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Abstract. This paper re-examines the conditions for the existence of local station-
ary sunspot equilibria (SSE) in the standard OLG model from a broader perspective
than before. We say that local SSE exist around a steady state of a given OLG econ-
omy if, in any arbitrarily small neighborhood of the steady state, we can find a SSE
of a “nearby” economy. We show that when the domain where “nearby” economies
may lie is defined by agents’ endowments and probabilities, the indeterminacy of the
steady state remains both necessary and sufficient for the existence of local SSE. On
the other hand, when the domain of economies is defined by by agents’ preferences
and probabilities, local SSE may exist even around determinate steady states.

We also show that if a slightly weaker notion of distance is used to identify
“nearby” economies, SSE in the vicinity of a steady state equilibrium generically
exist.

1. Introduction

It is by now a well established fact that the volatility in prices and allocation of
resources in a market economy can be generated by the agents’ self-fulfilling price
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expectations even when the fundamentals of the economy do not fluctuate. This is
formalized by the notion of sunspot equilibrium.1

The existence of sunspot equilibria has been shown in various frameworks, both
in economies with finite horizon2 and with infinite horizon. In this paper we analyze
sunspot equilibria in overlapping generations (OLG) economies.3 In particular, we
are primarily concerned with sunspot equilibria that are both stationary, so that
the fluctuations induced by agents’ beliefs are persistent, and local, i.e. such
that fluctuations occur arbitrarily close to a deterministic steady state. These
sunspot equilibria are especially interesting for two reasons: first, their stationarity
makes them likelier to be the outcome of a learning process and hence gives a well
founded rationale for the use of the rational expectations hypothesis; secondly, their
local character addresses well the typical pattern exhibited by many economic time
series that depart recurrently by only slightly from their trends. This explains why
local stationary sunspot equilibria (SSE) have received considerable attention in
the literature. Another important reason is that the conditions for the existence of
local SSE are easier to characterize and can be stated in terms of properties of the
underlying certainty economy, the economy where sunspot uncertainty is ignored
by agents.

In particular, there is a close connection between the existence of local sunspot
equilibria and the indeterminacy of the steady state equilibrium (that is, any perfect
foresight equilibrium path locally converges to it, and thus there is a continuum
of equilibrium paths around the steady state). The sufficiency of this condition
for the existence of local 2-SSE (i.e., finite support with two sunspot states each
period), under some regularity condition which excludes knife-edge cases a pri-
ori, was shown by Azariadis and Guesnerie (1986) for one-commodity overlapping
generations economies and by Guesnerie (1986) for n-dimensional one-step forward-
looking dynamical systems, where the necessity of the condition was also shown.
Guesnerie’s result was then generalized to k-SSE by Chiappori, Geoffard and Gues-
nerie (1992) within the same setup of Guesnerie (1986). A more general form of the
result was proved by Woodford (1986), thus validating the conjecture in Woodford
(1984); within a more general framework of dynamic economies, Woodford showed,
under a similar regularity condition, that the indeterminacy of the steady state is

1For the seminal papers on the concept of sunspot equilibrium see Shell (1977) and Cass and
Shell (1983).

2Cass (1992), Gottardi and Kajii (1999), among others.
3For the first studies of sunspot equilibria in the framework of overlapping generations economies

see Shell (1977), Azariadis (1981) and Azariadis and Guesnerie (1986). From here an extensive lit-
erature on sunspot equilibria in overlapping generations economies and dynamical economies was
developed in the 80’s and 90’s; see Chiappori and Guesnerie (1991) and Guesnerie and Woodford
(1996) for surveys of this literature.
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both necessary and sufficient for the existence of local SSE (not restricted to have
a finite support).4 But, to the best of our knowledge, the possibility of exhibiting
local sunspot equilibria around a determinate steady state was excluded by all the
previous results in the literature. If there is no local sunspot equilibria around a
determinate steady state, an analyst can be assured again that sunspots do not
matter - in the vicinity of the monetary steady state - if s/he studies the Pareto
efficient steady state with a “normal” offer curve, for instance.

In this paper, we reconsider this possibility again, namely the existence of local
stationary sunspot equilibria in the neighborhood of a determinate steady state, and
we do it from a broader perspective than before. More precisely, local SSE exist
around a steady state of a given economy if, in any arbitrarily small neighborhood
of the steady state we can find a SSE of an economy “close” to the original economy.

In this set-up, an important role is played by the domain of economies where
we can look for ‘nearby’ economies exhibiting sunspot equilibria in the vicinity of
the steady state. In the literature on local sunspot equilibria referred to above,
the domain of economies considered was defined by the probabilities describing
the beliefs of the agents over the sunspot states. In other words, economies are
close if the fundamentals, i.e. the agents’ preferences and endowments, are the
same and they differ by agents’ beliefs only. We explore here the conditions for
the existence of local SSE within a larger domain of economies, where we allow for
“small” variations both in the fundamentals of the economy and agents’ beliefs.
We believe that such a more liberal interpretation of closeness conforms with the
spirit of stationary local sunspot equilibria explained above.

To avoid the emergence of any other possible ‘pathology’, the analysis is carried
out in the framework of the standard OLG model, with one commodity, one agent
per generation and fiat money as the only asset. We examine first the case where the
domain of economies is defined by agents’ endowments as well as probabilities. Thus
economies are considered to be close if the agents’ endowments and probabilities
over sunspot states are close, while preferences are the same. We show that in
this case the indeterminacy of the steady state remains a necessary and sufficient
condition for the existence of local SSE in its neighborhood; thus the aforementioned
results extend to this more general framework.

On the other hand, when the domain of economies is defined by agents’ prefer-

4On the other hand, in this more general set-up the indeterminacy condition is not always
sufficient if the SSE considered are still restricted to have a finite support, as pointed out in
Dávila (1997). In effect, Dávila (1997) showed that, in the presence of predetermined variables
the indeterminacy of the steady state, while continuing to be a necessary condition for the existence
of local sunspot equilibria, is no longer sufficient for the existence of local SSE with finite support
whenever the dynamics is linear.
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ences and probabilities, we show that local SSE may exist even around determinate
steady states. To be more precise, we can construct a convergent sequence of
economies, where there is a determinate steady state and a sunspot equilibrium
around it for every economy. In fact, the steady state consumption is constant
along the sequence. The sunspot equilibrium consumption allocation converges to
the (deterministic) steady state of the limit economy. It turns out that whether
or not the steady state is also determinate in the limit economy depends on the
topology for which the convergence of utility functions takes place. The precise
formulation of the existence result therefore depends on the strength of the notion
of convergence (i.e. of distance) which is used in the space of utility functions de-
scribing preferences. In any case, our results show that local SSE prove to be quite
pervasive, as it is hard to identify robust conditions on the fundamentals of the
economies which can rule out their existence.

We also consider a slightly weaker notion of closeness, whereby an economy is
viewed as “close” to another if it has the same preferences, probabilities and ag-
gregate endowment, though its distribution among different generations (and/or
heterogeneous households) may be different; the aggregate endowment is observ-
able, but not its distribution. We show that in this case, even when the domain
of economies considered is defined by endowments and probabilities, SSE ‘near’
a steady state equilibrium exist generically: for almost any choice of the agents’
beliefs, preferences and aggregate endowments, there is a way to redistribute the
aggregate endowments so that the resulting economy has a SSE around the steady
state equilibrium of the given economy. Our analysis provides a general and robust
method for constructing SSE in the vicinity of any stationary equilibrium.

