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SUMMARY

Popular monthly coincident indices of business cycles, e.g., the composite index and the
Stock—Watson coincident index, have two shortcomings. First, they ignore information con-
tained in quarterly indicators such as real GDP. Second, they lack economic interpretation;
hence the heights of peaks and the depths of troughs depend on the choice of an index. This
paper extends the Stock—Watson coincident index by applying maximum likelihood factor
analysis to a mixed-frequency series of quarterly real GDP and monthly coincident business
cycle indicators. The resulting index is related to latent monthly real GDP.
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1 INTRODUCTION

There is no doubt that, as a measure of the aggregate state of an economy, real GDP is one of
the most important coincident business cycle indicators. Popular U.S. monthly coincident indices
of business cycles, however, do not use real GDP; e.g., the composite index (CI) of coincident
indicators, currently released by The Conference Board, and the Stock—Watson Experimental Co-
incident Index (XCI) developed by Stock and Watson (1989). This is presumably because real
GDP is quarterly. Without a statistically rigorous method to construct a monthly index from
monthly and quarterly series, they ignore quarterly indicators. The Japanese coincident CI uses a
quarterly indicator (operating profits), but they simply transform it into a monthly series by linear

interpolation.

Figure 1.

Another problem of the standard coincident indices is that they lack economic interpretation.
Figure 1 compares the CI and the XCI from 1979 to 1983, during which there are two peaks and
two troughs. The XCI indicates that the trough in November 1982 is deeper than that in July
1980, while the CT indicates that the two are almost the same depth. In fact, real GDP (seasonally-
adjusted) is higher in the fourth quarter of 1982 (4,915.6 billion chained 1996 dollars) than in the
third quarter of 1980 (4,850.3 billion chained 1996 dollars). Such inconsistency can arise because
the levels of these indices have no economic interpretation.

This paper proposes a new coincident index of business cycles that uses both monthly and
quarterly indicators. Stock and Watson (1991) construct a coincident index (hereafter the S—
W coincident index) by applying maximum likelihood (ML) factor analysis to the four monthly
coincident indicators that currently make up the coincident CI. This paper extends the S-W
coincident index by including quarterly real GDP. The resulting index should improve upon the
S-W coincident index, because it uses the most important coincident indicator that the S-W
coincident index ignores, namely, real GDP. The resulting index is also related to latent monthly

real GDP.



Technically, this paper discusses ML factor analysis of time series with mixed frequencies, i.e.,
monthly and quarterly. Consider a state-space representation of a factor model, treating quarterly
series as monthly series with missing observations. Following Brockwell and Davis (1991, sec. 12.3)
and Brockwell, Davis, and Salehi (1991), we fill in missing observations with iid draws from the
standard normal distribution independent of the model parameters and rewrite the state-space
model accordingly, so that we can apply the Kalman filter to evaluate the likelihood function.
Realizations of the draws actually do not matter, because we rewrite the state-space model in
that way; hence we do not draw but simply put zeros in practice. Numerical maximization of the
likelihood function is straightforward. We use a quasi-Newton method, while Shumway and Stoffer
(1982) use an EM algorithm; see also Shumway and Stoffer (2000, sec. 4.4).

The S-W coincident index is essentially the wupdated estimate of the common factor in the
coincident indicators. We prefer the smoothed estimate instead, not only because it uses more
information, but also because it slightly simplifies formulation of our state-space model. Let vy
be a vector of the indicators (differences in logs) and f; be the common factor in y;. Let for
t>1,y::=(v1,...,9). Then the S-W coincident index is the updated estimate of the cumulative
common factor. (One may further take the exponential, but it does not affect the turning points.)
Notice that for ¢t > 1,

t t
B> filye | # ) Ely),
j=1 j=1
i.e., the updated estimate of the cumulative common factor differs from the cumulative sum of the
updated estimates of the common factor. To obtain the left-hand side, Stock and Watson (1991)
include the cumulative common factor in the state vector. Among recent extensions of the S—W
coincident index that introduce Markov regime-switching into the common factor, Kim and Yoo
(1995) and Chauvet (1998) obtain the left-hand side in the same way, but Kim and Nelson (1998)
obtain the right-hand side, which is not exactly what we want. This problem does not occur to

the smoothed estimate, because we have for ¢t < T,

t t
B> filyr | =Y E(filyr).
j=1 j=1

Since we can obtain the left-hand side from the right-hand side, we do not need the cumulative

common factor in the state vector.



