives.

This is most starkly true when the investor has all the bargaining power, so that the

entrepreneur does not gain at all from the renegotiation to an efficient risk-sharing

contract. His choice of effort is then dictated entirely by the direct consequences of the

initial contract for himself, including its riskiness.

A debt contract is very risky for the entrepreneur: it gives him no income if output

is below its face value, and it gives him the entire residual above the face value if output

is high. He has therefore a large incentive to lower this risk by taking a high effort,

thereby decreasing the probability of low outputs and increasing that of high outputs

(by the MLRP). But efficiency would require the risk properties of the initial contract to

be ignored. It is thus possible for debt to lead to excessive effort relative to an efficient

allocation. We provide such an example in Appendix B. The example also suggests

an upcoming result, namely, that an efficient allocation can be achieved, by a simple

non-debt contract, when debt leads to excessive effort.

Debt may induce excessive effort because it allows the entrepreneur to improve

his pre-renegotiation payoff by more than it raises total surplus.23 The entrepreneur’s

incentive to provide effort is too high because by raising his effort, he reduces risks that

23This is reminiscent of the over-investment result in the hold-up literature when a party’s investment

raises his own ‘default option’, as in, e.g., Aghion et al (1994).
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are not socially costly, since they are subsequently removed by renegotiating with the

risk-neutral investor. This excessive effort result may seem at odds with the conventional

wisdom that external funding reduces managerial effort because the manager ignores its

positive externality on investors — the “outside equity” and “debt overhang” problems

that the corporate finance literature has dwelt upon since Jensen and Meckling (1976)

and Myers (1977). Here, however, because higher effort reduces the risk of debt to the

entrepreneur, it imposes a negative externality on the investor. It is not debt per se

that causes excessive effort, but the fact that the entrepreneur behaves as if he were not

insured: even if he did not need external funding if he had no access to insurance debt

could still cause him to work too hard to reduce the probability of zero income.

We now examine more generally the nature of optimal contracts when the investor

has bargaining power. We first consider the case in which she has all the bargaining

power, and then turn to the case in which the parties share the bargaining power.

Because the investor has bargaining power, it is now convenient to let J(·, e) ≡ H−1(·, e),
so that V = J(U, e) describes the Pareto frontier given e.24

6.1. Investor Has All Bargaining Power

Assuming the investor has all the renegotiation bargaining power, we now give condi-

tions under which two results hold: (i) debt maximizes the entrepreneur’s incentives to

provide effort; and (ii) either debt is optimal or, as in the example above, an efficient

allocation is obtainable by another simple contract.

The first new condition, often made so that the entrepreneur’s risk attitude does

not depend on effort, is that his utility function be separable:

(SEP) u(w, e) = a(e)ū(w)− c(e),

where a(·) > 0. We now have another single-crossing result for debt, like Lemma 2.

Lemma 3. For any (r, e) ∈ C×E such that r is not debt, a unique debt contract δ ∈ C
exists for which U(δ, e) = U(r, e). If SEP holds, then

24As H(·, e) is continuous and decreasing, J is well-defined and has the same properties as H.
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(i) Ue(δ, e) > Ue(r, e), and

(ii) (e− ê) (U(δ, ê)− U(r, ê)) < 0 for all ê 6= e.

Our second restriction is to deterministic contracts, f :ME ×MI → C, that assign

to each message pairm a non-random simple contract.25 When such a contract specifies

r ∈ C after messages have been sent, the post-renegotiation payoffs are

Û(r, e) = U(r, e) and V̂ (r, e) = J(U(r, e), e),

since the investor has the bargaining power. The following proposition establishes that

debt again maximizes incentives.

Proposition 4. Assume investor-offer renegotiation and SEP. Then, given any equilib-

rium of any deterministic general contract, a debt contract exists that has an equilibrium

with a weakly greater effort, and it gives the same payoff to the entrepreneur.

We now give two conditions under which debt is optimal if and only if an efficient

allocation is unobtainable. The argument is roughly the following. The effort component

of an efficient allocation that gives the entrepreneur some utility U∗ maximizes V =

J(U∗, ·). Suppose J(U∗, ·) is strictly concave (we weaken this below). Then J(U∗, ·)
is maximized by a unique effort, say eF , and it increases with effort to the left of

eF . Suppose no feasible contract which gives the entrepreneur utility U∗ results in an

efficient allocation. Then, since the minimal effort e < eF can always be induced (by

a wage contract), a continuity argument shows that every contract which yields the

entrepreneur utility U∗ induces him to take an effort less than eF . Hence, as J(U∗, ·) is
concave, it is maximized by adopting a contract that induces the largest possible effort.

By Proposition 4, this contract is debt.

The first of the two conditions is that J(Û , ·) is pseudoconcave (‘single peaked’):

(SP) For any feasible U∗, maximizer e∗∗ of J(U∗, ·), and
e ∈ E : (e− e∗∗)J2(U∗, e) ≤ 0.

25Random contracts when the investor has the bargaining power are problematic. They cannot be

eliminated by appeal to the entrepreneur’s certainty equivalent contract, as we did in Lemma 1 with

respect to the investor, because it can violate MI. See Lemma 6 in Matthews (2001).
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The second is that the “first-order approach” is valid:26

(FOA) For any r ∈ C, the effort maximizing U(r, ·) is unique.

Proposition 5. 27Assume investor-offer renegotiation, SEP, FOA, and SP. Suppose an

equilibrium of a deterministic general contract is not Pareto dominated by an equilib-

rium of any other deterministic contract, and it gives the entrepreneur payoff U∗ ≤
u(π1 − r, e). Then, either (i) this equilibrium achieves an efficient allocation, which is

also attained by a simple contract, or (ii) a debt contract achieves the same payoffs.

6.2. Intermediate Bargaining Powers

A new complication arises if both parties have bargaining power. When one has all the

bargaining power, the entrepreneur’s equilibrium payoff is a function of only one of the

payoffs the parties would receive if renegotiation did not occur. That is, if the initial

contract yields a simple contract r when effort e is taken, the entrepreneur’s payoff

depends on only one of the status quo payoffs, U0 = U(r, e) or V0 = V (r, e), of the

ensuing bargaining game. (His payoff is H(V0, e) if he has the bargaining power, and U0

if the investor has the bargaining power.) But if they both have bargaining power, his

ultimate payoff depends on both status quo payoffs. The allocation of risk between the

parties determined by the initial contract is thus of importance for incentives, despite

the fact that it will be renegotiated to an efficient risk-sharing contract.

Nonetheless, there is still some reason to expect debt to maximize incentives. General

bargaining solutions give the entrepreneur a payoff that increases in his status quo payoff

U0, and decreases in the investor’s V0. An increase in effort changes these status quo

payoffs. The single-crossing properties of Lemmas 2 and 3 suggest that the increase

in effort will increase U0 the most, and simultaneously increase V0 the least, when the

26Various properties of the primitives imply FOA. See, e.g., Rogerson (1985) and Jewitt (1988).

