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Abstract

We develop an auction model for the case of interdependent values and
multidimensional signals in which agents’ signals are correlated. We provide
conditions under which a modification of the Vickrey auction which includes
payments to the bidders will result in an ex post efficient outcome. Further-
more, we provide a definition of informational size such that the necessary
payments to bidders will be arbitrarily small if agents are sufficiently informa-
tionally small.

Keywords: Auctions, Incentive Compatibility, Mechanism Design, Interde-
pendent Values.

JEL Classification: C70, D44, D60, D82

1 Introduction

The efficiency of market processes has been a central concern in economics since its
inception. Auction mechanisms constitute a very important class of market processes,
yet the analysis of auctions has typically focused on their revenue generating prop-
erties rather than their efficiency properties. This is partly due to the fact that,
for many of the problems typically studied, efficiency is trivial. When bidders have
private values, a standard Vickrey auction guarantees that the object will be sold
to the buyer with the highest valuation for the object. In the case of pure common
values - that is, when all buyers have the same value for the object - any outcome

*Postlewaite gratefully acknowledges support from the National Science Foundation. We thank
Johannes Horner, Matt Jackson, George Mailath, Steve Matthews, John Moore, Bob Rosenthal
and the participants at numerous seminars at which this paper has been presented for helpful con-
versations, and we thank the editor, Mark Armstrong and two referees for very helpful comments
and suggestions. Earlier versions of this paper circulated under the titles “Efficient Auctions with
Multidimensional Signals” and ”Efficient Auction Mechanisms with Interdependent Types and Mul-
tidimensional Signals.”



that with probability one assigns the object to some bidder will be efficient. The
intermediate case in which bidders’ values are not identical but may depend on other
bidders’ signals is more problematic. When bidders’ values are interdependent in this
way, any single bidder’s value may depend on the information of other agents and,
hence, he may not even know his own value. It is not clear what it would mean for
an agent to bid his “true” value, even before we ask if it is optimal for him to do so.

Several papers have studied efficient auctions with interdependent valuations and
independent types. In the case of two bidders, Maskin (1992) extended the Vickrey
auction to the case of interdependent values in a way that assures an efficient out-
come. Dasgupta and Maskin (1998) and Perry and Reny (1998) use the basic idea
in Maskin (1992) to construct auction mechanisms that guarantee efficient outcomes
for the case in which there are multiple units to be sold. In these papers, an agent’s
information regarding the value of the object(s) to be sold must be represented by a
one dimensional signal. Dasgupta and Maskin provide simple examples showing that,
if agents’ types are independent, there may not exist mechanisms that are efficient
when signals are multidimensional. Jehiel and Moldovanu (1998) prove a general
theorem about the generic impossibility of efficient mechanisms when bidders have
independent types and multidimensional signals.

The exclusion of multidimensional types is quite restrictive. For many problems,
individuals have private information of two very different kinds: information about
the qualitative features of the object being sold and information about themselves that
affects their personal valuation of an object with particular physical characteristics,
but does not affect others’ valuations. Potential bidders for an oil tract may have
information about the size and nature of the oil field and, in addition, information
regarding their own cost of retrieving and processing the oil. Agents bidding in a
spectrum auction may have information about the number and characteristics of the
individuals covered by the license being sold, as well as information about the value
to their company from serving that population. In such problems, the information
(type) of an agent is multidimensional and, hence, existing papers on efficient auctions
provide no guidance.

The work described above on the possibility /impossibility of efficient auction
mechanisms restricts attention to the case in which agents’ types are independent.
While this is a natural place to begin, the independence assumption is not compelling
for many problems. Often, the general structure of the problem corresponds to that
described in the previous paragraph where the value to a given prospective buyer
of the object(s) being sold depends on two qualitatively different things: objective
characteristics of the object itself (the quantity and quality of oil in a tract to be
auctioned off or the demographic characteristics of the consumers covered by a li-
cense in a spectrum auction), and idiosyncratic characteristics of the buyer (his cost
of extracting the oil in the field or his cost of serving the customers covered by a
given spectrum license). When bidders’ types include information about objective



characteristics of the object, it is likely that their types are correlated.

Cremer and McLean (1985,1988) showed that, when agents’ types are correlated,
mechanisms can be designed to induce truthful revelation of private information, and
that information can be used to ensure efficient outcomes.! When agents’ types are
correlated, the multidimensionality of information poses no problems for Bayes-Nash
implementation. However, mechanisms that rely on correlation of types to induce
truthful revelation are sometimes criticized on the grounds that in such mechanisms,
the payments to and from agents can be very large. The use of very large payments
makes it clear that such mechanisms will not be of use in the presence of limited
liability or nonlinear preferences over money. We use techniques similar to those
employed by Cremer and McLean, but we restrict attention to reward schemes in
which agents do not make payments. When agents’ types are statistically dependent,
we show that there exist efficient auction mechanisms for interdependent value auction
problems that are essentially Vickrey auctions augmented by payments to (not from)
the agents. Most importantly, we link the payment made to an agent to that agent’s
“informational size”, as formulated in McLean and Postlewaite (2002) in a model of
exchange economies in which agents had private information about the state of the
world.

If all agents are receiving signals correlated with the common but unobservable
value of the object, then any single agent’s signal may add little to the information
contained in the aggregate of the other agents’ signals. Informally, we can think of
an agent as being informationally small if it is unlikely that the probability distri-
bution of the objective characteristics of the object is very sensitive to that agent’s
information, given the information of others. When agents are informationally small,
the payments necessary for our augmented Vickrey auction will be small. Hence,
agents’ “informational rents” - as represented by the payments made to them - are
linked to their informational size. However, we should emphasize that we are not
proposing that agents are necessarily informationally small and, consequently, that
efficient outcomes can always be assured with small augmented payments.

Our definition of informational size generalizes the concept of nonexclusive infor-
mation introduced in Postlewaite and Schmeidler (1986). Nonexclusive information
was introduced to characterize informational problems in which incentive compat-
ibility would not be an issue. Heuristically, this would be the case when, for any
agent and for any information he might have, that agent’s information is redundant
given the combined information of all other agents’. In the presence of nonexclusive
information, it is straightforward to induce truthful revelation. In this case, roughly
speaking, the agents’ reports will be inconsistent when a single agent misrepresents
his information, thus revealing that some agent misreported with probability one.

One can characterize this situation as one in which an agent has no ability to alter
the posterior distribution as he contemplates the type he will announce. Our measure

1See also McAfee and Reny (1992) for subsequent work.



of informational size extends this concept in the sense that, when an agent has positive
informational size, the agent’s different types (typically) result in different posterior
distributions, given other agents’ reported types. When an agent is informationally
small, that agent is unlikely to have a large effect on the posterior given other agents’
reported types.