The plan of the paper is as follows. Section 2 sets up a static one-factor model for monthly series,
including latent series underlying quarterly series, and derives a state-space model for observable
monthly and quarterly series. Section 3 explains estimation of state-space models for mixed-
frequency series. Section 4 applies the method to the U.S. quarterly real GDP and monthly
coincident indicators to obtain a new coincident index of business cycles, and compares it with

other coincident indices. Section 5 concludes.

2 THE MODEL
2.1 One-Factor Model

Let {Y7+}2 be an N;p-variate random sequence of quarterly indicators observable every third

— 00
period, and {Y5.}§2_., be an Ny-variate random sequence of monthly indicators. Let N :=

Ny + N2. Assume that logs of the indicators are integrated of order 1. Let {Y7,}{2_ ., be an

Ni-variate latent random sequence such that for all ¢,
1 * * *
InYy; = 3 (lnyl,t +In¥7; , + lnifl,th) ) (1)

ie, Y1t is the geometric mean of Y7, Yi*, ;, and Y%, ,. (The natural log applies to each

component of the vector.) Taking the three-period differences, for all ¢,

(hl Y1*,t —1In iflftf?)) + (hl thtﬂ —In )/itle)

W =

1

InY1;—InYi, 3 = 3
1 * *

Jrg (mYufz - lnifl,t75) ,

or

—

g = (yTt + Y +yit72) + 3 (yitﬂ + Yo +yit73)

w| =
oo

1 * * *
Jrg (y17t72 T Y3t y1,t—4)

= §y1,t + §y1,t71 T Y2t §y1,t73 + §y17t74v (2)

where y1 ¢ := AzInY; ; and yit = Aln Y1*t We observe y1 ; every third period, and never observe

E 3
Yie-

)

Note that (1) is not the usual accounting identity that links monthly levels to quarterly levels.

A quarterly level is usually the arithmetic mean (or sum) of the monthly levels in the quarter by



definition. Here it is the the geometric mean, i.e., we define latent monthly levels in such a way.
There is a tradeofI: if one wants to work with a linear state-space model, then one must accept (1);
if one sticks to the accounting identity, then one must work with a nonlinear state-space model,

which is a bit troublesome. This paper takes the first approach.

R A s (YT
Ye - <y2,t> ) Y - <y27t> )

where y2 ¢ := AlnY5,. Assume a static one-factor model for {y; }{2

Let for all ¢,

such that for all ¢,

— 00

Y, _ (M

(Be) = () b ®)
or(L)fe = wig, (4)
cI>u(L)ut = V24, (5)

2
U1t o7 0
’ ~ NID (O 6

where 3 € RV is a factor loading vector, {f;}$° . is a scalar stationary sequence of the common
factor, {us}§°_ . is an N-variate stationary sequence of the specific factors, L is the lag operator,
#¢(.) is a pth-order polynomial on R, and ®,,(.) is a gth-order polynomial on RV*¥. For identi-
fication, assume that (i) the first component of 8 is 1 and (ii) ®,(.) and Ya2 are diagonal; these
identification restrictions are standard in factor analysis.

Since we never observe yj ;, we cannot estimate (3) directly. Hence we consider the correspond-

ing dynamic one-factor model for {y;}$°_ . such that for all ¢,

Y1t _ 21 + B (%ft + %ftﬂ + fi—2 + %ftfi% + %ftle)
Y2t L2 B2t
%Uu + §u1,t71 + U2+ §U17t73 + %Ul,tle 7
+ s ; (7)

where p1 1= 3u7, (81, 83) = B, and (u] 4, us )" = us.