27Proposition 5 applies only to equilibria that give the entrepreneur utility no more than u(π1− r, e),
where r is the investor’s liability bound. The lower is r, the more equilibria satisfy this inequality; it

holds vacuously if r = −∞.
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initial contract is debt. If so, the entrepreneur’s incentive to raise effort so as to put

himself in a good bargaining position is maximized by debt.

The difficulty with this argument is that given a debt contract δ, the single-crossing

properties say something about the relative slopes of U(r, ·) and U(δ, ·) only at an effort
where they are equal, and similarly for V (r, ·) and V (δ, ·). There may not be an effort
at which both equalities hold. (Previously, when only one party had bargaining power,

we needed only one of these equalities to hold.)

However, under two further assumptions we can reduce these two equalities to one

and apply our previous arguments. The first new assumption is a stronger, but still

standard, separability condition:

(SEP0) u(w, e) = ū(w)− c(e).

The second is that the bargaining outcome is given by a simple bargaining solution

we call ray bargaining. According to this solution, the investor’s bargaining power is

measured by a parameter θ ≥ 0, where θ = 0 (θ =∞) is the case in which the investor
has none (all) of the bargaining power. The solution specifies that if the initial contract,

after an effort e has been taken and messages sent, yields status quo utilities (U0, V0),

then renegotiation yields the utility pair (Û , V̂ ) on the Pareto frontier V̂ = J(Û , e) where

it intersects the ray that emanates from (U0, V0) with slope θ.28 The post-renegotiation

utilities thus satisfy

V̂ − V0 = θ
³
Û − U0

´
. (14)

We now proceed by inserting V̂ = J(Û , e) and SEP0 into (14) to obtain

J(Û , e)−P gi(e)v(ri) = θ
h
Û −P gi(e)ū(πi − ri) + c(e)

i
.

Rearrangement of this yields

K(Û , e) =
P
gi(e)wi(ri), (15)

28Ray renegotiation is generalized Nash bargaining (see, e.g., Myerson 1991, p.390) if the Pareto

frontier has slope -1, i.e., if utility is transferable. It is not otherwise, as generalized Nash bargaining

would require γ to be a function of the status quo utilities and effort.
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where the functions K and wi are defined by

K(Û , e) ≡ θ
³
Û + c(e)

´
− J(Û , e),

wi(y) ≡ θū(πi − y)− v(y).

Since K(·.e) is increasing, its inverse K−1(·, e) is well defined. Solving (15) for Û yields
an expression for the entrepreneur’s post-renegotiation payoff in terms of r and e :

Û(r, e) = K−1 (
P
gi(e)wi(ri), e) .

The entrepreneur’s post-renegotiation payoff is thus a function of the payoffs both par-

ties would receive if r were not renegotiated. But these two status quo payoffs are

combined into a single expected utility-like term,
P
gi(e)wi(ri). We can establish the

single-crossing property of debt for it, and so again show that debt maximizes incentives.

Lemma 4. For any (r, e) ∈ C×E such that r is not debt, a unique debt contract δ ∈ C
exists for which P

gi(e)wi(δi) =
P
gi(e)wi(ri). (17)

Furthermore,

(i)
P
g0i(e)wi(δi) >

P
g0i(e)wi(ri), and

(ii) (e− ê) (P gi(ê)wi(δi)−
P
gi(ê)wi(ri)) < 0 for all ê 6= e.

Proposition 6. Assume ray renegotiation and SEP0. Then, given any equilibrium of

any deterministic general contract, a debt contract exists that has an equilibrium with

a weakly greater effort, and it gives the same payoff to the entrepreneur.

As before, the debt contract of Proposition 6 may induce the entrepreneur to take

such a high effort that it makes the investor worse off. If it does not generate excessive

effort in this sense, the debt contract Pareto dominates the given general contract.
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7. Conclusions

We have analyzed a dynamic entrepreneurial incentive problem with: (i) observable

but nonverifiable effort; (ii) renegotiation between the effort choice and the output

realization; and (iii) two contractual constraints: limited entrepreneurial liability, and

monotonicity of the investor’s return with the firm’s performance. Fairly generally,

when the entrepreneur holds the renegotiation bargaining power, debt and, equivalently,

convertible debt, are optimal contracts. Their optimality stems from their inducing

maximal effort from the entrepreneur, as in Innes (1990). Unlike in Innes’ setup, the

parties here are risk averse. Debt is nonetheless optimal because renegotiation allows a

separation of effort from insurance provision. This result is similar to that obtained in

Matthews (2001), for the case in which entrepreneurial effort is privately observed.

If one accepts the underlying assumptions, these results provide a simple theory of

capital structure dynamics: debt is adopted initially in order to generate maximum effort

from the entrepreneur. Once effort is chosen, the parties switch to optimal insurance.

The investor takes on more risk by transforming her claim into something closer to

equity. As is well known, standard equity shares risk optimally if both parties have

CARA preferences. The model then delivers a simple prediction: the firm starts as an

all-debt firm, and later becomes an all-equity firm by, for example, going public.

One might object that the model requires the investor to be risk averse for the

entrepreneur to hold equity after renegotiation, since otherwise he is given a fixed-wage

contract. However, in our view it is not implausible for the investor to be risk averse,

especially if she is a specialized venture capitalist. Alternatively, though outside the

model, a post-renegotiation compensation for the entrepreneur that varies with output

could be due to a need to give him incentives for subsequent effort provision. More

generally, the model’s simplicity allows it to serve as a theoretical benchmark that

may, for example, be of use for evaluating the more specific features of venture capital

mentioned in the introduction.

We end by discussing three situations in which debt is not optimal. The first is

when the investor has renegotiation bargaining power, considered in Section 6 and

28



Appendix B. In this case the entrepreneur cares about the riskiness of the initial contract.

Since debt gives him no income if output is low, it may cause him to take excessive

effort. Under certain assumptions, Proposition 5 shows that when the investor has

the bargaining power, either some simple contract induces a large enough effort that

an efficient allocation is achievable — in which case effort’s non-contractibility does not

lower welfare — or debt remains optimal.

Second, we also show in Appendix B that debt may be suboptimal if a third party

can join the contract. The three-person contract we consider induces the investor to

give money to the third party instead of the entrepreneur if the latter takes too low an

effort. It illustrates the general principle that unverifiability is not a binding constraint

when a third-party ‘budget breaker’ is available to obviate renegotiation constraints.

We note, however, that third parties can be used in this way only if somehow collusion

between the entrepreneur and either the investor or the third party can be prevented.

