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Abstract

This paper studies the properties of the Bayesian approach to estimation and compar-
ison of dynamic equilibrium economies. Both tasks can be performed even if the models
are nonnested, misspecified and nonlinear. First, we show that Bayesian methods have a
classical interpretation: asymptotically the parameter point estimates converge to their
pseudotrue values and the best model under the Kullback-Leibler distance will have the
highest posterior probability. Second, we illustrate the strong small sample behavior of
the approach using a well-known application: the U.S. cattle cycle. Bayesian estimates
outperform Maximum Likelihood results and the proposed model is easily compared with
a set of BVARs.
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1. Introduction

Over the last two decades, Lucas’ (1980) call to economists to concentrate in the building of
fully articulated, artificial economies has become a reality. Dynamic equilibrium models are
now the standard instrument to study a variety of issues in economics, from Business Cycles
and Economic Growth to Public Finance and Demographics. This class of models present
two main challenges for econometric practice: a) how to select appropriate values for the
“deep” parameters of the model (i.e. those describing technology, preferences and so on),
specially since by construction the model is false and b) how to compare models that can be
very different.
Figure 1 illustrates these two questions. Assume we want to account for some observed

data using two different models. Let Abe the set of all possible distributions that generate
the data. Let P be the true distribution. Each point in the set Model 1 represents the
distribution implied by the model for a particular choice of parameter values. A similar
description applies for set Model 2. In this figure, the first of our questions (how to select
parameters) is solved picking a point in each of the sets Model 1 and Model 2. The second
question (how to compare models) is solved learning which of the two sets is closer to P under
a certain metric. Note that in Figure 1 we make two assumptions: first, that the models are
false (none of the sets includes P ) and second, that there is no choice of parameter values
such that one model is an special case of the other (the intersection of these two models is
the empty set). However, none of these assumptions is required.
Bayesian econometrics gives both a procedure to select parameters and a criterium for

model comparison. Parameter choice is undertaken by the usual computation of posteriors
while model comparison is performed through the use of posterior odds ratios. This approach
is, of course, rather old. Parameters inference follows directly from the Bayes’ Theorem while
model comparison through posterior odds was introduced by Jeffreys (1961) (in the slightly
different form of hypothesis testing) and recently revived by the work of Gelfand and Key
(1994), Geweke (1998), Landon-Lane (1999) and Schorfheide (1999), among others.
Our work follows this long tradition. In particular this paper makes two main contribu-

tions. First we show that the Bayesian approach to model estimation and comparison has
a classical interpretation: asymptotically the parameter point estimates converge to their
pseudotrue values and the best model under the Kullback-Leibler distance will have the
highest posterior probability- both results holding even for misspecified and/or nonnested
models. Second, we illustrate the strong small sample behavior of Bayesian methods using
a well-known application: the U.S. cattle cycle. Bayesian estimates outperform Maximum
Likelihood results and the proposed model is easily compared with a set of Bayesian Vector
Autoregressions. An additional contribution- how to evaluate the likelihood of nonlinear rep-
resentations of dynamic equilibrium models with Monte Carlo filtering- is described in detail
in a companion paper (Fernández-Villaverde and Rubio-Ramírez (2001)).
There are several reasons to justify our “Bayes choice.” First, Bayesian inference builds

on the basic insight that models are false and is ready to deal with this issue in a natural way.
Since a dynamic equilibrium economy is an artificial construction, the model will always be
false. Estimation moves from being a process of discovery of some “true” value of a parameter
to being a selection device in the parameter space that maximizes our ability to use the
model as a language in which to express the regular features of the data (Rissanen (1986)).
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Second, the Bayesian approach is conceptually simple yet general. Issues such as stationarity
do not require specific methods as needed in classical inference (Sims and Uhlig (1991)).
Third, there is an asymptotic justification of the Bayes procedure. As mentioned before, we
prove consistency of both the point estimates and the posterior odds ratio. Fourth, also as
shown in the paper, the small sample performance of Bayesian estimates tends to outperform
classical ones even when evaluated by frequentist criteria (for similar findings see Jacquier,
Polson and Rossi (1994) or Geweke, Keane and Runkle (1997)). Fifth, the recent advent of
powerful Markov chain Monte Carlo techniques has removed the need for analytically suitable
expressions for likelihoods and priors. A quite general set of models and priors can be used
and robustness analysis is a simple extension of the needed computations.
This paper relates with previous Frequentist and Bayesian work on model comparison.

Frequentist literature has concentrated on the use of nonnested hypothesis testing (for a
review see Gourireux and Monfort (1998)). In particular, Vuong (1989) and Kitamura (1998)
have developed tests for nonnested and misspecified models. We see our contributions as very
similar in spirit to these two papers.
In the Bayesian literature, DeJong, Ingram and Whiteman (2000) pioneered the Bayesian

estimation of Real Business Cycles models using importance sampling; Landon-Lane (1999)
and Otrok (2001) first applied the Metropolis-Hastings algorithm to the estimation problem;
while in the area of dynamic equilibrium models comparison Landon-Lane (1999) has studied
one dimensional-linear processes, and Schorfheide (1999) has compared the impulse-response
functions of linearized models.
We advance with respect to these papers in several aspects. First, we pose the problem

in very general terms, not limiting ourselves to linearized Real Business Cycles models. Sec-
ond, our use of State Space representations allows us to deal with high dimensional vectors.
Third, we can study nonlinear models. Fourth, we develop the asymptotic properties of the
procedure. Fifth, we document the performance of Bayesian estimation in small samples and
compare the marginal likelihood of the model against a set of alternatives.
The rest of the paper is organized as follows. Section 2 presents the asymptotic properties

of the Bayesian approach to model estimation and comparison. Section 3 develops a dynamic
equilibrium economy: the cattle cycle model. Section 4 estimates the model and section 5
compares it with a set of Bayesian Vector Autoregressions. Section 6 concludes.

2. Asymptotic Properties of the Bayesian Approach

This section develops the asymptotic properties of Bayesian inference when models are pos-
sibly misspecified and/or nonnested. We will prove that the posterior distribution of the
parameters collapses to their pseudotrue values and that posterior odds ratio of any model
over the best model under the Kullback-Leibler distance will approach zero as the sample
size goes to infinity. The novelty of these two results is that we do not need to assume that
the models are well-specified and/or nested as the existing literature requires. Dispensing
with these requirements is key when dealing with a set of artificial economies that are false
by construction and that may have very different structures. This situation is the most com-
mon for economists. Subsection A presents the notation, subsection B explains the Bayesian
model comparison, and subsection C shows the above-mentioned two theorems. Subsection
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D briefly discusses numerical implementation.