2.2 A State-Space Representation

Assuming that p, ¢ < 4, a state-space representation of (7) is

s¢ = Fsi 14 Guy, (8)

Yy = p+ Hsy, 9)



where

Jt
s Ji—a ’
Ut
Ut—4
L Vit
UVt = 5
K28 brp 05 p 1
1 0 0
Osxsn
0 1 0
F - cI)u,l cI>u,q ON><(57q)N ’
In 0 ONnxnN
Osnxs5 :
i 0 In ONnxnN
1 02\,
0 ONn
G - oN IN ’
on OnNxnN
H _ _% 23_1 ﬁl % % %INl ONlXNQ %INl ONlXNQ
| Bo OnNyxa Onyx Ny In, OnyxN ’

where o,, is the n x 1 zero vector and O, is the m X n zero matrix.
This representation follows Stock and Watson (1991, p. 68). Note, however, that when g < 4,

U2t (q+1)s - - -» U2,t—4 are irrelevant state variables, and removing them speeds up the computation.

3 ESTIMATION
3.1 Likelihood Function

Let 8 be the parameter vector. Let {yit}zim be such that for all ¢,

7

+ . J e ify1 s is observable
Yie = 2t otherwise

where z; is a random draw from a distribution that does not depend on 8. Let for t > 1, y; :=

(y1,...,y:) and y, = (yf, .. ,yj) Since z;’s are independent of yr by construction, we can

write a joint pdf of y; as

F(y#:0) = fyr; 0) [ | £(=0),

teA



where y1 ¢ is missing for t € A C {1,...,T}; thus the likelihood function of  given yr and that
given y; are equivalent up to scale. We work with the latter because y; does not contain missing
observations.

The distribution of z; can be anything as long as it does not depend on #; we assume that
2z ~ N(0, Iy,) for convenience. Since the ML estimator of 8 given y; does not depend on z;, we
simply set z; = 0 for its realization.

We derive a state-space model for { v, }:iioo next, so that we can apply the Kalman filter to

evaluate the likelihood function of @ given y;.. Write (9) as

Y1t 1 o,
9 — + )
() = () [ ]
+
Y1\ [ Mg oy, w1
E — ? + ’ + E ,
() = ) [ o ()

L { w1 if y1; is observable
Bz = _
otherwise

Then we have for all ¢,

where

7

Hy; = {

7

0
H, if y,+ is observable
0 otherwise

0

] if 91 ¢ is observable
Wit = . .
z; otherwise

Thus we have a state-space model for { v, }:iioo such that for all ¢,

St = FStfl —+ th, (10)
v, = e+ Hes+ wy, (11)
where
11t Hy4 w1 ¢
= *), Hp:= R = D
e ()= g o (1)
Let for t > 1,
,ut‘t,l(@) = E (yﬁlyttl; 9),
Et‘t,l(ﬁ) = oovar (y?lyttl; 9),
where y§ := 0. Then for ¢t > 1,
_ —1/2
Pyl o) = @) N2det (Shea(0)



exp <—% (W — pe—1(0)) B 1(0)" (i - Nttl(@») :

The log-likelihood function of & given y; is

InL(0;yf) = —El 27r——Zlndet See—1(0))
1 & : /
52 — puefe—1(0)) Zeje—1(0) " (" — peje—1(0)) -
t=1

To evaluate this, we must evaluate {/Lt‘t,l(@), Et‘t,l(ﬁ)}thl. Let for ¢, s > 0,

s = El(silyl;0),
Py, = var (st|ys+; 0) .
From (11), for ¢ > 1,
peje—1(0) = g+ Hidgoa,
Et\tfl(g) = HtPt\tleé + Yiww,ts
where
OnxnN if 1+ is observable
Pt 1= v Oy xmy otherwise

ONlXNQ ONQXNQ
. R T .
Given @, we can evaluate {st‘t,l, Pt\tfl}tzl using the Kalman filter.

3.2 Kalman Filter
3.2.1 Initial State

To start the Kalman filter, one must specify ;)9 and F)g, the unconditional mean and variance of

s1. Given stationarity, we can show that

S10 — 0,

vec(Pig) = (I(5+5N)2 —F® F)i1 vec(GYy, G').

The second equation involves inversion of a large matrix.