Third, the final example in Appendix B shows that mixed strategy equilibria of

two-sided message games may also outperform debt. The underlying reason is the fol-

lowing.29 When at least one party is risk averse, the Pareto frontier given by H(·, e) is
strictly concave. A mixed strategy equilibrium of the message game (with subsequent

renegotiation) that is played after the choice of e may then generate a convex combina-

tion of frontier payoffs that itself lies below the frontier. In this way, both players can be

punished at the same time. This alleviates the central difficulty of the implementation

with renegotiation problem, which is how to punish one player for deviating without

rewarding the other player so much that he deviates.

Our instinctive response to this is that contracts which require the parties to simul-

taneously and randomly send messages do not seem very realistic. We conjecture in

Appendix B that perhaps such schemes are ruled out if the parties are able to engage

in pre-play espionage or interference, or if the courts are unable to verify messages that

the parties wish ex post to rescind. We welcome further research that sheds light on

why such contracts do not emerge in the real world.

29Maskin and Moore (1999) and Maskin and Tirole (1999) expound on this logic.
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A. Appendix A: Proofs Missing from the Text

Lemma A1. For all e ∈ E, H(·, e) is continuous and concave on [v(r), V (π, e)], its
domain.30 For V̂ ∈ (v(r), V (π, e)) , H1(V̂ , e) exists and is negative. If e ∈ int(E), then
H(·, ·) is differentiable and has continuous partial derivatives at (V̂ , e).

Proof. Fix e ∈ E and V̂ ∈ [v(r), V (π, e)]. Then some convex combination of (r, . . . , r)
and π, say r, satisfies V̂ (r, e) = V̂ . Since C is convex and contains π and r, r ∈ C. So the
constraint set of (1) is nonempty. As it is also compact, and the objective is continuous,

the program has a solution. As stated in the text, its solution is unique; denote it as

r∗. We thus see that H(·, e) is well-defined on [v(r), V (π, e)]. It is continuous on this
interval by the maximum theorem. It is concave on this interval by a direct argument

using Jensen’s inequality, the concavity of U(·, e) and V (·, e), and the convexity of C.
Now let V̂ ∈ (v(r), V (π, e)) . Then some convex combination of (r, . . . , r) and π,

say r, satisfies V̂ (r, e) > V̂ . So Slater’s condition holds. Thus, λ∗ ≥ 0 exists such that
(r∗,λ∗) is a saddle point in C ×R+ of the Lagrangian

L(r,λ, e, V̂ ) ≡ U(r, e) + λ
h
V (r, e)− V̂

i
.

We claim (r∗,λ∗) is the only saddle point of L(·, ·, e, V̂ ). Since r∗ is the unique solution of
(1), any other saddle point takes the form (r∗,λ), with λ 6= λ∗. The following argument

shows that λ∗ is determined by r∗, and so (r∗,λ∗) is unique.

Note first that λ∗ > 0. If λ∗ = 0, the saddle point property would imply that r∗

maximizes U(·, e) = L(·, 0, e, V̂ ) on C. But then r∗ = r, contrary to V̂ > v(r).
Instead of maximizing L(·,λ∗, e, V̂ ) on C, consider the relaxed problem obtained by

deleting MI. A solution r to this relaxed program satisfies the Kuhn-Tucker condition

−u1(πi − ri, e) + λ∗v0(ri) = (βi − αi) /gi(e) (A1)

for each i = 1, . . . , n, where αi ≥ 0 and βi ≥ 0 are the multipliers for (LI) ri ≥ r and
(LE) ri ≤ πi, respectively. If ri > ri+1 for some i < n, then ri > r and ri+1 < πi, and

30No feasible investor payoff is less than v(r), or greater than V (π, e) ≡P gi(e)v(πi).
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in turn αi = 0 and βi+1 = 0 by complementary slackness. Hence, (A1) would imply

βi/gi(e) = −u1(πi − ri, e) + λ∗v0(ri)

< −u1(πi+1 − ri+1, e) + λ∗v0(ri+1) = −αi+1/gi+1(e),

where the inequality follows from u11 ≤ 0 and v00 ≤ 0, with one strict, λ∗ > 0, ri > ri+1,
and πi − ri < πi+1 − ri+1. But this is contrary to αi+1 ≥ 0 and βi ≥ 0. We conclude
that any solution of the relaxed problem satisfies the neglected constraint MI. Hence,

the solution of the relaxed problem is the unique solution r∗ of the unrelaxed problem.

So r∗ satisfies (A1). Now, suppose there is no i ≤ n such that r < r∗i < πi. Then by

MI and V̂ ∈ (v(r), V (π, e)) , 1 ≤ k < n exists such that r∗k = r and r∗k+1 = πk+1. Hence,

βk = 0 and αk+1 = 0, and (A1) implies

−αk/gk(e) = −u1(πk − r, e) + λ∗v0(r)

> −u1(0, e) + λ∗v0(πk+1) = βk+1/gk+1(e).

This is contrary to αk ≥ 0 and βk+1 ≥ 0. We conclude that r < r∗i < πi for some i ≤ n.
For this i we have αi = βi = 0, and (A1) implies

λ∗ =
u1(πi − r∗i , e)
v0(r∗i ).

(A2)

This proves that (r∗,λ∗) is the unique saddle point of L(·, ·, e, V̂ ).
This uniqueness implies that a general envelope theorem, Corollary 5 of Milgrom and

Segal (2002), now applies. The derivative H1(V̂ , e) therefore exists, with H1(V̂ , e) =

−λ∗ < 0. If also e ∈ int(E), then H2(V̂ , e) exists and is given by

H2(V̂ , e) = Le(r∗,λ∗, e, V̂ ) = Ue(r∗, e) + λ∗Ve(r, e).

Now, since the solution r∗ of (1) is unique, Berge’s maximum theorem implies that it is

a continuous function of (V̂ , e). In turn, (A2) implies that λ∗ is a continuous function

of (V̂ , e). Thus, both H1 and H2 are continuous at any interior point, i.e., at any (V̂ , e)

satisfying e ∈ int(E) and V̂ ∈ (v(r), V (π, e)). So H is differentiable at such points.
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Proof of Proposition 1. Let f be a contract with an equilibrium (e∗,m∗(·)). Simplify
notation by denoting m∗E(e

∗) as m∗E . For all e ∈ E, define

V I(e) ≡ sup
mI∈MI

V̂ (f(m∗E ,mI), e). (A3)

Let {mkI (e)}∞k=1 be a sequence in MI such that V̂ (r̃k(e), e) → V I(e) as k → ∞, where
r̃k(e) = f(m∗E ,m

k
I (e)). Since∆C is compact, there is a subsequence, which for simplicity

we take to be {r̃k(e)} itself, that converges to some r̃(e) ∈ ∆C. The continuity of V̂ (·, e)
implies

V I(e) = V̂ (r̃(e), e). (A4)

For any e0 6= e, (A3) implies

V I(e) ≥ V̂ (f(m∗E,mkI (e0)), e) = V̂ (r̃k(e0), e).

