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Abstract:  We take a nonstructural time-series approach to modeling and forecasting daily average
temperature in ten U.S. cities, and we inquire systematically as to whether it may prove useful from the
vantage point of participants in the weather derivatives market.  The answer is, perhaps surprisingly, yes. 
Time series modeling reveals both strong conditional mean dynamics and conditional variance dynamics
in daily average temperature, and it reveals sharp differences between the distribution of temperature and
the distribution of temperature surprises.  Most importantly, it adapts readily to produce the long-horizon
forecasts of relevance in weather derivatives contexts.  We produce and evaluate both point and
distributional forecasts of average temperature, with some success.  We conclude that additional inquiry
into nonstructural weather forecasting methods, as relevant for weather derivatives, will likely prove
useful.
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1 For an interesting overview, see Geman (1998).

2 Aquila Energy’s “Guaranteed Forecast” weather hedging product structures put and call options
around the National Weather Service's temperature forecast.

1.  Introduction

Weather derivatives are a fascinating new type of Arrow-Debreu security, making pre-specified

payouts if pre-specified weather events occur.  The market has grown rapidly.  In 1997, the market for

weather derivatives was nonexistent.  In 1998 the market was estimated at $500 million, but it was still

illiquid, with large spreads and limited secondary market activity.  More recently the market has grown to

more than $5 billion, with better liquidity.  Outlets like Energy and Power Risk Management and the

Weather Risk (e.g., 1998, 2000) supplements to Risk Magazine have chronicled the development.1

Weather derivative instruments include weather swaps, vanilla options, option collars, and exotic

(e.g., path-dependent) options.  The underlying include heating degree days, cooling degree days,

growing degree days, average temperature, maximum temperature, minimum temperature, precipitation

(rainfall, snowfall), humidity and sunshine, among others – even the National Weather Service's

temperature forecast for the coming week.2

A number of interesting considerations make weather derivatives different from “standard”

derivatives.  First, the underlying (weather) is not traded in a spot market.  Second, unlike financial

derivatives, which are useful for price hedging but not quantity hedging, weather derivatives are useful

for quantity hedging but not necessarily for price hedging (although the two are obviously related).  That

is, weather derivative products provide protection against weather-related changes in quantities,

complementing extensive commodity price risk management tools already available through futures. 

Third, although liquidity in weather derivative markets has improved, it will likely never be as good as in

traditional price-hedging markets, because weather is by its nature a location-specific and non-

standardized commodity, unlike, say, a specific grade of crude oil.

Weather derivatives are also different from insurance.  First, there is no need to file a claim or

prove damages.  Second, there is little moral hazard, although there is some, as when someone with a long

precipitation position attempts to seed the clouds.  (Don’t laugh – it has happened!)  Third, unlike

insurance, weather derivatives allow one to hedge against comparatively good weather in other locations,

which may be bad for local business (e.g., a bumper crop of California oranges may lower the prices

received by Florida growers).

Weather forecasting is crucial to both the demand and supply sides of the weather derivatives

market.  Consider first the demand side, consisting of obvious players such as energy companies, utilities

and insurance companies, and less obvious players such as ski resorts, grain millers, cities facing snow-



3 Effectively, any firm exposed to weather risk either on the output (revenue) side or the input
(cost) side is a candidate for productive use of weather derivatives.

4 See also Cao and Wei (2001).
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removal costs, consumers who want fixed heating and air conditioning bills, firms seeking to avoid

financial writedowns due to weather-driven poor performance, investors seeking an approximately “zero

beta” asset class, etc.3  The mere fact that such agents face weather fluctuations, however, does not ensure

a large hedging demand, because even very large weather fluctuations would create little weather risk if

they were highly predictable.  Weather risk, then, is about the unpredictable component of weather

fluctuations – “weather surprises,” or “weather noise.”  To assess the potential for hedging against

weather surprises, and to formulate the appropriate hedging strategies, one needs to determine how much

weather noise exists for weather derivatives to eliminate, and that requires a weather model.  What does

weather noise look like over space and time?  What are its conditional and unconditional distributions? 

Answering such questions requires weather modeling and forecasting, the topic of this paper.

Now consider the supply side – sellers of weather derivatives who want to price them, statistical

arbitrageurs who want to exploit situations of apparent mispricing, etc.  How should weather derivatives

be priced?  It seems clear that standard approaches to arbitrage-free pricing (e.g., Black-Scholes) are

inapplicable in weather derivative contexts.  In particular, there is in general no way to construct a

portfolio of financial assets that replicates the payoff of a weather derivative (although in some situations

one might be able to construct a crude approximation to a replicating portfolio if futures are traded). 

Hence the only way to price options reliably is by using forecasts of the underlying weather variable, in

conjunction with a utility function.  As Davis (2001, p. 305) notes:4

Since there is no liquid market in these contracts, Black-Scholes style pricing is

inappropriate.  Valuation is generally done on an “expected discounted value” basis,

discounting at the riskless rate but under the physical measure, which throws all the

weight back onto the problem of weather prediction. 

This again brings up the crucial issue of how to construct good weather forecasts, potentially at horizons

much longer than those commonly emphasized by meteorologists.  Hence the supply-side questions, as

with the demand-side questions, are intimately related to weather modeling and forecasting.

Curiously, however, it seems that little thought has been given to the crucial question of how best

to approach the weather modeling and forecasting that underlies weather derivative demand and supply. 

The extant weather forecasting literature (see, for example, the overview in Tribia, 1997) has a structural

“atmospheric science” feel, and although such an approach may be best for forecasting six hours ahead, it



5 See Diebold (2001).

6 We are not the first to adopt a time-series approach, although the literature is sparse.  The
analyses of Harvey (1989), Hyndman and Grunwald (2000), Milionis and Davies (1994), Visser and
Molenaar (1995), Jones (1996), and Pozo et al. (1998) suggest its value, for example, but they do not
address the intra-year temperature forecasting relevant to our concerns.  Seater (1993) studies long-run
temperature trend, but little else.  Cao and Wei (2001) and Torro, Meneu and Valor (2001) – each of
which was written independently of the present paper – consider time-series models of average
temperature, but their models are more restrictive and their analyses more limited than ours.
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is not at all obvious that it is best for the longer horizons relevant for weather derivatives, such as six

weeks or six months.  In particular, successful forecasting does not necessarily require a structural model,

and in the last thirty years statisticians and econometricians have made great strides in the nonstructural

modeling and forecasting of time series trend, seasonal, cyclical and noise components.5  The time series

approach has proved useful not only in providing accurate “best guesses” (point forecasting) but also in

providing detailed quantification of associated forecast uncertainty (distributional forecasting).  In this

paper, then, motivated by considerations related to the weather derivatives market, we take a time-series

approach to weather modeling and forecasting, systematically asking whether the nonstructural approach

proves useful.6  We provide insight into both conditional mean dynamics and conditional variance

dynamics of daily average temperature; strong conditional variance dynamics are a central part of the

story.  We also highlight the differences between the distributions of weather and the distributions of

weather surprises.  Finally, we evaluate the performance of our model’s distributional forecasts at the

long horizons of relevance in weather derivatives contexts.  The results are mixed but encouraging, and

they point toward directions that may yield future forecasting improvements.

