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Abstract

In McLean and Postlewaite (2002), we analyzed pure exchange economies
with asymetrically informed agents. We defined a notion of informational size
and showed that, when the aggregate information of all agents resolves nearly
all the uncertainty regarding the state of nature, the conflict between incen-
tive compatibility and (ex post) efficiency can be made small if agents have
sufficiently small informational size. This paper investigates the relationship
between informational size and efficiency for the case in which nontrivial aggre-
gate uncertainty is present, i.e., when significant uncertainty about the world
persists even when the information of all agents is known. We prove the exis-
tence of incentive compatible, individually rational and nearly ex post efficient
allocations without assuming negligible aggregate uncertainty when agents have
small informational size relative to informational variability. We further show
that the conflict between incentive compatibility and efficiency asymptotically
vanishes when an economy is replicated.

1 Introduction

It is well understood that, in the presence of asymmetric information, incentive com-
patibility and Pareto efficiency often conflict: agents may benefit from misrepresenting
their private information when that information is to be used in making decisions that
affect them. In McLean and Postlewaite (2002), we addressed certain continuity is-
sues when agents have small amounts of information that is not common knowledge.

∗An earlier version of this paper circulated under the title “Informational Size and Incentive
Compatibility without Negligible Aggregate Uncertainty.”

†Postlewaite gratefully acknowledges support from the National Science Foundation.
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Much research in economics ignores the issue of asymmetry of information, implic-
itly or explicitly assuming that the characteristics of the economic environment are
common knowledge among agents even though the assumption that all agents are
identically informed is implausible. This working assumption greatly simplifies the
analysis and is based on a belief that behavior should be continuous with respect to
the information structure. When the asymmetry of information is “small enough,”
predicted behavior when asymmetries are ignored should be close to predicted be-
havior when these asymmetries are properly modeled.
McLean and Postlewaite (2002) formally address this question by introducing a

measure of an agent’s informational size and show that, in some cases, the unavoid-
able inefficiencies caused by incentive problems can be made small when agents have
sufficiently small informational size. In that paper, two aspects of the informational
structure are important. The first aspect is aggregate uncertainty: to what extent does
the agents’ information in toto resolve nearly all the uncertainty in the economy? The
second is informational variability which, very roughly, measures the degree to which
an agent’s information is correlated with the information of others.1 McLean and
Postlewaite (2002) restrict attention to the case of negligible aggregate uncertainty in
which the agents’ information resolves nearly all uncertainty regarding the state of
the world and show that many individually rational Pareto efficient allocations can
be approximated by incentive compatible allocations when each agent is sufficiently
informationally small relative to his informational variability.
In this paper we investigate the relationship between informational size and effi-

ciency in the presence of nontrivial aggregate uncertainty, i.e., when significant uncer-
tainty regarding the world is present even when the information of all agents is known.
In the next section, we present the formal model; following this, we discuss in general
the question of aggregate uncertainty and the difficulty that aggregate uncertainty
presents when trying to identify nearly efficient incentive compatible allocations, even
when agents are informationally small.
We then prove the existence of incentive compatible, individually rational and

nearly ex post efficient allocations without assuming negligible aggregate uncertainty
when each agent has small informational size relative to informational variability.
We also show that, for general exchange economies with asymmetric information, the
conflict between incentive compatibility and efficiency asymptotically vanishes when
an economy is replicated.
Both this paper and McLean and Postlewaite (2002) are related to Cremer and

McLean (1985,1989), and to subsequent work by McAfee and Reny (1992). The possi-
bility of full extraction in mechanism design problems also depends on the correlation
of agents’ information in a way that is related to, but not precisely the same, as our
concept of informational variability. This is discussed in detail when that concept is
formally introduced below.

1This is defined formally below.
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2 Private Information Economies:

The model is similar to that in McLean and Postlewaite (2002). The interested reader
will find a detailed discussion of the model and many of the assumptions there.
Throughout the paper, || · || will denote the 1-norm unless specified otherwise. Let

N = {1, 2, ..., n} denote the set of economic agents. Let Θ = {θ1, .., θm} denote the
(finite) state space and let T1, T2, ..., Tn be finite sets where Ti represents the set of
possible signals that agent i might receive. Let T ≡ T1 × · · · × Tn and T−i ≡ ×j 6=iTi.
If t ∈ T, we will often write t = (t−i, ti). If X is a finite set, define

∆X := {ρ ∈ <|X||ρ(x) ≥ 0,
X
x∈X

ρ(x) = 1}.

In our model, nature chooses an element θ ∈ Θ. The state of nature is unobservable
but each agent i receives a “signal” ti that may be correlated with nature’s choice of
θ. More formally, let (eθ,et1,et2, ...,etn) be an (n+1)-dimensional random vector taking
values in Θ× T with associated distribution P ∈ ∆Θ×T where

P (θ, t1, .., tn) = Prob{eθ = θ,et1 = t1, ...,etn = tn}.
Without loss of generality, we will make the following “full support” assumptions

regarding the marginal distributions: supp(θ̃) = Θ i.e. for each θ ∈ Θ,

P (θ) = Prob{eθ = θ} > 0
and for each i ∈ N, supp(eti) = Ti i.e. for each ti ∈ Ti,

P (ti) = Prob{eti = ti} > 0.
Let T ∗ = {t ∈ T |P (t) > 0}.We note that T ∗ need not be equal to T. If t ∈ T ∗, let

PΘ(·|t) ∈ ∆Θ denote the induced conditional probability measure on Θ. Let χθ ∈ ∆Θ

denote the degenerate measure concentrated on state θ.

The consumption set of each agent is <`+ and wi ∈ <`+ denotes the initial en-
dowment of agent i (an agent’s initial endowment is independent of the state θ). For
each θ ∈ Θ, let ui(·, θ) : <`+ → < be the utility function of agent i in state θ. We
note that this formulation differs from the more standard formulation that specifies
utility functions of the form ũi(·, t), where t is the profile of agents’ types. Clearly,
our formulation is without loss of generality, since one can always define the space
Θ ≡ T . The formulation ui(·, θ) that we have chosen is advantageous for our purposes
in that it focuses attention on the manner in which the types of agents different from
i will affect agent i’s utility. The utility of i for any bundle of goods x depends only
on the state of nature θ, and the information of other agents affects i only through
the way that information changes the likelihood of different states of nature. This
focus simplifies our formulation of informational size below.

3



Throughout the paper, we make the following assumptions regarding utilities and
endowments for each agent i ∈ N :
Continuity: For each θ ∈ Θ, ui(·, θ) is continuous.
Monotonicity: if x, y ∈ <`+, x ≥ y and x 6= y, then ui(x, θ) > ui(y, θ).
Normalization: ui(0, θ) = 0

Nonzero endowment: wi 6= 0.
Each π ∈ ∆Θ can be associated with a pure exchange economy in which each

agent’s utility for any bundle x is the expected utility of that bundle given the dis-
tribution π on Θ. More formally, the expected economy corresponding to π (expected
economy for short) is the pure exchange economy in which agent i has endowment
wi and utility

vi(x,π) :=
X
θ∈Θ

ui(x, θ)π(θ).

The expected economy corresponding to π will be denoted e(π) = {wi, vi(·,π)}i∈N
and we will define e(χθ) : = e(θ). For each π ∈ ∆Θ, an allocation for e(π) is a
collection {xi(π)}i∈N satisfying xi(π) ∈ <`+ for each i and

P
i∈N(xi(π)−wi) ≤ 0. For

each π ∈ ∆Θ, an allocation {xi(π)}i∈N for the expected economy e(π) is efficient if
there is no other allocation {yi(π)}i∈N for e(π) such that

vi(yi(π),π) > vi(xi(π),π)

for each i ∈ N. For each ε ≥ 0, an allocation {xi(π)}i∈N for the expected economy
e(π) is ε−efficient if there is no other allocation {yi(π)}i∈N for e(π) such that

vi(yi(π),π) > vi(xi(π),π) + ε

for each i ∈ N.

The collection ({e(θ)}θ∈Θ, eθ, t̃, P ) will be called a private information economy
(PIE for short). A PIE allocation z = (z1, z2, ..., zn) for the PIE is a collection of
functions zi: T → <`+ satisfying

P
i∈N(zi(t) − wi) ≤ 0 for all t ∈ T . We will not

distinguish between wi ∈ <`+\{0} and the constant allocation that assigns the bundle
wi to agent i for all t ∈ T.
Recall that PΘ(· | t) ∈ ∆Θ denotes the conditional distribution on Θ given t ∈ T ∗.