Taking limits, r̃k(e0)→ r̃(e0) and the continuity of V̂ (·, e) imply

V I(e) ≥ V̂ (r̃(e0), e). (A5)

By (A4) and (A5), r̃(·) : E → ∆C is an incentive compatible revelation mechanism for

the investor. Thus, f I(·) ≡ r̃(·) defines an investor-option contract with message set E,
and an equilibrium of it following any e ∈ E is given by the identity function, ι(e) ≡ e.
We now show that (e∗, ι(·)) is an equilibrium of fI .

Given fI and e ∈ E, the equilibrium ι(e) gives the investor payoff V I(e), and it

gives the entrepreneur payoff UI(e) ≡ H(V I(e), e). From (A3),

V I(e) ≡ sup
mI

V̂ (f(m∗E ,mI), e)

≥ sup
mI

inf
mE

V̂ (f(mE,mI), e) = V
∗(e),

using (6). Hence, (4) and the presumption that each H(·, e) is a decreasing function
imply that UI(e) ≤ U∗(e) for all e ∈ E, with equality at e = e∗ because V I(e∗) =

V ∗(e∗). Thus, e∗ maximizes UI(·) because it maximizes U∗(·). This proves that (e∗, ι(·))
is an equilibrium of fI . The equality of the equilibrium payoffs, (V I(e∗), UI(e∗)) =

(V ∗(e∗), U∗(e∗)), is obvious.

The following lemma is used to prove Lemmas 2 and 3.
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Lemma A2. For any (r, e) ∈ C×E and nonnegative constants α and β, not both zero,
a unique debt contract δ ∈ C exists such that

αU(δ, e)− βV (δ, e) = αU(r, e)− βV (r, e). (A6)

Proof. By LI, the RHS of (A6) is not more than

w̄ ≡ α
P
gi(e)u(πi − r, e)− βv(r).

By LE, the RHS of (A6) is not less than

w ≡ αu(0, e)− β
P
gi(e)v(πi).

For any D ∈ [r,πn] define W (D) ≡ αU(δ(D), e)− βV (δ(D), e), where δ(D) is the debt

contract with face value D. This W (·) is continuous and, since α and β are not both

zero, strictly decreasing on [r,πn]. Observe that W (πn) = w and, as r < π1, W (r) = w̄.

A unique D ∈ [r,πn] thus exists for which δ(D) satisfies (A6).

The following lemmas establish the single-crossing property of debt. Define x ∈ Rn

to be quasi-monotone if and only if k ∈ {1, . . . , n} exists such that xi ≤ 0 for i < k and
xi ≥ 0 for i > k (Karamardian and Schaible, 1990). Equivalently, x is quasi-monotone if
and only if xi > 0 implies xj ≥ 0 for all j > i. The crucial property of a quasi-monotone
vector is that by MLRP, its expectation is a quasi-monotone function of effort:31

Lemma A3. For any (x, e) ∈ Rn × E, if x 6= 0 is quasi-monotone and P gi(e)xi = 0,

then (i)
P
g0i(e)xi > 0, and (ii) (e− ê)

P
gi(ê)xi < 0 for all ê 6= e.

Proof. Routine calculus proves (ii) if (i) holds for all e such that
P
gi(e)xi = 0. To

prove (i), note thatP
g0i(e)xi =

Pµ
g0i(e)
gi(e)

¶
gi(e)xi

>
P
i<k

µ
g0k(e)
gk(e)

¶
gi(e)xi +

P
i≥k

µ
g0k(e)
gk(e)

¶
gi(e)xi

=

µ
g0k(e)
gk(e)

¶P
gi(e)xi = 0.

31Versions of this lemma are proved, e.g., by Innes (1990), Matthews (2001), and Athey (2002).
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The inequality follows from MLRP; it is strict because x 6= 0 implies k < n, and xi > 0
for some i > k.

Lemma A4. For each i = 1, . . . , n, let hi be a decreasing function on R. Then, for any

(r, e) ∈ C ×E such that r is not debt, if δ is a debt contract for which
P
gi(e) (hi(δi)− hi(ri)) = 0,

the following hold:

(i)
P
g0i(e) (hi(δi)− hi(ri)) ≥ 0, and

(ii) (e− ê)P gi(ê) (hi(δi)− hi(ri)) < 0 for all ê 6= e.

Proof. Define x ∈ Rn by xi ≡ hi(δi) − hi(ri). Then
P
gi(e)xi = 0, and x 6= 0, as r

is not debt. Assume xi > 0. Then δi < ri. Since δi = min(πi, D), and ri ≤ πi by LE,

we have δi = D < πi. Hence, δi+1 = D < ri ≤ ri+1, using MI. This yields xi+1 > 0.

Continuing in this fashion proves that xj > 0 for all j > i, and so x is quasi-monotone.

Both (i) and (ii) now follow from Lemma A3.

Proof of Lemma 2. This is a direct implication of Lemmas A2 and A4, setting α = 0

in the former and hi(y) = −v(y) in the latter.

Proof of Proposition 2. Continuing from the text, now let eδ be the largest equi-

librium effort of δ, i.e., the largest maximizer of Uδ(·).32 In the text we proved that
Uδ(eδ) ≥ U∗(e∗), and that the Proposition is proved once we show that eδ ≥ e∗. Con-
sider any e < e∗. Let δ0 be the debt contract determined by

V (r∗(e), e) = V (δ0, e). (A7)

Then

V (δ0, e∗) ≤ V (r∗(e), e∗) ≤ V (r∗(e∗), e∗) = V (δ, e∗),

where the first inequality follows from Lemma 2 (ii) and e < e∗; the second from the

incentive compatibility of r∗(·) for the investor; and the third is (11). The face value
32This eδ exists, since U δ(·) is continuous on the compact set E = [e, ē].

34



of δ0 is thus no more than that of δ. Hence, V (δ0, ·) ≤ V (δ, ·). This and (A7) imply
V (r∗(e), e) ≤ V (δ, e). Therefore, since V ∗(e) = V (r∗(e), e), we have proved that

V ∗(e) ≤ V (δ, e) for all e < e∗. (A8)

Now, if eδ < e∗, then

U∗(e∗) ≥ U∗(eδ) = H(V ∗(eδ), eδ) ≥ H(V (δ, eδ), eδ) = Uδ(eδ),

where the second inequality comes from (A8) and H1 < 0. But then Uδ(e∗) = Uδ(eδ),

contrary to eδ being the largest maximizer of Uδ(·). This proves that eδ ≥ e∗.

The following lemma is used to prove Proposition 3. The background assumptions

are those of the general model in Section 4; in particular, the lemma does not assume

entrepreneur-offer renegotiation.

Lemma A5. Given a contract f and any e ∈ E, let m∗(e) be an equilibrium of the

message game following e. Denote the corresponding equilibrium payoff of the investor

as V ∗(e). Then, for any sequence {ek} converging to some e∗, and any limit point r̃ of
the sequence {r̃k} = {f(m∗(ek))}, we have V̂ (r̃, e∗) = V ∗(e∗).

