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Abstract
The aim of this paper is to model the dynamic evolution of daily log-price ranges

for two foreign exchange rates, SF/USD and USD/GBP. Following Chou (2001),
we adopt the CARR model, which is identical to the ACD model of Engle & Rus-
sell (1998). Log-price ranges are highly efficient measures of daily volatilities and
hence our empirical results provide insights into the volatility dynamics for SF/USD
and USD/GBP. We find that both series are highly persistent, and in particular,
USD/GBP calls for a long memory specification in the form of a fractionally inte-
grated CARR model. Semi-parametric and parametric models are estimated, and
the parametric (fractionally integrated) CARR with a Gamma distribution is the
preferred model. However, the estimation results of the simple semi-parametric
procedure (QMLE) are virtually identical to the results of the preferred parametric
models.
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1 Introduction

Time series modelling of financial market volatility has been a very productive area of re-
search in empirical finance. Accurate modeling and forecasting of financial asset volatility
is of paramount importance in e.g. risk management and option pricing. A complication
in volatility-modelling is that volatility is not observable. However, several proxies for
volatility exist: Squared returns, absolute returns, realized volatility measures, etc. In
the framework of Stochastic Volatility/GARCH, the underlying volatility is extracted
from the volatility proxy, thereby explicitly recognizing that volatility is non-observable.
Another approach is to treat volatility as an observable variable, modelling the volatil-
ity proxy directly, e.g. Andersen, Bollerslev, Diebold & Labys (2001b) model realized
volatility measures, and Beran & Ocker (2001) model power transformations of abso-
lute returns. We follow the latter approach in this paper. In particular, we employ a
nonstandard volatility proxy: The daily price range,1 which is a very efficient estimate
of the daily volatility, see Parkinson (1980) and Brunetti & Lildholdt (2002). Treating
the daily price range as an observable, highly efficient estimator of daily volatility, we
model two time series of daily price ranges for foreign exchange rates: USD/GBP and
SF/USD. Following Chou (2001), we adopt the Conditional AutoRegressive Range model
(CARR), which is identical to the Autoregressive Conditional Duration (ACD) model of
Engle & Russell (1998). The difference is that Engle & Russell (1998) applies the model
to inter-trade durations and Chou (2001) applies the model to price ranges. This family
of models is a natural choice, because durations and price ranges are both defined on the
real positive line.

The main goal of the paper is to study the dynamic properties of the log-price ranges.
Our findings confirm that volatility is a highly persistent process and, paralleling the
results from the empirical GARCH literature, we find evidence of autoregressive roots
close to unity. Further, extending the CARRmodel to allow for fractional integration, see
Jasiak (1999) and Brunetti & Gilbert (2001), the dynamic properties of daily price ranges
for USD/GBP seem to be well described by the FICARR(1,d,1) model. On the other
hand, the short memory CARR(1,2) model appears to be the appropriate specification for
the SF/USD price range. The distributional assumption for the innovation term in the
CARR model plays an important role in the estimation procedure. However, comparing
semi-parametric estimates and parametric estimates, we find that the former procedure
is able to produce accurate parameter estimates and robust inference.

The structure of the paper is as follows: Section 2 motivates the approach of this
paper and section 3 describes the data. In section 4, we present the CARR model of
Chou (2001) and we introduce the FICARR model. In section 5.1 - 5.2, we present semi-
parametric estimates of the (FI)CARR models and section 5.4 proceeds with parametric
estimation results. Section 6 concludes.

1The daily price range is equal to the difference between the intradaily high log-price and the intradaily
low log-price.
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2 Motivation

In the following, we will motivate our interest in modelling the daily price range by illus-
trating its statistical properties as a volatility estimator. Assume the log-price (measured
in log-US Dollars) on day s, at time t, of one Swiss Franc is denoted by P SF/USDt,s . Fur-

ther, assume P SF/USDt,s evolves according to a driftless Brownian Motion with diffusion
coefficient σs

P
SF/USD
t,s = σSF/USDs Wt,s (1)

The daily price range on day s is defined by

lSF/USDs = sup
0≤t≤T

P
SF/USD
t,s − inf

0≤t≤T
P
SF/USD
t,s

where T denotes the length of one trading day. As mentioned in the introduction, con-
ventional volatility proxies are based on returns, e.g. daily squared returns,³

P
SF/USD
T,s − P SF/USD0,s

´2
absolute returns, ¯̄̄

P
SF/USD
T,s − P SF/USD0,s

¯̄̄
or variations on the estimators above based on intradaily returns, see e.g. Andersen,
Bollerslev, Diebold & Labys (2001a) and Barndorff-Nielsen & Shephard (2001).
Parkinson (1980) showed that the unbiased range-based estimator of the squared

diffusion coefficient,

d³
σ
SF/USD
s

´2
=

³
l
SF/USD
s

´2
4 ln(2)

,

is approximately 5 times more efficient than the unbiased estimator based on the daily
squared returns. Brunetti & Lildholdt (2002) showed that the unbiased estimator of
σ
SF/USD
s based on the range

d
σ
SF/USD
s =

r
π

8
lSF/USDs (2)

is approximately 6.5 times more efficient than the unbiased estimator based on absolute
returns,

g
σ
SF/USD
s =

r
π

2

¯̄̄
P
SF/USD
T,s − P SF/USD0,s

¯̄̄
In (1), the diffusion coefficient stays constant during the day. Andersen & Bollerslev

(1998, footnote 20) adopt a stochastic volatility model where the diffusion coefficient
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evolves continuously, and they report that the MSE of the range-based estimator of
integrated volatility is approximately equal to the MSE of a realized volatility estimator
based on two- or three-hour returns. Hence, in this setting too, the daily price range
provides a highly efficient estimator of daily volatility (integrated volatility).
In an empirical study, Li & Weinbaum (2000) compare the empirical performance of

various return- and range-based volatility estimators against the benchmark of a realized
volatility measure. The daily price range provides an estimator which is clearly superior
to the return-based estimator, measured by various criteria such as MSE, variance, MAD
etc.
The intuition underlying the superior performance of the range may be explained by

the fact that computation of the range requires the full sample path of the price process,
even though only two prices are used. On the other hand, return-based estimates of
the volatility process are based on the opening and closing prices only - no intradaily
information is used.
Motivated by these properties, we would like to scrutinize the dynamic properties of

scaled log-price ranges. In particular, we will refer to the daily log-price range as a scaled
version of the true price range from equation (2):

RSF/USDs =

r
π

8
lSF/USDs =

r
π

8

·
max
0≤t≤T

ln
³
p
SF/USD
t,s

´
− min
0≤t≤T

ln
³
p
SF/USD
t,s

´¸
(3)

and likewise

RUSD/GBPs =

r
π

8
lUSD/GBPs =

r
π

8

·
max
0≤t≤T

ln
³
p
USD/GBP
t,s

´
− min
0≤t≤T

ln
³
p
USD/GBP
t,s

´¸
(4)