Our model is described in Section 2, and in Section 3 we present an example
with a simple information structure in which agents receive conditionally indepen-
dent signals of the state of nature. Section 4 provides an analysis of a more general
problem with information structures that include the conditionally independent struc-
ture of the example in section 3 as a special case. The analysis in section 4 assumes
that agents’ types are exogenously specified in a form that separates the part of an
agent’s information that affects other agents’ valuations from the part of the agent’s
information that affects only his own valuation. In Section 5, we show how the in-
formation structure for general incomplete information problems can be represented
in a way that decomposes agents’ information into these two components. Since for
many asymmetric information problems these two aspects of an agent’s information
are qualitatively different, this decomposition is of some independent interest. Some
concluding comments are contained in Section 6 and the proofs are given in Section

7.

2 Auctions

Let © = {0, .., 0,,} represent the finite set of states of nature. Each 6 € O represents a
complete physical description of the object being sold (e.g., the amount and quality of
oil). Let T; be a finite set of possible types of agent i. As stressed in the introduction,
an agent’s information may be of two qualitatively different kinds: information about
the objective characteristics of the object being sold, and idiosyncratic information
about the agent himself. The former is of interest to other agents - and consequently
is the cause of the interdependence of agents’ valuations - while the latter is irrelevant
to other agents in calculating their valuations. The state of nature is unobservable but
agent i's information about the physical characteristics of the object to be sold will
be captured by the correlation between his type t; and nature’s choice of 6. His type
t; will also capture any idiosyncratic information he may have. Agent ¢'s valuation
is represented by a function v; : © x T; — R, . That is, agent i's value for the object
depends on the physmal characteristics of the object 6, and his type ;.

Let (6,11, tg, .y bn) be an (n—|—1) dimensional random vector taking values in © x
T(T=T x---xTand T_; = x,4T;) with associated distribution P where

P(0,t1, .., tn) = Prob{f = 0,1, =t,,.... 1, = t,}.

We will make the following full support assumptions regarding the marginal distri-
butions : P(#) =Prob{# = 6} > 0 for each § € © and P(t) =Prob{t; = t,....t,, =
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tn} > 0 for each t € T.

If X is a finite set, let Ax denote the set of probability measures on X. The set of
probability measures on © x T satisfying the full support conditions will be denoted

>’<®><T

In problems with differential information, it is standard to assume that agents have
utility functions w; : T' — R, that depend on other agents’ types. It is worthwhile
noting that, while our formulation takes on a different form, it is equivalent. Given
a problem as formulated in this paper, we can define w;(t) = > ¢ [vi(0,t;) P(0]t)] .
Alternatively, given utility functions w; : T'— R, , we can define © = T and define
vi(t,t;) = w;(t). Our formulation will be useful in that it highlights the nature of
the interdependence: agents care about other agents’ types to the extent that they
provide additional information about the physical characteristics of the object being
sold.

An auction problem is a collection (vy,..,v,, P) where P € A§, . An auction
mechanism is a collection {g;, x; }ien Where g; : T'— R is the probability that agent
1 gets the object given a vector of announced types, and z; : T — R are transfer
functions.

For any vector of types t € T, let

0i(t) = Bilt_i, t:) = Y vi(0, ) P(B]t s, 1:).
0cO

Although v depends on P, we suppress this dependence for notational simplicity. The
number ;(t) represents ¢'s valuation for the object conditional on the informational
state t € T.

Definition: An auction mechanism {¢;, z; }icn is:
incentive compatible (IC) if for each i € N,

3l ) tt) = i ] PO 2 D 0504, — - ] Pl

t_q

whenever t;,t. € T;.
ex post individually rational (XIR) if

qi(t)0;(t) — x;(t) > 0 for all s and all t € T
ex post efficient (XE) if
0;(t) = max {0;(t)} whenever ¢;(t) > 0.
J

For a given auction problem (vy, .., v,, P), we will be interested in the second price
auction using the conditional values v;(t). For each t € T, let

1(t) = {i € N|ou(t) = maxd, ()}



and define
w;(t) = maxv,(t).
JijF#i
Formally, we define a Vickrey auction with conditional values (Vickrey auction for
short) to be the auction mechanism {q}, 2} };cn defined as follows:

e | ifieI(t)
qi(t)_{é))ifigéf(t)

and
i (t) = q; (D)wi(t) .

It is straightforward to show that this Vickrey auction mechanism is ex post effi-
cient and ex post individually rational. It will generally not be incentive compatible.
However, as we will show below, it is often possible to modify the Vickrey auction
payments so as to make truthful revelation an equilibrium when agents are informa-
tionally small in a sense to be defined below.

Let {zi}ien be an n-tuple of functions z; : T'— R, each of which assigns to each
t € T a nonnegative number, interpreted as a “reward” to agent i. The associated
augmented Vickrey auction with conditional values (augmented Vickrey auction for
short) is the auction mechanism {q, 27 — z; }ien

We present an example in the next section that illustrates our notion of augmented
Vickrey auctions and the relationship between informational size and the payments
that agents receive. This example also illustrates the main ideas in the proofs of
Theorems 1 and 2 discussed in sections 4 and 5 below.

3 Example

Three wildcatters are competing for the right to drill for oil on a tract of land. It is
common knowledge that the amount of oil is either 20 or 30, each equally likely. The
state in which the quantity is 20 is denoted 61 and the state in which the quantity
is 30 is denoted Oy; let © = {0, 0y }. Each wildcatter i performs a private test that
provides information in the form of a noisy signal of the state which we denote s;.
That is, agent i’s private test yields a signal H (high) or L (low); for each i, let
S; = {H, L}. The distribution of the signal for agent i, conditional on the state, is
given in the table below (p > 1/2).

state 0O, O
signal
L p 1—0p
H l—p p



Agents’ signals are independent, conditional on the state 6.

In addition to the signal regarding the amount of oil, each of the wildcatters
has private information regarding his own cost of extraction. We assume that the
extraction cost ¢; of wildcatter ¢ is drawn from a finite set. Hence, agent i’s type ¢; is
the pair (s;,¢;) comprising his privately observed extraction cost ¢; and his privately
observed signal s;. We will assume that the vector of extraction costs (ci, ¢z, c3) is
independent of the state-signal vector (6, sq, s2, s3). The price of oil is 1. Agent i’s
payoff v; as a function of the state # and his type t; depends only on # and his private
extraction cost ¢;. If t; = (¢4, s;), then his payoff should he obtain the right to drill is
given by:

vi(QL,ti) = QO—CZ'
Uz(gHytz) = 30—61

Consider the following auction mechanism. Agents announce their types and
the posterior distribution on 6 given the agents’ announcements of their signals is
calculated. Let Pg(:|s1, s2, s3) denote this posterior distribution on ©. Next, compute
the agents’ expected valuations v; for the object, where

U;(t1, b, t3) = 0;(s1, S2, S3, i) = vi(0r, ¢;)-Po (01|51, S2, 53)+vi(0m, ¢;)- Po (0|51, S2, S3)-

Let {q}, 2] }ic(1,2,3) be the associated Vickrey auction defined in section 2: the drilling
rights are awarded to the agent ¢ for whom v;(s1, 2, 83, ¢;) is highest and that agent
pays a price equal to the higher of the other two agents’ valuations. In addition, any
agent who has announced a signal equal to that announced by the majority receives
a (small) payment z > 0. Formally, the payments in the augmented Vickrey auction
are defined by z;(t1, t2,t3) = 2i(s1, €1, S2, €2, S3,¢3) = Z if s; = s; for at least one j # ¢
and zero otherwise. Since z; does not depend on ¢, we will simply write i’s payment
as z;(s1, S2, S3).