Proof. To simplify notation, let m∗ = m∗(e∗) and r̃∗ = f(m∗). Message m∗I(e
k) is a

best reply to m∗E in the message game following e
k. Hence,

V̂ (r̃k, ek) ≥ V̂ (r̄k, ek),

where r̄k = f(m∗E(e
k),m∗I). Similarly, m

∗
E is a best reply to m

∗
I in the game following

e∗. Since the entrepreneur wishes to minimize V̂ , this implies

V̂ (r̃∗, e∗) ≤ V̂ (r̄k, e∗).

Reversing the “k” and “∗” in this argument yields two more inequalities:

V̂ (r̃∗, e∗) ≥ V̂ (r̂k, e∗) and V̂ (r̃k, ek) ≤ V̂ (r̂k, ek),

where r̂k = f(m∗E,m
∗
I(e

k)). Combine these four inequalities to obtain

V̂ (r̄k, ek)− V̂ (r̄k, e∗) ≤ V̂ (r̃k, ek)− V̂ (r̃∗, e∗) ≤ V̂ (r̂k, ek)− V̂ (r̂k, e∗). (A9)
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Since C is compact, there exists a subsequence {r̃kj} that converges to r̃, and for which
{r̄kj} and {r̂kj} both converge. Taking limits in (A9) along this subsequence, and using
the continuity of V̂ (·, ·), we conclude that V̂ (r̃, e∗) = V̂ (r̃∗, e∗) = V ∗(e∗).

Proof of Proposition 3. Consider the certainty equivalent contract f̄ that has

the same equilibrium (e∗,m∗(·)) and corresponding payoffs as f. We need only show
that lime→e∗− f̄(m∗(e)) exists, and that it is a debt contract δ. This is because the

certainty equivalent of any r̃ ∈ ∆C is debt if and only if either the support of r̃ is that
debt contract alone (when the face value of δ exceeds π1), or the support of r̃ contains

only riskless debt contracts. To simplify notation, we henceforth assume f = f̄ , i.e., f

specifies only non-random simple contracts.

To simplify notation more, let m∗ = m∗(e∗) and r∗ = f(m∗). The equilibrium

payoffs are V ∗(e∗) = V (r∗, e∗) and U∗(e∗) = H(V ∗(e∗), e∗). Let δ be the debt contract

determined by (11). Given δ the entrepreneur’s post-renegotiation payoff following any

e ∈ E is Uδ(e) = H(V (δ, e), e). Hence, using (11),

Uδ(e∗) = H(V ∗(e∗), e∗) = U∗(e∗). (A10)

Let eδ be the maximizer of Uδ(e) = H(V (δ, e), e) for which Proposition 2 implies

V (δ, eδ) ≥ V ∗(e∗) and Uδ(eδ) ≥ U∗(e∗). By assumption, neither of these inequalities is
strict, and so

Uδ(eδ) = U∗(e∗). (A11)

Since e∗ ∈ int(E), the derivative Uδ0(e∗) exists and is given by

Uδ0(e∗) = H1(V (δ, e∗), e∗)Ve(δ, e∗) +H2(V (δ, e∗), e∗). (A12)

Now, let {ek} be a sequence converging from below to e∗, and set rk = f(m∗(ek)).

Let r be a limit point of {rk}. We shall show that r = δ. Since C is compact, this will

imply rk → δ, proving the Proposition.

Note first that Lemma A5 implies V (r, e∗) = V (r∗, e∗). Thus, (11) implies V (δ, e∗) =

V (r, e∗). From (A12), therefore, we have

Uδ0(e∗) = H1(V (r, e∗), e∗)Ve(δ, e∗) +H2(V (r, e∗), e∗). (A13)
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Now, observe that since e∗ maximizes U∗(·),

0 ≤ UI(e∗)− UI(ek) = H(V (r∗, e∗), e∗)−H(V (rk, ek), ek). (A14)

We also have

V (r∗, e∗) = V (f(m∗), e∗) ≥ V (f(m∗E ,m∗I(ek)), e∗)
≥ V (f(m∗E,m∗I(ek)), ek)
≥ V (f(m∗E(ek),m∗I(ek)), ek) = V (rk, ek),

where the first inequality comes from m∗I being a best reply to m
∗
E following e

∗; the

second inequality comes from MLRP, e∗ > ek, and the simple contract f(m∗E ,m
∗
I(e

k))

satisfying MI; and the third inequality comes from m∗E(e
k) being a best reply to m∗I(e

k)

following ek, and the fact that this best reply minimizes V (f(·,m∗I(ek)), ek). Thus, from
(A14) and H1 < 0 we obtain

0 ≤ H(V (rk, e∗), e∗)−H(V (rk, ek), ek).

Since H and V (rk, ·) are differentiable, the mean value theorem applied twice yields

0 ≤
n
H1(V (r

k, ēk), ēk)Ve(r
k, êk) +H2(V (r

k, ēk), ēk)
o
(e∗ − ek), (A15)

where both ēk and êk are in (ek, e∗). Since H1, H2, and V are continuous functions,

dividing (A15) by e∗ − ek > 0, and taking the limit along the subsequence for which

rk → r, yields

0 ≤ H1(V (r, e∗), e∗)Ve(r, e∗) +H2(V (r, e∗), e∗). (A16)

Assume now that r 6= δ. Then, since V (δ, e∗) = V (r, e∗), Lemma 2 (i) implies

Ve(r, e
∗) > Ve(δ, e∗). This, H1 < 0, and (A16) imply

0 < H1(V (r, e
∗), e∗)Ve(δ, e∗) +H2(V (r, e∗), e∗) = Uδ0(e∗),

using (A12) for the equality. But Uδ0(e∗) > 0, contradicts (A10) and (A11). So r = δ,

and the proof is finished.
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Proof of Lemma 3. Lemma A2 implies the existence of the debt contract δ satisfying

U(r, e) = U(δ, e). Given SEP, let hi(y) = ū(πi − y) and xi = hi(δi)− hi(ri). Then
P
gi(e)xi = a(e)

−1 (U(δ, e)− U(r, e)) = 0. (A17)

The conclusions of Lemma A4 therefore follow. Lemma A4 (i) implies

Ue(δ, e)− Ue(r, e) = a0(e)
P
gi(e)xi + a(e)

P
g0i(e)xi > 0,

using (A17) and a(e) > 0. This proves (i). Lemma A4 (ii) implies

(e− ê) (U(δ, ê)− U(r, ê)) = a(ê)(e− ê)P gi(ê)xi < 0

for ê 6= e, which proves (ii).