Alternatively, one can simply set

So0 — 0,



which implies that

Pig = GG (17)
The resulting estimator of 8 is asymptotically equivalent to the ML estimator.

3.2.2 TUpdating
The Kalman gain matrix is for ¢ > 1,
By = Py 1 H, (HiPyy 1 Hy 4 ) - (18)
The updating equations for the state vector and its variance—covariance matrix are for ¢ > 1,
S0 = Sep—1+ B (y — e — Hidye1), (19)

Py, = Py — BHPy_ . (20)

3.2.3 Prediction

The prediction equations for the state vector and its variance—covariance matrix are for ¢t > 1,

8101 = F&_ 1101, (21)

Py = FP_yp 1 F' 4 GG (22)
Combining the updating and prediction equations, we obtain {§t‘t,1, Pt‘t,l}thl.
3.3 Fixed-Interval Smoothing

We are interested in estimation of the common factor, i.e.; the first component of the state vector.

The smoothing equation for the state vector is for t =1,...,T,
S = 84y + Pt\tF’Ptht (845117 — 8ev1)t) - (23)

See Hamilton (1994, sec. 13.6) for the derivation.

In practice, one may not want to invert P, ,; numerically when its dimension is large. The
following algorithm by de Jong (1988, 1989) is useful in such cases; see also Koopman (1998). Let
fort—1,...,T+1,

Ty = Ptﬁl,l (§t\T - §t\t71) .



Then fort =1,...,T+1,

Str = 84)¢—1 + Prp—1re.
Plugging (19) into (23), for t =1,...,T,
Str = S¢je—1 + By (yt+ — e — Ht§t\t71) + Pt\tF/P,;ll‘t (§t+1\T - §t+1\t) .

Comparing the previous two equations, for t =1,...,T,

Pyeare = Bi(yl —pe — HiSypo1) + Pt\tF/P,;ll‘t (3es1r — 31410

= DBy (y,g+ — Ht — Htét\tfl) + Pt\tF/Tt+1,
or using (18) and (20),

e = Ptﬁllet (y?» - Mt — Htét\tfl) + Ptﬁlflpt\tF/Tt+1

_1 R
= Hj (HtPt\tleé + Eww,t) (yf — Mt — Htst\tfl) + (I — H;B)F'ri41.

The algorithm starts from rp41 := 0 and iterates for t =1T,...,1,
1 N
re = Hj (HtPt\tleé + Eww,t) (yf — Mt — Htst\tfl) + (I — HB)F'ry 1,
Syr = Sgp—1 + Preo1re

4 NEW COINCIDENT INDEX

4.1 Data

Table 1.

We apply the method to U.S. coincident business cycle indicators to obtain a new coincident

index of business cycles. The indicators are quarterly real GDP and the four monthly coincident

indicators that currently make up the CI; see Table 1 for their descriptions. The sample period is

from January 1959 to December 2000. To stationarize the series, we take the first difference of the

natural log of each series and multiply it by 100, which is approximately equal to the quarterly or

monthly percentage growth rate.

Table 2.
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Table 2 summarizes descriptive statistics of the growth rate series. The mean monthly growth
rate of EMP (0.18%) is lower than those of the others including GDP (0.28-0.29%), and the
standard deviations of the growth rates of EMP and INC are smaller than those of ITP and SLS.
The low mean and the small standard deviation of the growth rate of EMP strongly pull down
the mean growth rate of CI (0.24%), which is a weighted average of the growth rates of the four

monthly indicators using weights proportional to the inverses of their standard deviations.

4.2 Estimation Result

Following Stock and Watson (1991), we take two shortcuts in estimating the dynamic one-factor
model (4)—(7). First, to reduce the number of parameters, we demean the series and delete the
constant term from (7). To identify the common factor as the common factor component in the
growth rate of latent monthly real GDP, however, we do not want to standardize A In GDP; hence,
contrary to Stock and Watson (1991), we do not normalize the variance of each series to be 1.
Second, we use the approximate ML estimator instead of the exact one regarding the initial state
for the Kalman filter. These shortcuts are common in practice; for instance, we often estimate an
AR model with normal innovations by applying OLS to the demeaned series.