The results shown in this paper contribute to clarify the precise nature of the
link between local SSE around a steady state and the indeterminacy of the latter.
In this sense, they help completing the understanding of this links we already had
from Guesnerie (1986) and Woodford (1986); at the same time they show that some
qualifications to Woodford’s conjecture is needed.

Our analysis also establishes some results which are of somewhat independent
interest: first, the singularity of non-sunspot stationary equilibria is shown to be
necessary for the existence of local SSE around a steady state, even for the larger
domain of economies we consider, and the conditions for the singularity of such
equilibria are determined (Lemmas 1 and 2); secondly, any increasing function
defined in a neighborhood of a point can be rationalized as the offer curve of a
consumer with additively separable preferences (Lemma 4); and finally, we provide
a method of constructing SSE around a steady state when the offer curve has a
certain property (the last part of the proof of Proposition 4).
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The rest of the paper is organized as follows. Section 2 presents the model.
Local stationary sunspot equilibria are then defined in section 3. The conditions
for the existence of local SSE are then characterized in Section 4 for the case in
which the domain of economies is defined by endowments as well as probabilities
and in Section 5 for the case in which economies are parameterized by preferences
and probabilities.

2. The Model

We consider a class of simple, stationary overlapping generations economies.
There is a single perishable commodity. Each period t = 1, ... a new generation
is born, composed of one (type of) agent, living two consecutive periods. Each
generation is identical, and is characterized as follows, unless specified otherwise:

(1) a utility function u : R2
+ → R, exhibiting standard properties: u is differen-

tiable on R2
++, monotone (i.e. Du(c) is in R2

++ for every c in R2
++), concave,

differentiably strictly quasi concave5 and well-behaved at the boundary (i.e.
such that strictly positive prices imply interior solutions, which is guaran-
teed for instance, although not exclusively, by indifference curves included
in R2

++).
(2) an endowment vector e ∈ R2

++.

Fiat money is the only asset in the economy. Each period the consumption good
can be exchanged with money at the price p. Even though the ‘fundamentals’ of
the economy (e, u) are deterministic, consumers may still face some uncertainty
about the price level that will prevail in the market next period. Uncertainty is
thus purely extrinsic, i.e., it is generated by sunspots.

Since our interest is to investigate the conditions for the existence of sunspot
equilibria, it suffices to consider the case in which there are two possible realizations
of the uncertainty each period. The choice problem of an agent who faces a price
p1 when young and a probability distribution of prices {p1

2,p
2
2;π

1, π2} when old,6 is

max
2

∑

j=1

πju(c1, c
j
2)

p1(c1 − e1) + pj
2(c

j
2 − e2) = 0, j = 1, 2,

(2.1)

where c1 is the consumption when young and
(

c1
2, c

2
2

)

the plan of contingent con-
sumptions when old. The expression of the budget constraints has been simplified

5That is to say, D2u(c) is negative definite in the orthogonal space of Du(c), for every c in
R2

++.
6We denote by πj the probability that the price when old will be pj

2.
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by substituting out the agent’s money holdings. Under the above assumptions, the
vector

(

c1; c1
2, c

2
2

)

constitutes a solution to problem (2.1) if and only if it satisfies,
together with a pair of positive numbers λ1, λ2, the following equations:

2
∑

j=1

πjD1u(c1, c
j
2)−

2
∑

j=1

λjp1 = 0,

πjD2u(c1, c
j
2)− λjp2 = 0, for j = 1, 2,

p1(c1 − e1) + pj
2(c

j
2 − e2) = 0, for j = 1, 2.

(2.2)

In line with the stationarity of the economy, we will consider the case where un-
certainty is described by a first order Markov chain with two states, with transition
matrix Π =

{

πi,j
}

i,j=1,2 . A sunspot economy is then identified by the parameters
describing its ‘fundamentals’ as well as the structure of the (sunspot) uncertainty,
{(e, u), Π} . Note that if the distinction among sunspot states is ignored (i.e., agents
have deterministic expectations over the level of future prices), we have a deter-
ministic economy (e, u). We refer to this as the certainty economy associated to
{(e, u), Π} .

3. Local Sunspot Equilibria

In this paper we will limit our attention to the stationary equilibria of the model
described above.

Definition 1. A stationary sunspot equilibrium (SSE)7 for the economy {(e, u),Π}
is given by a collection of consumption levels in each possible state when young and
old (ci

1)
2
i=1, (ci

2)
2
i=1, and prices

(

p1, p2
)

, such that c1
1 6= c2

1 and

(1) for all i = 1, 2, the consumption when young and the plan of sunspot con-
tingent consumptions when old (ci

1; c
1
2, c

2
2) constitutes the solution to the

problem of the agent (2.1) when facing (pi, {p1, p2;πi1, πi2}),
(2) the allocation of resources is feasible:

cj
1 − e1 + cj

2 − e2 = 0, for all j = 1, 2.

Therefore, in a SSE both the distribution of the global resources between con-
temporary young and old, and the prices fluctuate randomly following a 2-state
Markov chain.

7Following the terminology of Guesnerie (1986) and Chiappori-Guesnerie (1989), we can also
refer to such equilibrium as a 2-SSE.
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A non-sunspot stationary equilibrium for the economy {(e, u), Π} is then given
by a set of consumption levels and prices, (c̄1, c̄2), p̄, such that the values ci

1 =
c̄1, ci

2 = c̄2, pi = p̄, i = 1, 2, constant across the 2 states, satisfy the same individual
optimality and feasibility conditions of Definition 1.

We can similarly define stationary equilibria of a certainty economy (e, u). A
steady state equilibrium of (e, u) is a specification of the agents’ consumption when
young and when old, together with a constant price level (c̄1, c̄2, p̄) such that:

(1) (c̄1, c̄2) ∈ arg max u(c1, c2) s.t. p̄(c1 − e1) + p̄(c2 − e2) = 0;
(2) c̄1 − e1 + c̄2 − e2 = 0.

It is immediate to see that any set of values (c̄1, c̄2, p̄) defining a steady state
equilibrium of the certainty economy (e, u) also constitutes a non-sunspot equilib-
rium {(c̄1, c̄2), p̄} of the sunspot economy {(e, u), Π} . Since steady state equilibria
always exist, under our assumptions, so do non-sunspot stationary equilibria.

An important role in the analysis of the conditions for the existence of stationary
sunspot equilibria of {(e, u), Π} is played by the stability properties of the steady
states of the associated certainty economy (e, u). Consider the equation

Γ(c1, c2) ≡ D1u(c1, c2)(c1 − e1) + D2u(c1, c2)(c2 − e2) = 0, (3.1)

defining the representative agent’s offer curve. Differentiating Γ with respect to ci,
i = 1, 2, we obtain

DiΓ(c1, c2) = Diu(c1, c2)+Diiu(c1, c2)(ci−ei)+Djiu(c1, c2)(cj−ej), i 6= j ∈ {1, 2} .
(3.2)

The vector (D1Γ(c̄1, c̄2), D2Γ(c̄1, c̄2)) is then the gradient, at the steady state (c̄1, c̄2),
of the representative agent’s offer curve. It is said that the steady state (c̄1, c̄2, p̄)
is indeterminate whenever there is a neighborhood of the steady state where the
perfect foresight forward dynamics converges to it, otherwise it is said to be deter-
minate. In our framework the indeterminacy of the steady state requires the slope
of the offer curve at it to be not bigger than 1 in absolute value. On the other
hand, a sufficient condition for the indeterminacy of the steady state is that this
same slope be strictly smaller than 1 in absolute value, i.e.