Proof of Proposition 4. By the argument of Proposition 1 and the revelation prin-

ciple, we can restrict attention to deterministic revelation mechanisms for the investor

that are incentive compatible. Let r∗ : E → C be such a mechanism. Its truthful equilib-

rium gives the entrepreneur a post-renegotiation payoff of U(r∗(e), e). Let e∗ maximize

this. The entrepreneur’s equilibrium payoff is then U∗ ≡ U(r∗(e∗), e∗). By Lemma 3, a
debt contract δ∗ = δ(D∗) exists such that

U(δ∗, e∗) = U∗. (A18)

By the maximum theorem, the function defined by Ū(D) ≡ maxe∈E U(δ(D), e) is con-
tinuous. By (A18), Ū(D∗) ≥ U∗. Since r∗(e∗) satisfies LE,

Ū(πn) = u(0, e) ≤ U(r∗(e∗), e) ≤ U∗.

Hence, D̂ ∈ [D∗,πn] exists such that Ū(D̂) = U∗. The desired debt contract is δ̂ ≡ δ(D̂).

Letting ê be the largest maximizer of U(δ̂, ·), we have

U(δ̂, ê) = U∗. (A19)

The entrepreneur’s equilibrium payoff is thus the same from δ̂ as from r∗(·). We now
need only to prove that ê ≥ e∗.
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Assume otherwise, so that ê < e∗. For any e, define γ(e) ≡ U(δ̂, e) − U(r∗(ê), e).
Observe that

γ(ê) = U(δ̂, ê)− U(r∗(ê), ê)
= U∗ − U(r∗(ê), ê)
= U(r∗(e∗), e∗)− U(r∗(ê), ê) ≥ 0,

using (A19) and the fact that e∗ maximizes U(r∗(·), ·). Furthermore,

γ(e∗) = U(δ̂, e∗)− U(r∗(ê), e∗)
< U∗ − U(r∗(ê), e∗)
≤ U∗ − U(r∗(e∗), e∗) = 0.

(The first inequality is due to ê < e∗ being the largest maximizer of U(δ̂, ·). The second
is due to r∗(·) being incentive compatible for the investor and the renegotiation game
being strictly competitive, so that U(r∗(·), e∗) is minimized by e∗.) Hence, since γ(·) is
continuous, e ∈ [ê, e∗) exists such that γ(e) = 0 and γ(e0) < 0 for all e0 ∈ (e, e∗]. But by
Lemma 3, this is impossible.

Proof of Proposition 5. Let e∗ be the effort taken in the general contract’s

equilibrium. Let δ̂ = δ(D̂) be the debt contract of Proposition 4, so that it has

an equilibrium in which the effort is some ê ≥ e∗, and the entrepreneur’s payoff is

U(δ̂, ê) = U∗. The investor’s corresponding payoffs in the two equilibria are J(U∗, e∗)

and J(U∗, ê). Since the equilibrium of the debt does not Pareto dominate the initial

equilibrium, J(U∗, e∗) ≥ J(U∗, ê). If this is an equality, case (ii) holds. So assume

J(U∗, e∗) > J(U∗, ê). Then e∗ < ê. These two inequalities, together with SP, imply

e∗∗ < ê. We now show that (i) holds.

Let e∗∗ ∈ E be a maximizer of J(U∗, ·). We present a simple contract r∗ ∈ C that

has an equilibrium in which the entrepreneur chooses e∗∗, and U(r∗, e∗∗) = U∗. This

equilibrium achieves an efficient allocation that gives the entrepreneur payoff U∗, since

the renegotiation provides first-best risk-sharing given e∗∗, and the entrepreneur does

not gain from the renegotiation. Since the equilibrium of the general contract that has
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effort e∗ is not Pareto dominated by an equilibrium of r∗, and the entrepreneur has

the same payoff in both equilibria, so must the investor. Thus, the equilibrium of the

general contract also achieves an efficient allocation.

It remains to prove this r∗ exists. First, note that a wage w ∈ [0,πn − D̂] is defined
by u(w, e) = U∗.33 Since U∗ satisfies WA, w ≤ π1 − r, and so rw ∈ C. Now define, for
any b ∈ B ≡ [0, w] and t ∈ T ≡ [0,πn − D̂ −w], a simple contract r(b, t) by

ri(b, t) ≡


πi − b for πi ≤ b+ D̂
D̂ for b+ D̂ < πi ≤ πn − t

πi + D̂ + t− πn for πn − t < πi.

Because r(b, t) satisfies MI, LE (as b ≥ 0), and LI (as b ≤ w ≤ π1 − r), we have
r(b, t) ∈ C. Note that r(0, 0) = δ̂, and r(w,πn − D̂ −w) = rw.

For each (b, t) ∈ B × T, let

e(b, t) ≡ argmax
e∈E

U(r(b, t), e).

As E is compact, the maximum theorem and FOA imply that e(·, ·) is a well-defined
continuous function on B × T , as is the maximized utility,

Ū(b, t) ≡ U(r(b, t), e(b, t)).

Now, as is easy to show,34 for each t ∈ (0,πn − D̂ − w] there exists a unique b(t) ∈
B such that Ū(b(t), t) = U∗. Thus, since Ū(·, ·) is continuous, b(·) is continuous on
(0,πn − D̂ − w]. Define b(0) so that b(·) is continuous on T. Then Ū(b(t), t) = U∗

for all t ∈ T. Furthermore, e(b(t), t) is continuous on T. Because r(b(0), 0) = δ̂, we

have e(b(0), 0) = ê > e∗∗. Because r(b(πn − D̂ − w),πn − D̂ − w) = rw, we have

33As 0 ≤ πi − δ̂i for each i, we have u(0, e) ≤ U(δ̂, e) ≤ U(δ̂, ê) = U∗. Since πn − D̂ ≥ πi − δ̂i,

u(πn− D̂, e) ≥ u(πn− D̂, ê) ≥ U(δ̂, ê) = U∗. So a unique w ∈ [0,πn− D̂] satisfying u(w, e) = U∗ exists.
34For example, consider the case D̂ ≥ π1. Then r1(·, t) strictly decreases on B, and ri(·, t) is non-

increasing on B for each i > 1. It follows that Ū(·, t) strictly increases on B. Since Ū(·, t) is also
continuous, and ri(0, t) ≥ δ̂i implies Ū(0, t) ≤ U(δ̂, e(0, t)) ≤ U(δ̂, ê) = U∗, and ri(w, t) ≤ rwi implies

Ū(w, t) ≥ U(r(w, t), e) ≥ U(rw, e) = U∗, for each t ∈ T there exists one and only one b ∈ B such that

Ū(b, t) = U∗. The argument is similar for the case D̂ < π1, although then b(t) is unique only for t > 0.
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e(b(πn− D̂−w),πn− D̂−w) = e ≤ e∗∗. Thus, t∗ ∈ T exists such that e(b(t∗), t∗) = e∗∗.
The desired simple contract is r∗ ≡ r(b(t∗), t∗).

Proof of Lemma 4. This is implied by Lemmas A2 and A4, setting (α,β) = (θ, 1)

in the former and hi(y) = wi(y) in the latter.