3 Data

We analyze data on foreign exchange rates of SF/USD and USD/GBP over the period
3 January 1991 - 20 September 2001. Data are from Bloomberg and correspond to
intradaily high and low prices. The foreign exchange market is open on a 24-hour basis
and in the data set a new day starts at 06:00 PM GMT. The data set contains 2734
observations for each rate2. Prices refer to quotes recorded over the 24 hour period.
Quotes might not be truly representative of market conditions, but we have not been able
to get high/low transaction prices spanning a ten year period from the foreign exchange
market. A closely related issue is that high and low prices might be recorded at times
when markets are not very active, and the price range might therefore not reflect the
true price range. However, in the absence of transactions data, it is almost impossible to
correct for these potential flaws.
It is important to note that the sample period includes the September 1992 collapse

of the European Monetary System (EMS). The UK was part of the EMS and experienced
high volatility in the exchange rates as a consequence of severe speculative attacks.
Figure 1 shows time series plots of daily price ranges, see equations (3) and (4), for

the two rates. Both series are stationary, and the September 1992 speculative attack
2For further information about the data set, we refer to Brunetti & Lildholdt (2002) where the same

data set is used.
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against the GBP is evident in both series. This is to be expected, given that, starting
from September 1992, many European currencies experienced a very difficult time due to
the uncertainty surrounding the future of the EMS. The effect of the speculative attack
is stronger in the USD/GBP range. In both series, volatility seems itself more volatile
at the beginning of the period analyzed. For the USD/GBP range, the volatility process
stabilized at the end of 1993. It is quite surprising that the USD/GBP rate is less volatile
after the UK left the EMS.
In Table 1, we report summary statistics for daily price ranges. The mean and the

standard deviation of USD/GBP price ranges are lower than those of SF/USD ranges.
Skewness and kurtosis of the two series are very similar and indicate that the ranges are
not symmetrically distributed and exhibit excess kurtosis. These results are confirmed by
looking at Figure 2, which shows the empirical distribution (histograms) for daily price
ranges.
Table 2 reports Ljung-Box (LB) statistics for serial correlation up to lags, 1, 15, 30,

50, 100 and 250. All statistics are significant3 at 5% significance level (denoted by *),
and it is evident that the series are highly correlated. The values of the LB-test are
particularly high for the USD/GBP range. This finding is also supported by Figure 3,
where autocorrelation functions (ACF) for the two series are shown. It is evident that the
USD/GBP range is very persistent. The ACF is always positive and remains significantly
different from zero for high lags. On the other hand, the SF/USD range is less persistent
and the ACF is statistically insignificant at lag 70.

4 CARR models

Following Chou (2001), the CARR model is defined by

Rs = λsεs, εs ∼ iid, εs ≥ 0, E(εs) = 1 (5)

λs = ω + a(L)Rs + b(L)λs (6)

where Rs is the daily price range, a(L) = a1L+a2L2+ ...+apLp and b(L) = b1L+ b2L2+
... + bqL

q are lag polynomials of order p and q, respectively. λs is the conditional mean
of the range. The model is identical to the Autoregressive Conditional Duration (ACD)4

model of Engle & Russell (1998). This is a very appealing model because, as shown by
Engle & Russell (1998), the specification is similar to the well-known and widely used
GARCH model. Sufficient conditions for λs to be positive are

ω > 0, ai ≥ 0, bi ≥ 0 (7)

By defining ²s = Rs − λs, the model may be expressed as an ARMA process in Rs

(1− a(L)− b(L))Rs = ω + (1− b(L)) ²s (8)

3LB(n) statistics follow a chi-squared distribution with n degress of freedom under the null of no
serial correlation from lag 1 to n. Critical values for the LB tests in Table 2 (at a significance level of
5%) are: {3.84, 25.00, 43.77, 67.50, 124.34, 287.88}.

4We do not adopt this name for the model because durations are not involved in our setting.
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Using the results from the vast GARCH literature, it follows that the CARR model
is stationary when the roots of (1− a(L)− b(L)) lie outside the unit circle. A stylized
fact in finance is that the volatility of returns seems to be highly persistent in the sense
that autocorrelations of volatility proxies decay very slowly. This feature is called the
Long Memory property, see e.g. Baillie, Bollerslev & Mikkelsen (1996), Baillie (1996)
and Andersen et al. (2001b). For this reason, we introduce the long memory extension of
the CARR model, which is identical to the FIACD models of Jasiak (1999) and Brunetti
& Gilbert (2001). The motivation for the FIACD model in intertrade duration analysis
is that in empirical applications, (1− a(L)− b(L)) from the ACD model has roots very
close to unity. However, the presence of a unit root in (1− a(L)− b(L)) is associated
with the inappropriate property that shocks to the model have ever-lasting effects, see
Jasiak (1999). It is conjectured in Jasiak (1999) that the FIACD model overcomes this
feature in the sense that shocks have persistent effects that eventually die out over time.
Hence, to create more persistent impulse responses for the model, a fractional root in the
autoregressive polynomial for Rs is introduced in (8):

φ(L)(1− L)dRs = ω + (1− b(L)) ²s (9)

The fractional differencing operator (1− L)d in equation (9) is defined by the hypergeo-
metric function

(1− L)d =
∞X
j=0

Γ (j − d)
Γ (j + 1)Γ (−d)L

j (10)

Rewriting equation (9) in terms of the conditional expectation of the range yields

λs = ω +
£
1− b(L)− φ(L)(1− L)d¤Rs + b(L)λs (11)

or, in a more parsimonious form

λs =
ω

[1− b(1)] + γ(L)Rs (12)

where γ(L) =
[1−b(L)−φ(L)(1−L)d]

1−b(L) , and therefore it is a lag polynomial of infinite order.
Equation (12) may be interpreted as an infinite MA process. We refer to this model
as the Fractionally Integrated CARR model (FICARR). Sufficient conditions for λs > 0
in equation (11) are difficult to establish for the general case, but it is possible to find
conditions for specific parametrizations, see Baillie et al. (1996). The FICARR is similar
to the FIGARCH specification of Baillie et al. (1996). Paralleling the FIGARCH model,
the unconditional mean of the FICARR model is infinite. The FICARR process is,
therefore, not weakly stationary. Despite this, the FICARR process is strictly stationary
and ergodic for 0 ≤ d ≤ 1, see Baillie et al. (1996).5
We have not specified the distribution of the innovations, εs, in (5) yet. Empirical work

on CARRmodels is limited to Chou (2001), and hence, our prior on the distribution of the