Truth is generally not a dominant strategy for the unaugmented Vickrey mecha-
nism. If agent 3 (for example) announces L when he has in fact received signal H,
his announcement of L will lower the expected valuations of all agents. In the event
that agent 3 wins the object, he will pay a lower price by announcing L. However,
the introduction of the reward z in the augmented mechanism will offset this possible
gain in expected utility when p is close to 1, thus inducing agents to be truthful. In
the example, incentive compatibility will be achieved when p ~ 1 as a result of a
subtle interplay of two ideas: informational size and the variability of agent’s beliefs.
To explain these ideas in the context of the example, let

* 1 Lk A AP * /A
U3 (81,01752762;537€3|53,C3) =4q; (51,01782702753703)%(81,82783703)—% (51701,82702,83703)

denote the payoff to agent 3 in the (unaugmented) Vickrey auction {q}, z} };cy when
agent 1 announces t; = (s1,¢1), agent 2 announces to = (82, ¢2), agent 3 announces
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th = (s5,¢;) and 3’s true type is t3 = (s3,c¢3). Since the conditional valuations of
agents 1 and 2 do not depend on agent 3’s extraction cost cs, it follows from the
definition of the Vickrey mechanism that

* ! / * !
U3 (s1,¢1, S2, Ca, S5, C4| 83, c3) < U3 (1, €1, S2, Ca, S5, €383, C3).

As a result, agent 3 will truthfully reveal his private extraction cost whether or not
other agents truthfully reveal their types and whether or not agent 3 himself truthfully
reveals his signal s3.

Hence, to prove incentive compatibility, we must show that the expected gain
from a report of (c3, L) in the augmented Vickrey mechanism {q;, z} — 2;}icq1,2,3) is
nonpositive when p is sufficiently close to 1. To evaluate this expected gain, we must
compute a sum in whose terms are

[U?T(Sl; C1, 82, Ca, L703‘H7 CS) - U§<817 C1, S2, Cg, H> C3|]¥7 C3>]+[z3(515 82, L) - Z3<817 52, H)]

weighted by the probability P(sy, c1, 2, c2|H, ¢3). Since the independence assumption
implies that
P(S1701,52702|H7 03) = P(51752|H)P(C1,C2|C3),

we will prove incentive compatibility if the sum of the terms
[U3 (81, 1, 89, €2, Ly 3| H, e3) — Uz (1, ¢1, 82, ca, H, 3| H, c3)|+[23(s1, 52, L) — 23(81, 52, H)]

weighted by P(s1, s2|H) is nonpositive for each ¢, ¢y, c3 when p is sufficiently close
to 1.

In the example, agent 3 (and the others as well) is informationally small when
p ~ 1 in the sense that, upon observing the signal H, agent 3 concludes that an an-
nouncement of L will with high probability have only a small effect on the distribution
over states conditioned on the information of all three agents: that is, P(H, H|H) ~ 1
and Po(-|H,H,H)— Po(-|H,H, L) ~ 0 when p ~ 1. Since P(H, H|H) ~ 1, the (total)
expected utility gain from a lie will be approximately equal to the gain from a lie
when agents 1 and 2 have each reported H?2.

On the other hand, Pg(:|H, H,L) — Po(-|H, H, H) ~ 0. This in turn implies that
0;(H,H,L,c;) —0;(H,H, H,¢;) ~ 0 for : = 1,2 and it follows that the utility gain to
3 from a lie of L when the others have reported H will be small. In particular,

Ug(HaclvHac%LyCi’)lHyC?)) - Ug(H7017H7027H7C3|H7C3) ~0

2That is,

Z [U§(51,C1,82,CQ,L,63|H, 03) — U§(31701,52,C2,H, 63|H, 63)] P(81752|H)

51,52

~ U;(H7017H7627L703|H703) - Ug(HaclaHaCQaHaC3|ch3)-



when p ~ 1. In summary, a lie of L when 3 has received signal H may result in a
positive gain in expected utility but that gain will be close to zero when p is close
enough to 1.

The signal of agent 3 can be truthfully elicited if his expected reward from match-
ing the announcement of at least one other agent is at least as large as his expected
utility gain. In our mechanism, P(H, H|H) ~ 1 when p ~ 1 so

Z Z [23(517823L> - 23(817527H)] P(51’32|H> ~ 23(H7 H7 L) _Z3(H7 H? H) = —Z.

$1€851 s9€852

These same arguments can be applied to the situation in which 3 receives the sig-
nal L but reports H. Combining these observations, it follows that for any z > 0,
our mechanism will be ex post efficient, ex post individually rational and incentive
compatible whenever p is sufficiently close to 1. When p ~ 1, the agents are informa-
tionally small and, as a result, the incentive provided by a small payment z will offset
the small expected utility gain from misrepresenting and truthful revelation will be
an equilibrium.

In a more general model in which the probabilistic structure is more complex
than the conditionally independent noisy signal structure of the example, our ability
to find rewards z; for which the expected gain in reward will dominate the expected
gain in utility will depend on the variability of agents’ beliefs, that is, on the difference
between the conditional distributions P(-,-|H) and P(-,-|L) on Sy x Ss. If, for example,
these conditional distributions were equal, then we cannot find a system of rewards
satisfying the inequalities

Z Z [23(51, 82, L) — 23(51, 82, H)] P(s1,52|H) <0

51€851 s2€852

and

> > [esls1, 52, H) = 23(s1, 52, L)] P(s1, 55| L) < 0.

$1E€S1 $2€S52
Even if the expected utility gains are small positive numbers, we will have difficulty
constructing an incentive compatible mechanism. Hence, the closeness of 3’s beliefs
P(-,-|H) and P(-,-|L) on S; x Sy will play a role in our analysis.

In summary, agents must be informationally small and beliefs must be sufficiently
variable in order to construct augmented Vickrey auctions that satisfy incentive com-
patibility. In the next section, we present a model that generalizes several features of
this example and formalizes the concepts of informational size and variability.