Given a PIE ({e(θ)}θ∈Θ, eθ, t̃, P ), we can define a natural expected economy e(t) :=
e(PΘ(· | t)) for each t ∈ T ∗. In this notation, every PIE allocation z for the PIE
({e(θ)}θ∈Θ, eθ, t̃, P ) induces an allocation z(t) in the expected economy e(t) for each
t ∈ T ∗. Note that e(t) depends on P and we are suppressing this dependence.
A PIE allocation z for the PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) is:
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(incentive compatible) (IC) ifX
θ∈Θ

X
t−i∈T−i

ui(zi(t−i, ti), θ)P (θ, t−i | ti) ≥
X
θ∈Θ

X
t−i∈T−i

ui(zi(t−i, t0i), θ)P (θ, t−i | ti)

for all i ∈ N, and all ti, t0i ∈ Ti.
(ex post individually rational) (XIR) if z(t) is individually rational in e(t) for all
t ∈ T ∗.
(ex post ε−efficient)(XεE) if z(t) is ε−efficient in e(t) for all t ∈ T ∗.
Note that allocations can depend on agents’ types (their information) but not

on θ, which is assumed to be unobservable. Hence, our use of the term “ex post”
refers to events that occur after the realization of the signal vector t but before the
realization of the state θ.

2.1 Nonexclusive Information, Incentive Compatibility and
Ex Post Efficiency

In this section, we address the following question: When can we find a PIE allocation
z(·) for the PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) satisfying IC, XIR and X0E? To illustrate the
ideas, we begin with two examples.

Example 1: Independence
Suppose that θ̃ and t̃ are independent. Let PΘ denote the marginal of P on Θ.

Choose an allocation {xi}i∈N that is individually rational and Pareto efficient for the
expected economy e(PΘ) with utilities

vi(xi;PΘ) =
X
θ∈Θ

ui(xi, θ)PΘ(θ)

and endowments wi. If we define an allocation z(·) for the PIE as

zi(t) = xi if t ∈ T ∗
= wi if t /∈ T ∗

then z(·) is XIR, X0E and IC. Note that IC is trivial in this case; when all agents are
announcing their types truthfully, the only possible effect that an agent can have on
the outcome by misreporting his type is to change the resulting allocation from x to
w. This cannot increase any agent’s utility since x is individually rational.

Example 2: Perfect Correlation
Suppose that

Ti = Θ = {θ1, .., θm}
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for each i and that, for each k,

P (θk, t) = PΘ(θk) if t = (θk, .., θk)

P (θk, t) = 0 if t 6= (θk, .., θk).
In words, each agent learns the state of nature θ precisely. Hence,

T ∗ = {(θk, .., θk)}mk=1.
and

PΘ(·|t) = χθk if t = (θk, .., θk).

For each k, choose an efficient, individually rational allocation {xi(θk)}i∈N for the
(degenerate) expected economy e(θk). If we define an allocation z(·) for the PIE as

zi(t) = xi(θk) if t = (θk, .., θk)

= wi if t /∈ T ∗

then z(·) is XIR, X0E and IC. As in the first example, incentive compatibility follows
from the fact that, whenever all other agents are announcing truthfully, the only
possible effect that an agent can have on the outcome by misreporting his type is to
change the resulting allocation from x to w.

The two examples presented above are special cases of the more general concept
of nonexclusive information (Postlewaite and Schmeidler (1986)).

Definition: A measure P ∈ ∆Θ×T satisfies nonexclusive information (NEI) if

t ∈ T ∗ ⇒ PΘ(·|t) = PΘ(·|t−i) for all i ∈ N.
The following (easily proved) lemma provides a simple but useful characterization

of NEI.

Lemma 1: P ∈ ∆Θ×T satisfies NEI if and only if, for each i ∈ N and for all
ti, t

0
i ∈ Ti,

[(t−i, ti) ∈ T ∗ and (t−i, t0i) ∈ T ∗]⇒ PΘ(·|t−i, ti) = PΘ(·|t−i, t0i).
Examples 1 and 2 above demonstrate that for two particular instances in which

NEI holds, there exist incentive compatible, ex post individually rational and ex post
efficient mechanisms. The logic of those examples can be generalized, and we show
next that if P satisfies NEI, then we can always find incentive compatible, ex post
individually rational, ex post efficient mechanisms.

Proposition 1: Let {e(θ)}θ∈Θ be a collection of degenerate expected economies
and suppose that P ∈ ∆Θ×T satisfies NEI. Then there exists a PIE allocation z(·) for
the PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) satisfying XIR, IC and X0E.
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Proof: Let z(·) be a PIE allocation for ({e(θ)}θ∈Θ, eθ, t̃, P ) satisfying (i) z(t) is
an efficient, individually rational allocation for the expected economy e(t) for each
t ∈ T ∗, (ii) z(t) = z(t̂) if t, t̂ ∈ T ∗ and PΘ(·|t) = PΘ(·|t̂), and (iii) z(t) = (w1, .., wn) if
t /∈ T ∗.
Clearly, the PIE allocation z(·) is XIR and X0E. To prove incentive compatibility,

note that X
θ∈Θ

X
t−i∈T−i

[ui(zi(t−i, ti), θ)− ui(zi(t−i, t0i), θ)]P (θ, t−i | ti)

=
X

t−i∈T−i
:(t−i,ti)∈T ∗
(t−i,t0i)∈T∗

X
θ∈Θ

[vi(zi(t−i, ti), PΘ(·|t))− vi(zi(t−i, t0i), PΘ(·|t))]P (t−i | ti)

+
X

t−i∈T−i
:(t−i,ti)∈T∗
(t−i,t0i)/∈T ∗

X
θ∈Θ

[vi(zi(t−i, ti), PΘ(·|t))− vi(zi(t−i, t0i), PΘ(·|t))]P (t−i | ti)

=
X

t−i∈T−i
:(t−i,ti)∈T∗
(t−i,t0i)/∈T ∗

X
θ∈Θ

[vi(zi(t−i, ti), PΘ(·|t))− vi(wi, PΘ(·|t))]P (t−i | ti)

≥ 0. 2

2.2 Informational Size and Variability of Beliefs

2.2.1 Informational Size

In the mechanism of Proposition 1, agents reveal their types and the announced
type profile t is used to construct an updated probability PΘ(·|t) distribution on Θ.
The mechanism then specifies an efficient, individually rational allocation for the
economy e(PΘ(·|t)).The mechanism is incentive compatible because each agent i is
“informationally small” in the following sense: when agents other than i announce
truthfully, there is no residual uncertainty about the state that can be resolved using
i0s announcement. In other words, i’s information is irrelevant if all other agents are
announcing truthfully.
An investigation of these issues in a more general framework requires a formal no-

tion of informational size. McLean and Postlewaite (2002) introduced such a notion,
which we review.
If t ∈ T ∗, recall that PΘ(·|t) ∈ ∆Θ denotes the induced conditional probability

measure on Θ and χθ ∈ ∆Θ denotes the degenerate measure concentrated on θ. A
natural notion of an agent’s informational size is the degree to which he can alter the
best estimate of the state θ when other agents are announcing truthfully. In our setup,
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that estimate is the conditional probability distribution on Θ given a profile of types
t. Any profile of agents’ types t = (t−i, ti) ∈ T ∗ induces a conditional distribution on
Θ and, if agent i unilaterally changes his announced type from ti to t

0
i, this conditional

distribution will (in general) change. We consider agent i to be informationally small
if, for each ti, there is a “small” probability that he can induce a “large” change in
the induced conditional distribution on Θ by changing his announced type from ti to
some other t0i. This is formalized in the following definition.

Definition: Let

I iε(t
0
i, ti) = {t−i ∈ T−i|(t−i, ti) ∈ T ∗, (t−i, t0i) ∈ T ∗ and ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)|| > ε}

The informational size of agent i is defined as

νPi = max
ti∈Ti

max
t0i∈Ti

min{ε ≥ 0| Prob{t̃−i ∈ Iiε(t0i, ti)|t̃i = ti} ≤ ε}.