These shortcuts are important for applications. Computation of the exact ML estimator in-
volves inversion of a large matrix in (13). In our case, we must invert a 900 x 900 matrix (N = 5)
in each iteration, which is time-consuming. Using Ox 3.10 by Doornik (2001) on a Pentium IIT
(800 MHz) processor, estimation of the finally selected model (p = 1, ¢ = 2) by a quasi-Newton
method (Broyden—Fletcher—-Goldfarb—Shanno algorithm) from an ad hoc initial guess takes about
9 hours for the exact ML estimator, while less than 20 minutes for the approximate one. It takes
even longer without demeaning.

Note that using a quasi-Newton method, we only obtain a local ML estimator; there is no
guarantee that it coincides with the global ML estimator.

Before estimation, we must determine p and ¢, the orders of AR models for the common and
specific factors respectively. One may use a model selection criterion, such as Akaike’s information

criterion (AIC) or Schwartz’s Bayesian information criterion (SBIC), for that purpose. For our

11



model,

AIC = —%{hlL(é)—[(N—1)+p+1+N(qu1)]},
SBIC :— —%{mL(é)—mTT[(N—1)+p+1+N(q+1)]},

where 0 is the (approximate) ML estimator of §. We find that AIC selects (p,q) = (1, 3) while

SBIC selects (p, ¢) = (1,2). We follow SBIC here, preferring the simpler model.
Table 3.

Table 3 summarizes the estimation result. Since the standard deviations of the growth rates of
the indicators are different, we cannot compare the factor loadings directly; we must compare the
factor loadings for the standardized series. Instead of reestimating the model for the standardized
series, we simply look at the factor loadings divided by the standard deviations of the growth rates
of the indicators. This standardized factor loading is largest for AInIIP (2.14/0.87) and smallest
for AlnSLS (1.74/1.04), essentially the same result as that in Stock and Watson (1991, Table 4.1).
Without knowing the standard deviation of the growth rate of latent monthly real GDP, we cannot
compare the factor loading for Aln GDP with others.

The common factor has positive autocorrelations. The specific factors have different time series
properties: the AR coefficients are positive for Aln EMP, almost zero for AInINC and AlInIIP,
and negative for Aln GDP and AInSLS. The negative AR coeflicients may look odd at first sight.
We find, however, that if we fit low-order ARMA models to the growth rate series of the indicators,
then we often get negative MA coefficients. The MA part may correspond to the specific factor. In
any case, the results for the monthly indicators are very close to that in Stock and Watson (1991,
Table 4.1).

Given the estimates of the model parameters, we apply fixed-interval smoothing to obtain the
smoothed estimates of the common factor, from which we construct our new coincident index as

follows:

1. Add the mean growth rate of latent monthly real GDP, i.e., the mean growth rate of quarterly
real GDP divided by 3, to the smoothed estimates of the common factor and divide them by

100.

12



2. Take the partial sums, and then take the exponentials.

The new coincident index is an estimate of the common factor component in latent monthly
real GDP. One may not want to take the exponentials in the last step, because this only gives the
exponential of the expectation of the natural log of the common factor, which is not the expectation
of the common factor. It does not matter for determining business cycle turning points anyway;

monotone transformations do not affect them.

Figure 2.

Figure 2 plots the new coincident index. It seems to capture the NBER business cycle reference

dates very well.

4.3 Comparison with Other Indices

We compare our new coincident index with the CI and the S—W coincident index constructed from
our data.
In the U.S., The Conference Board calculates the CI of coincident indicators in the following

five steps:
1. Construct the monthly symmetric growth rate series of the indicators.
2. Compute the standard deviation for each symmetric growth rate series, excluding outliers.

3. Take a weighted average of the symmetric growth rate series, using weights proportional to
the inverses of their standard deviations, to obtain the symmetric growth rate series of the

CI.
4. Convert the symmetric growth rate series to the level series.
5. Rebase the level series to average 100 in the base year.

See the December 1996 issue of Business Cycle Indicators for details. For comparison with our new
coincident index, we take the first difference of the natural log instead of the symmetric growth

rate, and do not exclude outliers when computing the standard deviation.