Proof of Proposition 6. Most of this proof is like that of Proposition 4, replacing

U(r, e) there by the function Û we now define by

Û(r, e) ≡ K−1 (P gi(e)wi(ri), e) . (A20)

We can again restrict attention to a deterministic revelation mechanism r∗ : E → C

for the investor that is incentive compatible. Let e∗ maximize Û(r∗(·), ·), and denote
the entrepreneur’s equilibrium payoff as U∗ ≡ Û(r∗(e∗), e∗). By (A20) and Lemma 4, a
debt contract δ∗ = δ(D∗) exists such that

Û(δ∗, e∗) = U∗. (A21)

Since Û and δ(·) are continuous, the function defined by

Ū(D) ≡ max
e∈E

Û(δ(D), e)

is continuous. By (A21), Ū(D∗) ≥ U∗. Since δi(πn) = πi, LE implies that for any e,

the maximum feasible payoff for the investor is V (δ(πn), e). Thus, δ(πn) will not be

renegotiated, and Û(δ(πn), e) = U(δ(πn), e). It follows that Ū(πn) = u(0, e). As this is

the entrepreneur’s smallest feasible payoff, Ū(πn) ≤ U∗. Thus, D̂ ∈ [D∗,πn] exists such
that Ū(D̂) = U∗. The desired debt contract is δ̂ ≡ δ(D̂).

Lett ê be the largest maximizer of Û(δ̂, ·). Then

Û(δ̂, ê) = U∗. (A22)

We now show ê ≥ e∗. Assume ê < e∗, and define γ(·) ≡ Û(δ̂, ·)− Û(r∗(ê), ·). Then

γ(ê) = Û(δ̂, ê)− Û(r∗(ê), ê)
= U∗ − Û(r∗(ê), ê)
= Û(r∗(e∗), e∗)− Û(r∗(ê), ê) ≥ 0,
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using (A22) and the fact that e∗ maximizes Û(r∗(·), ·). Furthermore,

γ(e∗) = Û(δ̂, e∗)− Û(r∗(ê), e∗)
< U∗ − Û(r∗(ê), e∗)
≤ U∗ − Û(r∗(e∗), e∗) = 0.

(The first inequality is due to ê < e∗ being the largest maximizer of U(δ̂, ·). The second is
due to r∗(·) being incentive compatible for the investor and the renegotiation game being
strictly competitive, so that e∗ minimizes Û(r∗(·), e∗).) Hence, since γ(·) is continuous,
e ∈ [ê, e∗) exists such that γ(e) = 0 and γ(e0) < 0 for all e0 ∈ (e, e∗]. However, by (A20)
and the fact that K−1(·, e) is increasing, γ(e) = 0 impliesP

gi(e)wi(δ̂i) =
P
gi(e)wi(r

∗
i (ê)).

Thus, Lemma 4 (ii) implies that for e0 > e,P
gi(e

0)wi(δ̂i) >
P
gi(e

0)wi(r∗i (ê)).

Hence, for any e0 > e, the fact that K−1(·, e0) is increasing implies

γ(e0) = K−1
³P

gi(e
0)wi(δ̂i), e0

´
−K−1 ¡P gi(e)wi(r

∗
i (ê)), e

0¢ > 0.
This contradiction proves ê ≥ e∗.

B. Appendix B: When Debt is Not Optimal

In this appendix we give examples in which non-debt contracts outperform debt when

(i) the investor has all bargaining power, or (ii) a third party can be involved, or (iii)

a mixed strategy of a two-sided message game can be implemented.

Investor Bargaining Power and Excessive Effort with Debt

In this example the investor has all the renegotiation bargaining power. She is risk

neutral, with a liability bound r so low that it never binds for the contracts we consider.

The entrepreneur’s utility function is u(w, e) = ū(w)− .5e2, where

ū (w) = min(w, 11w − 1).
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The entrepreneur is thus risk averse, but risk neutral with respect to any gamble

for which all the payments to him are on one side of .1. The possible outputs are

(π1,π2,π3) = (0, .5, 1). The interval of possible efforts is [0, 1]. The probability that πi

occurs given effort e is

gi(e) =


.5− .5e for i = 1

.5 for i = 2

.5e for i = 3.

Given a simple contract r, let ui = ū(πi− ri). The entrepreneur’s expected payoff given
r and an effort e can be written as

U(r, e) = .5
£
(u3 − u1)e− e2 + u1 + u2

¤
. (B1)

Consider the allocations (r, e) that, for some Ū , satisfy three conditions: (i) U(r, e) =

Ū ; (ii) each payment πi− ri to the entrepreneur exceeds .1, so that he is effectively risk
neutral; and (iii) e = .5, the effort that maximizes expected output net of effort cost:

P
gi(e)πi − .5e2 = .5

¡
e− e2 + .5¢ .

Such allocations exist for any Ū ≥ −.025, and they are the first-best efficient allocations
that give the entrepreneur payoff Ū . One such allocation is (rw, .5), where rw is the

wage contract with wage w = .Ū + .125. (Note that w ≥ .1, since Ū ≥ −.025.)
As the investor has all the bargaining power, the entrepreneur does not gain from

renegotiation; his post-renegotiation payoff given (r, e) is U(r, e). His optimal effort is

hence e = .5(u3 − u1), if it is in [0, 1].
Consider a debt contract δ for which the face value is D ∈ [0, .28516]. For this

contract, (u1, u2, u3) = (−1, .5 − D, 1 − D). The entrepreneur’s best effort is eδ =
.5(2−D). His equilibrium utility satisfies U(δ, eδ) ≥ −.025, as is easily shown. But we
have just seen that any first-best allocation that gives the entrepreneur utility in this

range must have effort equal to .5. Since eδ > .5, these debt contracts provide incentives

that are too strong.

We now show that each of these debt contracts is Pareto dominated by a non-debt

contract, and the latter achieves the first best. Simplify by setting Uδ = U(δ, eδ), and
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recall that Uδ ≥ −.025. The desired contract r is defined implicitly by

ui =


Uδ − .375 for i = 1

Uδ + .125 for i = 2

Uδ + .625 for i = 3.

(B2)

The contract so defined satisfies the LE and MI constraints, and is not debt. Given

this r, the entrepreneur chooses the first-best effort e = .5(u3 − u1) = .5, and obtains
utility U(r, .5) = Uδ. The renegotiation of r when e = .5 yields a first-best allocation

that gives the entrepreneur utility Uδ, and is therefore strictly preferred by the investor

to the allocation obtained when δ is renegotiated and the effort is eδ > .5.

The Value of Third Parties

As is common in contract theory, introducing a risk neutral third party can be beneficial

— if she is not susceptible to collusion. The third party does not even need to be able

to observe the effort. Consider the following example.