Loosely speaking, we will say that agent i is informationally small with respect
to P if his informational size νPi is “small.” If agent i receives signal ti but reports
t0i 6= ti, the effect of this misreport is a change in the conditional distribution on Θ
from PΘ(·|t−i, ti) to PΘ(·|t−i, t0i). If t−i ∈ Iε(t0i, ti), then this change is “large” in the
sense that ||PΘ(·|t̂−i, ti)−PΘ(·|t̂−i, t0i)|| > ε. Therefore, Prob{t̃−i ∈ Iε(t0i, ti)|t̃i = ti} is
the probability that i can have a “large” influence on the conditional distribution on Θ
by reporting t0i instead of ti when his observed signal is ti. An agent is informationally
small if for each of his possible types ti, he assigns small probability to the event that
he can have a “large” influence on the distribution PΘ(·|t−i, ti), given his observed
type.
If all agents have zero informational size, then P must satisfy NEI. In fact, we

have the following result which follows easily from Lemma 1.

Proposition 2: P ∈ ∆Θ×T satisfies NEI if and only if νPi = 0 for each i ∈ N.
We conclude this section with the observation that informational size is not related

to the “quality” of an agent’s information regarding the state of nature. In example 1,
an agent’s private signal provides no information regarding the realization of θ̃ (since
PΘ(·|ti) = PΘ(·) for each ti ∈ Ti) while in example 2, an agent’s private signal provides
perfect information regarding the realization of θ̃ (since PΘ(·|ti) = χti for each ti ∈ Ti).
Hence, agents may have very good estimates of the true state conditional on their
own types, yet each agent is informationally small.

2.2.2 Variability of Agents’ Beliefs

Whether an agent i can be given incentives to reveal his information will depend
on the magnitude of the difference between PT−i(·|ti) and PT−i(·|t0i), the conditional
distributions on T−i given different types ti and t0i for agent i. To formally define the
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measure of variability that is convenient for our purposes, we first define a metric d
on ∆Θ as follows: for each α, β ∈ ∆Θ, let

d(α,β) =

°°°° α

||α||2 −
β

||β||2

°°°°
2

where || · ||2 denotes the 2-norm. Hence, d(α,β) measures the Euclidean distance
between the Euclidean normalizations of α and β.
If P ∈ ∆Θ×T , recall that PΘ(·|ti) ∈ ∆Θ is the conditional distribution on Θ given

that i receives signal ti and define

ΩPi = min
ti∈Ti

min
t0i∈Ti\ti

d(PT−i(·|ti), PT−i(·|t0i))2.

This is the measure of the “variability” of the conditional distribution PT−i(·|ti) as a
function of ti and we will refer to this informally as the variability of agents’ beliefs.

2

As mentioned in the introduction, our work is related to that of Cremer and
McLean (1985,1989). Those papers and subsequent work by McAfee and Reny (1992)
demonstrated how one can use correlation to fully extract the surplus in certain
mechanism design problems. The key ingredient there is the assumption that the
collection of conditional distributions {PT−i(·|ti)}ti∈Ti is a linearly independent set for
each i. This of course, implies that PT−i(·|ti) 6= PT−i(·|t0i) if ti 6= t0i and, therefore, that
ΩPi > 0. While linear independence implies that Ω

P
i > 0, the actual (positive) size of

ΩPi is not relevant in the Cremer-McLean constructions, and full extraction will be
possible. In the present work, we do not require that the collection {PT−i(·|ti)}ti∈Ti
be linearly independent (or satisfy the weaker cone condition in Cremer and McLean
(1988)). However, the “closeness” of the members of {PT−i(·|ti)}ti∈Ti is an important
issue. It can be shown that for each i, there exists a collection of numbers zi(t)
satisfying 0 ≤ zi(t) ≤ 1 andX

t−i

[zi(t−i, ti)− zi(t−i, t0i)]PT−i(t−i|ti) > 0

for each ti, t
0
i ∈ Ti if and only if ΩPi > 0. This means that, if the posteriors {PT−i(·|ti)}ti∈Ti

are all distinct, then the “incentive compatibility” inequalities above are strict. How-
ever, the expression on the left hand side decreases as ΩPi → 0. Hence, the difference
in the expected reward from a truthful report and from a false report will be very
small if the conditional posteriors are very close to each other. Our results require
that informational size be small relative to the variation in these posteriors.

2Other essentially equivalent defin-
itions of variability are possible (e.g. minti∈Ti mint0i∈Ti\ti ||PT−i(·|ti) − PT−i(·|t0i)||2) and we have
chosen one that is computationally convenient. This notion of variability of agents’ beliefs differs
from that in McLean-Postlewaite (2002) and the difference is discussed below.
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Small incentives for truthful reporting (i.e., small values of ΩPi ) are not a serious
problem in the surplus extraction problem studied by Cremer and McLean since the
rewards and punishments can be rescaled so that a false report results in a large neg-
ative expected payment. Of course, the punishments themselves may then become
very large. However, such rescaling is not possible in our framework for two reasons.
First, we deal with pure exchange economies where the feasibility requirement limits
the size of punishments. Second, we do not restrict attention to quasilinear prefer-
ences. Since agents may be risk averse, punishments and rewards that have small (or
zero) expected value can have large negative welfare effects.

2.3 Aggregate Uncertainty

As mentioned in the introduction, the main concern of this paper is to provide condi-
tions under which nearly efficient incentive compatible allocations exist in the pres-
ence of aggregate uncertainty. Before proceeding, we will discuss aggregate uncer-
tainty and its role in McLean-Postlewaite (2002).
In McLean and Postlewaite (2002), three concepts play an important role in con-

structing individually rational, approximately efficient allocations for private infor-
mation economies: informational size, variability of beliefs and negligible aggregate
uncertainty. The definition of informational size in McLean and Postlewaite (2002) is
essentially the same as that presented in this paper. McLean and Postlewaite (2002)
used a different notion of variability: there we defined

ΛPi = min
ti∈Ti

min
t0i∈Ti\ti

d(PΘ(·|ti), PΘ(·|t0i))2

as our measure of the variability of agents’ beliefs where d is the metric of the previous
section. Here, PΘ(·|ti) is the conditional distribution on the state spaceΘ given t̃i = ti.
Hence, ΩPi measures the variation in agent i’s beliefs regarding the signals of other
agents while ΛPi measures the variation in agent i’s beliefs regarding the state of
nature. Both definitions of variability open the possibility of providing that agent
with incentives for truthful revelation.
McLean and Postlewaite (2002) required that the information structure exhibit

negligible aggregate uncertainty. Informally, we say that a probability measure P
exhibits negligible aggregate uncertainty if, for a set of t’s with high probability,
PΘ(·|t) ≈ χθ for some θ ∈ Θ. More formally, define

µPi = max
ti∈Ti

min{ε ≥ 0|Prob{t̃ ∈ T and ||PΘ(·|t̃)− χθ|| > ε for all θ ∈ Θ|ti} ≤ ε}

We define the aggregate uncertainty as µP ≡ maxi µPi and we will say that P exhibits
negligible aggregate uncertainty if µP is small. In this case, each agent knows that,
conditional on his own signal, the aggregate information of all agents will, with high
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probability, provide a good prediction of the true state. The main result of McLean
and Postlewaite (2002) may be stated as follows:

Proposition 3: Let {e(θ)Thebasicidea}θ∈Θ be a collection of (degenerate) ex-
pected economies and suppose that there exists a strictly individually rational, effi-
cient allocation for each e(θ). Then for every ε > 0, there exists a δ > 0 such that,
whenever P ∈ ∆Θ×T and satisfies

max
i
µPi ≤ δmin

i
ΛPi and max

i
νPi ≤ δmin

i
ΛPi ,

there exists an allocation z(·) for the PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) satisfying XIR and IC.
Furthermore, there exists a set E ⊆ T ∗ such that Prob{t̃ ∈ E} ≥ 1 − ε and z(t) is
ε−efficient in e(t) for all t ∈ E.
In the statement of Proposition 3, aggregate uncertainty is small relative to in-

formational variability — maxi µ
P
i ≤ δmini Λ

P
i — and it is instructive to outline the

method of proof for this proposition in order to illustrate the role aggregate uncer-
tainty plays.
Let A = {x(θ)}θ∈Θ be a collection where x(θ) is a strictly individually rational,