Table 4.
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Stock and Watson (1991) start from the static one-factor model (3)—(6) to construct the S—-W
coincident index. For identification of the model parameters, they assume that 62 = 1 instead of
restricting 3. They take the following shortcuts in estimation: standardize the series, delete the
constant term from (3), and use the approximate ML estimator. They select (p, ¢) = (2, 2) based
on a likelihood-ratio test. We select (p, q) = (1, 3) for our data, following AIC and SBIC. Table 4
summarizes the estimation result. Although we do not have Aln GDP here, the result is similar to
that in Table 3; the difference in the factor loading vectors comes from (i) different identification
restrictions on the parameters, and (ii) different normalization of the series. The result is also
similar to that in Stock and Watson (1991, Table 4.1).

As a by-product of ML estimation of the model parameters, the Kalman filter gives a sequence
of the updated estimates of the common factor. From this, we construct the S-W coincident index

as follows:

1. Add the mean of the common factor defined below to the updated estimates of the common

factor and divide them by 100.
2. Take the partial sums, and then take the exponentials.

Kim and Nelson (1999, sec. 3.5) define the S-W coincident index in this way. As we note in
the introduction, the original S-W coincident index is essentially the updated estimate of the
cumulative common factor, and not the cumulative sum of the updated estimates of the common
factor. We do not pursue the effect of this distinction here, however.

Stock and Watson (1991) identify the mean of the common factor as follows. Combining the

updating equation (19) and the prediction equation (21), and using the lag operator L,

§t\t = Fé’t,l‘tfl + Bt(yt — M HF‘g'tfl‘tfl)
= (I — BiH)F L3y, + Be(ye — 1)

= [I—-(I-BH)FL 'Bi(ys — p),

where I is the identity matrix (¢ and H are time-independent without quarterly series). Let

W(L) := [I — (I — BH)F| B, where B is the steady-state Kalman gain matrix. In the steady

14



state,

§t\t = W(L)(yt — p)-
The first component of 8;; is the updated estimate of the common factor, which is a linear com-
bination of the current and past y;. Stock and Watson (1991) use these weights, i.e., the first row
of W(L), to identify the mean of the common factor. Thus, given stationarity, they identify the
mean of the common factor as the first component of W(1)u. Note that this identification is valid

only for the updated estimates.
Table 5.

Table 5 summarizes descriptive statistics of the monthly growth rate series of alternative indices.
To separate out the effect of including real GDP from that of smoothing, we look at both the
updated and the smoothed versions of our new coincident index. The mean monthly growth rate
of the S—W coincident index is high, and the standard deviation is large. We see that smoothing

reduces volatility for our new coincident index.
Table 6.

Table 6 shows correlations between the monthly growth rates of these indices. The CI has
relatively low correlations with others. The S—W coincident index and the updated version of our
new coincident index have an extremely high correlation. This is probably because the updated
version of our new coincident index can use information in the current real GDP only in the third
month of each quarter. Since the smoothed version of our new coincident index can use such
information every month, the correlation between the S-W coincident index and the smoothed
version of our new coincident index is not that high. Smoothing is crucial when one includes

quarterly series.
Table 7.

Table 7 compares business cycle turning points determined by each index with the NBER
business cycle reference dates. The CI captures the NBER reference dates best, but our new
coincident index also performs well. The S-W coincident index signals the peak in January 1980

too early, which is the same result as in Stock and Watson (1991, Figure 4.1).

15



Figure 3.

Figure 3 plots the CI, the S-W coincident index, and our new coincident index from 1979 to
1983, during which there are two peaks and two troughs. We see that the three indices have notable
differences. First, the S—-W coincident index signals the peak in January 1980 too early. Second,
our new coincident index signals the trough in November 1982 one month early, while the other two
signal it one month late. Third, the heights of the peaks and the depth of the troughs indicated by
the three indices are very different. For the peaks, the CI and our new coincident index indicate
that the peak in July 1981 is higher than that in January 1980, while the S—-W coincident index
indicates the opposite. For the troughs, the CI and the S-W coincident index indicate that the
trough in November 1982 is deeper than that in July 1980, while our new coincident index indicates
the opposite.