∣

∣

∣

∣

dc2

dc1

∣

∣

∣

∣

=
∣

∣

∣

∣

D1Γ(c̄1, c̄2)
D2Γ(c̄1, c̄2)

∣

∣

∣

∣

< 1. (3.3)

So the case where slope is equal to one constitutes a knife edge case in our analysis,
which does not have any clear implication for determinacy. To avoid this unclear
case, we will follow Woodford (1986) (as well as Guesnerie (1986), Chiappori, Geof-
fard, Guesnerie (1992)) in imposing the following condition in various parts of the
analysis:
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Condition R. At any steady state,
∣

∣

∣

dc2
dc1

∣

∣

∣ 6= 1.

It can be formally shown that the condition R is generically satisfied.8

From the characterization of the solutions of the individual optimization problem
in (2.2), it follows that stationary equilibria of the sunspot economy can be obtained
as solutions of the following system of equations:

2
∑

j=1

πijD1u(ci
1, c

j
2)−

2
∑

j=1

λijpi = 0, for all i,

πijD2u(c,i
1 , cj

2)− λijpj = 0, for all i, j,

pi(ci
1 − e1) + pj(cj

2 − e2) = 0, for all i, j,

(cj
1 − e1 + cj

2 − e2) = 0, for all j,

(3.4)

for some positive vectors
(

λi1, λi2
)

, i = 1, 2. Use the second set of equations to
substitute for λij in the first set of equations. Notice, furthermore that, as long as
ci
1 6= e1, we can substitute the budget constraints for

(

p1, p2
)

and plug the solution
in the remaining equations of (3.4). Then, we obtain the following, simpler system
of equations characterizing a stationary equilibrium:

π11(D1u(c1
1, c

1
2)(c

1
1 − e1) + D2u(c1

1, c
1
2)(c

1
2 − e2))+

π12(D1u(c1
1, c

2
2)(c

1
1 − e1) + D2u(c1

1, c
2
2)(c

2
2 − e2)) = 0,

π21(D1u(c2
1, c

1
2)(c

2
1 − e1) + D2u(c2

1, c
1
2)(c

1
2 − e2))+

π22(D1u(c2
1, c

2
2)(c

2
1 − e1) + D2u(c2

1, c
2
2)(c

2
2 − e2)) = 0,

(3.5)

c1
1 + c1

2 − e1 − e2 = 0,

c2
1 + c2

2 − e1 − e2 = 0.
(3.6)

Conversely, if the system above has a solution c with ci
t 6= et, for i = 1, 2 and

t = 1, 2, (that is, c is not autarky) then there are p and λ such that c, p, and λ satisfy

equations (3.4). To see this, pick any prices with pi/pj = −
(

cj
2 − e2

)

/
(

ci
1 − e2

)

.

Then pi/pj = −
(

cj
1 − e1

)

/
(

ci
2 − e2

)

also holds by the resource feasibility con-

straints (3.6), thus the budget constraint in (3.4) holds. So set p2 = 1, and
p1 = −

(

cj
2 − e2

)

/
(

ci
1 − e2

)

, and set λij so that the second equation in (3.4) holds.
Then (3.5) implies the first equation of (3.4) holds as well.

8See Kehoe and Levine (1984).
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Denote the terms on the left hand side of the equations (3.5), (3.6) as Φ (c; e, u, Π),
where c ≡ (c1

1, c
2
1, c

1
2, c

2
2). The argument above has shown that a non-autarky con-

sumption allocation c obtains at a stationary equilibrium of the economy (e, u, Π)
if and only if Φ (c; e, u, Π) = 0. The system of equations Φ (c; e, u, Π) = 0 has the
same number of variables c and equations, which motivates the following definition.

Definition 2. Let c be a non-autarkic equilibrium consumption allocation of the
economy (e, u, Π). An equilibrium c is regular if DcΦ is invertible when evaluated
at (c; e, u, Π) . On the other hand, when DcΦ is not invertible, the equilibrium c is
said to be singular.9

Of all the stationary sunspot equilibria we will be primarily interested in local
sunspot equilibria, i.e. in those that lie ‘close’ to a non-sunspot stationary equi-
librium (and hence also, given the equivalence established above, to a steady state
equilibrium of the associated certainty economy). More precisely, we will say that
an overlapping generations economy has local sunspot equilibria whenever, in any
arbitrarily small neighborhood of a non sunspot stationary equilibrium of the econ-
omy, there exist SSE for some nearby economy. Note that by definition the notion
of local sunspot equilibria of a given economy depends on the way an economy is
regarded to be close to the original one, and so does the existence of them.

If one takes the view of the literature on local sunspot equilibria, according to
which two economies are considered to be close only if they share exactly the same
fundamentals, and can differ only in the signals triggering the expectations-driven
fluctuations, then there is a close link between the indeterminacy of the steady
state and the existence of local sunspot equilibria around it. In our setup, it has
been shown that, under condition R, there exist local sunspot equilibria around
a steady state if, and only if, that steady state is indeterminate. As a result,
the natural interest in local sunspot equilibria as a depiction of the fluctuations
of the economic activity became twofold. Firstly, from a positive viewpoint, they
addressed the typical pattern of many economic time series exhibiting fluctuations
that depart only slightly from a steady state. Secondly, for practical purposes, their
intimate connection with the asymptotic behavior of the perfect foresight dynamics
around the steady state provided an immediate means to detect their existence.

Nonetheless, we contend that it is unduly restrictive to keep the focus of the
analysis only on the differences in the signals as has been done in the literature.
So we propose a broader concept of local sunspot equilibria. A formal definition
requires the consideration of a sequence of economies, converging to some limit
economy, and a sequence of associated SSE converging to a non-sunspot steady

9See also Kehoe - Levine (1984) .
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state of the limit economy:

Definition 3. Local stationary sunspot equilibria exist around a non-sunspot sta-
tionary equilibrium (c̄1, c̄2), p̄ of the economy

{

(ē, ū), Π̄
}

, provided there is a
sequence of economies {(en, un) , Πn}n, and an associated sequence of stationary

sunspot equilibria {
(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

,
(

p1(n), p2(n)
)

}n, which converge, re-

spectively to
{

(ē, ū), Π̄
}

and to {(c̄1, c̄1; c̄2, c̄2) , (p̄, p̄)} as n →∞.

The above definition leaves various possibilities open both with regard to the
space where ‘nearby’ economies may lie (or equivalently the parameters of the
economies allowed to vary along the sequence) and the notion of ‘closeness’ which
is used. The latter issue is particularly relevant when agents’ preferences also
vary along the sequence of economies considered, in which case different notions of
convergence for a sequence of functions (describing the agents’ preferences) can be
utilized.

If we restrict our attention to the domain of economies defined by the set of
Markov matrices Π (i.e.,when ‘nearby’ economies can only differ by probabilities,
while only Πn can vary with n), an immediate application of Guesnerie (1986) (also
Woodford (1986b)) yields the following result, which establishes a clear relationship
between existence of local SSE and stability properties of the steady state of the
limit economy:

Proposition 1. Let {(c̄1, c̄1; c̄2, c̄2) , (p̄, p̄)} be a steady state of
{

(ē, ū), Π̄
}

and
suppose condition R holds for

{

(ē, ū), Π̄
}

. Then, there is a sequence of economies
{(e, u) , Πn}n, where only Πn varies with n, and associated stationary sunspot

equilibria
{(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

,
(

p1(n), p2(n)
)

}

, which converge, respectively

to
{

(ē, ū), Π̄
}

and to {(c̄1, c̄1; c̄2, c̄2) , (p̄, p̄)} as n → ∞, if and only if (c̄1; c̄2) is an
indeterminate steady state of

{

(ē, ū), Π̄
}

.