  We proceed as follows.  In Section 2 we discuss our data, and our decision to focus on modeling

and forecasting daily average temperature.  In section 3 we report the results of time-series modeling of

daily average temperature, and in section 4 we report the results of out-of-sample point forecasting and

distributional forecasting exercises.  In section 5 we offer concluding remarks and sketch directions for

future research.

2.  Data and Modeling Choices

Here we discuss the collection and cleaning of our weather data, the subset of the data that we

model, and the reasons for our choice.

Data

Our dataset contains daily temperature observations measured in degrees Fahrenheit for each of

the ten measurement stations listed in Table 1 for 1/1/60 through 11/05/01, resulting in 15,285



7 Only missing values for TMAX and TMIN need be filled, as all of the other weather variables are
derived from them.
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observations per measuring station.  We chose the stations to match those on which weather-related

futures and options are traded at the Chicago Mercantile Exchange (CME).  We obtained the data from

Earth Satellite (EarthSat) corporation; they are precisely those used to settle temperature-related weather

derivative products traded on the CME.  The primary underlying data source is the National Climactic

Data Center (NCDC), a division of the National Oceanographic and Atmospheric Administration.  Each

of the measuring stations listed in Table 1 supplies its data to the NCDC, and those data are in turn

collected by EarthSat.  The dataset consists of observations on the temperature-related variables detailed

in Table 2:  daily maximum (TMAX), minimum (TMIN), and average (T) temperatures, together with

heating degree days (HDD) and cooling degree days (CDD), the formulae for which are given in the

table.

The dataset contains occasional missing observations due to the failure of measuring stations to

report to the NCDC.  Such instances are rare and are detailed in Table 3; they occur just twelve times in

our sample and are attributable to factors such as human error or mechanical failure of the measurement

equipment.  When missing values are encountered, we (and the CME) use fitted values constructed by

EarthSat as follows.  First, EarthSat identifies the geographically closest NCDC measuring station

(reference station) for each of the ten cities contained in the data set, as shown Table 3.  Second, EarthSat

calculates for each city the thirty-year daily average difference of the missing variable (TMAX or TMIN)

between the measuring station and its reference station.7  In this calculation, each day in the year is taken

as distinct; hence the thirty-year average is based on thirty observations.  The average differences are also

shown in Table 3, as are the sample standard deviations of the differences.  Finally, EarthSat adds to the

reference station measurement the thirty-year average difference.

Modeling Daily Average Temperature

We are interested in daily average temperature, which is widely reported and followed. 

Moreover, the heating degree days (HDDs) and cooling degree days (CDDs) on which weather

derivatives are commonly written are simple transformations of average temperature, as shown in Table

2.

Perhaps surprisingly, a key issue in modeling and forecasting daily average temperature is

precisely what to model.  From one point of view, it seems unnecessary and potentially undesirable to

model separately weather variables such as daily average, maximum and minimum temperature, HDDs,

CDDs, etc., given that one can simply model the underlying high-frequency temperature, from which all



8 For a recent treatment of forecasting under specialized loss functions, see Christoffersen and
Diebold (1996, 1997).

9 We could of course have plotted the average temperature series over the entire sample, but
doing so compresses too much data into too little space, resulting in a less informative graph.

10 The distributions are in line with von Storch and Zwiers (1999), who note that although daily
average temperature often appears Gaussian if studied over sufficiently long times in the troposphere,
daily average surface temperatures may have different distributions.  See also Neese (1994), who
documents skewness and bimodality in daily maximum temperatures.
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else is derived.  But even if we had access to the relevant high-frequency data (which we do not), once

model misspecification is acknowledged, it often proves attractive to work under the relevant loss

function, modeling and forecasting the object of interest directly.  The attractiveness stems both from the

fact that the requisite modeling is much simpler (e.g., there is no need to model complicated intra-day

calendar effects) and from the fact that the resulting forecasts are tailored to the object of interest and may

therefore be more accurate for the object of interest.8

This same logic of forecasting under the relevant loss function suggests that, although the daily

maximum and minimum temperatures (to which we do have access) are the fundamental daily series from

which all others are derived, as revealed in Table 2, it does not necessarily follow that we should model

and forecast TMAX and TMIN and then derive the implied forecast for daily average temperature.  Again,

direct modeling of daily average temperature is certainly simpler and may produce more accurate

forecasts of daily average temperature.

The upshot:  we model and forecast daily average temperature.

3.  Time-Series Weather Modeling

Before proceeding to detailed modeling and forecasting results, it is useful to get an overall feel

for the daily average temperature data.  In Figure 1 we plot the average temperature series for the last five

years of the sample.9  The time series plots reveal strong and unsurprising seasonality in average

temperature:  in each city, the daily average temperature moves repeatedly and regularly through periods

of high temperature (summer) and low temperature (winter).  Importantly, however, the seasonal

fluctuations differ noticeably across cities both in terms of amplitude and detail of pattern.

In Figure 2 we show how the seasonality in daily average temperature manifests itself in the

unconditional temperature distributions.  Most cities’ distributions are bimodal, with peaks characterized

by cool and warm temperatures.  Also, with the exception of Las Vegas, each distribution is negatively

skewed.10  The daily average temperature distributions for the Midwestern cities of Chicago and Des

Moines have the greatest dispersion, while the western cities of Portland and Tucson have the least



11 ARMA models would in principle enable greater parsimony, but only at the expense of
requiring numerical optimization for parameter estimation.
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dispersion.

The discussion thus far suggests that a seasonal component will be important in any time-series

model fit to daily average temperature, as average temperature displays pronounced seasonal variation,

with both the amplitude and precise seasonal patterns differing noticeably across cities.  We use a low-

ordered Fourier series as opposed to daily dummies to model this seasonality, the benefits of which are

two-fold.  First, use of a low-ordered Fourier series produces a smooth seasonal pattern, which accords

with the basic intuition that the progression through different seasons is gradual rather than discontinuous. 

Second, the Fourier approximation produces a huge reduction in the number of parameters to be

estimated, which significantly reduces computing time and enhances numerical stability.  Such

considerations are of relevance given the rather large size of our dataset (roughly 15,000 daily

observations for each of ten cities).

One naturally suspects that non-seasonal factors may also be operative in the dynamics of daily

average temperature, despite the fact that their relevance is not obvious from the simple time series plots

examined thus far, which are dominated by seasonality.  One obvious such factor is trend, which  may be

relevant but is likely minor, given the short forty-year span of our data.  We therefore simply allow for a

deterministic linear trend.  Another such factor is cycle, by which we mean any sort of persistent (but

covariance stationary) dynamics apart from seasonality and trend.  We capture cyclical dynamics using

autoregressive lags, which facilitates fast and numerically-stable computation of parameter estimates.11

Assembling the various pieces, we estimate the following model for average temperature in each

of our ten cities between 1/1/1960 and 11/05/2001:

(1)

where

(1a)

(1b)



12 We removed February 29 from each leap year in our sample to maintain 365 days per year. 
Alternatively, we could set a “year” equal to 365.25 days.