4 Efficient Auction Mechanisms

4.1 The Model

In this section we will assume that the set of types for agent i has the special product
form T; = S; x C; where Sy, ..., S, and C4, ..., C, are finite sets. An element s; € S;
will be referred to as agent i’s signal. An element ¢; € C; will be referred to as agent
i’s personal characteristic. Let S = S; x --- x S, and S_; = X;S;. The product
sets C' and C_; are defined in a similar fashion. We will often write t = (s, ¢) and
t; = (s;,¢;) where s and ¢ (s; and ¢;) denote the respective projections of ¢ (t;)
onto S and C (S; and C;). Both the signal s; and the personal characteristic ¢; are
private information to ¢ with the following interpretations: s; represents a signal that
is correlated with nature’s choice of 6 and ¢; represents a set of other idiosyncratic
payoft relevant characteristics of agent i that provide no information about 6 or s_;
beyond that contained in s;. In our example, the extraction cost ¢; of each wildcatter
corresponds to the agent’s personal characteristic and, since costs are assumed to
be independent of the state and the agents’ signals, it is certainly the case that ¢;
contains no information about 6 or s_; beyond that contained in s;. We assume?® that
the random vectors (é, 5) and ¢ are stochastically independent, i.e.,

P(6,t) = P(0,s,c) = P(0,s)P(c).

We denote by Af, g, denote the set of measures in A}, o, o satisfying this stochastic
independence assumption.

4.2 Informational Size and Variability of Beliefs

We now formalize the idea of informational size discussed in section 3 above. Our ex-
ample indicates that a natural notion of an agent’s informational size is the degree to
which he can alter this posterior distribution on © when other agents are announcing
truthfully. Any vector of agents’ signals s = (s_;, ;) € S induces a conditional dis-
tribution on Pg(+|s_;, s;) on © and, if agent 7 unilaterally changes his announcement
from s; to s}, this conditional distribution will (in general) change. If i receives signal
s; but announces s; # s;, the set

{S,¢ € sz| HP®<"372’, Si) - P®<'|S*i7 S;)H > 6}

consists of those s_; for which agent i’s misrepresentation will have (at least) an “c—
effect” on the conditional distribution. (Here and throughout the paper, || - || will
denote the 1-norm.) Let

vl (s5,5;) = min{e € [0, 1]|Prob{ ||Po(-|5_s, 5:) — Po(-|5_s, s5)|| > €|5; = s;} < e}

(3

3This assumption can be weakened. See point 11 in the discussion section.
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To show that v (s;, s}) is well defined, let

F(e) = Prob{||Po(:|5i, s:) — Po([5-i, 53)l| <eldi = s:}.

Hence, the set {¢ € [0,1]|1 — F(¢) < €} is nonempty (since 1 — F(1) < 1), bounded
and closed (since F' is right continuous with left hand limits.)
Finally, define the informational size of agent i as

Vi = max Vi (Si,S;).
}
Si,SiESZ‘

Note that v/ = 0 for every i if and only if Pe(:|s) = Po(:|s_;) for every s € S and
i€ N.*

There are two important features of this definition. First, an agent’s informational
size depends only on that part of his information that is useful in predicting 6, and
second, an informationally small agent may have very accurate information about the
state 6.

In our discussion of the example in section 3 above, we indicated that the ability
to give agent ¢ an incentive to reveal his information will depend on the magnitude of
the difference between Ps_(-|s;) and Ps_,(|s;), the conditional distributions on S_;
given different signals for agent i. We will refer to this magnitude informally as the
variability of agents’ beliefs.

To define formally the measure of variability, we treat each conditional Ps_,(-|s;) €
Ag_, as a point in a Euclidean space of dimension equal to the cardinality of S_;.
Our measure of variability is defined as®

PS _ ; Je) — IE
APS = min min 1Py, (1s) = Ps (I

4.3 The Result

We now state our first result on the possibility of efficient mechanisms.
Theorem 1: Let (vy, ..,v,) be a collection of payoff functions.

(i) If P € AL, g, satisfies AP > 0 for each i, then there exists an incen-

tive compatible Augmented Vickrey auction {q, z} — z;},cn for the auction problem
(V1 vy U,y P).

(ii) For every € > 0, there exists a § > 0 such that, whenever P € AL, . - satisfies

. APS
max v} < §minA; ",
(2 (2

4This is essentially the case of nonexclusive information introduced by Postlewaite and Schmeidler
(1986) and is discussed further in the last section.
°See McLean and Postlewaite (2002) for further discussion of informational size and variability.
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there exists an incentive compatible Augmented Vickrey auction {¢}, xj — z;};en for
the auction problem (vy, .., v,, P) satisfying 0 < z;(t) < € for every ¢ and ¢.

Part (i) of Theorem 1 states that, if A7 is positive for each agent i, then there
exists an incentive compatible augmented Vickrey mechanism for the auction problem
(v1, .., Un, P). The hypotheses of part (i) only require that each Af’s be positive and
places no lower bound on the magnitude of AZP’S. Furthermore, the informational size
of the agents is not important. On the other hand, the conclusion of part (i) places
no upper bound on the size of the reward z;. These rewards can be quite large.

Part (ii) of the theorem states that there exists an incentive compatible augmented
Vickrey mechanism with small payments if, for each i, Af’s is large enough relative to
the informational size of agent i. To illustrate part (ii), consider again the example
in section 3 where we showed the following: for every € > 0, there exists a p > 0 such
that, whenever p < p < 1, there exists an incentive compatible augmented Vickrey
auction {q}, 2] — zi}icq1,2,3y satisfying 0 < z;(t) < € for all ¢. This result can now
be deduced as an application of (ii) since, in the example, each v — 0 and each
AP® S lasp—1.

While the technical details of the proof are deferred until the last section, we can
sketch the ideas here for the special case in which T; = S; (i.e., each C; is a singleton).
There are two key steps. First, we show (see Lemmas A.1 and A.2) that for all i , all
si, sy € S;and all s_; € S,

(7 (5)0i(s) = 7 () = (g (54, 87)0i(s) — @7 (53, 57)) = —M|[Po(-|s—i, si) = Po(-|s—i, i)

where
M = maxmlaxmsaxvi(Q,si).

This result is of some interest in its own right. If ||Po(-|s_, ;) — Po(:|s—s, s)|| is
“small” uniformly in s;, s, and s_;, then truthful reporting is an “approximate” ex post
Nash equilibrium in the (unaugmented) Vickrey mechanism {g;, z}}. For example, if
0 and § are independent, then ¢;(s) depends only on s;. In this case, ||Po(-|s_i,s;) —
Po(-|s—i,s;)|| = 0 for all i, all s;,s; € T; and all s_; € S_; and we deduce the
classic result for Vickrey auctions: truthful reporting is a dominant strategy with
pure private values.

Of course, ||Po(|s—i, $;)— Po(:|s—i, s;)|| is generally not uniformly small. However,
we can use the concept of informational size to show that

> g (9)0i(s) = i(8)) — (45 (s, 1)0i(5) — @} (54, 87))] Pls—ilsi) = —3MDf.