Such result provides the strongest basis to the claim that the indeterminacy of
the steady state is needed for the existence of local sunspot equilibria. In what fol-
lows, we will re-examine the validity of this claim when a larger domain of economies
is considered. We will show that such relationship is no longer valid in this set-up.
In particular when ‘nearby’ economies can also differ with regard to the agents’
preferences, local SSE may also be found around determinate steady states. This
shows that the relationship between existence of local sunspot equilibria and inde-
terminacy of the steady state is not as strong as previously thought.

4. Existence of Local Sunspot Equilibria I: letting endowments vary

In this section, we investigate the conditions for the existence of local station-
ary sunspot equilibria around a non-sunspot stationary equilibrium when ‘nearby’

10



economies can differ by endowments as well as probabilities. In this case, the exis-
tence of local SSE means that, in any arbitrarily small neighborhood of the steady
state of a given economy, we can find a SSE for an economy characterized by an
arbitrarily close level of endowments and probabilities (but the same preferences).

We will show that the indeterminacy of the steady state is again a necessary
condition for the existence of local stationary sunspot equilibria in its vicinity. Thus
Woodford and Guesnerie’s result generalizes to such extended domain of economies.

The analysis builds on two intermediate results, which are of independent in-
terest. We will argue first that, when the domain of economies considered is pa-
rameterized by endowments and probabilities, the existence of local SSE around
a non-sunspot stationary equilibrium requires the latter to be a singular equilib-
rium:10

Lemma 1. Suppose that there is a sequence of economies {(en, ū) , Πn}n, where
both en and Πn can vary with n, and an associated sequence of stationary sunspot
equilibria {

(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

,
(

p1(n), p2(n)
)

}n, which converge, respectively

to
{

(ē, ū), Π̄
}

and to {(c̄1, c̄1; c̄2, c̄2) , (p̄, p̄)} as n →∞. Then {c̄1, c̄2, p̄} is a singular
equilibrium of the limit economy

{

(ē, ū), Π̄
}

.

Proof. Fix the utility function u at ū throughout. From the hypothesis of the state-
ment, it follows that both

{

(c1, c1; c2, c2) , ē, ū, Π̄
}

and
{(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

,

en, ū, Πn} for each n must be solutions of (3.5), (3.6)). Note that each cer-
tainty economy (en, ū) associated to {(en, ū) ,Πn} also has a steady state equi-
librium (cn

1 , cn
2 ) and hence {(en, ū) , Πn} has a non sunspot stationary equilibrium

(cn
1 , cn

2 , p̄n) . Moreover, by the continuity of demand it follows that (cn
1 , cn

2 ) must
lie close to (c1, c2) and that (cn

1 , cn
2 ) → (c1, c2) . Hence the existence of local SSE

implies that in any arbitrarily small neighborhood of
{

(c1, c1; c2, c2) , ē, Π̄
}

, the sys-
tem given by (3.5), (3.6) has two solutions (a sunspot one and a non sunspot one);
as a consequence, such equilibrium must be singular. Q.E.D.

To investigate the conditions under which a local SSE exists around a non-
sunspot stationary equilibrium, we can then study the conditions under which the
non sunspot stationary equilibrium fails to be regular. In the following result, we
characterize the conditions for the singularity of non-sunspot stationary equilibria
which are different from autarky.

Lemma 2. A non-sunspot stationary equilibrium (c1, c2, p̄) , with c1 6= e1, of an
economy (e, u, Π) is singular if and only if the slope of the offer curve at (c1, c2) ,

10Azariadis and Guesnerie (1986), and Guesnerie (1986) had earlier pointed out, using bifur-
cation arguments, that the singularity of a non-sunspot stationary equilibrium is closely related
(in fact sufficient) for the existence of SSE around it.
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−D1Γ
D2Γ

is equal to −1 or −|Π|.

Proof. Recall that the singularity of (c1, c2, p̄) means that Φ (c; e, u, Π) has a singu-
larity at

{

(c1, c1; c2, c2) , ē, Π̄
}

.
The Jacobian DcΦ evaluated at (c̄1, c̄2, c̄1, c̄2, ē1, ē2) is given by the 4× 4 matrix







D1Γ π11D2Γ 0 π12D2Γ
0 π21D2Γ D1Γ π22D2Γ
1 1 0 0
0 0 1 1





 ,

where we used DiΓ to denote, for simplicity, DiΓ(c̄1, c̄2), and the columns corre-
spond, respectively, to the variables c1

1, c1
2, c2

1, c2
2. Computing the determinant of

this matrix we obtain,11

− (D1Γ)2 +
(

π11 + π22) D1ΓD2Γ− (D2Γ)2
(

π11 + π22 − 1
)

.

Thus we see that the Jacobian is singular if and only if one of the following condi-
tions is satisfied:

(1) D1Γ = D2Γ = 0;
(2) D1Γ 6= 0 and D2Γ

D1Γ
is a root of

P1(λ) ≡ (π11 + π22 − 1)λ2 − (π11 + π22)λ + 1 = 0 (4.1)

or D2Γ 6= 0 and D1Γ
D2Γ

is a root of the polynomial

P2(λ) ≡ λ2 − (π11 + π22)λ + (π11 + π22 − 1) = 0. (4.2)

It is immediate to see that one of the roots of these polynomials is 1 and that
the other roots are the determinant of the Markov matrix |Π| = π11 + π22 − 1 for
P2 and its reciprocal |Π|−1 for P1.

We observe first that (1) can never occur at a steady state different from autarky.
For any point (c1, c2) lying on the offer curve, using (3.1) and (3.2) we have in fact,

(DΓc1(c1, c2), DΓc2(c1, c2)) · (c1 − e1, c2 − e2) =
2

∑

i,j=1

(cj − ej)Diju(c1, c2)(ci − ei)

By the strict quasi concavity of u this expression is always negative, if ci 6= ei.
Hence we cannot have DΓ1 = DΓ2 = 0.

11We used here the facts that π21 = (1− π22), π12 = (1− π11).
12



We are thus left with case (2), which requires that the slope of the offer curve is
either −1 or −|Π|. Q.E.D.

On the basis of Lemma 1 we can say that the conditions identified in Lemma
2 are necessary conditions for the existence of local SSE around a non-sunspot
stationary equilibrium (c̄1, c̄2, p̄), different from autarky. Since the determinant |Π|
always lie in the interval [−1, 1] (and, except for the cases in which the Markov
matrix is the identity or a purely cyclical matrix, |Π| ∈ (−1, 1)), these conditions

require the slope of the offer curve at (c̄1, c̄2),
∣

∣

∣

D1Γ
D2Γ

∣

∣

∣ at (c̄1, c̄2) to be smaller than
or equal to 1. We have so proved that the fact that the slope of the offer curve in
absolute value at the steady state is not bigger than 1 is still a necessary condition
for the existence of local SSE in the extended domain of economies parameterized
by endowments as well as by probabilities. Moreover, the condition that this same
slope is strictly smaller than 1 in absolute value is also sufficient for the existence
of local stationary sunspot equilibria.12 Note that these are respectively also the
necessary and sufficient conditions for the indeterminacy of the steady state. Thus
it follows that, under condition R, local stationary sunspot equilibria exist if, and
only if, the steady state is indeterminate in the case of economies parameterized by
endowments as well as by probabilities.