13 For economical presentation we simply report results with L=25 and P=3 for all cities.  We also
used the Akaike and Schwarz information criteria to guide city-specific model selection, with little
change in the forecasting results subsequently reported.  For all cities, both criteria indicate that setting
L=25 and P=3 is more than adequate.  Maintaining the rather large value of L=25 costs little given the
large number of available degrees of freedom, and it helps to capture long-memory dynamics, if present,
and as indicated in results such as Bloomfield (1992).

14 The fitted trend could also be approximating a very low-frequency cycle, although that seems
unlikely given the large number of autoregressive lags included in the models.
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, (1c)

and where d(t) is a repeating step function that cycles through 1, ..., 365 (i.e., each day of the year

assumes one value between 1 and 365).12  We estimate the model by ordinary least squares, regressing

average temperature on constant, trend, Fourier and lagged average temperature terms, using twenty-five

autoregressive lags (L=25) and three Fourier sine and cosine terms (P=3).13

Now let us discuss the estimation results.  First, the seasonality is of course statistically

significant and crucially important.  To assess the Fourier fit, we plot in Figure 3 the estimated Fourier

seasonal pattern against an estimated dummy variable seasonal pattern, corresponding to

 where  on the -th day of the year, and 0 otherwise.  In general, the fit is

spectacular; the noise in the dummy variable seasonal pattern is greatly reduced with almost no

deterioration of fit.

Second, and perhaps surprisingly, most cities display a large and statistically significant trend in

daily average temperature.  In most cases, the trend is much larger than the increase in average global

temperature over the same period.  For example, the results indicate that the daily average temperature in

Atlanta has increased by three degrees in the last forty years.  Such large trend increases are likely a

consequence of development and air pollution that increased urban temperatures in general, and urban

airport temperatures in particular, where most of the U.S. recording stations are located, a phenomenon

often dubbed the “heat island effect.”14

Daily average temperature also displays strong cyclical persistence.  The estimated autoregressive

coefficients display an interesting pattern, common across all ten cities, regardless of location.  The

coefficient on the first lag is typically large and significant, around 0.85, but coefficients on subsequent



15 It seems that such seasonal heteroskedasticity was first noted, informally, in an economic
context by Roll (1984).  In this paper we progress by developing quantitative models and forecasts that
explicitly incorporate the heteroskedasticity.

16 Typical residual standard deviations are only one third or so of the average temperature
standard deviations.

17 Conditional heteroskedasticity in the residuals of our (linear) model could also be indicative of
neglected conditional-mean nonlinearities, but we have not yet explored that possibility.
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lags become significantly negative before decaying.  The coefficient on the second autoregressive lag, for

example, is typically about -0.25.  All roots of the associated autoregressive lag operator polynomials are

less than one in modulus; the dominant root is always real and typically around 0.85, and the vast

majority of remaining roots are complex, as shown in Figure 4.

In Figure 5 we show fitted values and residuals over the last five years of the estimation sample. 

The fit is typically very good, with  above 90%.  Figure 5 also provides a first glimpse of an important

phenomenon:  pronounced and persistent time-series variation in the variance of the residuals.  Weather

risk, as measured by its innovation variance, is often time-varying:  cities such as Atlanta, Dallas and Des

Moines show clear signs of seasonal heteroskedasticity as the range of the residuals widens and narrows

over the course of a year.15

In Figure 6 we show residual histograms for each of the models.  Four features stand out.  First,

average temperature residuals are much less variable than average temperature itself; that is, weather

surprises are much less variable than the weather itself.16  Second, the spreads of the residual distributions

vary noticeably across cities; the standard deviations range from a low of 3.5 degrees for Tucson to a high

of 6.2 degrees for Des Moines, indicating that weather isk is much greater in some cities than in others. 

Third, all of the distributions are uni- as opposed to bi-modal, in contrast to the unconditional

distributions of daily average temperature examined earlier, due to the model’s success in capturing

seasonal highs and lows.  Fourth, all of the distributions have moderate negative skewness and moderate

excess kurtosis.

In Figures 7 and 8 we display the correlograms of the residuals and squared residuals, taken to a

maximum displacement of 800 days.  The residual autocorrelations are negligible and appear consistent

with white noise, indicating that we have modeled linear dependence adequately.  Figure 8, however,

reveals drastic misspecification of the model (1), related to nonlinear dependence.  With the exceptions of

Las Vegas, Portland and Tucson (all west coast cities), the correlograms of the squared residuals show

strong persistence, which highlights the need to incorporate conditional heteroskedasticity in the model.17



18 Figures 3-8 were actually produced using the results from model (2), in order to enhance the
efficiency of parameter estimation once the above-discussed diagnostics made clear that the residuals
were conditionally heteroskedastic.

19 Just as with L and P, we also used a variety of information-theoretic strategies for selecting Q
and R, but in the end chose simply to report results for Q=2 and R=1, which proved adequate for each
city.
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In light of the clear residual heteroskedasticity, we move to the model,18

(2)

where

(2a)

(2b)

(2c)

, (2d)

and where, as before, d(t) is a repeating step function that cycles through 1, ..., 365 (i.e., each day of the

year assumes one value between 1 and 365), and we set L=25, P=3, Q=2 and R=1.19

Model (2) is of course identical to model (1), with the addition of the conditional variance

equation (2c), which allows for two types of volatility dynamics relevant in time-series contexts.  The

first is volatility seasonality, which was visually apparent in many of the residual plots in Figure 5. 

Equation (2c) approximates seasonality in the conditional variance in precisely the same way as equation

(2b) approximates seasonality in the conditional mean, via a Fourier series.  The second is autoregressive

effects in the conditional variance movements, which often arise naturally in time-series contexts, in

which shocks to the conditional variance may have effects that persist for several periods, precisely as in

the seminal work of Engle (1982).  

We estimate the models by Engle’s (1982) asymptotically efficient two-step approach, as follows. 

First, we estimate (2) by ordinary least squares, regressing average temperature on constant, trend, Fourier

and lagged average temperature terms.  Second, we estimate the variance equation (2c) by regressing the



20 In sharp contrast to the standard situation in financial econometrics (see, for example,
Andersen, Bollerslev and Diebold, 2003), it appears that low-ordered pure ARCH models are adequate
for capturing weather volatility dynamics.  We allowed for “GARCH lags” in our conditional variance
specification, but none are necessary, so long as the volatility seasonality is modeled adequately.  If the
highly persistent volatility seasonality is not modeled adequately, however, then highly persistent (and
spurious) GARCH effects may appear in volatility.

21 It is not obvious, however, how to interpret the kurtosis of a skewed distribution.
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squared residuals from equation (2) on constant, Fourier and lagged squared residual terms, and we use

the square root of the inverse fitted values, , as weights in a weighted least squares re-estimation of

equation (2).