5A straightforward extension of the ACD specification is to model the natural logarithm of the
expected range, see Engle & Lunde (1999). We abstain from that specification in the current paper.
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innovation term is very diffuse. We adopt a semi-parametric method for estimating the
models, and the estimation proceeds by quasi maximum likelihood with an Exponential
density for the innovation term. The log-likelihood function is

logL = −
SX
j=1

·
ln(λs) +

Rs
λs

¸
Engle & Russell (1998) (for the ACD model) and Jasiak (1999) (for the FIACD model)
show that this Quasi Maximum Likelihood Method (QMLE) provides consistent and
asymptotically normal estimates with a covariance matrix given by the familiar robust
standard errors from Lee & Hansen (1994).
Estimation of the FICARR model involves truncating the infinite lag-polynomial in

(12) at lag 1000 and setting pre-sample values of λs equal to the unconditional mean of
the daily price ranges Rs.
In order to measure the goodness of fit of the models estimated by QMLE, we compute

standardized innovations:

bus = Rsbλsbλs denotes the conditional expectation of the range computed via (6) or (12) by use of
estimated coefficients. For a well-specified model, bus’s should be independent and we
compute Ljung-Box statistics to test this hypothesis.

5 Empirical results

As a first step in the empirical analysis, we estimated AR(FI)MA models for ln(RSF/USDs )

and ln(RUSD/GBPs ).6 However, it was virtually impossible to obtain well-specified mod-
els due to indications of strong ARCH effects and departures from normality for the
innovation term. Hence, we adopted the CARR model.

5.1 Semi-parametric CARR models

In the vast GARCH literature, a common finding is that a persistent GARCH(1,1) spec-
ification is able to describe the volatility of financial returns. However, little is known
about the dynamic properties of the range. For this reason, we estimate four CARR
specifications: CARR(2,2), CARR(2,1), CARR(1,2) and CARR(1,1)

Rs = λsεs, εs ∼ Exp(1) (13)

λs = ω + a1Rs−1 + a2Rs−2 + b1λs−1 + b2λs−2 + SEP92 ·DUMs (14)

The choice of the preferred model is based on three approaches:

6Log-transformations were adopted because the support of an AR(FI)MA process is the entire real
line.
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• General-to-specific approach, see e.g. Hendry (2000). Testing down from a general
model by t-statistics of individual parameters.

• Log-likelihood based approach. For nested models, LR-tests are adopted and for
non-nested models, Akaike’s (AIC) and Schwartz’s (SIC) information criteria are
used.

• Model selection based on the ability of the model to fit the assumption of iid inno-
vations. Ljung-Box-statistics for serial correlation in the standardized innovations
are used.

Table 3 shows the estimation results for the SF/USD range. The most general model,
the CARR(2,2), tells us that the parameter b2 is not statistically significant. It is impor-
tant to note that some of the estimated parameters are negative. Nevertheless, the condi-
tional ranges, λs, are strictly positive in the sample. The restrictions in (7) are sufficient
but not necessary conditions for the conditional range to be positive, see Nelson & Cao
(1992). Using the general-to-specific approach, the preferred model is the CARR(1,2).
However, the LR-test, the AIC and the SIC select the simple CARR(1,1) specification.
The dispute between the CARR(1,2) and the CARR(1,1) is resolved by looking at the
Ljung-Box statistics. It is evident that the values of the Ljung-Box statistics are much
lower for the CARR(1,2) than for the CARR(1,1). A fundamental assumption in the
CARR model - see equation (5) - is that the innovation term is i.i.d. Table 3 shows
that significant autocorrelation at lag 1 remains in the standardized innovations for the
CARR(1,1) model, and hence the CARR(1,2) specification is preferred.
For each specification we estimated two models: with and without a dummy variable

for the September 1992 speculative attack.7 It is evident that the speculative attack
of September 1992 against the GBP rates increased volatility dramatically even for the
SF/USD rate. However, the introduction of the dummy8 does not modify the parameter
estimates. A common characteristic of all the estimated models is that volatility is very
persistent: ba(1)+bb(1) ranges from 0.98 to 0.96. This result is in line with the findings of
the GARCH literature.
The last two rows in Table 3 refer to the difference between the mean and the standard

deviation of the standardized innovations and their theoretical values of unity. While the
mean of the standardized innovations is very close to one (by first-order conditions),
the standard deviation is not. Nevertheless, the QMLE procedure allows us to make
asymptotically valid inference.
Table 4 shows the CARR model estimation results for USD/GBP. There are re-

markable similarities between the results in Tables 3 and 4. In the CARR(2,2) model,
diagnostics support the restriction of b2 = 0. The preferred model using the general-to-
specific approach and the Ljung-Box statistic is the CARR(1,2). If we use the LR test,

7We introduced the dummy variable in equation (14) following the standard practice in the GARCH
literature, e.g. Lamoureux & Lastrapes (1990).
We use four different dummy variables. The reported results refer to the dummy variable which covers

the period 16/Sep/92 - 28/Sep/92. For the other dummies the results are similar to those reported in
Table 3.

8To conserve space we do not report the results of the ACD estimates without the September 1992
dummy.

8



the AIC and the SIC, the selected model is the CARR(1,1). However, the CARR(1,2)
is accounting for serial correlation in data much better than CARR(1,1). Therefore, the
CARR(1,2) is the preferred model.
As expected, the impact of the September 1992 dummy is significant (at the 10%

level) and is stronger for the volatility of the USD/GBP rate than for the volatility of the
SF/USD rate. We also estimated the same models omitting the dummy variable (results
not reported) and obtained very similar parameter estimates to those in Table 4.
The general impression from Tables 3 and 4 is that persistency, measured by ba(1) +bb(1), is strong and ranges from 0.99 for the CARR(2,2) to 0.978 for the CARR(1,1).
In the next section, we turn our attention to the semi-parametric FICARR estimates.

5.2 Semi-parametric FICARR models

For the FICARR model we also estimated four different specifications: FICARR(2,d,2),
FICARR(2,d,1), FICARR(1,d,2), and FICARR(1,d,1), nested within the general model

Rs = λsεs, εs ∼ Exp(1) (15)

λs = ω +
£
1− b1L− b2L2 − (1 + φ1L+ φ2L

2)(1− L)d¤Rs (16)

+ b1λs−1 + b2λs−2 + SEP92 ·DUMs

Table 5 shows the results of the FICARRmodels for the SF/USD range. The long memory
parameter, d, is insignificant except for FICARR(1,d,1). Testing down from the general
FICARR(2,d,2) model, the final model specification depends on how (sequentially) we
discard parameters. All models are able to produce uncorrelated innovations and the
information criteria are in favor of the FICARR(1,d,1) model. However, this model is not
completely satisfactory due to the fact that d is insignificant for the other specifications.
It might be the case that d is spuriously capturing some short memory dynamics, and it
is questionable whether a FICARR specification provides a suitable model for SF/USD.
The results of the FICARR estimates for USD/GBP are shown in Table 6. The results

are unambiguous: Regardless of the selection criteria used, the FICARR(1,d,1) is always
the preferred model. In fact, the diagnostics favor the restrictions φ2 = b2 = 0.9 The
long memory parameter d is always significantly different from zero, indicating that the
USD/GBP range is a long memory process.
The September 1992 dummy variable, is statistically important (at 10% significance

level). We also estimated the same FICARR specification without the September 1992
dummy variable (results not reported). In line with the findings obtained for the CARR
models, the introduction of the dummy does not modify the parameter estimates.
In the following section, we compare the preferred CARR models to the preferred

FICARR models.