5

If all agents are informationally small, then truthful reporting is “approximately”
incentive compatible in the (unaugmented) Vickrey mechanism {q;,z;}. If 2(s) is
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the reward to i when the bidders announce s, then the associated augmented Vickrey

auction {q, zF — z;} will be incentive compatible if and only if

> lzi(s—iy si) — zi(s_i, 8))] P(s_i|s;) — 3M& > 0

54

for each s;, s; € S;. This is the generalization of the analysis of the example in section
3.
It can be shown that there exists a collection of numbers (;(s) satisfying 0 <
Gi(s) <1and
Z [Gi(5-i, 8i) — G54, )] P(s-i[si) >0

5

for each s;, s; € S; if and only if Af’s > 0. Part (i) of the theorem now follows: choose
Gi(s) to satisfy these inequalities, define z;(s) = a(;(s) and choose « large enough
so that incentive compatibility is satisfied. Of course, as we mentioned above, the
resulting z/s can be large.

Part (ii) is more delicate. Unfortunately, the optimal value val;(P) of the linear
program

max
ﬂ:(i (S) 6

s.t. Z [Ci(5_iy81) — Gi(s_s, 80)] P(s_4|s;) > (3 for all s;, s/

0 <((s) <1foralls

is not bounded from below by a positive number, uniformly in P. If this were the
case, then the existence of an incentive compatible augmented Vickrey auction with
small payments would depend only on informational size. Instead, val;(P) — 0 as
Af S 0. In order to prove (ii), we require that each Af " be large enough relative
to the informational size of agent 7.

5 Efficient Auction Mechanisms: The General Case

The mechanism in the previous section is successful in achieving an efficient outcome
because it deals differently with the component of an agent’s information that affects
other agents’ valuations and with the component that affects only his own valuation.
Since second-price auction techniques handle the latter, one need only extract the for-
mer to achieve efficient outcomes. The information structure in the previous section
assumed that the set of types of an agent could be expressed as the Cartesian prod-
uct of signals and personal characteristics and that the information structure satisfied
stochastic independence. Stated differently, we assumed that assumed that agents’
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types were exogenously decomposed into “private” and “common” components. Gen-
eral information structures will typically not have this form, and consequently the
result in the previous section may not apply. In this section, we show how the infor-
mation structure for general incomplete information problems, even those without a
product structure, can be represented in a way that decomposes agents’ information
into “signals” and “private characteristics.”

In order to extend the ideas of the special model of section 4 to the general problem
defined in section 2, we need to define the appropriate generalizations of informational
size and variability of beliefs. Let

vl (ts,t;) = min{e € [0, 1]|Prob{ ||Po(-|t_s,t;) — Po(:|t_s,t}))|| > elt; = t;} < e}
and define the informational size of agent i as

vl = max v (t;,t)).
it €T,

This is the definition introduced in McLean and Postlewaite (2002). If T; = S; x C;
and if P € AL, ¢, then the definition of v//” given above coincides with the definition
of informational size given in section 4.

To extend the notion of variability of beliefs, we begin with the definition of
information decomposition.

Definition: An information decomposition (ID) of P € A§, r is a collection D
consisting of sets Ry, .., R, and surjections g; : T; — R; satisfying:

(i) for all i, for all ¢;,¢; € T; and for all t_; € T,

9i(t:i) = 9i(t;) = Po(-|t—it;) = Po(:|t_s,1;).

(i) for all i, for all ¢;,¢; € T; and for all r_; € R_;,

gi(t:) = gi(t}) = Prob{g;(t;) = r;Vj # i|t; = t;} = Prob{g;(t;) = r;Vj # ilt; = t;}.

We interpret g;(t;) as that “part” of an agent’s information that is “information-
ally relevant” for predicting the state of nature §. Condition (i) has the following
interpretation: given a type profile t_; € T";, a type t; € T; contains no information
that is useful in predicting the state 6 beyond that contained in the informationally
relevant part g;(¢;). Condition (ii) states that a specific type t; € T; contains no infor-
mation beyond that contained in g;(¢;) that is useful in predicting the informationally
relevant profile of other agents.

Every measure P has at least one information decomposition: this is the trivial
decomposition in which T; = R; and g; = id. However, a measure P can have more
than one ID. If each T; = S; x C; as in section 4 and if P € AL, 4., then P has a
second information decomposition where R; = S; and g; is the projection of 7; onto
S;.
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Given an information decomposition D = {R;, g; }ien for P € A}, 1, we let PP
denote the distribution on R = Ry X --- X R, induced by the map (ti,..,t,) —
(g1(t1), .-, gn(ty)). That is, for each (r1,..,7,) € R,

PP(ry,..,rn) = Prob{t; € g7 *(r;) Vi € N}.
Given an information decomposition D, let

AP,D: : : PD ry _PD ! 2.
min o (1Pre (i) = Pe, ()l
If each T; = S; x C;, R; = 5; and g; is the projection of T; onto .S;, then Af’D
coincides with A7 as defined in section 4.

Using these definitions of informational size and variability of beliefs, we can
generalize Theorem 1 as follows.

Theorem 2: Let (vy,..,v,) be a collection of payoff functions.

(i) Let P € Agyp. If there exists an information decomposition D for P with
Af P > 0 for each i, then there exists an incentive compatible Augmented Vickrey

auction {qf,zf — z }ien for the auction problem (vy, .., vy,, P).
(ii) For every € > 0, there exists a 6 > 0 such that, whenever P € Ay, , satisfies

. APD
max v < §minA;’
(2 (2

for some information decomposition D of P, there exists an incentive compatible
Augmented Vickrey auction {¢,zf — z;};en for the auction problem (vy,..,v,, P)
satisfying 0 < z;(t) < e for every i and ¢.

Theorem 1 is an immediate corollary of Theorem 2. It is possible that a measure
P has only one ID, the trivial decomposition (denoted D°) where T; = R; and g; = id.
For this decomposition, it follows from the definitions that

PD® _ min m J8) — AV
A; —trinelgt;rer%r\ltillPT,i(|tz) Pr_.(-1t;)]|

where Pr_(-|t;) is the conditional on T_; given #; = t;. For the trivial ID D°, we have
the following corollary to Theorem 2.

Corollary 1: Let (vy,..,v,) be a collection of payoff functions.

(i) If P € A§,r satisfies Pr_,(-|t;) # Pr_,(:|t;) for each ¢ = 1,...,n and for each
t;,t; € T; with t; # t,, then there exists an incentive compatible Augmented Vickrey
auction {qf,xf — z }ien for the auction problem (vy, .., vy, P).

(ii) For every € > 0, there exists a 6 > 0 such that, whenever P € Ay, - satisfies

. APDO
max v} < dminA;"
(2 1
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there exists an incentive compatible Augmented Vickrey auction {¢}, xj — z;};en for
the auction problem (vy, .., v,, P) satisfying 0 < z;(t) < € for every ¢ and ¢.

As a final remark on the relationship between our results, we note that Corollary
1 can also be deduced as a special case of Theorem 1 in which each C; is a singleton
and T; is identified with S;. If each Cj is a singleton, then stochastic independence is
trivially satisfied and Corollary 1 follows from Theorem 1.