In Figure 9 we plot the estimated residual conditional standard deviation from 1996 through

2001.  The basic pattern is one of strong seasonal volatility variation, with short-lived upward-brushing

ARCH effects.20  For each city, seasonal volatility appears highest during the winter months.  Among

other things, this indicates that correct pricing of weather derivatives may in general be crucially

dependent on the season covered by the contract.  Some cities display a great deal of seasonal volatility

variation – the conditional standard deviations in Atlanta, Cincinnati and Dallas, for example, are roughly

triple in winter – whereas weather surprise volatility in other cities such as Las Vegas, Portland and

Tucson appears considerably more stable across seasons.  Notice, moreover, that the amplitude of

seasonal volatility fluctuations increases with its average level.  That is, cities with high average volatility

such as Atlanta and Dallas display the most pronounced seasonal volatility fluctuations, while cities with

low average volatility such as Tucson and Portland also display smaller seasonal volatility fluctuations.

In Figure 10 we show histograms of standardized residuals, .  The histograms reveal

that, as expected, each standardized residual distribution still displays negative skewness.  Modeling the

conditional heteroskedasticity does, however, reduce (but not eliminate) residual excess kurtosis.21

In Figures 11 and 12 we show the correlograms of standardized and squared standardized

residuals.  The correlograms of standardized residuals are qualitatively similar to those in Figure 7 – there

was no evidence of serial correlation in the residuals from (1), and hence there is no evidence of serial

correlation in the standardized residuals from (2).  The correlograms of the squared standardized residuals

from model (2), however, show radical improvement relative to those from model (1); there is no

significant deviation from white noise behavior, indicating that the fitted model (2) is adequate.

4.  Time-Series Weather Forecasting

Armed with a hopefully adequate nonstructural time-series model for daily average temperature,

we now proceed to examine its performance in out-of-sample weather forecasting.  We assess our
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performance relative to a number of competitors, including a leading structural meteorological forecast. 

One naturally suspects that the much larger information set on which the meteorological forecast is based

will result in superior short-horizon point forecasting performance, but even if so, of great interest is the

question of how quickly and with what pattern the superiority of the meteorological forecast deteriorates

with forecast horizon.  And more generally, of course, the options pricing considerations relevant in

weather derivatives contexts suggest the centrality of distributional, as opposed merely to point, forecasts. 

We shall examine both.

Point Forecasting

We assess the short- to medium-term accuracy of daily average temperature forecasts based on

our seasonal+trend+cycle model.  In what follows, we refer to those forecasts as “autoregressive

forecasts,” for obvious reasons.  We evaluate the autoregressive forecasts relative to three benchmark

competitors, which range from rather naive to very sophisticated.  

The first benchmark forecast is a no-change forecast.  The no-change forecast, often called the

“persistence forecast” in the climatological literature, is the minimum mean squared error forecast at all

horizons if daily average temperature follows a random walk. 

The second benchmark forecast is from a more sophisticated two-component (seasonal+trend)

model.  It captures (daily) seasonal effects daily effects via day-of-year dummy variables, in keeping with

the common climatological use of daily averages as benchmarks.  It captures trend via a simple linear

deterministic function of time, which appears adequate for modeling the earlier-discussed long-term

gradual warming at recording stations.  We refer to this forecast as the “climatological forecast.”

The third benchmark forecast, unlike benchmarks one and two, is not at all naive; on the contrary,

it is a highly sophisticated forecast produced in real time by EarthSat.  To produce their forecast, EarthSat

meteorologists pool their expert judgement with model-based numerical weather prediction (NWP)

forecasts from the National Weather Service, as well as forecasts from European, Canadian, and U.S.

Navy weather services.  This blending of judgement with models is typical of best-practice modern

weather forecasting.

We were able to purchase approximately two years of forecasts from EarthSat.  The sample

period runs from 10/11/99, the date when EarthSat began to archive their forecasts electronically and

make them publically available, through 10/22/01.  Each weekday, EarthSat makes a set of h-day ahead

daily average temperature forecasts, for h = 1, 2, ..., 11.  EarthSat does not make forecasts on weekends.

We measure accuracy of all point forecasts as h-day-ahead root mean squared prediction error

(RMSPE).  We assess point forecasting accuracy at horizons of h = 1, 2, ..., 11 days, because those are the

horizons at which EarthSat’s forecasts are available, and we want to compare the performance of our
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model to EarthSat’s, among others

We also compute measures of the accuracy of our model and the EarthSat model relative to that

of the persistence and climatological benchmarks.  RMPSE ratios relative to benchmarks are known in the

meteorological literature as skill scores (Brier and Allen, 1951) , and in the econometrics literature as U-

statistics (Theil, 1966).  Specifically, in an obvious notation, the skill score relative to the persistence

forecast is

 , (3a)

where  denotes the persistence forecast and  denotes either the autoregressive forecast or

the EarthSat forecast, as desired.  Similarly, the skill score relative to the climatological forecast is

 , (3b)

where  denotes the climatological forecast, given by

. (4)

A number of nuances merit discussion.  First, for each of our time-series models, we estimate and

forecast recursively, using only the data that were available in real time.  Thus our forecasts at any time

utilize no more average temperature information than do EarthSat’s.  In fact – and this is potentially

important – our forecasts are based on less average temperature information:  our forecast for day t+1

made on day t is based on daily average temperature through 11:59 PM of day t, whereas the EarthSat

forecast for day t+1, which is not released until 6:45 AM on day t+1, potentially makes use of the history

of temperature through 6:45 AM of day t+1.  

Second, we make forecasts using our models only on the dates that EarthSat made forecasts.  In

particular, we make no forecasts on weekends.  Hence, our accuracy comparisons proceed by averaging

squared errors over precisely the same days as those corresponding to the EarthSat errors.  This ensures a

fair apples-to-apples comparison.

We report RMSPEs in Table 4 at horizons of h = 1, 3, 5, 7, 9, and 11 days, for all cities and



22 One could even make a case that the point forecasting performances of EarthSat and our three-
component model become indistinguishable before h=8 (say, by h=5) if one were to account for the
sampling error in the estimated RMSPEs and for the fact that the EarthSat information set for any day t
actually contains a few hours of the next day.
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forecasting models.  In addition, we graph skill scores as a function of horizon, against the persistence

forecast in Figure 13 and against the climatological forecast in Figure 14, for all cities and horizons.  The

results are the same for all cities, so it is not necessary to discuss them individually by city.  The results

most definitely do differ, however, across models and horizons, as we now discuss.  We first discuss the

performance of the time-series forecasts, and then we discuss the EarthSat forecasts.

Let us consider first the forecasting performance of the persistence, climatological, and

autoregressive models across the various horizons.  First consider the comparative performance of the

persistence and climatological forecasts.  When h=1, the climatological forecasts are much worse than the

persistence forecasts, reflecting the fact that persistence in daily average temperature renders the

persistence forecast quite accurate at very short horizons.  As the horizon lengthens, however, this result

is reversed:  the persistence forecast becomes comparatively poor, as the temperature today has rather

little to with the temperature, for example, nine days from now.