9We also investigated the FICARR(1,d,0) specification and found strong evidence in favor of the
FICARR(1,d,1) model.

9



5.3 Comparison of semi-parametric CARR and FICARR mod-
els

We first analyze the USD/GBP series. For the general-to-specific approach, it is impor-
tant to note that the CARR(2,2) is nested in the FICARR(2,d,2) - see equations (8)
and (9). Therefore, using the general-to-specific approach, the preferred model is the
FICARR(1,d,1). Both models, CARR(1,2) and FICARR(1,d,1) have very similar log-
likelihood values, and the LB-statistic may help us in selecting the right specification.
The values of the LB-statistics are lower for the FICARR(1,d,1) model. This is par-
ticularly true for long lags. It seems that the FICARR(1,d,1) model is able to account
both for the short and the long range dependence. It is quite interesting that the pre-
ferred CARR model is of order (1,2). Note that a CARR(1,2) model may be rewritten
as an ARMA(2,1) model in daily price ranges, see equation (9). Gallant, Hsu & Tauchen
(1999) showed that the sum of two independent AR(1)-processes may approximate a frac-
tionally integrated process. The sum of two independent AR(1) processes produces an
ARMA(2,1) process, and hence the ARMA(2,1) model is able to mimic the long memory
property of the series. This feature generally points to the fact that, to some degree,
higher order ARMA processes are capable of capturing slowly decaying autocorrelations.

The estimates of b1 in the FICARR(1,d,1) model for the USD/GBP range reduce
dramatically when compared to those of the CARR models. This is in line with the
results of Baillie et al. (1996). They show that if the underlying process is long memory
and a short memory GARCH model is used in the estimation procedure, the estimates of
the parameter b1 are upward biased. The simple GARCH model is spuriously capturing
the long memory effect through the b1 parameter.

Turning to SF/USD, the preferred model is the CARR(1,2) specification. The FI-
CARR(1,d,1) specification for the SF/USD range (last column in Table 5), shows a
statistically significant value of the fractional integration parameter. This might be due
to mis-specification of the model. The long memory parameter is spuriously capturing
the short run dynamic of the a2 parameter in the CARR(1,2) specification (see Ta-
ble 3). When d = 0, the FICARR model collapses into the CARR specification with
φ (L) = 1 − a (L) − b (L). The parameters of the FICARR(1,d,2) model are not indi-
vidually significantly different from the corresponding parameters from the CARR(1,2)
model,10 which provides further evidence in favor of the CARR(1,2) model.

The results above are consistent with the empirical autocorrelation functions. The
ACF for SF/USD range is not highly persistent, which indicates a short memory speci-
fication. In contrast, the ACF for the USD/GBP range is highly persistent and hence a
long memory specification is needed to accommodate this feature.11

10bφ1 is not significantly different from ba1+bb1 for the CARR(1,2), bφ2 is not significantly different fromba2 +bb2, and bb1 (for FICARR(1,d,2)) is not significantly different from bb1 (for CARR(1,2)).
11Stricly speaking, the FIACD(1,d,1) model is not weakly stationary and hence autocorrelations from

that model are not well-defined. However, the intuition from Hasza (1980) and Bierens (1993) suggests
that the above reasoning may be appropriate.
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5.4 Parametric (FI)CARR models

The models from the former section are semi-parametric in the sense that the density of
the innovations is left unspecified. The focus of this section is to fit parametric (FI)CARR
models for the two time series of daily price ranges. In other words, we specify a para-
metric distribution for the innovations, εs, in equation (5).
A natural starting point is to adopt the Exponential assumption for the innova-

tion term. We concentrate our analysis on the preferred models: CARR(1,2) and FI-
CARR(1,d,1) specifications. If the models are correctly specified, the standardized in-
novations are distributed according to an Exponential distribution. In Figure 4, two
densities are depicted. The density of the standardized innovations from the CARR(1,2)
model for RSF/USDs (see Table 3, third column) is shown in addition to a unit Exponential
density. We estimate density functions by the Gamma kernel proposed by Chen (2000).
This procedure overcomes the traditional boundary bias of standard kernel density esti-
mators associated with estimating probability density functions with bounded support.12

It is quite clear from the figure that the model is mis-specified: The two density func-
tions are far from being identical. The same conclusion is valid for the CARR(1,2) model
for RUSD/GBP and the FICARR(1,d,1) models for both series, see Figures 5, 6 and 7,
respectively. The mis-specification is clear also from the last rows of Tables 3 - 6: In fact,
the standard deviation of the standardized innovations are far in excess of the theoretical
value of unity.

5.4.1 Weibull (FI)CARR

A good candidate for the density of the standardized innovations is the Weibull13 distri-
bution, because it allows for the hump-shape of the price ranges in Figure 2. Hence, we
estimate Weibull (FI)CARR models, abbreviated by WE-(FI)CARR and defined by

Rs = λs
εs

Γ
¡
1 + 1

δ

¢ , εs
iid∼ Weibull(1, δ) (17)

The use of the Weibull distribution in the ACD framework was proposed by Engle &
Russell (1998). Following e.g. Lunde (1999), we compute Cox-Snell residuals, see Cox &
Snell (1968), for the parametric (FI)CARR models. These residuals have the property
that they are exponentially distributed, which allows for a direct comparison of the fit of
various parametric models. They are defined by

us =

Z εs

0

hε(x)dx (18)

where hε(·) denotes the hazard function for εs. The hazard function is defined by

hε(εs) =
fε(εs)

1− Fε(εs)
12The standardized innovations are bounded from below by zero.
13If Xδ is distributed according to a unit exponential distribution, then we say that X follows a

Weibull distribution with shape parameter δ. The unit exponential is a special case (δ = 1) of the
Weibull distribution.
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where fε(·) denotes the density function for εs, and Fε(εs) denotes the cumulative distri-
bution. Rewriting (18),

us =

Z εs

0

hε(x)dx =

Z εs

0

fε(x)