Pareto efficient allocation for e(θ). In the presence of negligible aggregate uncertainty,
we can partition T into m + 1 disjoint sets with Ak = {t ∈ T |P (·|t) ≈ χθk} for
k = 1, ...,m, and A0 = T\[∪k≥1Ak]. If k ≥ 1, then Ak is the set of t ∈ T for
which the posterior distribution on Θ is close to the degenerate distribution χθk that
concentrates probability 1 on θk. Therefore, A0 is the set of t ∈ T for which the
posterior is not close to χθ for any θ. We next choose a PIE allocation y(·) with
y(t) = x(θk) for t ∈ Ak, k = 1, ...,m, and y(t) = w (the initial endowment) for t ∈ A0.
When aggregate uncertainty is small, the information profile t ∈ T will, with high
probability, resolve most of the uncertainty regarding the state of nature θ. There are
two consequences of small aggregate uncertainty: the event A0 has small probability
and for each t ∈ Ak, PΘ(θk|t) is close to 1. Therefore, Σ`ui(yi(t); θ`)PΘ(θ`|t) is close to
ui(xi(θk); θk) whenever t ∈ Ak. Since y(t) is efficient for the economy e(θk), the PIE
allocation y(·) is approximately ex post efficient for most realizations of the signal
profile t.
The PIE y(·) as constructed is not incentive compatible in general. Suppose that i

receives signal ti, i reports t
0
i and the other agents truthfully report t−i. If (t−i, ti) ∈ A0,

then no trade takes place and i simply consumes his initial endowment. Since each
xi(θk) is individually rational, agent i has an incentive to misreport if (t−i, t0i) ∈ Ak
for some k ≥ 1. However, the (conditional) probability that (t̃−i, ti) ∈ A0 is small as a
consequence of negligible aggregate uncertainty. Now suppose that (t−i, ti) ∈ Ak for
some k ≥ 1. Hence, i receives xi(θk) if he reports ti. If (t−i, t0i) ∈ A0, then i receives
his initial endowment and he does not gain by lying. If (t−i, t0i) ∈ Aj for some
j ≥ 1, j 6= k, he receives xi(θj). If xi(θj) results in higher utility than xi(θk), agent i
may have an incentive to misreport. If agent i is informationally small, however, then
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the (conditional) probability that agent i can “move” the profile from (t̃−i, ti) ∈ Ak
to (t̃−i, t0i) ∈ Aj (and hence “move” the allocation from xi(θk) to xi(θj)) is small.
Therefore, (t̃−i, t0i) ∈ Ak ∪ A0 with high probability, i.e., with high probability, no
utility gain is possible.
If utility is bounded, then (i) negligible aggregate uncertainty implies that the

contribution to the total expected gain from lying is small whenever if (t−i, ti) ∈ A0
and (ii) small informational size implies that the contribution to the total expected
gain from lying is small whenever if (t−i, ti) /∈ A0. Hence, the total expected gain from
a lie is small if aggregate uncertainty and agents’ informational size are both small. In
order to offset this (small) potential gain that i might receive from misreporting, we
modify the bundle xi(θk) that i receives when t ∈ Ak. If the difference between P (θk|ti)
and P (θk|t0i) is sufficiently large for different types ti and t0i , relative to informational
size and aggregate uncertainty, then we can construct a PIE allocation z(t) by slightly
modifying each y(t) to ensure incentive compatibility. The final allocation z(·) will
be be incentive compatible and approximately efficient for nearly all t.

As we have outlined above, incentive compatibility essentially follows from the fact
that, with high probability, a lie results in no utility gain. This is a consequence of the
partition construction made possible by negligible aggregate uncertainty. If aggegate
uncertainty is large, we may still be able to construct a mechanism in which the gains
from lying, while not zero with high probability, will be small with high probability.
This is accomplished in the next section. The technique involves the construction
of an individually rational, efficient allocation z(t) for the expected economy e(t)
for each t ∈ T ∗ with associated utilities satisfying a “Lipschitzian” property: there
exists a constant K such that for any two probability distributions P (·|t−i, ti) and
P (·|t−i, t0i),

|vi(zi(t−i, ti), P (·|t−i, ti))− vi(zi(t−i, t0i), P (·|t−i, t0i))| ≤ K||P (·|t−i, ti)− P (·|t−i, t0i)||.

While the allocation z(t) is efficient for any vector of announced types, incentive
compatibility will typically fail to hold. However, an agent’s potential gain from
misreporting his type is essentially determined by his informational size. His infor-
mational size places a bound on the change in the posterior on Θ he can induce by
misreporting, and the Lipschitz property puts a bound on the consequent change in
utility. Hence, as an agent’s informational size goes to zero, his potential gain from
misreporting goes to zero. When informational variability is large enough relative to
informational size, the allocation can be slightly modified to insure incentive com-
patibility, as in the case of negligible aggregate uncertaintly. We demonstrate this
next.
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3 Informational Size, Incentive Compatibility and

Approximate Ex Post Efficiency

3.1 Preliminaries and the Main Approximation Lemma

Let {e(θ)}θ∈Θ be a collection of (degenerate) expected economies. For each π ∈ ∆Θ,
let

Φ(π) = {(v1(x1;π), .., vn(xn;π))|(x1, .., xn) is feasible for e(π)}.
That is, Φ(π) is the set of feasible utility vectors for the agents in the expected
economy e(π). Before proceeding, we will introduce several definitions. A map f :
∆Θ → <n is a Φ−selection if f(π) ∈ Φ(π) for all π ∈ ∆Θ. A Φ−selection f is
Lipschitz if each fi is Lipschitz on ∆Θ. That is, for each i there exists a Ki > 0 such
that |fi(π) − fi(π0)| ≤ Ki||π − π0|| for each π,π0 ∈ ∆Θ. A Φ−selection is positive if
fi(π) > 0 for all π ∈ ∆Θ and all i ∈ N. A Φ−selection is individually rational if
fi(π) ≥ vi(wi;π) for all π ∈ ∆Θ and all i ∈ N. The monotonicity assumption and the
nonzero endowment assumption imply that every individually rational Φ−selection
is positive.
We will show that certain PIE allocations can be approximated by incentive com-

patible PIE allocations when agents are informationally small relative to variabil-
ity. The idea is as follows. Let f : ∆Θ → <n be a Lipschitz selection. Since
f(π) = (f1(π), .., fn(π)) is a feasible utility profile for e(π), there exists an allocation
x(π) = (x1(π), .., xn(π)) such that f(π) = (v1(x1(π);π), .., vn(xn(π);π)). Next, de-
fine a PIE allocation y(·) where y(t) = x(PΘ(·|t)) for each t ∈ T ∗ and PΘ(·|t) is the
posterior distribution on Θ given t. That is, y(t) is an allocation that generates the
desired utility for the distribution PΘ(·|t). Of course, y(·) need not be incentive com-
patible. When agents are informationally small, however, any agent who unilaterally
misreports his type can change the posterior by only a small amount. If the selection
f is Lipschitz, then the utility change resulting from that agent’s misreport will also
be small. When the variability condition is satisfied, agents’ types are correlated in a
way that allows us to construct small rewards and punishments for the agents. These
rewards have the property that, by truthfully announcing his type, an agent maxi-
mizes his utility — including his reward — if other agents are announcing truthfully.
Given these rewards and punishments, we can modify the allocation y(·) in a way
that the modified allocation will be incentive compatible when informational size is
small relative to variability for all agents. The next proposition formalizes this.

Proposition 4: Let {e(θ)}θ∈Θ be a collection of degenerate expected economies
and suppose that f is a positive Lipschitz selection for Φ. Then for every ε > 0, there
exists a δ > 0 such that, whenever P ∈ ∆Θ×T and satisfies

max
i

νPi ≤ δmin
i

ΩPi ,
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there exists an incentive compatible PIE allocation z(·) for the PIE ({e(θ)}θ∈Θ, eθ, t̃, P )
satisfying

fi(PΘ(·|t)) ≥ vi(zi(t);PΘ(·|t)) ≥ fi(PΘ(·|t))− ε

for each t ∈ T ∗ and for all i ∈ N. Moreover,

vi(ζi(t);PΘ(·|t)) ≥ vi(zi(t);PΘ(·|t)) ≥ vi(ζi(t);PΘ(·|t))− ε

for any PIE allocation ζ(·) for ({e(θ)}θ∈Θ, eθ, t̃, P ) satisfying vi(ζi(t);P (·|t)) = fi(PΘ(·|t))
for all t ∈ T ∗.
Proof: See appendix.

3.2 The Main Result for Economies of Fixed Size

Proposition 4 of the previous section provides conditions on the information structure
under which the utilities associated with a Lipschitz selection can be approximated
by an incentive compatible PIE allocation. We next prove the existence of a Lipschitz
selection that gives rise to an approximately efficient, strictly individually rational,
incentive compatible PIE allocation.
In the previous subsection, we defined Φ, the correspondence that associates with

every π ∈ ∆Θ the set of feasible utility vectors for the agents in the expected economy
e(π), and considered Lipschitz selections from that correspondence. We will now be
interested in selections f that have the property that f(π) is on the frontier of the
utility possibility set Φ(π) for the expected economy e(π). Toward this end, define
Φ0(π) = {(v1(x1;π), .., vn(xn;π))|(x1, .., xn) is efficient and IR for e(π)}. The following
definition will be useful in proving our main result.