Second, consider the performance of the autoregressive forecasts relative to the persistence and

climatological forecasts.  Even when h=1, the autoregressive forecasts consistently outperform the

persistence forecast, and their relative superiority increases with horizon.  The autoregressive forecasts

also outperform the climatological forecasts at short horizons, but their comparative superiority decreases

with horizon.  The performance of the autoregressive forecast is commensurate with that of the

climatological forecast roughly by the time h=4, indicating that the cyclical dynamics captured by the

autoregressive model, which are responsible for its superior performance at shorter horizons, are not very

persistent and therefore not readily exploited for superior forecast performance at longer horizons.

Now let us compare the forecasting performance of the autoregressive model and the EarthSat

model.  When h=1, the EarthSat forecasts are much better than the autoregressive forecasts (which in turn

are better then either the persistence or climatological forecasts, as discussed above).  Figures 13 and 14

make clear, however, that the EarthSat forecasts outperform the autoregressive forecasts by progressively

less as the horizon lengthens, with nearly identical performance obtaining by the time h=8.22

All told, we view the point forecasting results as encouraging.  At short horizons, nonstructural

time-series models produce forecasts at least as accurate, and often much more accurate, than those of

standard benchmark persistence and climatological competitors, if nevertheless less accurate than state-

of-the-art meteorological forecasts.  At the longer horizons of relevance for weather derivatives,



23 The summation runs from November 1 through March 31, for each of the 41 years in our
sample.  Because we removed February 29 from each leap year in our data set, each sum contains exactly
151 days.

24 So as not to have an unnecessarily burdensome notation, we will often drop the y and I
subscripts when the meaning is clear from context.
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nonstructural time-series models produce forecasts at least as accurate as those of its competitors.  One

might assert, of course, that doing no worse than competitors at long horizons is faint praise, as all point

forecasts revert fairly quickly to the climatological forecast, and hence all long-horizon forecasts are

arguably quite poor.  But such an assertion misses a crucial point:  modern time series methods can

capture movements in conditional moments beyond the conditional mean, such as the conditional

variance dynamics emphasized earlier, which feed into the distributional forecasts of ultimate relevance

for weather derivatives, whose performance we now assess.

Distributional Forecasting

A important issue in weather forecasting for weather derivatives is how to use models that have

been constructed for one horizon at other, longer, horizons, and how to produce not simply point

forecasts, but distributional forecasts.  For example, all of the models presented in this paper have been

formulated, estimated and tested on daily data.  In practice, however, weather derivatives are often used to

hedge weather related risks over much longer horizons, such as six months, and what is required is not

simply a point forecast over the long horizon, but rather an estimate of the entire conditional distribution

of weather over that horizon, which is needed to price weather derivatives.  In this section, we focus on

such aggregation and distributional forecasting.

Before proceeding, we note that model aggregation may not always be an optimal strategy for

modeling weather outcomes over varying horizons.  In the presence of model misspecification,

constructing a separate model for each horizon of interest may be a more suitable strategy.  In the current

setting, however, our goal is somewhat more general.  Rather than providing the best model for each

relevant horizon, here we are interested in understanding how well a daily model can approximate the

distribution of weather outcomes at longer horizons.  In this way, the analysis serves as a means of

assessing the extent to which a single time-series model may be used in a variety of different forecasting

contexts.

We use our model of daily average temperature to assess the distribution of cumulative HDD’s

between November and March, for each city and for each year between 1960 and 2001:23, 24



25 It is important to use the empirical distribution of estimated shocks, because, as indicated in
Figure 10, the distributions of standardized residuals typically display excess skewness and kurtosis.

26 In an earlier analysis, we used a simulation sample of 1,000, and the differences in results were
minimal.  
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(5)

for y~=~1960,~ ..., ~2000, ~i~=~1, ~..., ~10.  Note that the creation of CumHDD involves both nonlinear

transformation of daily average temperature T into HDD, and then temporal aggregation of HDD into

CumHDD.

We focus on CumHDD for two important reasons.  First, weather derivative contracts are

typically written on the cumulative sum of a weather related outcome, such as HDDs, CDDs, or rainfall,

over a fixed horizon.  Second, the November-March HDD contract is one of the most actively traded

weather-related contracts and is of substantial interest to end users of weather models.

On October 31 of each year, and for each city, we use the estimated daily model to estimate the

distribution of future CumHDD .  We simulate 250 151-day realizations of CumHDD, which we then use

to estimate the distribution, as follows.  First, we simulate 250 151-day realizations of the temperature

shock  by drawing with replacement from the empirical distribution of estimated temperature shocks

( ).25, 26  Second, we run the 250 151-day realizations of temperature shocks through the estimated model

(2) to obtain 250 simulated 151-day realizations of daily average temperature.  Third, we convert the 250

simulated 151-day realizations of daily average temperature into 250 simulated 151-day realizations of

HDD, which we cumulate over the November-March heating season,

, (6)

Finally, we form the empirical distribution function of , based upon , s = 1, ..., 250.

After passing through the entire sample, we have 41 assessed distribution functions,

 one governing each of   We investigate the

conditional calibration of those distributional forecasts by examining the probability integral transform, as

suggested and extended by Rosenblatt (1952), Dawid (1984), Diebold, Gunther and Tay (1998), and

Diebold, Hahn and Tay (1999).  In particular, if the estimated distribution and true distribution coincide

year-by-year, then the series of assessed distribution functions  evaluated at the corresponding series

of realized values of , (denoted by ), should be distributed iid and uniformly on the



27 We note that the error bands provide exact coverage only if we abstract from parameter
uncertainty associated with model estimation.  Given the very large sample size considered here (more
than 10,000), parameter uncertainty likely has little effect on the resulting inference. 

28 Given the sample size of 41, we computed correlograms to a maximum displacement of ten
years.
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unit interval.  Formally, abstracting from parameter estimation uncertainty,

(7)

 For each city, we check uniformity of z by examining histograms, and we check independence of z by

examining correlograms of its first four powers.  The sample of size 41 is of course small, but the

framework has previously been applied successfully in small samples, as for example by Diebold, Tay

and Wallis (1999).

First consider assessing uniformity.  We estimate the density of z using simple four-bin

histograms, which we present in the leftmost column of Figure 15, accompanied by 95% pointwise error

bands under the iid U(0, 1) null hypothesis.27  Interestingly, the z series for the Midwestern cities in our

sample, such as Chicago, Cincinnati, Dallas and Des Moines, appear approximately uniform, while those

of eastern and western cities such as Philadelphia, Portland and Tucson, display greater deviations from

uniformity.

The non-Midwestern deviations from uniformity, moreover, display a common pattern:  too many

large CumHDD realizations occur relative to the assessed distributions, and too few small realizations

occur, as evidenced by the non-Midwestern cities’ histograms increasing from left to right.  The common

nature of uniformity violations for non-Midwestern cities may indicate a common temperature

component, due for example to El Niño, La Niña, changes in the jet stream, or various other global

factors.