2.1. Notation

Assume that the observed data is a realization of the real-valued stochastic process Y ≡
{Yt : Ω→ <m, m ∈ N , t = 1, 2, ...} defined on a complete probability space (Ω,=, P0) where
Ω = <m×∞ ≡ limT→∞⊗Tt=0<m and = ≡ limT→∞=T ≡ limT→∞⊗Tt=0B (<m) ≡ B (<m×∞) is
just the Borel σ-algebra generated by the measurable finite-dimensional product cylinders.
Define a T−segment as Y T ≡ (Y 01 , ..., Y 0T )0 with Y 0 = {∅} and a realization of that segment
as yT ≡ (y01, ..., y0T )0. Also define P T0 (B) ≡ P0 (B) |=T ≡ P0

¡
Y T ∈ B¢, ∀B ∈ =T to be the

restriction of P0 to =T . The structure of Ω is important only to the extent this allows for a
sufficiently rich behavior in Y . For convenience, we have chosen Ω = <m×∞. In this case, Yt
is the projection operator that selects yt, the tth coordinate of ω, so that Yt (ω) = yt. With
= ≡ B(<m×∞) the projection operator is measurable and Y is indeed a stochastic process.
It is often more convenient to work with densities rather than measures. As a consequence,

we will assume there exists a measure νT on
¡<m×T ,B(<m×T )¢ for T = 1, 2, ... such that

P T0 ¿ νT (where “¿” stands for “absolute continuity with respect to”). We will call the
Radon-Nykodym derivatives of P T0 with respect to ν

T , the probability density function pT0 (·)
for ∀T .
Let M be a finite subset of ℵ. Now we can define a model i as the collection S (i) ≡

{f (θ, i) ,π (θ|i) ,Θi} where f (θ, i) ≡ {fn (·|θ, i) : <m×n ×Θi → <, n = 1, 2, 3...} is the set of
densities fn (·|θ, i) on (<m×n,B(<m×n)), π (θ|i) is a prior density on (Θi,B (Θi)) and θ is
a ki-dimensional vector of unknown parameters such that θ ⊆ Θi ⊆ <ki ∀i ∈ M . Each
family of parametrized probability densities comprises different candidates to account for the
observations while the prior probability densities embodies the previous knowledge about the
parameter values. Now we can define S ≡ {S (i) , i ∈M} as the set of considered models. We
can think about S in a very general way: it can contain nested as well as nonnested models.
For example, it can include models derived directly from economic theory (as a Real Business
Cycle) and/or pure statistical models (as an unrestricted Vector Autoregression).
The function fT

¡
yT |θ, i¢ is usually called the pseudo-likelihood function of the data. Note

that we are never assuming that there exists a value θ∗ such that fT
¡
yT |θ∗, i¢ = pT0

¡
yT
¢
.

Statistically this means that the model may be misspecified. Far more importantly, from an
economic perspective, this is a direct consequence of the fact that the model is false.
Often we will find it more convenient to write, for ∀θ ∈ Θi:

fT (yT , θ|i) = fT ¡yT |θ, i¢π (θ|i)
With this notation and using conditional probabilities, we can write the posterior of the
parameters as π

¡
θ|yT , i¢ ∝ fT ¡yT |θ, i¢π (θ|i) and its marginal likelihood as:

fT
¡
yT |i¢ = Ei ¡fT ¡yT |θ, i¢¢ = Z

Θi

fT
¡
yT |θ, i¢π (θ|i) dθ = Z

Θi

fT (yT , θ|i)dθ (1)

This marginal likelihood is the probability that the model assigns having observed the data.
This interpretation relates the marginal likelihood with the pseudo-likelihood evaluated at
the pseudo-maximum likelihood point estimate (PMLE). In this case, the parameters are
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integrated out through maximization using a measure that puts all the mass at the PMLE
while, in the marginal likelihood, they are integrated out using the prior (herein we are
assuming that we built our densities from a probability measure and, as a consequence,
π (θ|i) is always proper).
Usually we will be in the situation where fT

¡
yT |θ, i¢ can be factorized in the following

way: fT
¡
yT |θ, i¢ = QT

t=1 ft (yt|yt−1, θ, i) where ft (·|yt−1, θ, i) : <m×t ×Θi → <+ is B(<m×t)-
measurable for each θ ∈ Θi. This factorization turns out to be important both theoretically
(for instance to interpret the marginal likelihood as a measure of with-in sample forecasting
performance) and computationally (to evaluate pseudo-likelihoods recursively).
We can define the expectation of the logpseudo-likelihood divided by T with respect to

the true density:

L (θ, i) =

Z
<m×T

T−1 log fT
¡
Y T |θ, i¢ pT0 ¡Y T ¢ dνT =Z

<m×T
T−1

"
TX
t=1

log ft(Yt|Y t−1, θ, i)
#
pT0
¡
Y T
¢
dνT

and two associated parameter values: the “pseudo-true” value bθ∗T (i) ≡ argmaxθ∈Θi L (θ, i)
and the PMLE point bθT ¡i, yT ¢ ≡ argmaxθ∈Θi log fT ¡yT |θ, i¢. From now on we will assume
that these values are unique. This assumption is the fundamental identificability condition
in our context of false models.
The pseudotrue value selects the member of the parametric family that is “closest” to

P0T in some appropriate sense. We define the Kullback-Leibler measure distance:

K
¡
fT (·|θ, i) ; pT0 (·)

¢
=

Z
<m×T

log

Ã
pT0
¡
Y T
¢

fT (Y T |θ, i)

!
pT0
¡
Y T
¢
dνT

The intuition of this closeness concept is simple: it evaluates the average surprise with
respect to the true measure that the researcher using fT (·|θ, i) will suffer if suddenly he learns
that the true density is pT0 (·). Clearly bθ∗T (i) minimizes K ¡fT (·|θ, i) ; pT0 (·)¢, and it is the
point in Figure 1 that minimizes the distance between the set i and the true distribution. We
omit a discussion of the decision-choice foundations of the Kullback-Leibler measure distance.
Complete axiomatic foundations of this measure are presented in Shore and Johnson (1980)
and Csiszar (1990) among others.