1− Fε(x)dx = [− ln (1− Fε(x))]
εs
0 = − ln (1− Fε(εs))

it follows that the Cox-Snell residuals follow an Exponential distribution. In fact, Fε(εs)
follows a uniform distribution, and minus the log of a uniform random variable generates
an exponentially distributed random variable, see e.g. Evans, Hastings & Peacock (1993,
p. 61). Cox-Snell residuals for WE-(FI)CARR models are computed according to

bus = (bεs)bδ = µRsbλs Γ
µ
1 +

1

δ̂

¶¶bδ
If the model is well specified, bus is distributed according to a unit Exponential distribu-
tion. In the following, we also refer to Cox-Snell residuals as standardized innovations.
Estimates14 of WE-(FI)CARR are reported in Table 7. The estimated parameters

and standard errors are in line with those obtained with the QMLE in Tables 3 - 6. It is
interesting to note that there is less persistency in the range when estimating the CARR
model with the Weibull distribution, ba(1) + bb(1) is equal to 0.95 for the SF/USD and
0.97 for the USD/GBP when using the Weibull and 0.98 for the SF/USD and 0.99 for
the USD/GBP when using QMLE. The Weibull assumption for the error term produces
values for the LB statistics that are much lower than those of the QMLE.
Figures 8 - 11 show empirical densities of Cox-Snell residuals from the WE-(FI)CARR

models of Table 7. The fit has improved relative to Figures 4 - 7, but as indicated by the
last row of Table 7, the standard deviation of the Cox-Snell residuals is far in excess of
the theoretical value of unity for all models.

5.4.2 Gamma (FI)CARR

The Weibull distribution of the former section seemed to improve the fit of the models,
although they are still mis-specified. Following Lunde (1999) for the ACD model, we
adopt the Generalized Gamma distribution for the innovations in equation (5). The
Generalized Gamma distribution has two shape parameters (α, δ), and it nests theWeibull
distribution as a special case when α = 1. For all estimated models, the restriction δ = 1
cannot be rejected and hence the distribution of the innovations reduces to the Ordinary
Gamma distribution. The Gamma (FI)CARR model is defined by

Rs = λs
εs
α
, εs

iid∼ Gamma(1,α)

where Gamma(1,α) denotes the Gamma distribution with the scale parameter of unity
and the shape parameter α. Computation of Cox-Snell residuals for this model is rather

14The log-likelihood is given by: lnL(δ,ω;Rs|R0) =
PS
s=1 ls(δ,ω) where ls(δ,ω) = ln(δ) +

(δ − 1) ln(Rs)− δ ln( λs
Γ(1+ 1

δ )
)−

µ
Γ(1+ 1

δ )Rs
λs

¶δ
.
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tedious. Note that the hazard function for εs is

hε(ε) =
fε(ε)

1− Fε(ε)
=

(εs)
α−1

Γ(α)
exp(−εs)

1− R εs
0

(εs)
α−1

Γ(α)
exp(−εs)

and hence Cox-Snell residuals are defined by

bus = Z bεs
0

bhε(bεs) = Z bεs
0

( bεs)bα−1
Γ(bα) exp(−bεs)

1− R bεs
0

( bεs)bα−1
Γ(bα) exp(−bεs) , bεs = bαRsbλs (19)

where the integral is computed numerically.15

Table 8 shows estimates16 of the Gamma (FI)CARRmodels. The coefficient estimates
and the associated robust standard errors are virtually the same as those obtained with
the Exponential distribution in the QMLE procedure. Moreover, there is evidence that
the assumption of a Gamma distributed innovation term is more reasonable: Both the
mean and the standard deviation of the Cox-Snell residuals are close to their theoretical
counterparts, see the last two rows of Table 8. Figures 12 - 15 show the densities of Cox-
Snell residuals from the estimated Gamma (FI)CARR models. The densities seem to fit
the unit Exponential rather well. In contrast, Table 9, upper section shows the mean,
standard deviation, skewness and kurtosis of the Cox-Snell residuals from the models of
Table 8. It is evident that they do not seem to follow a unit Exponential17 distribution.
Moreover, the excess dispersion test of Engle & Russell (1998, p. 1144) rejects the null
of the standard deviation being equal to unity for all conventional significance levels.
In the lower section of Table 9, we compute the same sample moments, excluding

the 20 (for RSF/USD) and 25 (for RUSD/GBP ) largest Cox-Snell residuals. The empirical
means, standard deviations, skewness and kurtosis of the standardized innovations are
very close to their theoretical counterparts. The Excess Dispersion test, see Engle &
Russell (1998), fails to reject the null of the standard deviation being equal to unity. The
general message from Table 9 and Figures 12 - 15 is that the source of the mis-specification
is a relatively small number of extreme observations.18

We further analyzed the largest Cox-Snell residuals for the four models. For the
SF/USD, the largest Cox-Snell residuals for the GA-CARR(1,2) coincide with the largest
Cox-Snell residuals for the GA-FICARR(1,d,1). Moreover, the largest Cox-Snell residuals
of the two models match the largest price ranges. Press reports on the days corresponding
to the largest ranges (very high volatility) reveal that unusual events took place - e.g.

15The integral is computed by the numerical procedure INTQUAD1 (using Gauss-Legendre quadra-
ture) in Gauss.
16The log-likelihood is given by: lnL(α,ω;Rs|R0) =

PS
s=1 ls(α,ω) where ls(δ,ω) = (α− 1) ln(Rs) −

α ln(λsα )− ln(Γ(α))−
³
αRs
λs

´
.

17The unit Exponential distribution is characterized by mean=1, st.dev=1, skewness=2, and kurto-
sis=9.
18The same analysis has been performed also for the Cox-Snell residuals for the WE-(FI)CARR mod-

els. The results clearly show that even when deleting the extreme residuals, the assumption that the
innovation term follows a Weibull distribution is poor.
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Russian coup, Asian crisis, Russian crisis, etc. The same analysis holds for the USD/GBP
rate. It seems that the (FI)CARR model works well in standard market conditions but
is not able to account for abnormal events.

5.5 Summary of empirical results

By a semi-parametric procedure (QMLE), we estimated several short memory CARR
models and found evidence in favor of the CARR(1,2) specifications. The results show
clear evidence of a strong degree of persistency. For this reason, we extend the model
to allow for long memory. The FICARR(1,d,1) model is able to capture the dynamic
properties of the USD/GBP range while the CARR(1,2) is the preferred model for the
SF/USD range.
For the parametric estimates of the (FI)CARR models, we use two alternative distri-

butions, the Weibull and the Generalized Gamma. We find evidence that the Ordinary
Gamma distribution, which is a special case of the Generalized Gamma, provides a fairly
good approximation to the distribution of the standardized innovations, except in the
very far end of the tail. We also note that the semi-parametric estimates reported in
Tables 3 - 6 produce approximately the same parameter estimates and standard errors
as the parametric Gamma (FI)CARR estimates.
For S&P500 index data, Chou (2001) performed volatility-forecasting for CARR and

GARCH models and concluded that the CARR was superior. Our results indicate that
the semi-parametric procedure (QMLE) is suitable for performing point-forecasting of
daily price ranges in the foreign exchange market because it produces parameter estimates
(and thereby point-forecasts) almost identical to a parametric model. However, for the
purpose of density forecasting of daily price ranges, a (FI)CARR model with a Gamma
distribution for the innovation term would be suitable.
Our empirical results support the conclusion that the (FI)CARR models estimated

with the simple QMLE method are able to capture the dynamics of exchange rate volatil-
ity measured by the daily price range.