Now consider assessing the independence of the z series.  We assess independence of the z series

for each city via the correlograms of its first four powers, shown in the last four columns of Figure 15.28 

We display each correlogram with asymptotic 95% Bartlett bands under the iid null hypothesis. 

Interestingly, just as the Midwestern cities appeared to meet the uniformity criterion, so too do they

appear to meet the iid criterion, with correlograms of all powers of z showing no significant deviation

from white noise.  In contrast, the non-Midwestern cities, taken as a whole, display greater divergence

from iid, often corresponding to a common pattern of positive serial correlation at lags from one to three
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years.  Again, the common patterns in non-Midwestern deviations from iid may be due to dependence on

one or more common factors.

In closing this section, let us elaborate on an important result:  although our CumHDD

distributional forecasting performance is encouraging, there is nevertheless clear room for improvement. 

Evidently the effects of small specification errors in the daily model, which have negligible consequences

for near-term forecasting, cumulate as the horizon lengthens, producing large consequences for longer-

term forecasting.  This makes perfect sense when one considers that the error in forecasting CumHDD is

of course the sum of the many component errors, and that the variance of a sum is the sum of the

variances plus the sum of all possible pairwise covariances.  Hence tiny and hard-to-detect but slowly-

decaying serial correlation in 1-day-ahead daily average temperature forecasting errors may significantly

inflate the variance of CumHDD over long horizons.

5.  Summary, Concluding Remarks and Directions for Future Research

Weather modeling and forecasting are crucial to both the demand and supply sides of the weather

derivatives market.  On the demand side, to assess the potential for hedging against weather surprises and

to formulate the appropriate hedging strategies, one needs to determine how much “weather noise” exists

for weather derivatives to eliminate, and that requires weather modeling and forecasting.  On the supply

side, standard approaches to arbitrage-free pricing are irrelevant in weather derivative contexts, and so the

only way to price options reliably is again by modeling and forecasting the underlying weather variable. 

Rather curiously, it seems that little thought has been given to the crucial question of how best to

approach weather modeling and forecasting in the context of weather derivative demand and supply.  The

vast majority of extant weather forecasting literature has a structural “atmospheric science” feel, and

although such an approach may well be best for forecasting twelve hours ahead, as verified both by our

own results and those of others, it is not obvious that it is best for the longer horizons relevant for weather

derivatives, such as twelve weeks or six months.  Moreover, it is distributional forecasts, not point

forecasts, that are of maximal relevance in the derivatives context.  Good distributional forecasting does

not necessarily require a structural model, but it does require accurate approximations to stochastic

dynamics.

In this paper we took an arguably-naive nonstructural time-series approach to modeling and

forecasting daily average temperature in ten U.S. cities, and we inquired systematically as to whether it

proves useful.  The answer, perhaps surprisingly, is yes.  Time series modeling reveals a wealth of

information about both conditional mean dynamics and conditional variance dynamics of daily average

temperature, and it provides insights into both the distributions of temperature and temperature surprises,
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and the differences between them.  The success of time-series modeling in capturing conditional mean

dynamics translates into successful point forecasting.  Our point forecasts dominated the persistence and

climatological forecasts, but were still not as good as the judgementally-adjusted NWP forecast produced

by EarthSat until a horizon of eight days, after which all point forecasts perform equally well.  

We routinely found strong seasonality in weather surprise volatility, and we assessed the adequacy of

long-horizon distributional forecasts that accounted for it, with mixed but encouraging results. 

Interestingly, we found that adequacy of conditional calibration varies regionally, indicating possible

dependence on common latent components, perhaps due to El Niño or La Niña.

All told, we would assert that in the context of weather modeling as relevant for weather

derivatives, it appears that simple yet sophisticated time series models and forecasts provide an easily-

traversed route to the well-calibrated long-horizon distributional forecasts of maximal relevance to

weather derivatives.  We would also assert that our views are consistent with the mainstream consensus in

atmospheric science.  In his well-known text, for example, Wilks (1995, p. 159) notes that

[Statistical weather forecasting] methods are still viable and useful at very short lead
times (hours in advance) or very long lead times (weeks or more in advance) for which
NWP information is either not available with sufficient promptness or accuracy,
respectively.

Indeed, in many respects our results are simply an extensive confirmation of Wilks’ assertion in the

context of weather derivatives, which are of great current interest.  When, in addition, one considers that

time series models and  methods are inexpensive, easily replicated, easily extended, beneficially

intrinsically stochastic, and capable of producing both point and density forecasts at a variety of horizons,

we feel that a strong case exists for their use in the context of modeling and forecasting as relevant for

weather derivatives.

Ultimately, our view on weather forecasting for weather derivatives has evolved toward

recognition that climatological forecasts are what we need, but that standard point climatological forecasts

– effectively little more than daily averages – are much too restrictive.  Instead, we seek “generalized

climatological forecasts” from richer models tracking entire conditional distributions, and time series

methods may have much to contribute.  Our model quantifying the time-varying conditional variance of

daily average temperature is one step toward a fully generalized climatological forecast, but many issues

remain unexplored.  Here we list a few of those that we find most intriguing.

Richer Climatological Dynamics

Arguably our central modeling innovation centers on the dynamics of the conditional variance. 



29 See also Zwiers and von Storch (1990).  Note that allowance for stochastic regime switching is
very different from structural break detection, caused, for example, by a change in measurement location,
measurement equipment, observation time.
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But richer dynamics could also be beneficially permitted in both lower-ordered conditional moments (the

conditional mean) and higher-ordered conditional moments (such as the conditional skewness and

kurtosis). 

As regards the conditional mean, one could introduce explanatory variables, as in Visser and

Molenaar (1995), who condition on a volcanic activity index, sunspot numbers, and a southern oscillation

index.  Relevant work also includes Jones (1996) and Pozo et al. (1998), but all of those papers use

annual data and therefore miss the seasonal patterns in both conditional mean and conditional variance

dynamics so crucial for weather derivatives demand and supply.  One could also allow for stochastic

regime switching, which might aid, for example, in the detection of El Niño and La Niña events, as in

Richman and Montroy (1996).29

As regards the conditional skewness and kurtosis, one could model them directly, as for example

with the autoregressive conditional skewness model of Harvey and Siddique (1999).  Alternatively, one

could directly model the evolution of the entire conditional density, as in Hansen (1994).

Forecasting Under the Relevant Loss Function

We have already imbedded the relevant loss function in our analysis, at least in part, by modeling

directly the object of interest (daily average temperature) as opposed to its underlying components (daily

maximum and minimum temperature).  One could go farther, however, by fitting different forecasting

models to average temperature for use at different horizons.  Presently we fit only a single (daily) average

temperature model, which we estimate by minimizing a loss function corresponding to 1-day-ahead mean

squared prediction error, and we then use the model for forecasting at all horizons.  Alternatively, we

could estimate by minimizing h-day-ahead mean squared prediction error when forecasting h days ahead,

effectively fitting customized models at each horizon.