Proposition 2. Assume that the condition R holds for the economy
{

(ē, ū), Π̄
}

.
Then, there is a sequence of economies {(en, ū) , Πn}n, where both en and Πn can

vary with n, and an associated sequence of stationary sunspot equilibria
{(

c1(n)
1 ,

c2(n)
1 ; c1(n)

2 , c2(n)
2

)

,
(

p1(n), p2(n)
)

}

n
, which converge, respectively to

{

(ē, ū), Π̄
}

and

to {(c̄1, c̄1; c̄2, c̄2) , (p̄, p̄)} as n →∞, for c̄1 6= e1, if and only if (c̄1; c̄2) is an indeter-
minate steady state of

{

(ē, ū), Π̄
}

.

Remark 1. The results in Lemmas 1 and 2 also allow us to get an interesting
characterization of other properties, beyond the absence of determinacy, of the
economies exhibiting non-sunspot stationary equilibria around which local SSE ex-
ist. The slope of the offer curve (at the associated steady state) must equal -1, a
condition which holds only for a negligible subset economies as parameterized by
(e, u) while Π can be arbitrary. Alternatively, the slope of the offer curve can lie
anywhere in the interval (−1, 1), but the determinant of the Markov matrix Π has
to equal the opposite of the slope of the offer curve. This imposes no condition on
(e, u) other than the fact that the non autarchic steady state is necessarily indeter-
minate, but it restricts Π to lie in a manifold of dimension 1 in the 2 dimensional
space of 2× 2 Markov matrices which defines the domain of Π.

12By the same argument than the one used at the end of the proof of Proposition 1.
13



To conclude this section, we show next that if a different, slightly weaker notion
of ”vicinity” is used to identify economies lying nearby a given economy, SSE ar-
bitrarily close to a non-sunspot stationary equilibrium of a given economy can be
found under very general - in fact generic - conditions. We will consider in particular
the case where, in any arbitrarily small neighborhood of a non-sunspot stationary
equilibrium (c̄1, c̄2, p̄) of an economy

{

(ē, ū), Π̄
}

, we can find stationary sunspot
equilibria of economies

{

(e, ū), Π̄
}

, characterized by the same preferences and prob-
abilities as

{

(ē, ū), Π̄
}

as well as the same aggregate endowment: e1 + e2 = ē1 + ē2.
We will show that this is always possible provided (c̄1, c̄2, p̄) constitutes a regular
non sunspot stationary equilibrium of

{

(ē, ū), Π̄
}

, a condition which - as we saw
above (see also remark 1) - is generically satisfied. Thus no condition is needed
here with regard to the stability properties of the steady state for the existence of
SSE close to it.13

Note that even though the economies
{

(e, ū), Π̄
}

have the same preferences,
probabilities and aggregate endowments as

{

(ē, ū), Π̄
}

, the distribution of the ag-
gregate endowments between young and old may be significantly different. Thus,
we cannot say that such economies lie ‘nearby’ the economy

{

(ē, ū), Π̄
}

in the same
sense of the definition of local sunspot equilibria (i.e., according to some distance
in the space of economies as parameterized by e u, Π ). We will use then a different
term to refer to such stationary sunspot equilibria: rather than local SSE, we will
speak of SSE ”near” a steady state.

Proposition 3. Consider an economy
{

(ē, ū), Π̄
}

with a regular non sunspot sta-
tionary equilibrium {(c̄1, c̄2), p̄}. Then there are stationary sunspot equilibria ‘near’
it; that is, for any ε > 0 fixed arbitrarily, we can find an economy

{

(e, ū), Π̄
}

,14

such that e1 + e2 = ē1 + ē2, with a SSE
(

c1
1, c

2
1; c

1
2, c

2
2; p

1, p2
)

lying within an ε
neighborhood of (c̄1, c̄1; c̄2, c̄2; p̄, p̄).

As shown in the Appendix, the result easily extends to OLG economies with
heterogeneous agents in each generation.

Proof. The proof of the proposition relies on the consideration of a class of auxil-
iary, stochastic economies, used to construct SSE arbitrarily near the non-sunspot
equilibrium.15

Consider the class of stochastic economies {(ê, u), Π} , where the only difference
from the sunspot economies considered so far is that the agent’s endowment when

13It is in fact interesting to observe that the conditions for the existence of a SSE ”near” a
non-sunspot stationary equilibrium are the perfect complement of the conditions for the existence
of local SSE near it.

14Here, e >> 0 may not hold.
15The logic of the construction used here is reminiscent of the one in Gottardi-Kajii (1999).
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young and old is described by the vector ê = (ê1
1, ê

1
2, ê

2
1, ê

2
2), i.e. may also vary

with the realization of the uncertainty. Let us denote by Φ̂ (c; ê, u, Π) the system
of equations in (3.5), (3.6) when e is replaced by ê. It is immediate to see that c
is a stationary equilibrium16 of (ê, u, Π) if Φ̂ (c; ê, u, Π) = 0. Let ̂ē ≡ (ē1, ē1, ē2, ē2) ;
since, by assumption (c̄; ē, ū, Π̄) is a regular solution of Φ (c; e, u, Π) = 0, evidently
so is also

(

c̄;̂ē, ū, Π̄
)

of Φ̂ (c; ê, u, Π) = 0. Thus by the implicit function theorem,
for any stochastic endowment vector ê that is close enough to ̂ē, there is a sta-
tionary equilibrium for which the consumption level (c1

1, c
2
1; c

1
2, c

2
2) is close to the

non-sunspot equilibrium level (c̄1, c̄1; c̄2, c̄2). It can immediately be verified that, as
long as the endowment (ê1

1, ê
1
2, ê

2
1, ê

2
2) is stochastic, i.e. ê1

i 6= ê2
i , for i = 1 and/or

i = 2, the associated stationary equilibrium will also be stochastic c1
i 6= c2

i , for i = 1
and/or i = 2.

In particular, consider the case where ê1
1 + ê1

2 = ê2
1 + ê2

2, i.e. where the aggregate
endowment is constant in the two states, only its distribution between young and
old agents vary with the realization of the uncertainty. To complete the proof we
will show that in this case it is always possible to find a deterministic endowment
vector (e1, e1, e2, e2), such that (c1

1, c
2
1; c

1
2, c

2
2) is also a stationary (now sunspot)

equilibrium of the deterministic economy with endowment (e1, e2) .

Lemma 3. Let
{(

c1
1, c

2
1; c

1
2, c

2
2

)

, p1, p2
}

be a stationary equilibrium of a stochastic
economy with preferences u, probabilities Π and endowments (ê1

1, ê
1
2, ê

2
1, ê

2
2) such

that ê1
1 + ê1

2 = ê2
1 + ê2

2. Then
{

(c1
1, c

2
1; c

1
2, c

2
2), p

1, p2
}

also constitutes a station-
ary sunspot equilibrium of a sunspot economy, with the same preferences u and
probabilities Π, and deterministic endowments ẽ1, ẽ2 obtained as solution to

ẽ1 + ẽ2 = ê1
1 + ê1

2

p1ẽ1 + p2ẽ2 = p1ê1
1 + p2ê2

2.

We prove a more general version of the Lemma in Appendix. This establishes
the claim of the Proposition. Q.E.D.

A simple geometric illustration of the argument of the proof of Lemma 3 is given
in Figure 1.