Definition: Let λ > 0 and π ∈ ∆Θ. An economy e(π) satisfies λ− Individual
Rationality (λ−IR) if there exists an allocation x(π) for e(π) such that vi(xi(π);π)−
vi(wi;π) ≥ λ for all i ∈ N.
We next show that there exist Lipschitz selections that associate with each ex-

pected economy e(π) a utility vector on the frontier of the feasible set for e(π).

Lemma 2: Let {e(θ)}θ∈Θ be a collection of degenerate expected economies. The
correspondence Φ0 : ∆Θ → <n admits an individually rational (hence positive) Lip-
schitz selection f . Furthermore, the selection f has the following property: if the
economy e(π) satisfies λ−IR for some λ > 0, then fi(π)− vi(wi;π) ≥ λ for each i.
Proof: See appendix.

To prove Lemma 2, we choose π ∈ ∆Θ and solve the problem

µ(π) = argmax[µ|v(w;π) + µe ∈ Φ(π)]
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where v(w;π) := (v1(w1;π), .., vn(wn;π)) and e is the vector of ones in <n+. We then
choose a feasible allocation x(π) for e(π) satisfying vi(xi(π);π) = vi(wi;π)+µ(π)e for
each i ∈ N and show that the selection f : ∆Θ → <n defined by fi(π) = vi(xi(π);π)
for each i has the desired properties. In this construction, we measure utility along
the ray determined by the vector e. Had we measured utility along a different ray,
say p where pi > 0 for each i, then the associated maximization problem would have
generated a different selection, but one that was still efficient and Lipschitz. Alterna-
tively, we could have maximized the minimal “weighted” utility gain, where different
agents were assigned different weights. These examples illustrate the existence of a
large set of Pareto efficient Lipschitz selections that can be approximated by incentive
compatible allocations when agents are informationally small. It would be interesting
to characterize the set of all such “weighted” selections, but that is beyond the scope
of the present paper.
Using Lemma 2 and Proposition 4 of the previous section, we can prove the

following theorem.

Theorem 1: Let {e(θ)}θ∈Θ be a collection of degenerate expected economies.
For every ε > 0 and every λ > 0, there exists a δ > 0 such that the following holds:
if P ∈ ∆Θ×T satisfies

max
i

νPi ≤ δmin
i

ΛPi

and if e(P (·|t)) satisfies λ−IR for all t ∈ T ∗, then there exists a PIE allocation z(·)
for the PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) satisfying XIR, IC and XεE.
Proof: Applying Lemma 2, there exists an individually rational Lipschitz selec-

tion f for Φ0 with the property that fi(P (·|t))− vi(wi;P (·|t)) ≥ λ for each i and for
each t ∈ T ∗. Choose ε > 0 and let 0 < η < min{ε,λ}. Applying Proposition 4, there
exists a δ > 0 such that, whenever P ∈ ∆Θ×T and satisfies

max
i

νPi ≤ δmin
i

ΩPi ,

there exists an incentive compatible PIE allocation z(·) for the PIE ({e(θ)}θ∈Θ, eθ, t̃, P )
satisfying

fi(PΘ(·|t)) ≥ vi(zi(t);PΘ(·|t)) ≥ fi(PΘ(·|t))− η

for each t ∈ T ∗ and for all i ∈ N. Let ζ(·) be a PIE allocation for ({e(θ)}θ∈Θ, eθ, t̃, P )
satisfying vi(ζi(t);P (·|t)) = fi(PΘ(·|t)) for all t ∈ T ∗. Obviously, ζ(t) is efficient and

vi(ζi(t);PΘ(·|t)) ≥ vi(zi(t);PΘ(·|t)) ≥ vi(ζi(t);PΘ(·|t))− η

for all t ∈ T ∗. Since e(P (·|t)) satisfies λ−IR for all t ∈ T ∗, it follows that

vi(ζi(t);PΘ(·|t))− vi(wi;PΘ(·|t)) = f(PΘ(·|t))− vi(wi;PΘ(·|t)) ≥ λ
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for each t ∈ T ∗. Therefore,
vi(zi(t);PΘ(·|t))− vi(wi;PΘ(·|t)) = vi(zi(t);PΘ(·|t))− vi(ζi(t);PΘ(·|t))

+vi(ζi(t);PΘ(·|t))− vi(wi;PΘ(·|t))
≥ λ− η

> 0

for each i and we conclude that z(t) is individually rational in e(t).
To show that z(t) is ε−efficient in e(t), suppose instead that there exists an

allocation y for e(t) such that vi(yi;PΘ(·|t)) > vi(zi(t);PΘ(·|t)) + ε for each i. Then

vi(yi;PΘ(·|t)) > vi(zi(t);PΘ(·|t)) + ε ≥ vi(ζi(t);PΘ(·|t))− η + ε > vi(ζi(t);PΘ(·|t))
for all i contradicting the efficiency of ζ(t) in the expected economy e(t). This com-
pletes the proof of Theorem 1. 2

To conclude this section, we will now describe in somewhat more detail how the re-
sults in this paper relate to the main result in McLean and Postlewaite (2002).Through-
out this discussion, we will assume that T = T ∗.
As suggested in the discussion on aggregate uncertainty, we must follow a differ-

ent approach when the assumption of negligible aggregate uncertainty is dropped.
Instead of choosing a collection A = {x(θ)}θ∈Θ where x(θ) is a strictly individually
rational, Pareto efficient allocation for e(θ), we begin with a strictly individually ratio-
nal Lipschitz selection f from the correspondence Φ0. We can “invert” this Lipschitz
selection to generate a mapping ζ from∆Θ into allocations such that, for any π ∈ ∆Θ,
ζ(π) is a strictly individually rational, Pareto efficient for the expected economy e(π).
In the current paper, the mapping ζ(·) plays a role analogous to that of the collection
A = {x(θ)}θ∈Θ in our previous work, and it is important to point out that ζ(·) need
not even be continuous on ∆Θ. For any announced profile of types t, we begin with
the allocation ζ(PΘ(·|t)), and then modify it. When agents are informationally small,
any agent who unilaterally misreports his type will change the posterior distribution
on Θ by only a small amount, and hence, change his resulting utility by only a small
amount since his utility depends on PΘ(·|t) in a Lipschitzian manner. As long as vari-
ability is sufficiently large relative to informational size, the requisite modifications
to ζ(PΘ(·|t)) can be made that ensure incentive compatibility.

4 The Replica Problem

In the presence of a large number of agents, we might expect any single agent to
be informationally small, and replica economies are a natural framework in which to
investigate this conjecture.
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4.1 Notation and Definitions:

Let {e(θ)}θ∈Θ be a collection of complete information economies and let Jr = {1, 2, ..., r}.
For each positive integer r and each θ, let er(θ) = {wis, uis(·, θ)}(i,s)∈N×Jr denote the
r replication of e(θ) corresponding to state θ satisfying:

(1) wis = wi for all s ∈ Jr
(2) uis(z, θ) = ui(z, θ) for all z ∈ <`+, i ∈ N and s ∈ Jr.
For any positive integer r, let T r = T × · · · × T denote the r-fold Cartesian

product and let tr = (tr(1), .., tr(r)) denote a generic element of T r where tr(s) =

(tr1(s).., t
r
n(s)) ∈ T. If P r ∈ ∆Θ×T r , then er = ({er(θ)}θ∈Θ, eθ, t̃r, P r) is a PIE with nr

agents.

4.2 Replica Economies and the Replica Theorem

Definition: A sequence of replica economies {({er(θ)}θ∈Θ, eθ, t̃r, P r)}∞r=1 is a condi-
tionally independent sequence if there exists a P ∈ ∆Θ×T with P (θ, t) > 0 for each
(θ, t) ∈ Θ× T such that
(a) For each r, each s ∈ Jr and each (θ, t) ∈ Θ× T,

Prob{eθ = θ, t̃r(s) = t} = P (θ, t1, t2, ..., tn)
(b) For each r and each θ, the random vectors

t̃r(1), t̃r(2), ..., t̃r(r)

are independent given eθ = θ.
(c) For every θ, θ̂ with θ 6= θ̂, there exists a t ∈ T such that P (t|θ) 6= P (t|θ̂).
(d) For each i and each ti, t

0
i ∈ Ti, PT−i(·|ti) 6= PT−i(·|t0i)

Thus a conditionally independent sequence is a sequence of PIE’s with nr agents
containing r “copies” of each agent i ∈ N . Each copy of an agent i is identical, i.e., has
the same endowment and the same utility function. Furthermore, the realizations of
type profiles across cohorts are independent given the true value of eθ. As r increases
each agent is becoming “small” in the economy in terms of endowment, and each
agent is also becoming informationally small. Note that, for large r, an agent may
have a small amount of private information regarding the preferences of everyone
through his information about eθ.
Theorem 2: Let {e(θ)}θ∈Θ be a collection of (degenerate) expected economies.