Direct Modeling of Daily Maximum and Minimum Temperatures

Thus far we have adopted an aggregated, or “top-down,” approach, simply modeling and

forecasting daily average temperature directly.  We believe that there are good arguments for doing so,

linked to the possibility of misspecification, as discussed earlier.  It may nevertheless be of some interest

also to explore a disaggregated, or “bottom- up,” approach, modeling and forecasting separately the daily

minimum and maximum, and then averaging their separate forecasts.  Even under correct specification,

perhaps surprisingly, it can not be ascertained a priori whether the aggregated or disaggregated approach
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is better for forecasting.  The answer depends on the specifics of the situation; the only way to tell is to try

both approaches and compare the forecasting results, as shown in Pesaran, Pierse and Kumar (1989).

Formal Unobserved Components Modeling

It would be interesting to contrast the forecasting performance of the simple components models

used here with that of formal unobserved-components models a la Harvey (1989) potentially involving

stochastic trend and/or seasonality, in contrast to the deterministic trends and seasonals used in the present

paper.

Multivariate Analysis and Cross-Hedging

Cross-city correlations may be crucially important, because they govern the potential for cross-

hedging.  Hedging weather risk in a remote Midwestern location might, for example, be prohibitively

expensive or even impossible due to illiquid or nonexistent markets, but if that risk is highly correlated

with Chicago’s weather risk, for which a liquid market exists, effective hedging may still be possible.  An

obvious and important extension of the univariate temperature analysis reported in the present paper is

vector autoregressive modeling of daily average temperature in a set of cities, with multivariate GARCH

disturbances (note that conditional covariance may be time-varying just as are the conditional variances). 

Of particular interest will be the fitted and forecasted conditional mean, variance and covariance

dynamics, the covariance matrices of standardized innovations, and the impulse response functions

(which chart the speed and pattern with which weather surprises in one location are transmitted to other

locations). 

Weather, Earnings and Share Prices

An interesting multivariate issue involves weather-related swings in earnings.  One might

conjecture that once Wall Street recognizes that there are effective ways to manage weather risk, weather-

related swings in earnings will no longer be tolerated.  It will be of interest to use the size of weather-

related swings in earnings as way to assess the potential for weather derivatives use.  In particular, we

need to understand how weather surprises translate into earnings surprises, which then translate into stock

return movements.  Some interesting subtleties may arise.  As one example, note that only systematic

weather risk should be priced, which raises the issue of how to disentangle systematic and non-systematic

weather risks.  As a second example, note that there may be nonlinearities in the relationship between

prices and the weather induced via path dependence; if there is a freeze early-on, it doesn’t matter how

good the weather is subsequently:  the crop will be ruined and prices will be high (Richardson, Bodoukh,

Sjen, and Whitelaw, 2001).
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Table 1
Temperature Measuring Stations

City State Measuring Station Measuring Station
Symbol

Atlanta GA Hartsfield Airport ATL

Chicago IL O’Hare Airport ORD

Cincinnati OH Covington, KY CVG

Dallas TX Dallas - Fort Worth DFW

Des Moines IA Des Moines Int’l Airport DSM

Las Vegas NV McCarran Int’l Airport LAS

New York NY La Guardia  LGA

Philadelphia PA Philadelphia Int’l
Airport

PHL

Portland OR Portland Int’l Airport PDX

Tucson AZ Tucson Airport TUS
 

Table 2
Temperature-Related Variables

Variable Definition

TMAX Daily Maximum Temperature - rounded to the nearest integer  

TMIN Daily Minimum Temperature - rounded to the nearest integer

T Daily Average Temperature, (TMAX+TMIN)/2

HDD Daily Heating Degree Days, max(0, 65-T)

CDD Daily Cooling Degree Days, max(0, T-65)
    



Table 3
Missing Data

Date
Measuring
Station

Variable Reference Station 30 Year
Average
Difference

9/15/96 DSM TMAX Omaha, NE -0.33 4.40

9/15/96 DSM TMIN Omaha, NE 0.83 3.93

5/1/00 PHL TMAX Allentown, PA 1.70 2.33

5/1/00 PHL TMIN Allentown, PA 4.27 3.60

5/20/00 LGA TMIN New York CP, NY 0.40 1.87

6/23/00 PDX TMIN Salem, OR 4.83 2.83

7/12/00 PHL TMAX Allentown, PA 2.60 4.22

7/19/00 LGA TMAX New York CP, NY -1.03 1.87

7/20/00 LGA TMAX New York CP, NY -0.30 2.20

9/15/00 CVG TMAX Columbus, OH 1.30 2.89

10/3/00 PHL TMIN Allentown, PA 4.83 3.68

10/4/00 PHL TMIN Allentown, PA 4.43 3.08

Notes:  The table contains information regarding the weather stations used when the primary weather
station records a missing value.  The table lists the date the missing value was recorded, the measuring
station recording a missing value, the missing variable and the location of the reference station used in
place of the ususal measuring station.  The table also reports the thirty-year mean difference in the
missing variable as well as the thirty-year standard deviation of the difference.



Table 4
Point Forecast Accuracy Comparisons

Daily Average Temperature

Persistence Climatological Autoregressive EarthSat

Atlanta

1-Day-Ahead 4.50 6.93 4.12 2.74

3-Day-Ahead 8.00 6.88 6.45 3.84

5-Day-Ahead 8.72 6.84 6.69 5.10

7-Day-Ahead 9.07 7.04 7.03 6.04

9-Day-Ahead 8.99 6.93 6.89 6.65

11-Day-Ahead 9.28 6.59 6.59 7.00

Chicago

1-Day-Ahead 6.73 8.74 6.06 3.22

3-Day-Ahead 10.50 8.72 8.38 4.70

5-Day-Ahead 11.06 8.72 8.57 6.31

7-Day-Ahead 11.54 8.50 8.45 7.46

9-Day-Ahead 11.74 8.88 8.84 8.48

11-Day-Ahead 11.99 8.55 8.53 8.92

Cincinnati

1-Day-Ahead 6.25 8.52 5.61 2.96

3-Day-Ahead 10.30 8.58 8.21 4.49

5-Day-Ahead 11.29 8.67 8.56 6.28

7-Day-Ahead 11.54 8.50 8.45 7.46

9-Day-Ahead 11.46 8.55 8.52 8.34

11-Day-Ahead 11.82 8.51 8.51 9.09

Dallas

1-Day-Ahead 5.87 7.67 5.35 3.33

3-Day-Ahead 9.07 7.69 7.26 4.79

5-Day-Ahead 9.18 7.81 7.52 6.00

7-Day-Ahead 9.90 8.00 7.88 6.83

9-Day-Ahead 10.13 7.57 7.53 7.55

11-Day-Ahead 10.11 7.65 7.63 8.27

Des Moines

1-Day-Ahead 6.97 9.50 6.37 4.00

3-Day-Ahead 10.41 9.59 8.58 5.18

5-Day-Ahead 11.18 9.48 9.08 6.70

7-Day-Ahead 11.42 9.52 9.31 8.30

9-Day-Ahead 12.43 9.47 9.40 8.93

11-Day-Ahead 12.66 9.27 9.23 9.55

Notes:  We show each forecast’s root mean squared error, measured in degrees Fahrenheit.