16The definition of stationary equilibria for the stochastic economy {(ê, u), Π} is perfectly
analogous to the one of SSE given in Definition 1.
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Figure 1
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Lemma 3 provides a method for transforming any stationary equilibrium of a sto-
chastic overlapping generations economy (with no aggregate risk) into a stationary
sunspot equilibrium of a related sunspot economy. On this basis, the argument of
the proof of Proposition 3 indicates then a recipe for constructing sunspot station-
ary equilibria around non-sunspot (or in fact any) stationary equilibrium. Notice
that this argument requires nothing on the determinacy or indeterminacy proper-
ties of the steady state. On the other hand, the deterministic endowments ẽ1, ẽ2

found in Lemma 3 are not necessarily strictly positive.

5. Existence of Local Sunspot Equilibria II: letting utilities vary

We study in this section the conditions for the existence of local stationary
sunspot equilibria when the space where ‘nearby’ economies may lie is parameter-
ized by probabilities and utilities instead of endowments. Fix e at some level ē. We
say in this case that there are local SSE around a non-sunspot stationary equilib-
rium if there is a sequence of utility functions {un : n = 1, 2, ...}, which converges
to a function ū in the Ck uniform convergence topology for some k ≥ 1, a sequence
of Markov matrices Πn converging to Π̄, and a sequence of associated SSE which
converges to a non-sunspot stationary equilibrium of

{

(ē, ū), Π̄
}

.
We want to argue that local sunspot stationary equilibria exist, in this domain

of economies, irrespective of the stability property of the steady state as well as
of the sign of the equilibrium price of money (which may be positive or negative).
Thus the existence of sunspot equilibria cannot be ruled out, in the vicinity of a
steady state equilibrium, under quite general conditions, and in particular not even
when the steady state is determinate.
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The precise formulation of our claim will depend on the strength of the notion of
convergence which is considered. When a strong notion is considered, i.e. we require
the sequence {un}n to converge to ū in the Ck uniform convergence topology for k
arbitrarily large, we will show that local sunspot equilibria around a non-sunspot
stationary equilibrium exist also when, for all the economies in the sequence, the
steady state lying near the non-sunspot equilibrium is determinate and, in addition,
the price of money is positive:

Proposition 4. For any k > 1, we can find sequences of utility functions {un}n ,
converging to ū in the Ck uniform convergence topology, and sequences of proba-
bilities {Πn}n converging to Π̄, such that
(i) for each n, economy {(ē, un), Πn} has a stationary sunspot equilibrium and the
sequence {

(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

,
(

p1(n), p2(n)
)

}n converges to {(c̄1, c̄1; c̄2, c̄2) ,

(p̄, p̄)} as n →∞;
(ii) for each n, certainty economy {ē, un} associated to {(ē, un), Πn} has a steady
state equilibrium {c̄n

1 , c̄n
2 , p̄n} around {c̄1, c̄2, p̄} which is determinate and such that

c̄n
1 < ē1 (i.e., the price of money is positive).

Proof. Let ē be such that ē1 > ē2. We will prove the result by constructing a
sequence of utility functions {un}n , converging to ū in the Ck uniform convergence
topology for some k > 1 such that all the certainty economies in the sequence
{ē, un} as well as the limit economy {ē, un} have the same monetary steady state
(c̄1, c̄2), with c̄1 < ē1.

We establish first a preliminary result which is of some independent interest:
any given upward sloping differentiable function defined in a neighborhood of c̄1, c̄2

can be rationalized as the offer curve of a consumer with an additively separable,
concave utility function (and endowment ē) :

Lemma 4. Let f be a strictly increasing, C∞ function defined on an open interval
(a, b) around c̄1, with b < e1, f (a) > e2 and f (c̄1) = c̄2. There is an additively
separable, concave utility function u such that f is (a part of) of the offer curve of
an agent with preferences u and endowments e.

Proof. Consider the following differential equation

u′2 (z) =
e1 − f−1 (z)

y − e2
,

where z ∈ (f (a) , f (b)). The right hand side is positive and C∞; hence there exists
a strictly increasing, C∞ function u2 which solves this equation. Moreover, u2 is
concave since the right hand side of the equation is decreasing in z. Since u′2 is
bounded on (f (a) , f (b)), there exists a monotonic, concave C∞ extension of u2 on

17



[0,∞), which we denote by u2 abusing notation. Let u (x1, x2) = x1 + u2 (x2) for
(x1, x2) ∈ R2

+.
Then by construction,

D2u (x1, x2)
D1u (x1, x2)

= u′2 (f (x1)) =
e1 − x1

f (x1)− e2
,

which implies that the gradient of u at (x1, f (x1)) is perpendicular to the line
connecting (x1, f (x1)) and (e1, e2). That is, the first order condition for utility
maximization is satisfied. Since u is concave, this shows that the offer curve gener-
ated by u coincides with the curve {(z, f (z)) : z ∈ (a, b)} around (c̄1, c̄2). Q.E.D.

Let g be a C∞ function with domain R, such that g (0) = 0, g′ (0) > 1, g(z) = z
for |z| large; moreover, there exists z∗ > c̄1 such that g (z∗ − c̄1) < z∗ − c̄1 and
g [− (z∗ − c̄1)] > − (z∗ − c̄1). Thus the function g is “S-shaped” around 0, as shown
in Figure 2. Since g is C∞ and differs from the identity function only on a compact
set, for each k dk

dzk g (z) is bounded in z.

Figure 2
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For every integer n, let fn be a C∞ function defined by the rule

fn (z) =
1
n

[g (nq (z − c̄1))− nq (z − c̄1)] + (z − c̄1) + c̄2,

where q ∈ (0, 1) is a fixed constant. So for each n, the curve {(z, fn (z)) : z ∈ (a, b)}
is also “S-shaped” as the curve {(z, g (z)) : z ∈ (a− c̄1, b− c̄1)} , with fn (z∗n) <
(z∗n − c̄1) + c̄2 and fn (c̄1 − (z∗n − c̄1)) > − (z∗n − c̄1) + c̄2, where z∗n − c̄1 =
(z∗ − c̄1) /nq, but the size of the “S-shape” is smaller and decreasing with n. Note
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that, since g(0) = 0 and g (nq (z − c̄1)) = nq (z − c̄1) when |nq (z − c̄1)| is large, the
term [g (nq (z − c̄1))− nq (z − c̄1)] is bounded; hence the function fn (z) converges
uniformly to the function f∗(z) := (z − c̄1) + c̄2 for any q. By direct computation,
d
dz fn (z) = nq−1 [g′ (nq (z − c̄1))− 1] + 1, which also converges uniformly to 1 (=
d
dz f∗ (z)) since q < 1. For k ≥ 2, dk

dzk fn (z) = nkq−1 dk

dzk g (nq (z − c̄1)), so fn is
Ck uniformly convergent to f∗ if q < 1

k . Thus by choosing q arbitrarily small we
can ensure an arbitrarily strong form of convergence. Notice, furthermore, that for
every n, we have fn (c̄1) = c̄2 and d

dz fn (c̄1) > 1.

Now for each n, let un be the utility function, constructed using the argument
in the proof of Lemma 4, which rationalizes the function fn as the offer curve
around (c̄1, c̄2). Also let ū be the utility function rationalizing f∗ as the offer curve
around (c̄1, c̄2). By construction, since for each n fn (c̄1) = c̄2, f∗ (c̄1) = c̄2 and
c̄1 < e1, the consumption bundle (c̄1, c̄2) is a steady state equilibrium with positive
value of money of the certainty economy (un, (ē1, ē2)), for all n, as well as for the
economy (ū, ē1, ē2)). Moreover, since d

dz fn (c̄1) = nq−1 [g′ (0)− 1] + 1 > 1 for all
n, the steady state (c̄1, c̄2) is determinate for each economy (un, (ē1, ē2)). On the
other hand, as we already noticed, the slope of offer curve at the steady state is one
for the limit economy (ū, (e1, e2)). Since fn is convergent to f∗ in the Ck uniform
topology, k < 1

q , so is Dun to Du, and thus un converges to u in Ck+1 uniform
topology for k < 1

q , by construction. This establishes the claim in part (ii) of the
Proposition.