6 Discussion

1. As pointed out in the example, truthful revelation is an equilibrium for our aug-
mented Vickrey auction mechanisms, but not the unique equilibrium. One should
be able to use the techniques in the literature on exact implementation to construct
nonrevelation games that eliminate the multiplicity of equilibria.®

2. In this paper, we focus on the augmented Vickrey auction and show that an
efficient outcome can be assured with payments to the agents that depend on the
agents’ informational size. The mechanism that we analyze will not, in general, max-
imize the net revenue to the seller. In proving our theorem, we demonstrate that
for any limit on the total payments to the agents, we can guarantee a structure of
payments depending on agents’ announcements that will assure incentive compatibil-
ity if agents are sufficiently informationally small. Although the payments that we
construct will not typically be the minimal payments that induce truthful announce-
ment, it must be the case that any increase in expected net revenue to the seller that
can be achieved through optimizing the structure of payments to agents is limited by
the total payments identified in our result.

There is a second way the mechanism we analyze may be inefficient that may be
more important, however. In our mechanism agents announce their types, and these
types are used to calculate agents’ conditional values. The agent with the highest
conditional value obtains the object at the second highest conditional value, and
the difference between the first and second highest valuations constitutes a rent to
the winning bidder. Suppose agents’ types consist of a signal about 6 and a private
characteristic. The winning bidder’s rent will then depend on his private characteristic
and the private characteristic of the agent with second highest conditional value.
While the seller may not be able to eliminate this rent when the private characteristics
are stochastically independent, we have not made any assumptions regarding such
independence. If private characteristics are not independent, there may be scope for
extending our techniques to extract this rent. Of course, the possibility of extracting
this rent has no bearing on whether the auction mechanism is efficient, which is the
focus of this paper.

6See, e.g., Postlewaite and Schmeidler (1986), or the surveys of Moore (1992) and Palfrey (1992).

16



3. We have ignored the Wilson critique in our analysis since the agents’ beliefs
are used to construct the mechanism. Specifically, the agents face rewards that are
functions of the profile of announced types and the construction of these rewards
depends on the distribution of agents’ types.

In general, the realism of any mechanism which depends on the distribution of
agents’ types is questionable at the very least, since we expect that such fine details
of the environment are likely not available to the seller. While our mechanism is
certainly subject to this concern, it is worth discussing the point before passing on.

In our motivating three person example, each agent receives a reward if his an-
nounced signal matches at least one other agent’s announcement. Suppose that we
fix the reward size, say at 1. Then there is a minimum p (the precision of the signal
agents receive) for which truth will be an equilibrium, and truthful announcement
continues to be an equilibrium for any higher precision of agents’ signals. Hence,
one could “propose” the mechanism that is defined in this way: agents announce
their types, and the highest conditional value agents receives the object at the second
highest conditional valuation, and agents whose announcement matches at least one
other agent’s announcement receive a reward of 1. This mechanism is not subject to
the Wilson critique since its definition is independent of the distribution of agents’
types. Of course the mechanism is not generally optimal. For distributions associated
with precisions greater than p, the rewards are larger than need be, and for distribu-
tions associated with precisions below p, truthful announcement of types will not be
incentive compatible. The mechanism may nevertheless be of interest to a seller who
cares about efficiency and who has some idea of the information structure, namely
that the distribution of agents’ types is one of the infinitely many distributions for
which agents’ signals have precision greater than p. While it may be unrealistic to
assume that the seller should know precisely the distribution of agents’ types, it is not
unreasonable to believe that in some circumstances the seller could have the crude
information necessary to choose the mechanism with rewards of 1 for agents who
match at least one other announcement.

4. In section 4, we assume that agents’ type sets are finite. If the signals and personal
characteristics of agents’ information are separated, it is only the signal sets that need
to be finite. The set of personal characteristics can be finite, a continuum or some
combination without affecting the possibility of efficient mechanisms.

5. As mentioned in the introduction, McLean and Postlewaite (2002) introduced a
notion of informational size similar to that used in this paper. That paper deals
with pure exchange economies with private information in which an agent’s utility
function depends only on the realized state 6 € ©. The preferences in the present
paper are more general in the sense that agent i’s utility may depend on his type ¢; as
well as the state . The extension of our methods to this case is possible because of
the properties of the Vickrey auction for which there are no counterparts in a general
equilibrium environment.
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6. We treated the case of a single object to be sold. Our techniques can be extended
to the problem of auctioning K identical objects when bidders’ valuations exhibit
“decreasing marginal utility,” i.e., when v;(k+1,0,t;) — v;(k,0,t;) > v;(k+2,0,t;) —
vi(k +1,0,t;) where v;(k,0,t;) is the payoff to bidder when the state is 6, his type is
t; and he is awarded k objects.

7. We now expand briefly on the relationship of our paper to those of Cremer and
McLean on full surplus extraction (1985,1988). The main point of the Cremer-
McLean papers is that correlation of agents’ types allows full surplus extraction.
In the models in those papers (as in the present paper), players’ payoffs include pay-
ments that depend on other agents’ types. In the Cremer-McLean setup, the type
of correlation (for example, the full rank condition in their 1985 paper) permits the
construction of announcement dependent lotteries, where truthful revelation gener-
ates a lottery with zero conditional expected value while a lie generates negative
conditional expected value. If the lotteries are appropriately rescaled, then the incen-
tive for truthful reporting can be made arbitrarily large and an incentive compatible
mechanism that extracts the full surplus can be found.

In part (i) of (for example) Corollary 1, we only require that the conditional
distribution on T_; be different for different #/s. That is, we only require that A"
be positive. This is weaker than the full rank condition (and is also weaker than
the cone condition in their 1988 paper) and the implication is concomitantly weaker.
Our assumption only permits the construction of announcement dependent lotteries
where truthful revelation generates a lottery whose conditional expected value exceeds
the conditional expected value from a lie. Using the full rank condition and some
additional assumptions on the conditional payoff v(¢), Cremer-McLean construct a
mechanism that extracts the full surplus from bidders (see Corollary 2 in Cremer-
McLean, 1985). This mechanism is necessarily ex post efficient. Under the weaker
conditions of this paper, we construct (in part (i)) a mechanism that is ex post efficient
but which may not extract the full surplus. In addition, the payments in a Cremer-
McLean mechanism can be positive or negative and they can be large in absolute
value. Our paper differs in that we introduce only nonnegative payments. Hence,
our techniques do not require unlimited liability on the part of buyers (although the
seller may be constrained by the necessary payments that would induce incentive
compatibility).

The more interesting part of our results — the ability to induce incentive compati-
bility with small payments when agents are informationally small — has no counterpart
in the Cremer-McLean analysis.