Suppose that ui(·; θ) is concave for each i and θ and that the expected economy
e(π) has at least one strictly individually rational allocation for each π ∈ ∆Θ. Let

{({er(θ)}θ∈Θ, eθ, t̃r, P r)}∞r=1 be a conditionally independent sequence. Then for every
ε > 0, there exists an integer r̂ > 0 such that for all r > r̂, there exists an allocation
zr for the PIE ({er(θ)}θ∈Θ, eθ, t̃r, P r) which satisfies IC, XIR and XεE.

17



5 Bibliography

References

[1] Cremer, J. and McLean, R. P. (1985), “Optimal Selling Strategies under Un-
certainty for a Discriminatory Monopolist when Demands Are Interdependent,”
Econometrica, 53, 345-61.

[2] Cremer, J. and McLean, R. P. (1988), “Full Extraction of the Surplus in Bayesian
and Dominant Strategy Auctions,” Econometrica, 56, 1247-57.

[3] Gul, F. and A. Postlewaite (1992), “Asymptotic Efficiency in Large Economies
with Asymmetric Information,” Econometrica, 60, 1273-1292.

[4] McAfee, P. and P. Reny (1992), “Correlated Information and Mechanism Design,”
Econometrica 60, 395-421.

[5] McLean, R. and A. Postlewaite (2002), “Informational Size and Incentive Com-
patibility,” Econometrica 70, 2421-2454.

18



6 Appendix: Proofs

6.1 Proof of Proposition 4

Choose ε > 0. In the next three steps, we will construct a PIE allocation with
the desired properties. Throughout the proof, we will make use of the continuity,
normalization, monotonicity and non-zero endowment assumptiuons.

Step 1: Let f be a positive Lipschitz selection for Φ and let Ki > 0 denote the
modulus of continuity of fi. Since each fi(·) is continuous on ∆Θ and positive on ∆Θ,
and since ∆Θ is compact, it follows that there exists a λ > 0 such that fi(π) ≥ λ for
all i and π. For each π ∈ ∆Θ, choose an allocation {ζi(π)}i∈N for e(π) satisfying

vi(ζi(π);π) = fi(π)

for each i and note that each ζi(π) 6= 0. Define

Mi = ui(
X
j∈N

wj; θ).

Suppose that
0 < η < min{λ, ε}.

Then for each i and π there exists βi(π) such that 0 < βi(π) < 1 and

vi(ζi(π);π)− vi(βi(π)ζi(π);π) = η.

To see this, define
ψ(β) = vi(ζi(π);π)− vi(βζi(π);π).

Note that
ψ(1) = 0 < η

and
ψ(0) = vi(ζi(π);π) = fi(π) ≥ λ > η.

The continuity of vi(·;π) implies that ψ(·) is continuous and the result follows.
Step 2: Suppose that P ∈ ∆Θ×T with conditionals PT−i(·|ti) ∈ ∆T−i for all i and

ti ∈ Ti. Next, define
αi(t−i|ti) = PT−i(t−i|ti)

||PT−i(·|ti)||2
for each t ∈ T (where || · ||2 denotes the 2-norm) and note that

0 ≤ αi(t−i|ti) ≤ 1.
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For each π, i and t, there exists a number τπi (t−i, ti) ≥ 0 such that
vi((1 + τπi (t−i, ti))βi(π)ζi(π);π)− vi(βi(π)ζi(π);π) = ηαi(t−i|ti).

[This is possible because βi(π)ζi(π) 6= 0]. Furthermore, (1 + τπi (t−i, ti))βi(π) ≤ 1. [If
(1 + τπi (t−i, ti))βi(π) > 1, then monotonicity implies that

vi((1 + τπi (t−i, ti))βi(π)ζi(π);π)− vi(βi(π)ζi(π);π) > vi(ζi(π);π)− vi(βi(π)ζi(π);π)
= η

≥ ηαi(t−i|ti)
a contradiction.]
Defining

xi(π|t) = (1 + τπi (t))βi(π)ζi(π)

it follows that the collections {xi(π|t)}π∈∆Θ,t∈T satisfy

xi(π|t) ∈ <`+ for each i and
X
i∈N
(xi(π|t)− wi) ≤ 0.

Furthermore,

vi(xi(π|t−i, ti);π)− vi(βi(π)ζi(π);π) = ηαi(t−i|ti)
for all t ∈ T. Therefore,

vi(xi(π|t−i, ti);π) = vi(ζi(π);π) + ηαi(t−i|ti)− η

and

vi(ζi(π);π) ≥ vi(xi(π|t−i, ti);π) = vi(βi(π)ζi(π);π) + ηαi(t−i|ti) ≥ vi(ζi(π);π)− η.

Step 3: For each t ∈ T ∗, let q(t) = PΘ(·|t) and define a PIE allocation z(·) as
follows:

zi(t) = xi(q(t)|t) if t ∈ T ∗
zi(t) = 0 if t /∈ T ∗

We will now prove that z(·) has the desired properties.
Claim 1: z(·) is a PIE allocation.
Proof: This follows from the observation that

xi(π|t) ∈ <`+ and
X
i∈N
(xi(π|t)− wi) ≤ 0
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for every π ∈ ∆Θ and t ∈ T.
Claim 2: For each t ∈ T ∗

fi(PΘ(·|t)) ≥ vi(zi(t);PΘ(·|t)) ≥ fi(PΘ(·|t))− ε.

Proof: This is an immediate consequence of the definition of zi(t) and the assump-
tion that η < ε.

Claim 3: Let B = 1

2
√
|T | and choose δ so that

0 < δ < min
i
{ Bη

3(Ki +Mi)
}.

If
max
i

νPi ≤ δmin
i

ΩPi ,

then z(·) satisfies IC.

Proof: Part 1: Since

vi(xi(π|t−i, ti);π) = vi(ζi(π);π) + ηαi(t−i|ti)− η

for each π ∈ ∆Θ and each (t−i, ti) ∈ T, it follows that
vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti)) = vi(ζi(q(t−i, ti)); q(t−i, ti)) + ηαi(t−i|ti)− η

and

vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, t0i)) = vi(ζi(q(t−i, t0i)); q(t−i, t0i)) + ηαi(t−i|t0i)− η

whenever (t−i, ti), (t−i, t0i) ∈ T ∗. Therefore,
vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti))− vi(xi(q(t−i, t0i)|t−i, t0i)); q(t−i, t0i))

= vi(ζi(q(t−i, ti)); q(t−i, ti))− vi(ζi(q(t−i, t0i)); q(t−i, t0i))
+η (αi(t−i|ti)− αi(t−i|t0i))

≥ η (αi(t−i|ti)− αi(t−i|t0i))−Ki||PΘ(·|t−i, ti))− PΘ(·|t−i, t0i)||
Part 2: Applying the conclusion of Part 1, we conclude thatX

t−i
:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

[vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti))− vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, t0i))]P (t−i|ti)

≥
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

[η (αi(t−i|ti)− αi(t−i|t0i))−Ki||P (·|t−i, ti))− P (·|t−i, t0i)||]P (t−i|ti)

≥
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

η (αi(t−i|ti)− αi(t−i|t0i))P (t−i|ti)− 3Kiν
P
i
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where the last iequality follows from the observation that ||P (·|t−i, ti))−P (·|t−i, t0i)|| ≤
2.

Part 3: The normalization assumption implies that vi(0; q(t)) = 0 for each t ∈ T ∗.
Therefore, X

t−i
:(t−i,ti)∈T ∗
(t−i,t0i)/∈T∗

[vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti))− vi(0; q(t−i, ti))]P (t−i|ti)

=
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)/∈T∗

(vi(ζi(q(t−i, ti)); q(t−i, ti)) + ηαi(t−i|ti)− η)P (t−i|ti)

≥
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)/∈T∗

(ηαi(t−i|ti)− η + λ)P (t−i|ti)

≥
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)/∈T∗

ηαi(t−i|ti)P (t−i|ti)

Part 4: Finally, we again make the observation that ||P (·|t−i, ti))−P (·|t−i, t0i)|| ≤ 2
and conclude thatX

t−i
:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

[vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, t0i))− vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, ti))]P (t−i|ti)

=
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

X
θ

ui(xi(q(t−i, t0i)|t−i, t0i); θ) [P (θ|t−i, t0i))− P (θ|t−i, ti))]P (t−i|ti)

≥ −Mi

X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

||P (·|t−i, ti))− P (·|t−i, t0i)||P (t−i|ti)

≥ −3Miν
P
i .