We show next that for each n, we can find a Markov matrix Πn such that the sto-
chastic economy {(ē, un), Πn} has a stationary sunspot equilibrium

{(

c1(n)
1 , c2(n)

1 ;

c1(n)
2 , c2(n)

2

)

,
(

p1(n), p2(n)
)

}

; moreover, the sequence
(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

con-

verges to the non-sunspot stationary equilibrium allocation (c̄1, c̄1; c̄2, c̄2).17

Let c1(n)
1 = z∗n, c1(n)

2 = (c̄1 − z∗n) + c̄2, c2(n)
1 = c̄1 − (z∗n − c̄1) , c2(n)

2 =

c̄2− (c̄1 − z∗n) . The four points
(

ci(n)
1 , cj(n)

2

)

, i, j = 1, 2, form a square box around

(c̄1, c̄2) as in Figure 3; by the property of z∗n,
(

c1(n)
1 , c2(n)

2

)

and
(

c2(n)
1 , c2(n)

2

)

(re-

spectively
(

c2(n)
1 , c1(n)

2

)

and
(

c2(n)
1 , c1(n)

2

)

) lie above (below) the offer curve. These
points will describe the consumption allocation at a SSE, for some Markov matrix
Πn.

17Since the elements of {Πn}n lie in a compact set, this sequence always admits a convergent
subsequence.
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Figure 3
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Notice that for each j = 1, 2, cj(n)
1 − e1 + cj(n)

2 − e2 = 0, thus the market
clearing condition (3.6) is satisfied for both states j = 1, 2. Moreover, since each

pair of points
(

ci(n)
1 , c1(n)

2

)

and
(

ci(n)
1 , c2(n)

2

)

, i = 1, 2, is such that one point lies
above and the other lies below the offer curve, the inner product of the gradient
of the utility function at (ci(n)

1 , cj(n)
2 ) (see (3.2)) and the excess demand vector

(ci(n)
1 − e1, c

j(n)
2 − e2) has opposite signs at j = 1 and j = 2. Thus for each i, we

can find positive values πij , j = 1, 2 with πi1 + πi2 = 1 such that

2
∑

j=1

πij(D1u(ci(n)
1 , cj(n)

2 )(ci(n)
1 − e1) + D2u(ci(n)

1 , cj(2)
2 )(cj(2)

2 − e2)
)

= 0. (5.1)

Recall that equations (3.5), (3.6) characterize consumption allocations at a SSE.

We have thus shown that the four points
(

ci(n)
1 , cj(n)

2

)

, i, j = 1, 2, constructed as
above constitute a sunspot stationary equilibrium for the economy {(ē, un), Πn}.
Notice that as n increases, the four points become arbitrarily close to (c̄1, c̄2) since
the ”S-shape” of fn gets arbitrarily small as n increases. This establishes claim (i)
and completes then the proof of the Proposition. Q.E.D.

The argument of the proof of Proposition 4 shows how to find sequences of
sunspot economies {(ē, un), Πn}n exhibiting SSE and converging to

{

(ē, ū), Π̄
}

in
the Ck uniform convergence, for any k arbitrarily large (it suffices to pick q < 1

k in
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the construction described above). The consumption allocation (c̄1, c̄2) constitutes
a determinate steady state for every certainty economy (un, (ē1, ē2)). But for the
limit economy (ū, (ē1, ē2)) the slope of the offer curve at (c̄1, c̄2) is one, as we already
argued; thus the steady state may be either determinate or indeterminate.

We show next that if a weaker form of convergence is considered, in particular if
we require the sequence {un}n to converge to ū only in the C1 convergence topology,
we can exhibit local sunspot equilibria around a steady state which is determinate
also for the limit economy:

Proposition 5. There are sequences of economies {(ē, un) , Πn}n, where {un}n

converges to ū in the C1 uniform convergence topology and {Πn}n → Π̄ as n →
∞, and associated stationary sunspot equilibria

{(

c1(n)
1 , c2(n)

1 ; c1(n)
2 , c2(n)

2

)

,
(

p1(n),

p2(n)
)}

n which converge to {(c̄1, c̄1; c̄2, c̄2) , (p̄, p̄)} even when (c̄1, c̄2, p̄) is a deter-
minate steady state equilibrium of the limit certainty economy {ē, ū} and c̄1 < ē1

(i.e., the price of money is positive).

Proof. The proof relies on a slight modification of the construction described in
the proof of Proposition 4 above. We will only outline here the main points of
departure from the earlier construction.

Let g be a C∞ function with domain R, such that g (0) = 0, g′ (0) > a > 1,
where a is a fixed constant, and g(z) = az for |z| large. The function is again
“S-shaped” around 0 and there is z∗ > c̄1 such that g (z∗ − c̄1) < z∗ − c̄1 and
g [− (z∗ − c̄1)] > − (z∗ − c̄1), as shown in Figure 4. For each n, let fn be a C∞

function defined by the rule

fn (z) =
1
n

[g (n (z − c̄1))− n (a (z − c̄1))] + a (z − c̄1) + c̄2.

So the differences from the previous construction are that here q is set to be equal to
one, and that fn is uniformly convergent to the linear function f∗(z) := a (z − c̄1)+
c̄2 with a > 1.
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Figure 4
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For each n, the curve {(z, fn (z)) : z ∈ (a, b)} is also ”S-shaped” as the curve
{(z, g (z)) : z ∈ (a− c̄1, b− c̄1)}. It is less obvious to see that we can find z∗n > c̄1

such that fn (z∗n) < (z∗n − c̄1) + c̄2 and fn (c̄1 − (z∗n − c̄1)) > − (z∗n − c̄1) + c̄2,
but this can be verified as follows. Set z∗n − c̄1 = (z∗ − c̄1) /n. Now,

(z∗n − c̄1) + c̄2 − fn (z∗n) =
z∗ − c̄1

n
+ c̄2−

−
[

1
n

(g (z∗ − c̄1)− a (z∗ − c̄1)) + a (z∗ − c̄1) /n + c̄2

]

= (z∗ − c̄1) /n− 1
n

g (z∗ − c̄1)

= (z∗ − c̄1)
[

1
n

(1− a)− 1
n

{

g (z∗ − c̄1)
(z∗ − c̄1)

− a
}]

= (z∗ − c̄1)
[

1
n

(

1− g (z∗ − c̄1)
(z∗ − c̄1)

)]

> 0,

since z∗ > c̄1 and 1− g(z∗−c̄1)
(z∗−c̄1)

> 0. A similar argument then shows that

fn (c̄1 − (z∗n − c̄1)) > − (z∗n − c̄1) + c̄2.

By Lemma 4, the function fn (z) , z ∈ (a, b), can be rationalized as the offer
curve of a consumer with preferences un and endowments ē. Applying then the
same argument as in the proof of Proposition 4, for each n we can find a Markov
matrix Πn and a SSE of the economy {(ē, un), Πn} .