2.2. Model Comparison

First, define the measurable space (M,P (M) ,Π)where P (M) is the power set of M and Π
is a measure that assigns a probability πi to each element ofM . This measure tries to reflect
the previous knowledge of the researcher about the different models being considered.
Model comparison is a straightforward application of the Bayes’ Theorem. The posterior

probabilities of each model are given by:

cπk = fT (yT |i)πkP
M f

T (yT |i)πi (2)
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The division of any two posteriors produces the Posterior Odds Ratio:

PORi,j|YT =
bπibπj = fT (yT |i)πi

fT (yT |j)πj
that can be intuitively factored between the Bayes Factor:

Bi,j|YT =
fT (yT |i)
fT (yT |j) (3)

and the ratio of priors πi
πj
as:

PORi,j|YT = Bi,j|YT
πi
πj

(4)

The Bayes Factor is the ratio of probabilities from having observed the data given each
model and represents by how much we should change our beliefs about the probability of
each model given the empirical evidence. In other words, the Bayes Factor is a summary of
the evidence provided by the data in favor of one model as opposed to the other, and it is
our chosen approach to model comparison.
It is important to note that model comparison is a somewhat related but different task

than the decision-theory problem of selecting one model among a set of alternatives since the
latter requires the specification of a loss function.
Also, in the same way the marginal likelihood is related with the likelihood value at the

PMLE, the Bayes Factor is closely related to the Likelihood Ratio (LR), where maximization
substitutes integration. The Bayes Factor enjoys three clear advantages. First, LR tests may
simultaneously reject or accept different nulls because of the asymmetric treatment of the two
hypothesis. In comparison, the Bayes Factor states clearly which of the two models fits the
data better. Second, no arbitrary choice of a significance level is needed. Third, when both
models are false (the normal case in economics), the LR tests do not imply an asymptotic
distribution of the ratio (for an exception see Voung (1989)).
This last point raises the first important question of the paper: how does the Bayes Factor

perform when the sample becomes larger?

2.3. Convergence Theorems

In this subsection we will prove two theorems. First, we will show that the posterior distribu-
tion of the parameters collapses to their pseudotrue values. Second, we will demonstrate that
posterior odds ratio of any model over the best model under the Kullback-Leibler distance
will approach zero. As mentioned before, these results are important because we do not re-
quire models to be well-specified and/or nested as the results existing in the literature. With
these two theorems we follow the recent literature on the asymptotic properties of Bayesian
inference. Examples include Phillips and Ploberger (1996), Phillips (1996) and Kim (1998).
The structure of this subsection is as follows. First, we prove lemmas 1 and 2. The first

lemma states the asymptotic concentration of the posterior around the PMLE, and the second
states the consistency of PMLE to the pseudo-true value. These two lemmas imply the first
of the theorems: the posterior concentrates asymptotically around the pseudo-true value.
Then, we prove the second theorem stating that the Bayes Factor of any other model over
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the model closest to P T0 under the Kullback-Leibler distance will asymptotically approach
zero.
Let us begin making three technical assumptions:

Condition 1. For ∀ i ∈M and ∀ θ ∈ Θi:

lim
T→∞

P T0
¡
T−1 log fT (Y T |θ, i) <∞¢ = 1 (5)

Condition 2. For ∀ i ∈M :

lim
T→∞

P T0

³
T−1 log fT (Y T |bθ∗T (i) , i) > −∞´ = 1 (6)

Condition 3. For ∀ i ∈M :

lim
T→∞

P T0
¡¯̄
fT
¡
Y T |i¢¯̄ = 0¢ = 0 (7)

lim
T→∞

P T0

³
fT
³
Y T |bθ∗T (i) , i´π ³bθ∗T (i) |i´ = 0´ = 0 (8)

Conditions 1 and 2 bound the loglikelihood while Condition 3 precludes priors without
support on the pseudo-true value (as dogmatic priors except in quite remarkable cases when
the dirac point is exactly bθ∗T (i)).
Following Chen (1985) and Kim (1998), we will approach the analysis of the posterior

behavior defining a “shrinking neighborhood system” in the parameter space:

Definition 4. For ∀ a ∈ Θi ⊆ Rki and ∀ i ∈ M , a shrinking neighborhood system is a
collection of ki−dimensional ellipsoids {E (a, δj (i)) , j = 1, 2, ...} such that:

E (a, δj (i)) ≡
n
θ ∈ Θi : |a1 − θ1|2 + ...+

¯̄
ak(i) − θk(i)

¯̄2
< δj (i)

o
(9)

where δj (i) ∈ R, j = 1, 2, ....

The idea behind this system is to look at the parameter values close enough to some
ki−dimensional point a, making the values of δj (i) smaller as T % ∞. We will accomplish
this task requiring the likelihood function to progressively concentrate around a point:

Condition 5. For ∀ i ∈M and ∀ θ ∈ Θi, let {δt (i)}∞t=1 such that E (a, δt (i)) ⊆ E (a, δt−1 (i))
and ∩∞t=1E (a, δt (i)) = {a}. Then, there exists a sequence of nonincreasing positive functions
{kT (δT (i), i), T = 1, 2, ...} such that TkT (δT (i), i)%∞ and

lim
T→∞

inf P T0

 sup
θ∈Θi\E(bθT (i,Y T ),δT (i))

log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)
T

≤ −kT (δT (i), i)
 = 1

(10)

Given these conditions, we are ready to prove the following lemma:
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Lemma 6. Under Conditions (1)-(4),
R
θ∈Θi\E(bθT (i,Y T ),δT (i)) π(θ|Y T , i)dθ → 0 as T → ∞ in

P0-probability ∀ i ∈M .

Proof. See appendix
For the second lemma we need some further technical assumptions:

Condition 7.

lim
T→∞

P T0

¯̄̄̄¯̄fT
³
Y T |bθT ¡i, Y T¢ , i´
fT (Y T |i)

¯̄̄̄
¯̄ = 0

 = 0 (11)

Condition 8. ∀η > 0

lim
T→∞

P T0

µZ
B(bθ∗T (i),η) π (θ, i) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ > 0¶ = 1 (12)

where B(a, η) ≡ {θ : |θ − a| < η}

Lemma 9. Under Conditions (1)-(7), bθ∗T (i)− bθ∗ (i)→ 0 as T →∞ in P0-probability.

Proof. See appendix
With these two lemmas, it can be shown:

Theorem 10. The Bayes point estimator converges to the pseudo-true value of the parame-
ter.

Proof. This follows directly from lemmas 1 and 2.
Note that Theorem 1 does not ask for any specific loss function. Any sensible loss function

will choose the only point with positive posterior as T %∞.
Now, to prove the second of the theorems we need first some notation for the measure 0

sets where Lemma 2 does not hold.

Definition 11. ∀ i ∈ M let Ω0 (i) ⊂ Ω such that Lemma 2 does not hold. Also let Ω0 ≡
∪i∈MΩ0 (i).

Condition 12. ∀ {yt}∞t=1 ∈ Ω\Ω0, supT fT
³
yT |bθT ¡i, yT¢ , i´ <∞

Condition 13. ∀ i ∈ M and ∀ θ ∈ Θi,
R
<m×T f

T
¡
Y T |θ, i¢ pT0 ¡Y T¢ dνT exists and it is finite

for T = 1, 2, 3, ...