Table 4 (Continued)
Point Forecast Accuracy Comparisons

Daily Average Temperature

Persistence Climatological Autoregressive EarthSat

Las Vegas

1-Day-Ahead 3.78 5.99 3.57 2.54

3-Day-Ahead 6.15 5.85 5.20 3.28

5-Day-Ahead 7.08 5.80 5.58 4.19

7-Day-Ahead 7.71 6.02 5.92 5.32

9-Day-Ahead 7.96 5.97 5.97 5.81

11-Day-Ahead 7.93 5.80 5.78 6.04

New York

1-Day-Ahead 5.84 7.22 5.23 2.70

3-Day-Ahead 9.17 6.93 6.84 4.11

5-Day-Ahead 10.16 7.18 7.19 5.63

7-Day-Ahead 9.85 7.19 7.16 6.50

9-Day-Ahead 9.58 7.18 7.15 7.53

11-Day-Ahead 10.27 6.98 6.98 8.39

Philadelphia 

1-Day-Ahead 5.53 7.12 4.95 2.61

3-Day-Ahead 8.83 6.95 6.74 3.91

5-Day-Ahead 9.83 7.27 7.23 5.35

7-Day-Ahead 9.87 7.19 7.15 6.26

9-Day-Ahead 9.55 6.98 6.95 7.24

11-Day-Ahead 10.18 7.19 7.08 8.37

Portland

1-Day-Ahead 3.71 4.57 3.34 2.49

3-Day-Ahead 5.85 4.78 4.67 3.47

5-Day-Ahead 3.71 4.57 3.34 2.49

7-Day-Ahead 6.58 4.70 4.70 4.52

9-Day-Ahead 6.73 4.75 4.75 5.16

11-Day-Ahead 6.60 4.72 4.72 5.37

Tucson

1-Day-Ahead 3.81 6.04 3.52 3.39

3-Day-Ahead 6.44 5.89 5.36 4.04

5-Day-Ahead 7.47 5.75 5.62 4.79

7-Day-Ahead 7.88 6.06 5.99 5.29

9-Day-Ahead 8.05 6.04 6.01 5.46

11-Day-Ahead 7.49 5.72 5.69 5.70

Notes:  We show each forecast’s root mean squared error, measured in degrees Fahrenheit.
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Figure 1
Time Series Plots of Daily Average Temperature

Notes:  Each panel displays a time series plot of daily average temperature, 1996-2001.
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Figure 2
Estimated Unconditional Distributions of Daily Average Temperature

Notes:  Each panel displays a histogram and associated descriptive statistics of daily average temperature, 1960-2001.
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Figure 3
Estimated Seasonal Patterns of Daily Average Temperature

Fourier Series vs. Daily Dummies

Notes: We show smooth seasonal patterns estimated from Fourier models, , and

rough seasonal patterns estimated from dummy variable models, , as discussed in detail in the text.
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Figure 4
Inverted Estimated Autoregressive Roots

of Daily Average Temperature

Notes:  Each panel displays the reciprocal roots of the autoregressive lag operator polynomial, , associated with the

estimated model  , as discussed in detail in the text.  The real component of each
inverse root appears on the horizontal axis, and the imaginary component appears on the vertical axis.
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Figure 5
Actual Values, Fitted Values, and Residuals

Daily Average Temperature

Notes: Each panel displays actual values, fitted values, and residuals from an unobserved-components model,
, as discussed in detail in the text, 1996-2001.
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Figure 6
Estimated Unconditional Distributions of Residuals

Daily Average Temperature

Notes:  Each panel displays an empirical distribution and related statistics for the residuals from our daily average temperature
model, , as discussed in detail in the text. 
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Figure 7
Correlograms of Residuals

Daily Average Temperature

Notes:  Each panel displays sample autocorrelations of the residuals from our daily average temperature model,
, together with Bartlett’s approximate ninety-five percent confidence intervals under the

null hypothesis of white noise, as discussed in detail in the text.
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Figure 8
Correlograms of Squared Residuals

Daily Average Temperature

Notes:  Each panel displays sample autocorrelations of the squared residuals from our daily average temperature model,
, together with Bartlett’s approximate ninety-five percent confidence intervals under the

null hypothesis of white noise, as discussed in detail in the text.
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Figure 9
Estimated Conditional Standard Deviations

Daily Average Temperature

Notes:  Each panel displays a time series of estimated conditional standard deviations of daily average temperature obtained from

the model, .
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Figure 10
Estimated Unconditional Distributions of Standardized Residuals

Daily Average Temperature

Notes:  Each panel displays an empirical distribution of standardized residuals from our average temperature model,
.
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Figure 11
Correlograms of Standardized Residuals

Daily Average Temperature

Notes:  Each panel displays sample autocorrelations of the standardized residuals from our daily average temperature model,
, together with Bartlett’s approximate ninety-five percent confidence intervals under

the null hypothesis of white noise, as discussed in detail in the text.
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Figure 12
Correlograms of Squared Standardized Residuals

Daily Average Temperature

Notes:  Each panel displays sample autocorrelations of the squared standardized residuals from our daily average temperature
model, , together with Bartlett’s approximate ninety-five percent confidence
intervals under the null hypothesis of white noise, as discussed in detail in the text.
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Figure 13
Forecast Skill Relative to Persistence Forecast
Daily Average Temperature Point Forecasts

Notes:  Each panel displays the ratio of a forecast’s RMSPE to that of a persistence forecast, for 1-day-ahead through 11-day-
ahead horizons.  The solid line refers to the EarthSat forecast, and the dashed line refers to the autoregressive forecast.  The
forecast evaluation period is 10/11/99 - 10/22/01, as discussed in the text. 
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Figure 14
Forecast Skill Relative to Climatological Forecast

Daily Average Temperature Point Forecasts

Notes:  Each panel displays the ratio of a forecast’s RMSPE to that of a climatological forecast, for 1-day-ahead through 11-day-
ahead horizons.  The solid line refers to the EarthSat forecast, and the dashed line refers to the autoregressive forecast.  The
forecast evaluation period is 10/11/99 - 10/22/01, as discussed in the text. 
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Figure 15
z-Statistics, Distributions and Dynamics

Daily Average Temperature Distributional Forecasts

Notes:  Each row displays a histogram for z, as well as correlograms for the first four powers of z, where z is the probability
integral transform of realized November-March HDDs, 1960-2001.  Dashed lines indicate approximate ninety-five percent
confidence intervals in the iid U(0,1) case corresponding to correct conditional calibration.  See text for details.
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Figure 15 (Continued)
z-Statistics, Distributions and Dynamics

Daily Average Temperature Distributional Forecasts

Notes:  Each row displays a histogram for z, as well as correlograms for the first four powers of z, where z is the probability
integral transform of realized November-March HDDs, 1960-2001.  Dashed lines indicate approximate ninety-five percent
confidence intervals in the iid U(0,1) case corresponding to correct conditional calibration.  See text for details.