In conclusion, we find significant differences between the three indices. Recall that our new
coincident index is an extension of the S—-W coincident index that has an economic interpretation as
the common factor component in latent monthly real GDP. As such, the level of our new coincident
index resembles that of observable quarterly real GDP. Such an index should be more appealing

than those without economic interpretation.

5 CONCLUSION

Here we summarize our concern about the S—W coincident index described in this paper:

1. The S-W coincident index is essentially the updated estimate of the cumulative common
factor among coincident indicators, but some people use the cumulative sum of the updated
estimates of the common factor instead. The two are not identical. This distinction is

irrelevant for the smoothed estimate.

2. The identification method for the mean growth rate of the S—-W coincident index is valid only

for the updated estimate. Its extension to the smoothed estimate is not immediate.

3. The updated estimate cannot use information in quarterly indicators in the first two months
of each quarter, because such information is not available yet. Hence smoothing is crucial

when one includes quarterly indicators.
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4. Without economic interpretation, the level of the S—W coincident index may not coincide
with the levels of important indicators such as real GDP. This may cause a false signal; for

instance, compare March 1979 and January 1980 in Figure 3.

Our concern also applies to the recent extensions of the S—-W coincident index that introduce
Markov regime-switching, e.g., Kim and Yoo (1995), Chauvet (1998), and Kim and Nelson (1998).
Including quarterly indicators in these extensions seems straightforward theoretically, but may be

cumbersome numerically.
ACKNOWLEDGMENTS

We thank Konstantin Kholodilin, Mitsuru Nakagawa, and Haruhisa Nishino for useful com-

ments.

References

Brockwell PJ, Davis RA. 1991. Time Series: Theory and Methods, second ed. Springer-Verlag New

York.

Brockwell PJ, Davis RA, Salehi H. 1991. A state-space approach to transfer-function modeling. In

Statistical Inference in Stochastic Processes, Prabhu NU, Basawa IV (eds). Marcel Dekker.

Chauvet M. 1998. An econometric characterization of business cycle dynamics with factor structure

and regime switching. International Economic Review 39: 969-996.
de Jong P. 1988. A cross-validation filter for time series models. Biometrika 75: 594—600.

de Jong P. 1989. Smoothing and interpolation with the state-space model. Journal of the American

Statistical Association 84: 1085—1088.
Doornik JA. 2001. Oz: An Object-Oriented Matrix Language, forth ed. Timberlake Consultants.
Hamilton JD. 1994. Time Series Analysis. Princeton University Press.

Kim CJ, Nelson CR. 1998. Business cycle turning points, a new coincident index, and tests of
duration dependence based on a dynamic factor model with regime switching. Review of

FEconomics and Statistics 80: 188-201.

17



Kim CJ, Nelson CR. 1999. State-Space Models with Regime Switching. The MIT Press.

Kim MJ, Yoo JS. 1995. New index of coincident indicators: A multivariate Markov switching factor

model approach. Journal of Monetary Economics 36: 607-630.

Koopman SJ. 1998. Kalman filtering and smoothing. In FEncyclopedia of Biostatistics, Peter A,

Theodore C (eds). John Wiley & Sons.

Shumway RH, Stoffer DS. 1982. An approach to time series smoothing and forecasting using the

EM algorithm. Journal of Time Series Analysis 8: 253-265.

Shumway RH, Stoffer DS. 2000. Time Series Analysis and Its Applications. Springer-Verlag New

York.

Stock JH, Watson MW. 1989. New indexes of coincident and leading economic indicators. NBER

Macroeconomics Annual 4: 351-409.

Stock JH, Watson MW. 1991. A probability model of the coincident economic indicators. In Leading

Economic Indicators, Lahiri K, Moore GH (eds). Cambridge University Press.

18



Table 1: U.S. Coincident Business Cycle Indicators

Indicator Description
Quarterly
GDP Real GDP (billions of chained 1996 dollars, SA, AR)
Monthly
EMP Employees on nonagricultural payrolls (thousands, SA)
INC Personal income less transfer payments (billions of chained 1996
dollars, SA, AR)
ITp Index of industrial production (1992 = 100, SA)
SLS Manufacturing and trade sales (millions of chained 1996 dollars,
SA)

Note: SA means “seasonally-adjusted” and AR means “annual rate.”