Condition 14. ∀ i ∈M , R<m×T fT ¡Y T |θ, i¢ pT0 ¡Y T¢ dνT is continuous onΘi for T = 1, 2, 3, ...

Condition 15. ∀ i ∈M , ©fT ¡Y T |θ, i¢ª∞
t=0
obeys a strong uniform law of the large numbers1.

1Andrews (1988) proves laws of large numbers for L1−mixingales. We proved, but we do not include, that
an exponential density family, {log f t (Y t|θ, i)}∞t=1 is a L1−mixingale.
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Condition 16. ∃ i ∈M such that ∃T0 such that ∀T ≥ T0Z
<m×T

T−1 log fT
³
Y T |bθ∗T (i) , i´ pT0 ¡Y T¢ dνT > Z

<m×T
T−1 log fT

³
Y T |bθ∗T (j) , j´ pT0 ¡Y T¢ dνT

∀ j ∈M\ {i}

Condition 17. ∀ i ∈M and ∀ T, 0 < π
³bθ∗T (i) |i´ <∞

Of this long list of conditions we only see Condition 11 as slightly restrictive and even
with respect to this one, the results in Andrews (1988) make it quite general. The other
conditions basically only require the model comparison to be a meaningful task.
Finally, we are ready to prove the main result in this paper, i.e. that the Bayes factor will

select the model closest to the data regardless of the priors used.

Theorem 18. Under Conditions (1)-(13), limT→∞ P0T
¡
Bj,i|Y T = 0

¢
= 1.

Proof. See appendix
The second theorem is closely related to the asymptotic justification of the Schwarz Infor-

mation Criterion (Kass and Raftery (1995)) and the Posterior Information Criterion (Phillips
and Ploberger (1996)). Both criteria had been proposed as simple ways to choose among com-
peting models. We think, however, that computing the Bayes factor is the appropriate choice.
Even if these other criteria are easy to compute, in general we will know relatively little about
their small sample properties. The Bayes factor, in comparison, is well understood regardless
of the sample size, and we can always check its robustness against different priors.
Finally, we conjecture, based in similar arguments to Phillips (1996) and Kim (1998), the

asymptotic normality of the posterior. We do not seek to use asymptotic approximations to
the posteriors because the use of Markov chain Monte Carlo method allows pseudo-exact (up
to a simulation error) Bayesian computations. As a consequence, we do not see normality as
a very interesting result in our context.

2.4. Numerical Implementation

From our previous description, it should be clear that the actual implementation of Bayesian
inference requires two conditions: being able to evaluate the likelihood function for arbitrary
parameter values and being able to compute the marginal likelihood.
The first task can be accomplished using a State Space representation of the economy.

If this representation is linear (a Linear Quadratic Approximation or loglinearization of the
Euler Conditions can achieve this objective), the Kalman Filter provides an efficient proce-
dure to evaluate the likelihood. If this representation is nonlinear, more involved procedures
are required. In a companion paper, Fernández-Villaverde and Rubio-Ramírez (2001) show
how to use Monte Carlo filters to evaluate the likelihood function. State Space represen-
tations also allow the use of different possible solutions to a common problem in dynamic
equilibrium economies: their stochastic singularity. Since the number of stochastic innova-
tions in the models is usually lower than the dimensions of the data we are studying, their
variance-covariance matrix is singular. These solutions include augmenting the sources of
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randomness in the model (Leeper and Sims (1994)), or introducing measurement errors in
some observable. In this paper we are agnostic about how to solve this singularity: we merely
point out how State Space representations may potentially deal with this problem.
For the second task we can use Markov chain Monte Carlo methods to both approximate

the posterior distribution of the parameters of the model and compute the marginal likelihood
of the model.

3. A Dynamic Equilibrium Model: the cattle cycle

Once we have shown the asymptotic properties of the Bayesian approach to inference and
model comparison of dynamic equilibrium economies, the rest of the paper explores the small
sample behavior of the procedure. To do so, we first need a model for its posterior econometric
analysis. This section fills that need by presenting a model of the cattle cycle.

3.1. The cattle cycle

As pointed out numerous times, cattle stocks are among the most periodic time series in
economics. The standard model to account for this behavior is based on Rosen, Murphy and
Scheinkman (1994) as modified by Hansen, McGrattan and Sargent (1994)2.
Two reasons suggest the choice of this application. First, despite its relative simplicity,

this model delivers a rich and easily tractable dynamic that has been argued to be able to
account for the observed data (Rosen, Murphy and Scheinkman (1994)). Second, and more
importantly, a number of different estimation procedures have been performed with basically
the same model and data and under the more or less explicit assumption that the model
is misspecified. For instance, Rosen, Murphy and Scheinkman (1994) mix calibration and
ARMA estimation; Hansen, McGrattan and Sargent (1994) use Maximum Likelihood Meth-
ods; and Diebold, Ohanian and Berkowitz (1998) minimize the spectral distance between the
data and the model. All these procedures give us a benchmark set to assess the performance
of Bayesian method: we will know that any surprising or different result will come from the
econometric approach and not from the model itself.

3.2. The Model

There is a representative farmer who breeds cattle and slaughters it for the market. Adult
stocks are either held for breeding or slaughtered. After one year, each animal in the breeding
stock, xt, gives birth to g calves. Calves became part of the adult stock after two cycles.
Therefore, given an exponential death rate δ for the breeding stock and a slaughtering rate
ct, xt is given by xt = (1− δ)xt−1+ gxt−3− ct and the total head count of cattle (the sum of
adults, yearlings and calves) is st = xt + gxt−1 + gxt−2.
The price of freshly slaughtered beef is pt (we assume no difference in the quality of beef

depending on age). There are two types of cost for the farmer. The first type includes
the feeding cost of preparing an animal for slaughter, mt, the one period cost of holding an

2A second version of this paper has been published as Anderson, Hansen, McGrattan and Sargent (1996).
This second version omits however important details in the description of the Cattle Cycles model. The first
version is freely available at http://woodrow.mpls.frb.fed.us/research/sr/sr182.html
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adult, ht, of holding a yearling, γ0ht and of holding a calf, γ1ht. These costs are exogenous,
autoregressive, stochastic stationary processes:

ht+1 = (1− ρh)µh + ht + εht where εht ∼ N
¡
0,σ2h

¢
(13)

mt+1 = (1− ρh)µm +mt + εmt where εmt ∼ N
¡
0,σ2m

¢
(14)

The second type of cost is associated with the holding and slaughtering of cattle and has a
quadratic structureΨ = ψ1

2
x2t+

ψ2
2
x2t−1+

ψ3
2
x2t−2+

ψ4
2
c2t where ψi are small, positive parameters.