8. Many auction papers restrict attention to symmetric problems in which bidders’
types are drawn from the same distribution. It should be noted that we make no
assumptions on the distribution of bidders’ types. However, if agents’ beliefs exhibit
positive variability, then their types cannot be independent. Several papers analyzing
interdependent value auction problems make assumptions regarding the impact of a
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bidder’s information on his own valuation relative to other bidders’ valuations (see,
e.g., Maskin (1992), Dasgupta and Maskin (1998) and Perry and Reny (1998). We

make no such assumptions.

9. The general mechanism design approach that we use in this paper has been crit-
icized on the grounds that revelation games are unrealistic for many problems. The
examples used to illustrate mechanisms typically have simple information structures,
as in our example in section 3, in which an agent’s type is simply a pair of numbers
- the quantity of oil and the cost of extracting it. In general, however, an agent’s
type encompasses all information he may have, including his beliefs about all relevant
characteristics of the object, his beliefs about others’ beliefs, etc. When types are
realistically described, it seems unlikely that the revelation game could actually be
played.

We are sympathetic to this argument, but we want to stress that the underlying
logic by which efficient outcomes are obtained in our model does not depend on the
particular revelation game we used; similar outcomes might be obtained through a
non-revelation game. Consider first the following two-stage game. The second stage
is a standard Vickrey auction. In the first stage, agents forecast the highest bid in
the second stage, excluding their own bid, and these forecasts are made common
knowledge prior to the second stage. An agent is rewarded if the error is his forecast
is smaller than some specified level.

Suppose that agents with favorable private information about the value of the
object to others forecast high bids. When these forecasts are made public, each
agent may be able to infer other agents’ information from their forecasts. If they
are able to do this, the asymmetry of information will have been eliminated, and the
second stage Vickrey auction will assure an efficient outcome. Of course, agents might
“manipulate” the system by making strategic rather than naive forecasts that will take
into account the effects of their announcements in the second stage auction. However,
the effect of strategic forecasting will be small if agents are informationally small.
Hence, as in the case our mechanism, the reward for correct forecasting will dominate
the potential benefits from strategic forecasting when bidders are informationally
small.”

10. In this paper we investigated the general problem of the conflict between
the extraction of information from agents and the use of that information to ensure
efficient allocations. Pesendorfer and Swinkels (2000) analyze a model in which a
number of objects are to be auctioned off to a number of bidders. They assume an
informational structure that is similar to ours: each agent gets information about a
personal taste parameter and a signal about a common value component. Pesendorfer
and Swinkels study the problem when the number of agents increases and provide
conditions under which the objects are allocated efficiently in the limit. It is easy

"See McLean and Postlewaite (2001) for an investigation of such a mechanism.
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to see that in their framework, each agent’s informational size goes to zero as the
number of agents goes to infinity.

11. Theorem 1 of Section 4 assumed that the random vectors (6, 3) and & were
stochastically independent. However, the conclusions of Theorem 1 will hold under
a weaker condition that we call Informational Independence. Formally, a probability
measure P € A§, g, satisfies Informational Independence if for each (6, s,c) € © x
S x C, (i) Po(f|s,c) = Pe(l]s,c—;) and (ii) Ps_,(s_4|si,¢;) = Ps_,(s—:|s;). Obviously,
informational independence is weaker than the stochastic independence assumption of
section 4. Furthermore, it can be shown that, if P € Ay, g, satisfies informational
independence, then P admits an information decomposition D = {g;, R; };cn where
R; = S; and g; is the projection of T; onto S;. As a result, Theorem 1 will still hold
under the assumption of Informational Independence.

7 Proofs:

7.1 Preparations for the Proof of Theorem 2:

In this section, we begin with two lemmas that are of some independent interest.

Lemma A.1: Let (vy,..,v,) be a collection of payoff functions and let {¢}, z} }icn
be the associated Vickrey auction mechanism. For every ¢ € N and for each t € T
and t; € T;,

(g7 ()0s(t) — w7 (t)) — (g7 (t i, t)0s(t) — ] (t i, 1)) = —[wi(t—s, ;) — wi(t—s, i)

Proof: Choose t € T and t; € T;.
Case 1: Suppose that 0;(t_;,t;) < w;(t_;,t;). Then

q;k(tﬂ'? t;) = x:(t*b t;) =0
SO

(@7 (£)0:(t) — 27 (1) — (g (t-i, 1) 0 (t) — 2 (s, 7))
= ¢ (O)o(t) — 27(t)
0

>
> —|wi(t-i, t;) — wit—i, ;).

Case 2: Suppose that 0;(t_;, ;) > w;(t_;,t;). Then

i (ti, t7)0s(t) — 27 (ts,t;) = 05(t) — wi(t_s, 7).

20



If 0;(t_;, t;) > w;(t_;, t;), then
q; (£)0s(t) — 27 (t) = 0i(t) — wilt—i, ta).
If 0;(t_i, t;) < w;(t_;,t;), then
q; (£)0i(t) — @7 (t) = 0 = 05(t) — wi(t—s, 1)
Therefore,

(@ (£)0:(t) — 7 (1) — (g (t-i, 1) 0:(t) — 27 (s, 17))

0i(t) —wi(t-i, ;) — (0:(t) — wilt—i, t;))
wi(t,i, t;) — W; (t,i, tl)

vV —

Case 3: Suppose that 0;(t_;, t;) = w;(t_;, t;). Then

1
(s 00) =700 = o (050) = it )
If @i(t,i, tl) > wi(t,i, tl), then
1
V0 (1) — 25 () = () — wi(t s ) > ———— (6:(4) — wi(t . £.))
q; (1)0:(t) — 7 (t) = i) wl(t_“tz)_|I(t_i,t;)|(vz(t) wi(t—i,t;))

If 9;(t_;,t;) < w;(t_;,t;), then

* ~ * _ 1 ~
g; (t)0i(t) —z;(t) = 0> T (0s(t) — wi(t_i, ti)) -

Therefore,

(@ (£)0:(t) — 7 (1)) = (g (t—i, 1) 0:(t) — 27 (s, 7))

R 1 X ,
> m (0:(t) —wi(t_i, t;)) — m (0i(t) — wilt—i,t}))
1 / —_ w . .
= )] (wi(t i, t;) — wi(t i, t;))
> —mm(t—i,t;) —wi(t_i,ti)|

> —|wi(t-i, t;) — wit—i, ;).

This completes the proof of Lemma 1.

If each 0;(t) is a function of ¢; only, then |w;(t_;, ;) — w;(t_;, t;)] = 0 and Lemma
A.1 yields the familiar result for Vickrey auctions with pure private values: it is a
dominant strategy to truthfully report one’s type.
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Lemma A.2: Let (vq,..,v,) be a collection of payoff functions and let {q}, z} }ien
be the associated Vickrey auction mechanism. Let

M = MaX Max max v;(6,1;)
R

L

and let P € A§, r. For every i € N and for each t_; € T; ,t; € T; and t; € T;,

lwi(t—s, t;) — wi(t_i, t;)| < M||Po(:|t—s,t;) — Po(-|t—i, ;).