6 Conclusion

The aim of the paper is to shed light on the dynamic properties of exchange rate volatility.
We adopt a non-standard volatility proxy: The daily price range, which, under certain
assumptions, is highly efficient compared to volatility measures based on daily returns.
Building on Chou (2001), we model daily price ranges for two major exchange rates,
SF/USD and USD/GBP, by the CARR model.
For the foreign exchange market, there is extensive empirical evidence of a very persis-

tent component in volatility using return-based volatility proxies. We provide additional
and complementary evidence of this feature using the daily price range. We find that
the USD/GBP range is a long memory process, paralleling the results obtained in the
GARCH/FIGARCH and realized volatility literature. On the other hand, we also find
that the SF/USD price range is best described by a short memory CARR(1,2) model.
The (FI)CARR models provide a simple, yet effective framework for modeling the
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daily price range. It would be interesting to explore whether alternative volatility proxies,
such as absolute returns and realized volatility measures, fit the class of (FI)CARR
models.
The CARR specification is a model for daily price ranges and it does not include

daily returns. In other words, the model is agnostic about the evolution of returns. A
more structural model including the return process might be desirable. However, a full
understanding of the empirical properties of daily price ranges is a necessary first step in
that development, we believe. Ongoing work, see Lildholdt (2002), provides a model for
asset returns utilizing daily high and low prices in addition to daily return data (open
and close prices).
The forecasting performance of the CARR model compared to return-based models,

like GARCH and Stochastic Volatility models, is an interesting area for future research.
Chou (2001) provides evidence of superior forecasting performance of the CARR model
for the S&P500 index, and it is highly relevant to look into the forecasting performance
for the FICARR model. At short horizons, the CARR and the FICARR are very similar,
but the properties of the models differ at long horizons. The empirical results of this
paper indicate that the FICARR model is well suited for capturing the strong persis-
tence of daily price ranges, and that may result in superior forecasting performance at
longer horizons. Needless to say, superior forecasting of daily price ranges has important
applications in fields, such as VaR, option pricing, risk management, etc.
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7 Tables and Figures

Mean St.Dev. Skewness Kurtosis
RSF/USD 0.0069 0.0034 1.9245 9.55
RUSD/GBP 0.0056 0.0031 1.9222 9.40

Table 1: Summary statistics for daily price ranges.

RSF/USD RUSD/GBP

LB(1) 222∗ 573.8∗

LB(15) 1519.2∗ 4761.1∗

LB(30) 2165.3∗ 7789.7∗

LB(50) 2737.4∗ 11036.7∗

LB(100) 3130.7∗ 16839.4∗

LB(250) 3497.9∗ 24818.1∗

Table 2: Ljung-Box statistics for daily price ranges. Rejection of the null of no serial
correlation, at a five percent level, is denoted by *.
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CARR(2,2) CARR(2,1) CARR(1,2) CARR(1,1)bw 0.00013 (.00004) 0.00027 (.00008) 0.00016 (.00005) 0.00022 (.00007)ba1 0.14178 (.02108) 0.12241 (.01694) 0.14213 (.02119) 0.09553 (.01425)ba2 -0.07886 (.02258) 0 -0.06659 (.02442) 0bb1 1.03939 (.08151) 0.49541 (.12074) 0.90129 (.01813) 0.87295 (.02118)bb2 -0.12139 (.08341) 0.34291 (.12347) 0 0dSEP92 0.00043 (.00021) 0.00080 (.00040) 0.00052 (.00025) 0.00061 (.00031)
logL 10895.08120 10894.77144 10895.06769 10894.23306
AIC -21778.16240 -21779.54288 -21780.13537 -21780.46612
SIC -21742.68128 -21749.97527 -21750.56777 -21756.81203
LB(1) 0.01926 1.16843 0.01374 6.02412∗

LB(15) 12.75953 14.27363 12.55174 19.27550
LB(30) 26.34942 27.75567 26.19926 32.54778
LB(50) 43.09774 44.98081 43.02890 50.00172
LB(100) 79.69487 80.83788 79.54364 85.55877
LB(250) 188.40762 191.68716 188.57547 196.52490

Mean-th.mean 0.00024 0.00028 0.00025 0.00030
Std-th.std -0.54912 -0.54842 -0.54906 -0.54735

Table 3: Semi-parametric CARR models for RSF/USD. Robust standard errors in brack-
ets. "AIC" and "SIC" refers to Akaike’s and Schwartz’s information criterion, respec-
tively. LB(n) are Ljung-Box statistics, where * denotes rejection (at a five percent level)
of the null of no serial correlation from lag 1 to n. "Mean-th.mean" refers to the differ-
ence between the empirical mean for standardized innovations and the theoretical value
of unity. "Std-th.std" refers to the difference between the empirical standard deviation
for standardized innovations and the theoretical value of unity.
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CARR(2,2) CARR(2,1) CARR(1,2) CARR(1,1)bw 0.00005 (.00002) 0.00015 (.00004) 0.00006 (.00002) 0.00012 (.00004)ba1 0.20891 (.01984) 0.15954 (.01916) 0.21005 (.01994) 0.11951 (.01753)ba2 -0.14578 (.02381) 0 -0.13600 (.02485) 0bb1 1.01468 (.07749) 0.42459 (.06973) 0.91461 (.01749) 0.85841 (.02217)bb2 -0.08732 (.07329) 0.38785 (.06951) 0 0dSEP92 0.00052 (.00030) 0.00123 (.00069) 0.00059 (.00033) 0.00093 (.00053)
logL 11570.61333 11569.03629 11570.56885 11567.52762
AIC -23129.22666 -23128.07259 -23131.13770 -23127.05523
SIC -23093.74554 -23098.50498 -23101.57010 -23103.40115
LB(1) 0.00536 5.64210∗ 0.00011 19.25986∗

LB(15) 25.49626∗ 35.56088∗ 25.37068∗ 48.91251∗

LB(30) 44.24465∗ 53.09440∗ 43.99266 66.77556∗

LB(50) 68.95864∗ 84.32155∗ 68.85469∗ 100.54906∗

LB(100) 114.20526 132.86273∗ 114.60486 149.19119∗

LB(250) 253.63685 271.28362 255.10771 285.56505
Mean-th.mean 0.00047 0.00050 0.00049 0.00051
Std-th.std -0.55110 -0.54882 -0.55097 -0.54775