A representative farmer, taking as given the vector sequence {pt, ht,mt}t=∞t=0 , solves the
following maximization problem:

max
{ct}t=∞t=0

E0

∞X
t=0

βt
½
(pt −mt) ct − htxt − γ0htgxt−1 − γ1htgxt−2

−ψ1
2
x2t − ψ2

2
x2t−1 − ψ3

2
x2t−2 − ψ4

2
c2t

¾
(15)

s.t. xt = (1− δ) xt−1 + gxt−3 − ct
{x−1, x−2, x−3} fixed

The quadratic costs can be rewritten in a more convenient way. Set g1t = f1xt + f2ht,
g2t = f3xt−1 + f4ht, g3t = f5xt−1 + f6ht and g4t = f7ct + f8mt. Notice that:

g21t = f21xt + f
2
2ht + 2f1f2xtht

g22t = f23xt−1 + f
2
4ht + 2f3f4xt−1ht

g23t = f25xt−1 + f
2
6ht + 2f5f6xt−2ht

g4t = f7ct + f8mt + 2f7f8ctmt

and then, using the problem of the farmer, we can find:

f21 =
ψ1
2
, f22 =

ψ2
2
, f23 =

ψ3
2
, f27 =

ψ4
2

(16)

2f1f2 = 1, 2f3f4 = gγ1, 2f5f6 = gγ0, 2f7f8 = 1 (17)

From these equations, the ψi’s and four of the f ’s can be found given the other four f ’s.
The model is closed with a demand function ct = α0−α1pt+ dt where α0, α1 > 0 are the

parameters of the demand and dt is a stochastic, autoregressive, stationary, demand shifter
with zero mean, dt+1 = ρddt + εdt where εdt ∼ N (0,σ2d).
Finally, we will assume that there is a measurement error in the total stock of cattle,

st and the slaughter rate, ct, such that the observed rates are given by:

est = st + εyt where εst ∼ N
¡
0,σ2s

¢
(18)ect = ct + εct where εct ∼ N

¡
0,σ2c

¢
(19)

We are ready now to define a competitive equilibrium for this economy:

Definition 19. A Competitive Equilibrium for the Cattle Industry is a sequence of beef
consumptions {ct}∞t=0, cattle stocks {st}∞t=0, breeding stocks {xt}∞t=0, prices {pt}∞t=0, exogenous
stochastic processes {ht,mt, dt}∞t=0 and initial conditions {x−1, x−2, x−3} such that:
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1. Given prices, the stochastic processes and initial conditions, the representative farmer
solves its problem:

max
{ct}t=∞t=0

E0

∞X
t=0

βt
½
(pt −mt) ct − htxt − γ0htgxt−1 − γ1htgxt−2

−f21x2t − 1
4f21
x2t−1 − f25x2t−2 − f27 c2t

¾
(20)

s.t. xt = (1− δ)xt−1 + gxt−3 − ct
2. Demand is given by ct = α0 − α1pt.

3. Stocks evolve given by xt = (1− δ)xt−1 + gxt−3 − ct and st = xt + gxt−1 + gxt−2.
4. Stochastic Processes follow:

ht+1 = (1− ρh)µh + ht + εht where εht ∼ N
¡
0,σ2h

¢
(21)

mt+1 = (1− ρh)µm +mt + εmt where εmt ∼ N
¡
0,σ2m

¢
(22)

dt+1 = ρddt + εdt where εdt ∼ N
¡
0,σ2d

¢
(23)

4. A Structural Estimation of the cattle cycle Model

In this section, we estimate the structural parameters (the parameters that determine the
technology and preferences) of the cattle cycle model and its associated marginal likelihood,
using the annual measured total stock of beef, measured slaughter rate and price of slaugh-
ter beef for 1900-1990 (Bureau of Census (1975) and (1989)). First, we will specify priors
over these structural parameters. Second, using the Metropolis-Hastings algorithm and the
Kalman Filter, we will find the posterior distributions and moments of the parameters. To
check the accuracy of our computations, we will also present estimates of our numerical errors
and convergence assessment of our Markov chain Monte Carlo. In addition, we will study the
robustness of the results to different priors. Finally, assuming a quadratic loss function, we
will compare our point estimates with the results of Maximum Likelihood estimation (MLE).

4.1. Specifying the Priors

The parameters of the cattle cycle model described above are collected in a 21 dimensional
vector θ = {β, δ,α0,α1, γ0, γ1, g, ρh, ρm, ρd, µh, µm,σh,σm,σs,,σc,σd, f1, f2, f3, f4}. We will
impose dogmatic priors on 10 parameters3. This restriction plays two different roles. First,
since it reduces the dimensionality of this problem by half, the computational burden is
greatly diminished. Second, since this the same restriction used in Hansen, McGrattan and
Sargent (1994), it increases the comparability of our results to previous estimations. We will
set β = 0.96, δ = 0, f1 = f3 = f5 = f7 = 0.0001, ρd = σh = 0, µh = 37, µm = 63. The
first restriction pins down the discount factor, a difficult parameter to estimate in this type of
models, to a commonly used value. The second one rules out deaths in the breeding stock. The
value for the f ’s is a small number that creates the quadratic costs and it is basically irrelevant.

3Formally, our prior over these parameters will be a dirac function that implies a dirac posterior.
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The last restrictions make demand deterministic and fix the mean value of the processes to the
observed means. The remaining vector is then θ0 = {α0,α1, γ0, γ1, g, ρh, ρm,σh,σm,σs,,σc}.
We adopt standard priors for these parameters. The independent term of the demand

function follows a normal distribution with mean 146 and variance 35, the point MLE. The
next three parameters follow a Gamma distribution with hyperparameters 2 and 0.5, that
imply a mean of 1 and variance of 0.5. This choice gives support to all positives values of those
parameters. That means that, in the case of α1, we only impose the condition that the good
is not giffen (we are not aware of any evidence supporting the hypothesis that beef is a giffen
good). The mean of 1 is a focal point for the effect of changes of prices on beef consumption.
A not very tight variance of 0.5 spreads the density enough around this value. For the case
of γ0 and γ1 we require that both costs of raising beef are positive. Setting the mean to 1 is
intuitive (different types of cattle should not have very different relative holding costs) and
the variance to 0.5 shows that we are relatively unsure about that guess. The growth factor
is set to obey a normal centered at 1: the number of births per animal in stock is one per year
with a small variance. Biological constraints justify this choice. The autoregressive terms
follow a beta with mean 0.6 and variance 0.04, i.e. the process is stationary, with positive
autocorrelation and with mean skewed to the right in a somehow imprecise way. For the
four variances of the innovations terms we choose gamma distributions to stay in the positive
reals. The parameters 2,1 reflect an (imprecise) opinion in favor of large variances (mean and
variance of 2). Table 4.1 summarizes the previous discussion.