Notice that in this case fn is not C1 convergent: d
dz fn (z) → 1 as n → ∞ if

z 6= c̄1 but d
dz fn (c̄1) = g′ (0) > 1, so fn is C0 uniformly convergent to f∗ but
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not C1 uniformly convergent. Thus the corresponding sequence of utility functions
{un}n converges only in the C1 uniform topology to the limit utility function ū,
which rationalizes f∗ as its offer curve. On the other hand, in this case the limit
offer curve f∗ has slope a > 1 around the steady state (c̄1, c̄2) . Thus (c̄1, c̄2) is a
determinate steady state allocation for all the certainty economies in the sequence
{ē, un}n as well as for the limit economy {ē, ū} . Q.E.D.

To conclude the paper, let us comment on the relationship between the exis-
tence results obtained in Propositions 4 and 5, and the necessary condition for the
existence of local SSE identified in Lemmas 1 and 2. The reader may wonder if
these results are consistent with each other. Proposition 4 can be readily shown
to be consistent with the lemmas. To see this, notice that the slope of the offer
curve at the steady state {c̄1, c̄2} of the limit economy

{

(ē, ū), Π̄
}

is in fact equal to
one. According to Lemma 2, the non-sunspot stationary equilibrium {c̄1, c̄2, p̄} is
a singular equilibrium of the limit economy

{

(ē, ū), Π̄
}

when the slope of the offer
curve equals −|Π| and this is in turn equal to 1 when π11 = 0 = π22; thus for a
Markov matrix exhibiting this property, the Jacobian DcΦ is singular.

On the other hand, the existence result of Proposition 5, where the steady state
{c̄1, c̄2} is determinate also for the limit economy, seems to constitute an apparent
contradiction to Lemmas 1 and 2. This is not so. To understand this relationship,
we should observe that the result obtained in Lemma 1 relies on the application
of the Implicit Function Theorem to the system Φ (c; e, u, Π) , and hence requires
the differentiability of Φ. Since the utility gradient Du appears in Φ (c; e, u, Π), the
differentiability of Φ requires the uniform convergence of D2U , i.e. we need the
sequence {un}n to be at least C2 convergent, a property which we saw does not
hold for the local SSE constructed in the proof of Proposition 5. Thus the condition
of Lemma 1 is not applicable to the framework of Proposition 5.
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APPENDIX

We show here that the validity of the claims in Proposition 3 and Lemma 3
extends to overlapping generation economies with heterogeneous agents. These re-
sults provide then a general and robust method for constructing stationary sunspot
equilibria in the vicinity of any stationary equilibrium.

Consider the following generalization of the model considered in the previous
sections. In each generation there are H > 1 distinct agents. Each agent h ∈
{1, .., H} is characterized by preferences uh (with the same properties as before) and
endowments êh = (êh,1

1 , êh,1
2 , êh,2

1 , êh,2
2 ), which can possibly vary with the realization

of the uncertainty.
Stationary equilibria are described in this case by a collection of vectors of

consumption levels in all states (ch,i
1 ; ch,i1

2 , ch,i2
2 )2i=1

18 for each agent h and prices
(

p1, p2
)

, which are obtained as solutions of the following system of equations:

k
∑

j=1

πijD1uh(ch,i
1 , ch,ij

2 )−
k

∑

j=1

λhijpi = 0, for all i, h

πijD2uh(ch,i
1 , ch,ij

2 )− λhijpj = 0, for all i, j, h

pi(ch,i
1 − êh,i

1 ) + pj(ch,ij
2 − êh,j

2 ) = 0, for all i, j, h
H

∑

h=1

(ch,j
1 − êh,j

1 + ch,ij
2 − êh,j

2 ) = 0, for all i, j

(A.1)

for some, strictly positive
(

λh,i1, ..., λh,ik
)k
i=1.

Lemma A. Let
{

(ch1
1 , ch2

1 ; ch1
2 , ch2

2 )H
h=1, p

1, p2
}

be a stationary equilibrium of a
stochastic economy with preferences (uh)H

h=1, probabilities described by the Markov
matrix Π and endowments (êh)H

h=1, such that, for all h = 1, . . . , H, êh1
1 + êh1

2 =
êh2
1 + êh2

2 (i.e., the sum of the endowments is the same in each state). Then the
same consumption levels and prices constitute also a stationary sunspot equilibrium
of a sunspot economy, with the same preferences (uh)H

h=1 and probabilities Π, and
deterministic endowments (ẽh

1 , ẽh
2 )H

h=1 such that, for each h = 1, ..., H,

ẽh
1 + ẽh

2 = êh1
1 + êh1

2 (A.2)

p1ẽh
1 + p2ẽh

2 = p1êh1
1 + p2êh2

2 . (A.3)

18Note that, with heterogeneous agents in each generation, agents’ consumption when old
typically depends on the realization of the uncertainty in both periods of the agent’s lifetime.
Feasibility then implies that aggregate consumption when old depends only on the state when
old.
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Proof. The inspection of the system of equations (A.1) characterizing stationary
equilibria reveals that it suffices to show that the endowment values (ẽh

1 , ẽh
2 )H

h=1

obtained as a solution of (A.2), (A.3) satisfy the last two sets of equations of (A.1),
describing the agents’ budget constraints and the feasibility conditions, i.e. that

pichi
1 + pjchj

2 = piẽh
1 + pj ẽh

2 for all i, j, h (A.4)

and
H

∑

h=1

(chi
1 + chi

2 ) =
H

∑

h=1

(ẽh
1 + ẽh

2 ) for all i, j. (A.5)

Evidently, (A.2) implies that (A.5) is always satisfied.
Consider next (A.4):

(1) for all i = j ∈ {1, 2}, then

pichi
1 + pichi

2 = piêhi
1 + piêhi

2

= pi(êhi
1 + êhi

2 )

= pi(ẽh
1 + ẽh

2 )

= piẽh
1 + piẽh

2 ,

(A.6)

where the third equation follows by (A.2).
(2) if i = 1 and j = 2, then

p1ch1
1 + p2ch2

2 = p1êh1
1 + p2êh2

2

= p1ẽh
1 + p2ẽh

2

(A.7-8)

(3) Finally, if i = 2 and j = 1, we have

p2ch2
1 + p1ch1

2 = p2êh2
1 + p1êh1

2 .

From (A.2), (A.5) it follows that

p1êh1
1 + p2êh2

2 = p1ẽh
1 + p2(êh1

1 + êh1
2 − ẽh

1 )

= p1ẽh
1 + p2(êh2

1 + êh2
2 − ẽh

1 ).

where the property êh1
1 + êh1

2 = êh2
1 + êh2

2 was used to derive the last equality.
Rearranging terms and simplifying we get

p2(êh2
1 − ẽh

1 ) = −p1(ẽh
1 − êh1

1 )

= −p1(êh1
2 − ẽh

2 ),
(A.9)
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where the second equality follows from (A.2). Thus

p2êh2
1 + p1êh1

2 = p1ẽh
2 + p2ẽh

1 .

Hence we have shown that

p2ch2
1 + p1ch1

2 = p2ẽh
1 + p1ẽh

2

as required. Q.E.D.

This Lemma implies then that if
{

(ch1
1 , ch2

1 ; ch1
2 , ch2

2 )H
h=1, p

1, p2
}

is a regular,
stationary equilibrium of an economy

{

(êh)H
h=1, (u

h)H
h=1, Π

}

, such that, for all
h = 1, . . . , H , êh1

1 + êh1
2 = êh2

1 + êh2
2 and, for some h, êh1

1 6= êh2
1 , by the Implicit

Function Theorem there is a sunspot economy with stationary sunspot equilibria
arbitrarily near

{

(ch1
1 , ch2

1 ; ch1
2 , ch2

2 )H
h=1, p

1, p2
}

.
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