Table 4: Semi-parametric CARRmodels for RUSD/GBP . Robust standard errors in paren-
thesis. "AIC" and "SIC" refers to Akaike’s and Schwartz’s information criterion, respec-
tively. LB(n) are Ljung-Box statistics, where * denotes rejection (at a five percent level)
of the null of no serial correlation from lag 1 to n. "Mean-th.mean" refers to the differ-
ence between the empirical mean for standardized innovations and the theoretical value
of unity. "Std-th.std" refers to the difference between the empirical standard deviation
for standardized innovations and the theoretical value of unity.
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FICARR(2,d,2) FICARR(2,d,1) FICARR(1,d,2) FICARR(1,d,1)bw 0.00011 (.00007) 0.00011 (.00009) 0.00011 (.00007) 0.00009 (.00005)bd 0.06640 (.06284) 0.06312 (.07918) 0.06181 (.06497) 0.09169 (.03066)bφ1 0.92586 (.06137) 0.97346 (.01022) 0.99955 (.04777) 0.97264 (.01083)bφ2 0.04626 (.06564) 0 -0.02531 (.04533) 0bb1 0.85058 (.09602) 0.89486 (.08364) 0.92012 (.02936) 0.92725 (.02313)bb2 0.06508 (.08227) 0.02355 (.05108) 0 0dSEP92 0.00047 (.00027) 0.00045 (.00028) 0.00045 (.00025) 0.00042 (.00023)
logL 10895.13334 10895.13306 10895.08781 10895.06278
AIC -21776.26667 -21778.26611 -21778.17563 -21780.12557
SIC -21734.87202 -21742.78499 -21742.69450 -21750.55796
LB(1) 0.01851 0.01824 0.02570 0.13293
LB(15) 12.88177 12.87652 12.82152 13.39530
LB(30) 26.03434 26.04533 25.96626 26.27759
LB(50) 42.74174 42.75553 42.74413 43.02246
LB(100) 79.37485 79.39527 79.26736 79.56550
LB(250) 187.60925 187.62668 187.49193 187.58613

Mean-th.mean 0.00029 0.00028 0.00038 0.00036
Std-th.std -0.54931 -0.54930 -0.54920 -0.54919

Table 5: Semi-parametric FICARR models for RSF/USD. Robust standard errors are in
parenthesis. "AIC" and "SIC" refers to Akaike’s and Schwartz’s information criterion,
respectively. LB(n) are Ljung-Box statistics, where * denotes rejection (at a five per-
cent level) of the null of no serial correlation from lag 1 to n. "Mean-th.mean" refers to
the difference between the empirical mean for standardized innovations and the theoret-
ical value of unity. "Std-th.std" refers to the difference between the empirical standard
deviation for standardized innovations and the theoretical value of unity.
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FICARR(2,d,2) FICARR(2,d,1) FICARR(1,d,2) FICARR(1,d,1)bw 0.00006 (.00003) 0.00006 (.00003) 0.00006 (.00003) 0.00006 (.00003)bd 0.49129 (.06176) 0.49167 (.06072) 0.49072 (.06075) 0.48919 (.05599)bφ1 0.41239 (.05628) 0.41319 (.10295) 0.40943 (.05350) 0.41166 (.04788)bφ2 -0.00157 (.03075) 0 -0.00146 (.03018) 0bb1 0.69900 (.07549) 0.70018 (.12669) 0.69629 (.07780) 0.69726 (.05010)bb2 -0.00044 (.00772) 0.00034 (.04827) 0 0dSEP92 0.00180 (.00100) 0.00177 (.00102) 0.00180 (.00100) 0.00180 (.00094)
logL 11571.07567 11571.07565 11570.98361 11570.98329
AIC -23128.15134 -23130.15130 -23129.96723 -23131.96658
SIC -23086.75669 -23094.67017 -23094.48610 -23102.39897
LB(1) 0.00541 0.00569 0.01201 0.01523
LB(15) 22.67706 22.68616 22.69850 22.70016
LB(30) 37.82009 37.84826 37.81927 37.82371
LB(50) 64.33296 64.33167 64.36620 64.37237
LB(100) 110.69273 110.65718 110.69505 110.65440
LB(250) 244.63787 244.60313 244.37025 244.20530

Mean-th.mean -0.00096 -0.00094 -0.00099 -0.00095
Std-th.std -0.55307 -0.55307 -0.55293 -0.55294

Table 6: Semi-parametric FICARR models for RUSD/GBP . Robust standard errors are in
parenthesis. "AIC" and "SIC" refers to Akaike’s and Schwartz’s information criterion,
respectively. LB(n) are Ljung-Box statistics, where * denotes rejection (at a five per-
cent level) of the null of no serial correlation from lag 1 to n. "Mean-th.mean" refers to
the difference between the empirical mean for standardized innovations and the theoret-
ical value of unity. "Std-th.std" refers to the difference between the empirical standard
deviation for standardized innovations and the theoretical value of unity.
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RSF/USD RUSD/GBP

WE-CARR(1,2) WE-FICARR(1,d,1) WE-CARR(1,2) WE-FICARR(1,d,1)bw 0.00024 (.00006) 0.00011 (.00019) 0.00008 (.00002) 0.00012 (.00004)bd 0.13228 (.02831) 0.38358 (.03995)ba1 0.16545 (.01995) 0.20602 (.02085)ba2 -0.10527 (.02717) -0.15991 (.02784)bb1 0.89335 (.02095) 0.92918 (.02985) 0.92038 (.01367) 0.66432 (.05551)bφ1 0.95608 (.01887) 0.47356 (.05907)dSEP92 0.00049 (.00030) 0.00037 (.00024) 0.00071 (.00027) 0.00228 (.00084)bδ 2.30125 (.03012) 2.30229 (.03014) 2.31510 (.03036) 2.32508 (.03055)bα 0 0 0 0
logL 12101.78723 12101.06548 12789.49972 12796.02099
AIC -24191.57446 -24190.13097 -25566.99945 -25580.04197
SIC -24156.09333 -24154.64984 -25531.51832 -25544.56085

LB(1) 0.11106 0.31377 0.00427 0.01428
LB(15) 6.12108 6.71985 27.62687∗ 21.51776
LB(30) 12.75710 12.66115 40.73496 34.43380
LB(50) 26.85175 26.95915 63.41004 56.38221
LB(100) 57.16571 58.81398 108.31067 99.40100
LB(250) 152.69068 151.87644 263.94935 244.86624

Mean-th.mean 0.00056 0.00067 0.00167 -0.00053
Std-th.std 0.48397 0.48260 0.42934 0.42635