Table 4.1: Priors for the Parameters of the cattle cycle Model
Parameters Distribution Hyperparameters

α0
α1
γ0
γ1
g
ρh
ρm
σh
σm
σs
σc

Normal
Gamma
Gamma
Gamma
Normal
Beta
Beta
Gamma
Gamma
Gamma
Gamma

146,35
2,0.5
2,0.5
2,0.5
1,0.1
3,2
3,2
2,1
2,1
2,1
2,1

4.2. Results

As previously discussed, to solve for the lack of tractable expressions for the likelihood
and posterior distributions of model parameters, we use the Kalman Filter to evaluate the
likelihood of the model with parameters values generated by a Random-Walk Metropolis-
Hastings Algorithm (see Robert and Casella (1999)). This procedure produces a Markov
chain {θ1, θ2, ....} of size m of parameter values such that the distribution of these values con-
verges to the true posterior implied by the likelihood and the prior. The empirical histograms
of the parameters in our estimation are included as Figure 2.
Given this Markov chain and a function of interest g (·) defined over some aspect of the
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simulation output θi, the expectation of such function, µ = E (g (θ)) can be approximated
by a strong law of large numbers by bµ = 1

m

Pm
i=1 g (θi). Then, using appropriate indicators

functions, we can approximate the different moments of the distribution or compute quantiles.
Also, an appropriate Central Limit Theorem assures that

√
m (bµ− µ) D→ N ¡

0,σ2µ
¢
, allowing

us to evaluate the accuracy and stability of the estimates and to build probability intervals
statements.
We simulate a chain of size 106 that passes all the requirements of convergence (more

details below). Table 4.2 reports the expectation and standard deviation for the parameters.

Table 4.2. Parameters Statistics
Parameters Expectation s.d.

α0
α1
γ0
γ1
g
ρh
ρm
σh
σm
σs
σc

146.23
1.27
1.02
1.36
0.95
0.93
0.70
5.30
4.05
0.33
4.54

20.62
0.20
0.52
0.54
0.04
0.03
0.03
1.31
0.68
0.10
0.58

The computation of the marginal likelihood is done using the method proposed by Gelfand
and Dey (1994). For any k-dimensional probability density h (·) with support contained in
Θ, Gelfand and Dey noted that:

E

·
h (θ)

fT (Y T |θ, i)π (θ)
¯̄̄̄
YT , i

¸
=

Z
Θ

h (θ)

fT (Y T |θ, i)π (θ)f
T
¡
θ|Y T , i¢ dθ =

=

Z
Θ

h (θ)

fT (Y T |θ, i)π (θ)
fT (YT |θ, i) π (θ)R

Θ
fT (YT |θ, i)π (θ) dθdθ =

R
Θ
h (θ) dθR

Θ
fT (Y T |θ, i)π (θ) dθ = f

T
¡
Y T |i¢−1

(24)
This expression is an unbiased and consistent estimator of the marginal likelihood and satisfies
a Central Limit Theorem if

R
Θ h

2(θ)dθR
Θ f

T (Y T |θ,i)π(θ)dθ <∞. Then, from the m draws of the simulation
and applying a Strong Law of Large Numbers, we can compute:

fT
¡
Y T |i¢−1 = 1

m

mX
i=1

h (θ)

fT (Y T |θ, i)π (θ) (25)

As a choice of h we modify Geweke’s (1998) proposal. First, from the output of the

simulation define cθM = 1
m

Pm
i=1 θ and cΣm = 1

m

Pm
i=1

³
θ − bθ´³θ − bθ´0. Then, for a given

p ∈ (0, 1) define the set ΘM =

½
θ :
³
θ − bθ´ cΣm−1 ³θ − bθ´0 ≤ χ21−p (11)

¾
where χ21−p (·) is a
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chi-squared distribution with degrees of freedom equal to the number of parameters. Letting
IΘM∩Θ (·)be the indicator function of a vector of parameters belonging to the intersection
ΘM ∩Θ, we can take a truncated multivariate normal as our h function:

h (θ) =
1bp (2π)k2

¯̄̄ cΣm ¯̄̄ 12 exp ·−0.5³θ − bθ´ cΣm−1 ³θ − bθ´0¸ IΘM∩Θ (θ) (26)

where bp is an appropriate normalizing constant. With this choice, if the posterior density is
uniformly bounded away from zero on every compact subset of Θ, our computation approxi-
mates the marginal likelihood.
With the output of the Markov chain Monte Carlo, the estimation of the marginal likeli-

hood is then rather direct: we use the computed values of fT
¡
Y T |θ, i¢π (θ) for each point in

the Markov chain and we find its harmonic mean using the function h as a weight. Following
this procedure, our estimated marginal likelihood value is exp (−647.5281).

4.3. Computation of the Numerical Standard Error

The convergence of bµ to its true value established by the Central Limit Theorem is of little use
without the estimation of the asymptotic variance or, its square root, the numerical standard
error (NSE). This estimation is complicated by the lack of independent sampling in the
simulated Markov chain. Different methods have been proposed to overcome this problem.
We follow here a simple suggestion by Hannan (1970). Assuming that the function of interest
g (·) has a spectral density Sg (ω) continuous at the origin4, we can estimate the NSE as³
1
m
cSg (0)´ 1

2
(Corollary 4, page 208 in Hannan (1970)). We computed the required power

spectral density using a Welch’s averaged, modified periodogram method. All the estimated
NSEs were less than 0.5% of the mean value of the parameter, suggesting tight estimations
and confirming the evidence from repeated simulations that systematically generated nearly
identical values for the means.

4.4. Assessing Convergence

Maybe the most important issue in the empirical implementation of a Markov chain Monte
Carlo is to assess the convergence of the simulation (see Mengersen, Robert and Guihenneuc-
Jouyaux (1999)). Theorems to this respect require conditions difficult to check in practice.
As a response, the use of informal methods to check convergence has been quite common.
As an example of these informal methods, we simulated 10 chains of size 105 and one of size
106. All of them generated very similar results and their draws seemed to follow a stationary
process. However, informal methods can hide subtle nonconvergence problems.
To address this issue, we implement the convergence test proposed by Geweke (1992). We

take the first pA and the last pB vectors of the simulation and compute bµ1 = 1
pA

Ppa
i=1 g (θi)

4A sufficient condition for continuity is given by the strict stationarity of the simulation (Corollary 1, page
205, Hannan (1970)) as it is the case if the conditions for consistency of section 2 hold. In practice strict
stationarity can be checked using standard tests.
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and bµ2 = 1
pB

Pm
i=m−pB+1 g (θi). Then, as m→∞,

( bµ1 − bµ2)· cSAg (0)
pA

+
cSBg (0)
pB

¸ 1
2

⇒ N (0, 1)

The computed values of the test for each first moment were all less than |0.7 ∗ 10−4|, strongly
supporting that, as previously suggested, our simulation converges.