Part 5: Let X be a finite set with cardinality k and let p, q ∈ ∆X . Then·
p

||p||2 −
q

||q||2

¸
· p =

||p||2
2

°°°° p

||p||2 −
q

||q||2

°°°°2
2

≥ 1

2
√
k

°°°° p

||p||2 −
q

||q||2

°°°°2
2
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To complete the proof of Claim 3, we combine Parts 2,3 and 4 to obtainX
θ

X
t−i

[ui(zi(t−i, ti); θ)− ui(zi(t−i, t0i); θ)]P (θ, t−i|ti)

=
X
t−i

:(t−i,ti)∈T ∗

[vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti))− vi(zi(t−i, t0i); q(t−i, ti))]P (t−i|ti)

=
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

[vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti))− vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, t0i))]P (t−i|ti)

+
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

[vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, t0i))− vi(xi(q(t−i, t0i)|t−i, t0i); q(t−i, ti))]P (t−i|ti)

+
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)/∈T ∗

[vi(xi(q(t−i, ti)|t−i, ti); q(t−i, ti))− vi(0; q(t−i, ti))]P (t−i|ti)

≥
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)∈T ∗

η (αi(t−i|ti)− αi(t−i|t0i))P (t−i|ti) +
X
t−i

:(t−i,ti)∈T ∗
(t−i,t0i)/∈T ∗

ηαi(t−i|ti)P (t−i|ti)− 3(Ki +Mi)ν
P
i .

Since αi(t−i|t0i) = 0 if (t−i, t0i) /∈ T ∗, it follows from part 5 thatX
t−i

:(t−i,ti)∈T∗
(t−i,t0i)∈T ∗

η (αi(t−i|ti)− αi(t−i|t0i))P (t−i|ti) +
X
t−i

:(t−i,ti)∈T∗
(t−i,t0i)/∈T ∗

ηαi(t−i|ti)P (t−i|ti)

=
X
t−i

:(t−i,ti)∈T ∗

η (αi(t−i|ti)− αi(t−i|t0i))P (t−i|ti)

=
X
t−i

:(t−i,ti)∈T

η (αi(t−i|ti)− αi(t−i|t0i))P (t−i|ti)

≥ ηBΩPi .

Therefore,X
θ

X
t−i

[ui(zi(t−i, ti); θ)− ui(zi(t−i, t0i); θ)]P (θ, t−i|ti) ≥ ηBΩPi − 3(Ki +Mi)ν
P
i ≥ 0.

This completes the proof of Claim 3.
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6.2 Proof of Lemma 2:

For each π ∈ ∆Θ, let v(w;π) := (v1(w1;π), .., vn(wn;π)) and define

µ(π) = argmax[µ|v(w;π) + µe ∈ Φ(π)].

Note that µ(π) is well defined since Φ(π) is compact and that µ(π) ≥ 0. For each π ∈
∆Θ, choose a feasible allocation x(π) for e(π) satisfying vi(xi(π);π) = vi(wi;π)+µ(π)e
for each i ∈ N. Finally, let f : ∆Θ → <n be the map defined by fi(π) = vi(xi(π);π)
for each i. Clearly, f satisfies individual rationality since µ(π) ≥ 0. To show that
f(π) ∈ Φ0(π), it suffices to show that x(π) is efficient in e(π). Suppose that x(π) is not
efficient in e(π). Then there exists an allocation y = (y1, .., yn) satisfying vi(yi;π) >
vi(xi(π);π) for all i. Choose i0 so that

vi0(yi0;π)− vi0(wi0;π) = min
i∈N

[vi(yi;π)− vi(wi;π)] := σ

and note that σ > µ(π). For each i 6= i0, there exists a βi ∈ [0, 1] such that vi(βiyi;π)−
vi(wi;π) = σ (this follows from monotonicity, continuity and normalization.) Defining
zi0 = yi0 and zi = βiyi, otherwise, it follows that (z1, .., zn) is a feasible allocation for
e(π) and that

(v1(z1;π), .., vn(zn;π)) = v(w;π) + σe.

Since σ > µ(π), we arrive at a contradiction and, therefore, x(π) is efficient in e(π).
Next, suppose that the economy e(π) satisfies λ−IR for some λ > 0. Then using

precisely the same argument used above in the proof of efficiency, we can construct
a feasible allocation (z1, .., zn) for e(π) satisfying

(v1(z1;π), .., vn(zn;π)) = v(w;π) + σe.

and σ ≥ λ. Therefore, µ(π) ≥ λ and it follows that fi(π)− vi(wi;π) = µ(π) ≥ λ.
Finally, we prove the following claim.
Claim : Let

M = max
i
max

θ
ui(
X
j∈N

wj; θ)

and note that M > 0. For each i, the mapping fi is uniformly Lipschitz on ∆Θ with
modulus Ki = 3M.
Proof: Choose π,π0 ∈ ∆Θ and w.l.o.g., suppose that µ(π) ≤ µ(π0). To prove the

claim, it is enough to show that µ(π0) ≤ µ(π) + 2M ||π − π0|| since we would then
conclude that,for each i,

|fi(π)− fi(π0)| = | (vi(wi;π) + µ(π))− (vi(wi;π0) + µ(π0)) ||
≤ |vi(wi;π)− vi(wi;π0)|+ |µ(π)− µ(π0)|
≤ M ||π − π0||+ 2M ||π − π0||
= 3M ||π − π0||.
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First, define y = (v1(x1(π
0);π), .., vn(xn(π0);π)) and observe that

|yi − fi(π0)| = |vi(xi(π0);π)− vi(xi(π0);π0)| ≤M ||π − π0||.
To complete the proof, suppose that µ(π0) > µ(π) + 2M ||π − π0||. We claim that
yi > vi(xi(π);π) for each i, contradicting the efficiency of the allocation x(π) in e(π).
To see this, suppose that yi ≤ vi(xi(π);π) = vi(wi;π) + µ(π) for some i. Using the
fact that

vi(wi;π
0)− vi(wi;π) ≥ −|vi(wi;π0)− vi(wi;π)| ≥ −M ||π − π0||

we deduce that

fi(π
0)− yi = vi(wi;π

0) + µ(π0)− yi
> vi(wi;π

0) + µ(π) + 2M ||π − π0||− yi
= (vi(wi;π) + µ(π)− yi) + vi(wi;π0)− vi(wi;π) + 2M ||π − π0||
≥ vi(wi;π

0)− vi(wi;π) + 2M ||π − π0||
≥ 2M ||π − π0||−M ||π − π0||
= M ||π − π0||.

This is impossible since |yi−fi(π0)| ≤M ||π−π0||. Therefore, yi > vi(xi(π);π) for each
i. Hence, the hypothesis that µ(π0) > µ(π) + 2M ||π − π0|| leads to a contradiction
and the proof of the Claim is complete.

6.3 Proof of Theorem 2:

Let {({er(θ)}θ∈Θ, eθ, t̃r, P r)}∞r=1 be a conditionally independent sequence and suppose
that each ui(·; θ) is concave. Since P (θ, t) > 0 for each (θ, t) ∈ Θ × T, it follows
from the definition of a conditionally independent sequence that T r = (T r)∗ for all r.
Choose ε > 0.
Step 1: From the claim in Step 1 of the proof of Theorem 2 in McLean and

Postlewaite (2002), it follows that, for every ρ > 0, there exists an integer r̂ such that
for all r > r̂,

νP
r

i,s ≤ ρ .

Step 2:
For the ”basic” PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) (i.e., the PIE with r = 1), we can apply

Lemma 2 and conclude that there exists a strictly individually rational Lipschitz
selection f for Φ0 with the property that fi(π)− vi(wi;π) > 0 for each i and for each
π. Since the function π → fi(π) − vi(wi;π) is continuous and positive on ∆Θ, and
since∆Θ is compact, it follows that there exists a λ > 0 such that fi(π)−vi(wi;π) ≥ λ
for all i and π. Let Ki > 0 denote the modulus of continuity of fi and define

Mi = ui(
X
j∈N

wj; θ).
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For each π ∈ ∆Θ, choose an allocation {ζi(π)}i∈N for e(π) satisfying
vi(ζi(π);π) = fi(π)

for each i and note that each ζi(π) 6= 0. Finally, choose η such that 0 < η < min{ε,λ}.
Suppose that, for each π ∈ ∆Θ, the allocation {ζi(π)}i∈N is an allocation for e(π)

satisfying
(v1(ζ1(π);π), .., vn(ζn(π);π)) = f(π).