Table 7: Parametric (FI)CARR models based on the Weibull distribution. Standard
errors are in parenthesis. "AIC" and "SIC" refers to Akaike’s and Schwartz’s information
criterion, respectively. LB(n) are Ljung-Box statistics, where * denotes rejection (at a five
percent level) of the null of no serial correlation from lag 1 to n. "Mean-th.mean" refers to
the difference between the empirical mean for Cox-Snell residuals and the theoretical value
of unity. "Std-th.std" refers to the difference between the empirical standard deviation
for Cox-Snell residuals and the theoretical value of unity.
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RSF/USD RUSD/GBP

GA-CARR(1,2) GA-FICARR(1,d,1) GA-CARR(1,2) GA-FICARR(1,d,1)bw 0.00016 (.00004) 0.00009 (.00004) 0.00006 (.00002) 0.00006 (.00002)bd 0.09193 (.02667) 0.48990 (.04883)ba1 0.14214 (.01864) 0.21005 (.01927)ba2 -0.06660 (.02154) -0.13596 (.02252)bb1 0.90129 (.01504) 0.92751 (.01925) 0.91457 (.01243) 0.69779 (.04529)bφ1 0.97276 (.00864) 0.41146 (.04497)dSEP92 0.00052 (.00027) 0.00041 (.00023) 0.00059 (.00025) 0.00180 (.00071)bδ 0 0 0 0bα 5.95417 (.15680) 5.95390 (.15679) 6.07406 (.16004) 6.08544 (.16035)
logL 12347.06365 12347.03491 13046.64817 13049.16799
AIC -24682.12730 -24682.06981 -26081.29634 -26086.33598
SIC -24646.64617 -24646.58868 -26045.81521 -26050.85485

LB(1) 0.88853 1.29818 0.02656 0.03222
LB(15) 10.34527 10.74357 26.87987∗ 23.60701
LB(30) 21.67441 21.23823 42.31167 37.17976
LB(50) 37.63922 37.48296 66.49537 62.46784
LB(100) 70.47017 70.70475 112.01293 109.24246
LB(250) 181.59285 181.02023 264.17881 253.19349

Mean-th.mean 0.01584 0.01605 0.01949 0.01562
Std-th.std 0.27559 0.27436 0.28052 0.27211

Table 8: Parametric (FI)CARR models based on Gamma distributions. Standard errors
are in parenthesis. "AIC" and "SIC" refers to Akaike’s and Schwartz’s information cri-
terion, respectively. LB(n) are Ljung-Box statistics, where * denotes rejection (at a five
percent level) of the null of no serial correlation from lag 1 to n. "Mean-th.mean" refers
to the difference between the empirical mean for Cox-Snell residuals and the theoreti-
cal value of unity. "Std-th.std" refers to the difference between the empirical standard
deviation for Cox-Snell residuals and the theoretical value of unity.
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RSF/USD RUSD/GBP

GA-CARR(1,2) GA-FICARR(1,d,1) GA-CARR(1,2) GA-FICARR(1,d,1)
Mean 1.01584 1.01605 1.01949 1.01562
Std 1.27559 1.27436 1.28052 1.27211
Skew 4.37086 4.34275 3.75244 3.75421
Kurt 43.24276 42.70847 27.02591 27.57099

ED test 11.57830 11.52042 11.81116 11.41432

# excl. extremes 20 20 25 25
Mean 0.95600 0.95637 0.95051 0.94766
Std 1.03056 1.03086 1.03360 1.02962
Skew 2.17782 2.17284 2.26138 2.24429
Kurt 8.57259 8.52109 9.06255 8.89708

ED test 1.13542 1.14663 1.24982 1.09852

Table 9: Upper panel shows summary statistics for Cox-Snell residuals from the GA-
(FI)CARR models. The lower panel shows the same summary statistics, excluding the
largest 20/25 Cox-Snell residuals. The Excess Dispersion (ED) test follows a standard
normal distribution under the null of the standard deviation being equal to unity.
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Figure 1: Time series plot of daily price ranges for RSF/USD in the upper panel, and
RUSD/GBP in the lower panel. The horizontal lines at observation number 461 and 481
denote the beginning and end of September 1992 (UK leaving ERM).
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Figure 2: Upper panel shows histogram for RUSD/GBP and lower panel shows histogram
for RSF/USD.
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Figure 3: Autocorrelation functions for daily price ranges corresponding to RSF/USD in
the upper panel and RUSD/GBP in the lower panel. Horizontal lines correspond to critical
values (at five percent level) for testing the null of the autocorrelation coefficient equal
to zero.
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Figure 4: Empirical density of standardized innovations from CARR(1,2) model for
RSF/USD is depicted by the solid line. The density is estimated by the Gamma ker-
nel of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted
by the dotted line.

Figure 5: Empirical density of standardized innovations from CARR(1,2) model for
RUSD/GBP is depicted by the solid line. The density is estimated by the Gamma kernel
of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by
the dotted line.
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Figure 6: Empirical density of standardized innovations from FICARR(1,d,1) model for
RSF/USD is depicted by the solid line. The density is estimated by the Gamma kernel of
Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by the
dotted line.

Figure 7: Empirical density of standardized innovations from FICARR(1,d,1) model for
RUSD/GBP is depicted by the solid line. The density is estimated by the Gamma kernel
of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by
the dotted line.
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Figure 8: Empirical density of Cox-Snell residuals from WE-CARR(1,2) model for
RSF/USD is depicted by the solid line. The density is estimated by the Gamma ker-
nel of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted
by the dotted line.

Figure 9: Empirical density of Cox-Snell residuals from WE-CARR(1,2) model for
RUSD/GBP is depicted by the solid line. The density is estimated by the Gamma kernel
of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by
the dotted line.
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Figure 10: Empirical density of Cox-Snell residuals from WE-FICARR(1,d,1) model for
RSF/USD is depicted by the solid line. The density is estimated by the Gamma kernel of
Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by the
dotted line.

Figure 11: Empirical density of Cox-Snell residuals from WE-FICARR(1,d,1) model for
RUSD/GBP is depicted by the solid line. The density is estimated by the Gamma kernel
of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by
the dotted line.
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Figure 12: Empirical density of Cox-Snell residuals from GA-CARR(1,2) model for
RSF/USD is depicted by the solid line. The density is estimated by the Gamma ker-
nel of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted
by the dotted line.

Figure 13: Empirical density of Cox-Snell residuals from GA-CARR(1,2) model for
RUSD/GBP is depicted by the solid line. The density is estimated by the Gamma kernel
of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by
the dotted line.

33



Figure 14: Empirical density of Cox-Snell residuals from GA-FICARR(1,d,1) model for
RSF/USD is depicted by the solid line. The density is estimated by the Gamma kernel of
Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by the
dotted line.

Figure 15: Empirical density of Cox-Snell residuals from GA-FICARR(1,d,1) model for
RUSD/GBP is depicted by the solid line. The density is estimated by the Gamma kernel
of Chen (2000) with a bandwidth of 0.15. The unit Exponential density is depicted by
the dotted line.
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