Proof: Choose t_;,t;,t,,j # i and j' # i so that

7 oco 6o

and

wilt-i,t0) = max > [on(6,t0) Po(Olt 1, £)] = 3 [oy (6. ) Po (61, ).

0cO 0O

Note that t; and t;s are, respectively, the j and j' components of the vector ¢_;. From
the definitions of ¢; and ¢, it follows that

D [05(0,t5) — vy (0, 8)] Po (6]t i, ts) > 0

6cO
and
> [v;(0,15) — v (0,5)] Po (6]t i, ;) < 0.
ISC]
Therefore,
> (6, t;) [Po (6]t i, t:) — Po(Olt s, )]
0cO

< S 0p(0,t) [Po(Olt—i.t:) — Po(lt—i, t)] + 3 [0;(0, ;) — vy(6, t;7)] Po(6lti.1,)
6cO 0cO

= wi(t_i,ti) — wl(t_,,t;)

= Y 0;(0,t;) [Po(Blt_i,t:) — Po(Blt_i, )] + > _ [v;(0,t;) — v;:(6, ;)] Po(6]t_i, 1;)

0cO 0cO

> " 0;(0,t) [Po(O]t—i, t:) — Po(Olt_i,1})]

0cO

IN

and we conclude that
|wi(t*i>ti> - wl<t*lat;)| < M||P®<|t*1>tl> - P@(‘t,,,t;)H
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This completes the proof of Lemma 2.

We prove one final technical result.

Lemma A.3: Let X be a finite set with cardinality k£ and let p,q € Ax. Then

B R EE=:
- i = pP—q

Ipll2 gl 2

where || - ||2 denotes the 2-norm and || - || denotes the 1-norm.

Proof: Direct computation shows that

2

{ P q }‘p: pll2 || » g
Ipllz gl 2 el gl
and

2

The result follows by combining the facts that ||p||z > 1/VE, k(|[p—q||2)> > ||p — ¢||?

HL _a
Ipllz lall2
7.2 Proof of Theorem 2:

21
> —|llp—q|l2)*.
| =2l

We prove part (ii) first. Choose € > 0. Let

M = MaX Max max v;(6,1;)
S

12

and let K be the cardinality of 7. Choose 6 so that

0<éd<

6MK3Z
Suppose that P € Aj, ;- has an information decomposition satisfying

. APD
max v} < §minA;".
K3 K3

Define #F = max; vFand AP = min; APP. Therefore 7F < §APP.
Next, define

D (r Ir.
Gi(r_iyms) Py (r_i|r:)

PR Clra)ll2

for each (ry,..,r,) € Ry X -+ X R,, and note that

0<G(r,m) <1
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for all i, r_; and r;. Now we define an augmented Vickrey auction mechanism. For
each t € T, let

zi(t) = €Gi(91(tr), -, gn(tn))-

The mechanism {¢}, x} — z; }ien is clearly ex post efficient. Individual rationality
follows from the observatlons that

q; (t)0i(t) — 27(t) 2 0

and
zi(t—i, ;) > 0.

To prove incentive compatibility, we consider two cases. First suppose that g;(¢;) =
gi(t}). From part (i) of the definition of information decomposition, it follows that
lw;(t_, th) — w;(t_;,t;)| = 0 for all t_; € T_; and incentive compatibility is a conse-
quence of Lemma A.1.

Now suppose that g;(t;) = r; and g¢;(t;) = r, with r; # r, . The proof of incentive
compatibility will follow from the next two claims.

Claim 1:

Nl

AP,’D

S (alt o) — alt o t)) P(tilts) > 2o

2
t—;

Proof of Claim 1: Part (ii) of the definition of information decomposition implies

that
> Pltll) = PR (rolf)
t_;eT_;
g—i(t—i)=r—i

whenever g;(t;) = #;. Therefore,

> (ailtoist) = zilt—i, 1)) P(t_it:)

t_i

= D (Glg-ilt=i) 9i(t:)) = Glg—ilt—i), ga(t)) P(t—i]t:)

t—;

= 52 Cz 7"7@77“1 Q(T%?rz)] Z P(t*im)

t_;€T_;
ig—i(t—i)=r—i

= € Z [Gi(r—s,73) = Gi(r—i,77)] Pgﬂv(r*i‘ri)

_ EZ PE (r_|rs) B PE (r_|r})
e PR (Clr)ll2 [IPE ¢l

PR (r_|r)
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eK™2

2
PR (-Iri) = Pg_(Ir)ll

> , ,

- 2 2 i
_5

> EI(Q QAf’D

where the last inequality is an application of Lemma A.3.

Claim 2:

> (g @)0a(t) — a3 (1)) — (g7 (i t)Bi(t) — 2} (t_s, £)))] P(t_ilt;) > —3M D"

ti
Proof of Claim 2: Define
Si(tisti) = {t—s € T-i| ||Po(-|t—i,t:) — Po(-[t—it)|| > o'},
Since v/ < P we conclude that
Prob{t_; € S;(t;,t)|t; = t;} < v < ¥,

Ift_; ¢ Si(t},t;), then Lemmas A.1 and A.2 imply that

> g 0oa(t) — w5 () = (g (i, t)8i(t) — 27 (i, 1)) P(t_ilts) > —MDP.
t @St t:)

Finally, note that
|47 (=, 1) 0:(2) — 2 (t—i, 15)] < M
for all 4,¢;,t; and t_;.

Combining these observations , we conclude that

Y g @)ou(t) — @3 (8)) = (g7 (i, t)0i(E) — 25 (t-i, 8))] P(Eilts)

t_g

= ) UG vu(t) — 27 (1) = (g (b-a, t)0:(t) — 25 (t—s, £5))] P(t_sts)
t_€8;(t,t;)
+ Y (g o) — i (b)) = (gf (b, )0:(t) — 27 (ti, 1)) P(tilt;)
t_&Si(t,t;)
— MY —2Mp”
= —3M*

v

and the proof of claim 2 is complete.

Applying Claims 1 and 2, it follows that
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D Lar (Onilt) = 25 (1) = (g5 (tis t)0:(t) — 7 (¢4, 1)) P(t-ilt:)

t—;

+ (ziltoi ti) — 2ilt_i, 1])) P(t_i|t:)

jot

-
2
> 0.

APP — 3P

v

9

and the proof of part (ii) is complete.

Part (i) follows from the computations in part (ii). We have shown that, for any

information decomposition D of P and for any positive number «, there exists an
augmented Vickrey auction {q, 7 — z; }ien satisfying

Y Ha)oit) = 2i(t)) = (qalt-i, )0:(t) — (b, 1)) Pt -ilt:) = akTiAf’c —3M"

t;

for each i and each t;, ;. If Af’D > ( for each i, then « can be chosen large enough so
that incentive compatibility is satisfied. This completes the proof of part (i).
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