4.5. Robustness Analysis

The subjective character of the Bayesian paradigm calls for an indication of how the posterior
expectations differ with changes in the prior distribution. In that way we can avoid spurious
findings in favor of one model purely based on “strategically” chosen priors.
Methods to undertake robustness analysis have been presented in Geweke (1999). These

methods allow modifications of the priors in a generic and fast way. A general approach
defines, for any prior density π∗ (θ)with support included in our prior π (θ) support5, the
weighting function w (θ) = π∗(θ)

π(θ)
and finds the new posterior functions of interest as bµ =

1
m

Pm
i=1 w(θ)g(θi)Pm

i=1 w(θ)
.

An extensive prior set was tested without altering substantially the reported results. We
attribute that to the fact that the sample size is big enough to swamp the prior (we can think
of the prior loosely as an additional “dummy observation” without too much weight when the
sample consists of 91 periods). However, our robustness checks may be quite different from
what the reader desires. As a consequence, upon request, we will electronically deliver the
simulator output matrices and required documentation. These simulation matrices include
the draws from the posterior, θi, the likelihood times the prior fT

¡
Y T |θi, i

¢
π (θ), and the

prior values π (θi) i = 1, ....,m, for each of the different models described in the paper. With
these matrices, the application of a reweighting scheme will allow third parties to quickly
recompute both the moments of interest and the marginal likelihood with any desired prior
that satisfies the support condition.

4.6. Comparison with Other Results

One of the reasons for the choice of the cattle cycle model as an application was the existence
of previous econometric estimations of the model we could use as benchmarks to assess the
performance of the Bayesian procedure.
We will only discuss in detail the closest existing estimation- the one in Hansen, McGrat-

tan and Sargent (1994) that estimated the same model with the same parametric restrictions
and data using MLE. We successfully reproduced their point and standard error estimation
(table 4.3).
Comparison with table 4.2 highlights two main points. First, the MLE with low standard

error (precise estimates) are closely matched (α1 equals to 1.27 against 1.27, ρm equal 0.70
5Note that the only restriction to the support in our model has a strong theory base: i.e. cost should be

positive and so on.
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against 0.70, etc.). Second, for those parameters imprecisely estimated, as γ0 and γ1 (the
relative holding costs of cattle according to its age), the Bayes estimate is both more precise
and closer to our intuition of relatively homogenous costs of holding differently aged cattle.
Figure 2 explains the result. While the posteriors of α1 or α0 are well-behaved and unimodal,
the posteriors of γ0 and γ1are multimodal and relatively flat over a long range of values.
Given these shapes, the MLE will tend to find one of the local maxima, where theMetropolis-
Hastings algorithm stays longer because the likelihood is higher (the point estimates are local
maxima in the densities) while the flatness of the likelihood will turn out very high standard
errors. The Bayes estimate overcomes these difficulties and gives a much more accurate
finite sample view of the plausible parameter values6. We interpret this result as a strong
endorsement of the small sample properties of Bayesian estimation. This result is also similar
to other frequentist evaluations of the small sample performance of Bayesian methods, as in
Jacquier, Polson and Rossi (1994) and Geweke, Keane and Runkle (1997).

Table 4.3. ML estimation for cattle cycle
Parameters Estimates s.e.

α0
α1
γ0
γ1
g
ρh
ρm
σh
σm
σs
σc

146
1.27
0.65
1.77
0.94
0.89
0.70
6.82
4.04
0.27
4.82

33.4
0.323
11.5
12

0.0222
0.115
0.0417
10.6
1.05
0.0383
0.531

Once we have estimated the cattle cycle model, the next question to address is to explore
how it compares with alternatives accounts of the data, i.e. with competing models. We
perform this model comparison in the next section.

5. Comparing Models: the cattle cycle vs. BVARs

In this section we will compare the cattle cycle model with a set of Bayesian Vector Autore-
gressions (BVARs). This choice is motivated by our desire to compare a dynamic equilibrium
model against a pure and powerful statistical competitor. Vector Autoregressions models,
a simple linear statistical representation of the dynamic relations among variables, have a
proven forecasting record (Litterman (1986)) and have been often proposed as alternatives
to a more structural modelling of time series (Sims (1980)7. We will describe first the Vector
Autoregression specification, then the priors used and finally we will show the result of the
comparison of models.

6Through robustness analysis, we checked that this higher precision is not spuriously induced by the prior.
7Note that, however, these BVARs are not competely nonnested with the cattle cycle model since the

latter has a restricted vector autoregression representation. We thank Tom Sargent for this comment.
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5.1. A Vector Autoregression Specification

We will define nine versions of a three variables BVAR, indexed by the number of lags (1, 2
and 3) and by three different priors. Let yt be the row vector of three observed variables at
time t. The p lags BVAR can be written as:

yt =

pX
i=1

yt−iAi + C + ut ∀t ∈ {1, ..., T}, ut ∼ N (0,Ψ) (27)

where Ai and C are parameter matrices of dimension 3× 3 and 3× 1 respectively.
A useful way to rewrite (27) is as follows. Define yt = ztΓ+ut where zt = (I, yt−1, ..., yt−p)

and Γ =
¡
C 0, A01, ..., A

0
p

¢0
. Stacking the row vectors yt, zt and ut in Y,Z and U such that Y =

ZΓ+U and letting the i subscript denote the ith column vector, we will have yi = Zγi+ ui.
Stacking now the column vectors yi, γi and ui in y, γ and u, we finally get the much more
convenient form y = (I ⊗ Z)γ + u,where u ∼ N (0,Ψ⊗ I). The likelihood function is given
then by:

fT (γ|Ψ) ∝ |Ψ|−
T

2 exp
©−tr £(Y − ZΓ)0Ψ−1(Y − ZΓ)¤ /2ª (28)

5.2. Prior Distributions

In order to show the power of model comparison, we will use three different priors, each more
general than the previous one: a modified Minnesota prior, a Normal-Wishart prior and a
Hierarchial prior (see also Kadiyala and Karlsson (1997) and Sims and Zha (1998)).