The investor is risk neutral. Let (rw
∗
, e∗) be an efficient allocation, where rw∗ is the

wage contract that pays the entrepreneur a wage w∗. Let R = {sE , sT} be an investor-
option contract with two schemes. According to scheme sE , the entrepreneur is paid

the fixed wage w∗ for any output, and the third party is paid nothing. The resulting

incomes when πi is realized are then w∗, πi − w∗, and 0 for the entrepreneur, investor,
and third party, respectively. According to sT , the entrepreneur is paid nothing and

the third party is paid an amount rTi if output πi is realized. So s
T yields, when πi is

realized, incomes of 0, πi − rTi , and rTi for the entrepreneur, investor, and third party,
respectively. The payments rTi are given by

rTi = a+ bπi,

where b ∈ (0, 1) and a+ bP gi(e
∗)πi = w∗.

Both sE and sT can easily satisfy our monotonicity and liability constraints. They

each make every party’s income nondecreasing in output. They each satisfy LE, and LI
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so long as r ≤ (1 − b)π1 − a. Any liability constraint for the third party is satisfied if
her liability limit is less than a+ bπ1.

Because of MLRP, the expected payment to the third party under sT ,X
gi(e)r

T
i = a+ b

X
gi(e)πi,

increases with the entrepreneur’s effort e. It exceeds the wage w∗ the investor must

pay the entrepreneur under sE if and only if e > e∗. So the investor selects from R

the scheme sT that pays the entrepreneur nothing if she sees an effort less than e∗.

She selects the scheme sE that pays him w∗ if he chooses any e > e∗. Thus, so long

as u(w∗, e∗) is not less than the entrepreneur’s minimal possible utility of u(0, e), this

investor-option contract has an equilibrium in which the entrepreneur takes effort e∗ and

the investor selects scheme sE . It achieves the efficient allocation (w∗, e∗). Note that R

is renegotiation proof: regardless of which effort the entrepreneur chooses or scheme the

investor selects, there is no scheme that will make all three parties better off.

Let us not overemphasize this example. It is well known that adding a third party can

improve on renegotiation-proof schemes between two parties, since making a third party

a contingent claimant can eliminate ex-post inefficiencies. However, if the entrepreneur

and investor have an informational advantage over the third party about the effort, they

may be able to collude so as to misreport the effort. The three-person contract also

breaks down if the entrepreneur and third party can collude, whereby the entrepreneur

shirks in return for an under-the-table compensation from the third party. Moreover,

third parties may have costs of their own, such as the cost of acquiring information

about the environment, etc. In any case, the problem of third parties is not specific to

this paper, but applies to the contract literature generally.

The Value of Mixed Message Strategies

We give below an example in which a mixed strategy equilibrium of a two-sided message

game contract performs better than debt. Its basic logic is discussed in the concluding

section of the text. The message game has, for any effort, a mixed strategy equilibrium

that achieves an efficient contract for that effort. Thus, despite the fact that the players
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can foresee that they will play a mixed strategy equilibrium of the upcoming message

game, they have no desire to renegotiate the contract before they send their messages,

regardless of the effort taken. The contract is renegotiation proof, both on and off the

equilibrium path, and both before and after the messages are sent.

Again, we do not wish to overemphasize this example. Mixed strategy equilibria

can be problematic. First, if they are complicated (as they are below), their plausibility

relies perhaps too heavily on the extreme rationality and knowledge assumptions of game

theory. Second, in a mixed strategy equilibrium players will have “ex post regret”, i.e.,

after some realizations of their message strategies, one player will want to change his

message once he learns the other’s message.35 The parties will thus want to engage

in espionage to determine the other’s message before sending his own, obviating the

rules of the message game. In addition, the veracity of the messages can be subject to

interference, as in Legros and Newman (2002). And the dates at which the messages

are sent must be certified to the contract-enforcing court, perhaps by using certified

mail. The certifying and espionage-preventing burden of implementing a message-game

equilibrium are certainly lower if it is in pure strategies, as then there is no incentive to

engage in espionage or lie about one’s message.

Another caveat to the message game below is that it requires the investor to make

large payments to the entrepreneur, off the equilibrium path. This will violate the

investor’s liability limit, unless r is sufficiently low.

The example is for the following case of our general model. The bargaining power in

the renegotiation stage is shared in any way. The investor is risk neutral. Her liability

limit is so small it will not bind (e.g., r = −∞.) The entrepreneur’s utility function is
u(w)− c(e), where u0 > 0, u00 < 0, and

u0(w)→ 0 as w→∞. (B3)

Two necessary conditions for (r∗, e∗) to be an equilibrium allocation is for r∗ to be

a wage contract, and for it to give the entrepreneur a payoff no less than if he were

35This is not true of a pure strategy equilibrium, as then each player’s message is a best reply to the

actual message the other sends.
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paid nothing and chose the minimal effort, u(0)− c(e). We show that these conditions
together are also sufficient. Any wage contract itself implements the minimal effort,

and so we restrict attention to non-minimal efforts. Accordingly, let e∗ ∈ (0, ē] and
w∗ ∈ (0,∞) be an effort and wage that satisfy

u(w∗)− c(e∗) > u(0)− c(e). (B4)

We construct a two-sided message game contract that achieves (w∗, e∗) via a mixed

strategy equilibrium.

The message of player i = E, I in this contract is a two-tuple, (ei, xi) ∈ E × [0, 1] ≡
Mi. The player’s effort report is ei. If the effort reports agree, say eE = eI = e, the

contract requires the investor to pay the entrepreneur the wage

wa(e) ≡
 w∗ if e = e∗

w if e 6= e∗,
(B5)

where w ∈ (0, w∗) and
u(w∗)− c(e∗) ≥ u(w)− c(e). (B6)

(By (B4), this w exists.) The numbers xE and xI form a “jointly controlled lottery”

(Aumann et al., 1968) that comes into play if the reported efforts are not the same.

Let y ≡ xE + xI − [|xE + xI |] be the fractional part of xE + xI . Then, if eE 6= eI , the
investor pays the wage

wd(xE , xI) ≡
 0 if y ≤ p
ŵ if y > p,

(B7)

where ŵ and p ∈ (0, 1) are numbers to be determined.
This defines a deterministic contract, f : ME × MI → C. It prescribes a wage

contract for any message pair. Thus, since here a wage contract shares risk efficiently

for any effort, renegotiation will not occur after the messages are sent, on or off the

equilibrium path, regardless of how the bargaining power in the renegotiation stage is

shared. The prescribed wage contract determines both parties’ payoffs.

Simple arguments show that the strategies of choosing xE and xI from uniform

distributions are mutual best replies. Furthermore, it is simple to show the existence of
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numbers ŵ and p satisfying

(1− p)ŵ ≥ w∗, (B8)

u(w) ≥ pu(0) + (1− p)u(ŵ), (B9)

where (B8) and (B9) are the truthtelling conditions for the investor and for the investor

respectively. It then follows that e∗ is an equilibrium effort, and the equilibrium contract

is the wage contract with wage w∗.
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