Table 2: Descriptive Statistics of the Indicators

Indicator Mean  S.D. Min. Max.
Quarterly

AlnGDP 0.84 090 -2.06 3.78
Monthly

AlnEMP 0.18 0.23 -0.86 1.23

AlInINC 0.28 040 -1.10 1.61

AlnlIIP 0.29 0.87 —4.25 6.00
AlnSLS 0.28 1.04 -3.21 3.54
AlnCI 0.24 036 —1.44 1.89

Table 3: Estimation Result for the One-Factor Model With Real GDP

Parameter AInGDP AInEMP AInINC AInIIP AlnSLS

3 1.00 0.49 0.81 214 1.74
(0.04) (0.06)  (0.13)  (0.11)
b 0.56
(0.05)
o2 0.08
(0.01)
Pu —0.04 0.10 —0.05  —0.05  —0.41
(0.08) (0.04) (0.05)  (007)  (0.05)
Pu,2 —0.83 0.45 003  —006  —0.20
(0.07) (0.05) (0.05)  (0.06)  (0.05)
o 0.19 0.02 0.09 0.25 0.61
(0.04) (0.00) (0.01)  (002)  (0.04)

Note: Numbers in parentheses are asymptotic standard errors.
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Table 4: Estimation Result for the One-Factor Model Without Real GDP

Parameter AImEMP AInINC AnIlP AlnSLS

3 055 052 0.69 0.45
(0.03) (0.04)  (0.04)  (0.03)
b 0.56
(0.05)
Pu —0.04 —002  -010  —0.38
(0.05) (0.05)  (0.08)  (0.05)
Pu,2 0.44 007  —013  —0.16
(0.05) (0.05)  (0.07)  (0.05)
bus3 0.26 010  —0.04 0.05
(0.06) (0.05)  (0.07)  (0.05)
o 0.31 0.57 0.29 0.58
(0.03) (0.04)  (0.03)  (0.04)

Note: Numbers in parentheses are asymptotic standard errors.

Table 5: Descriptive Statistics of Alternative Indices

Index Mean S.D. Min. Max.
AlnCI 0.24 036 —1.44 1.89
AlnSW 041 1.16 —5.75 6.30

AlnNew* 0.28 032 -1.36 1.83
AlnNew?® 0.28 031 -—-1.25 1.74

Note: “SW” and “New” denote the S—W coincident index and the new coincident index respectively.
The superscripts w and s denote the updated and smoothed estimates respectively.

Table 6: Correlations Between Alternative Indices

AlnCI AInSW AlnNew® AlnNew®

AlnCI 1.000

AlnSW 0.964 1.000

AlnNew* 0.972 0.997 1.000

AlnNew?® 0.960 0.984 0.986 1.000

Note: See the note to Table 5.
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Table 7: Business Cycle Turning Points Determined by Alternative Indices

NBER CI SW New“ New?®
Peaks
1960/4 0 -2 0 0
1969/12 -2 -2 -2 -2
1973/11 0 0 0 0
1980/1 0 -10 +1 0
1981/7 0 0 +1 0
1990/7 -1 —4 +1 0
Troughs
1961/2 0 0 0 -2
1970/11 0 0 0 0
1975/3 0 0 0 0
1980/7 0 0 0 0
1982/11 +1 +1 0 -1
1991/3 0 0 0 0

Note: See the note to Table 5. The numbers are lags from the NBER business cycle reference
dates.
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Figure 1: The Conference Board CI and the Stock—Watson XCI from 1979 to 1983 (1980:1=1).
The vertical lines are the NBER business cycle reference dates.
Sources: The Conference Board and the home page of James Stock.
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Figure 2: Historical Plot of the New Coincident Index (1959:1=1). The vertical lines are the NBER
business cycle reference dates.
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Figure 3: Comparison of Alternative Indices from 1979 to 1983 (1980:1=1). The vertical lines are
the NBER business cycle reference dates.
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