Duplicating verbatim the steps 1 and 2 in the proof of Proposition 3, we construct

xi(π|t) = (1 + τπi (t))βi(π)ζi(π)

for each π and each t ∈ T. From the construction, it follows that the collections
{xi(π|t)}π∈∆Θ,t∈T satisfy
(i)

xi(π|t) ∈ <`+ and
X
i∈N
(xi(π|t)− wi) ≤ 0.

(ii)
vi(ζi(π);π) ≥ vi(xi(π|t−i, ti);π) ≥ vi(ζi(π);π)− η

and
(iii)

vi(xi(π|t−i, ti);π) = vi(ζi(π);π) + ηαi(t−i|ti)− η.

where

αi(t−i|ti) = PT−i(t−i|ti)
||PT−i(·|ti)||2

.

Step 3:
We now use this construction for the ”basic” PIE ({e(θ)}θ∈Θ, eθ, t̃, P ) to define a

mechanism for the replica PIE ({er(θ)}θ∈Θ, eθ, t̃r, P r). For each r ≥ 1 and each t ∈ T r,
let q(tr) = P rΘ(·|tr) and define a collection

zri,s(t
r) = xi(q(t

r)|tr(s)) if tr ∈ T r∗
zri,s(t

r) = 0 if tr /∈ T r∗.
It follows from the construction of xi(π|t) in Step 2 above that

vi(ζi(q(t
r)); q(tr)) ≥ vi(zri,s(tr); q(tr)) ≥ vi(ζi(q(tr)); q(tr))− η

To complete the proof, we will show that mechanism zr(·) = {zri,s(·)}(i,s)∈N×Jr is an in-
dividually rational, incentive compatible, ε-efficient PIE allocation for ({er(θ)}θ∈Θ, eθ, t̃r, P r)
whenever r is sufficiently large.
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Claim 1: For each positive integer r, the mechanism zr(·) is a PIE allocation for
({er(θ)}θ∈Θ, eθ, t̃r, P r).
Proof: Since

xi(π|t) ∈ <`+ and
X
i∈N
(xi(π|t)− wi) ≤ 0

for every π ∈ ∆Θ and t ∈ T , it follows that
rX
s=1

X
i∈N
(zri,s(t

r)− wi) =
rX
s=1

X
i∈N
(xi(q(t

r)|tr(s))− wi) ≤ 0

whenever tr ∈ T r and
rX
s=1

X
i∈N
(zri,s(t

r)− wi) =
rX
s=1

X
i∈N
(0− wi) ≤ 0

whenever tr /∈ T r.
Claim 2: For each positive integer r, the mechanism zr(·) is ex post IR and ex

post ε-efficient for the PIE ({er(θ)}θ∈Θ, eθ, t̃r, P r).
Proof: Since vi(ζi(q(t

r)); q(tr))−vi(wi; q(tr)) = f(q(tr))−vi(wi; q(tr)) ≥ λ for each
tr ∈ T r∗, it follows that

vi(z
r
i,s(t

r); q(tr))− vi(wi; q(tr)) = vi(zi,s(t
r); q(tr))− vi(ζi(q(tr)); q(tr))
+vi(ζi(q(t

r)); q(tr))− vi(wi; q(tr))
≥ λ− η

> 0

for each i so zr(tr) is individually rational for each tr ∈ T r. That is, zr(·) satisfies
XIR for the replica PIE er.
To show that zr(·) satisfies XεE in the replica PIE e

r, suppose that tr ∈ T r∗ and
that yr(·) is a PIE allocation for er satisfying

vi(y
r
is(t

r); q(tr)) > vi(z
r
is(t

r); q(tr)) + ε

for each (i, s). For each i, let

yi =
1

r

rX
s=1

yris(t
r)

and therefore,
nX
i=1

yi =
1

r

nX
i=1

rX
s=1

yris(t
r) ≤

nX
i=1

wi.
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Since each vi(·; q(tr)) is concave and

vi(z
r
is(t

r); q(tr)) ≥ vi(ζi(q(tr)); q(tr))− η,

it follows that

vi(yi; q(t
r)) ≥ 1

r

X
s

vi(y
r
is(t

r); q(tr))

>
1

r

X
s

vi(z
r
is(t

r); q(tr)) + ε

≥ vi(ζi(q(t
r)); q(tr))− η + ε

> vi(ζi(q(t
r)); q(tr))

for each i and we conclude that {ζi(q(tr))}i∈N is not Pareto optimal in e(q(tr)), a
contradiction.

Claim 3: There exists a positive integer r̂ such that, whenever r > r̂, the mecha-
nism zr(·) satisfies IC.
Proof: Let K = maxiKi ,M = maxiMi and define B =

1

2
√
|T | . Assumption (d) in

the definition of a conditionally independent sequence implies that ΛPi > 0. Hence, we
can apply the result of step 1 and conclude that there exists a positive integer r̂ such
that ηBΛPi − 3(K +M)νP

r

i > 0 whenever r > r̂. We will show that the mechanism
zr(·) satisfies IC whenever r > r̂. Choose (i, s) ∈ N × Jr. Since

vi(xi(π|t−i, ti);π) = vi(ζi(π);π) + ηαi(t−i|ti)− η

for each π ∈ ∆Θ and each (t−i, ti) ∈ T, it follows that

ui(z
r
i,s(t

r
−(i,s), ti); θ) = vi(xi(q(t

r
−(i,s), ti)|tr−i(s), ti); q(tr−(i,s), ti))

= vi(ζi(q(t
r
−(i,s), ti)); q(t

r
−(i,s), ti)) + ηαi(t

r
−i(s)|ti)− η

and

ui(z
r
i,s(t

r
−(i,s), t

0
i); θ) = vi(xi(q(t

r
−(i,s), t

0
i)|tr−i(s), t0i); q(tr−(i,s), t0i))

= vi(ζi(q(t
r
−(i,s), t

0
i)); q(t

r
−(i,s), t

0
i)) + ηαi(t

r
−i(s)|t0i)− η

for each (tr−(i,s), ti), (t
r
−(i,s), t

0
i) ∈ T r. Therefore,

ui(z
r
i,s(t

r
−(i,s), ti); θ)− ui(zri,s(tr−(i,s), t0i); θ)

≥ η
¡
αi(t

r
−i(s)|ti)− αi(t

r
−i(s)|t0i)

¢−Ki||P rΘ(·|tr−(i,s), ti))− P rΘ(·|tr−(i,s), t0i)||
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so that X
θ

X
tr−(i,s)

:(t−(i,s),ti)∈T r

£
ui(z

r
i,s(t−(i,s), ti); θ)− ui(zri,s(t−(i,s), t0i); θ)

¤
P r(θ, tr−i,s|ti)

≥
X
tr−(i,s)

:(t−(i,s),ti)∈T r

η
¡
αi(t

r
−i(s)|ti)− αi(t

r
−i(s)|t0i)

¢
P r(tr−(i,s)|ti)− 3Kiν

P r

i .

Since X
tr−(i,s)

:(t−(i,s),ti)∈T r

η
¡
αi(t

r
−i(s)|ti)− αi(t

r
−i(s)|t0i)

¢
P r(tr−i,s|ti)

= η
X

tr(1)∈T
· · ·

X
tr−i(s)∈T−i

· · ·
X

tr(r)∈T

¡
αi(t

r
−i(s)|ti)− αi(t

r
−i(s)|t0i)

¢
P r(tr(1), .., tr−i(s), .., t

r(r)|ti)

= η
X

tr−i(s)∈T−i

¡
αi(t

r
−i(s)|ti)− αi(t

r
−i(s)|t0i)

¢
P (t−i(s)|ti)

≥ ηBΩPi

we conclude thatX
θ

X
tr−i,s

£
ui(z

r
i,s(t−i,s, ti); θ)− ui(zri,s(t−i,s, t0i); θ)

¤
P r(θ, tr−i,s|ti) ≥ ηBΛPi −3(K+M)νP

r

i > 0

and the the proof of incentive compatibility is complete.
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