5.2.1. Minnesota prior

Litterman (1980) defined the often-called Minnesota prior. The basic feature of this prior is
that the prior mean for the parameter on the first own lag is set to unit and the prior mean
of the remaining parameters in γi are set to zero, i.e. the mean of the regression in each
variable is specified as a random walk.
To win further flexibility, we will modify two aspects of this prior. First, we will let

the prior variances decrease slower with the lags. Litterman used a rate
1

k2
while we use

1

k
.

Second, we will not restrict the variance-covariance matrix to be diagonal since, thanks to the
use of simulation methods, we are not looking for a closed form for the posterior distributions.
In more detail, our version of the Minnesota prior for p lags is:

1. The prior mean for the parameter on the first own lag is set to unit and the prior mean
of the remaining parameters are set to zero, i.e. the mean of γs for s ∈ {1, 2, 3} is
µs =

¡
0,χ{1}(s− 1),χ{1}(s− 2),χ{1}(s− 3), 0, ..., 0

¢0
(1+3p)x1

.

2. The variance of γs for s ∈ {1, 2, 3} is equal to:

Σs =


π3σ

2
s 0 · · · 0

0 eπ1 · · · 0
...

...
. . .

...
0 0 0 eπp


(1+3p)x(1+3p)

(29)
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where σi is a scale factor accounting for the variability of the different variables andeπ1 = π(χ{1}(s − 1))
σ2s
σ21
, eπ2 = π(χ{1}(s − 2))

σ2s
σ22
, eπ3 = π(χ{1}(s − 3))

σ2s
σ23

and eπp =
π(χ{1}(s− 3))

p

σ2s
σ2p
.

3. For s ∈ {1, 2, 3}, γs ∼ N (µs,Σs)
4. The variance-covariance matrix, Ψ, is fixed and equal to its point MLE.

5.2.2. Normal-Wishart prior

This last characteristic of our Minnesota prior seems counterintuitive since it implies an ex-
traordinarily precise knowledge of the variances of innovations. A simple, and more plausible
alternative, is to assume thatΨ is Wishart distributed. Thus, we define the prior distributions
γ|Ψ ∼ N(µ,Ψ⊗Σ) and Ψ ∼ iW (Ψ,α) where γ = (γ1, γ2, γ3)0, E(γ) = µ = (µ1, µ2, µ3)0, s2i is
the maximum likelihood estimate of the variance of the residuals for each of the n variables
of the model, Σ is determined such that var(γs) = Σs, ∀s ∈ {1, 2, 3} as before and Ψ is a
diagonal matrix with entries {(α− n− 1)s21, (α− n− 1)s22, (α− n− 1)s23}.
Note that since V ar(γ) =

1

(α− n− 1)Ψ⊗Σ, for ∀s, j ∈ {1, 2, 3} is the case that var(γs) =¡
σ2s/σ

2
j

¢
var(γj). However, since we want var(γs) = Σs for ∀s ∈ {1, 2, 3}, Σs =

¡
σ2s/σ

2
j

¢
Σj

and thus, π(0) = π(1). Also, the Kronecker structure implies that all priors, conditional on
s2s, are equally informative. This last restriction imposes the uncomfortable restriction that
information assumptions have to be symmetric across equations.

5.2.3. Hierarchial prior

Finally, we can relax the basic Minnesota prior assumption: forcing the prior mean for the
parameter on the first own lag to one and the prior mean of the remaining parameters to
zero. Using an Hierarchial prior, the prior mean of the parameters will follow a normal
distribution with the above-remarked mean. Formally, γ|Ψ, µ ∼ N(µ,Ψ⊗Σ), Ψ ∼ iW (Ψ,α)
and µ ∼ N(µ, δI).

5.3. Results

We estimate the nine different BVARs and use the output of the Metropolis-Hastings simu-
lation, and we compute the marginal likelihoods as reported in table 5.1 in log terms8. This
table summarizes then the evidence in favor of one model against the others.
We learn two main lessons from this table. The first is that, despite how well the cattle

cycle model comes to match some aspects of the data, it is not even close to the performance
of a BVAR with Minnesota prior and two lags. The log difference in favor of the BVAR is
43.46. How big is, intuitively, this difference? We will provide two measures. First, we will

8Each BVAR is called by the name of its prior and, in parenthesis, by the number of lags. For each BVAR,
we computed the moments of the posterior and we assessed convergence using the same methods described
in the previous section.
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note that this difference means that the empirical evidence overcomes any prior ratio lower
7.4892e+018 in favor of the cattle cycle. Second, this difference is substantially bigger than
7, a bound for DNA testing in forensic science, often accepted by courts of law as evidence
beyond reasonable doubt (Evett (1991)). This difference does not mean by itself, however,
that we must disregard the model. This decision is a different task than its comparison with
alternative models. We may still keep it as the best available alternative within the class of
models with substantive economic content, or we can use it to perform welfare analysis or
forecasting under changing policy regimes beyond the capabilities of BVARs.

Table 5.1: LogMarginal Likelihoods
cattle cycle −647.5281
Minnesota (1) −615.4347
Minnesota (2) −604.0657
Minnesota (3) −618.9883
Wishart (1) −791.4154
Wishart (2) −779.1833
Wishart (3) −808.9510
Hierar. (1) −715.9167
Hierar. (2) −732.1339
Hierar. (3) −782.9960

Also, we should note that theMinnesota prior has the variance fixed at the MLE. Allowing
the data to enter into the prior in this way gives a tremendous boost to any model and makes
the model comparison unfair. If we restrict our comparison to the other six BVARs, the
cattle cycle model performs quite well- a remarkable result in our view.
Our second lesson is that more flexible priors or longer lags are not always preferable.

The reason is simple: richer models have many more hyperparameters and the Bayes Factor
discriminates against these9. We see this “built-in” Ockam’s razor as a final and attractive
feature of the Bayes Factor: it embodies a strong preference for parsimonious modelling.

6. Conclusions

In this paper we have studied some properties of the Bayesian estimation and comparison
of dynamic equilibrium models. Not only is this framework general, flexible, robust and
simple to apply, but also its shown properties have a clear intuitive appeal. Asymptotically
our convergence theorems show how the priors are irrelevant under appropriate technical
conditions. On small samples, the prior is a way to achieve exact inference and, given the
evidence in our paper, not inferior to the use of classical asymptotic approximations. Some
parallel research (Fernández-Villaverde and Rubio-Ramírez (2001)) tries to further advance
the Bayesian approach, solving the numerical problems associated with the evaluation of
the likelihood of nonlinear representations of a dynamic equilibrium model that have so far
limited its application.

9This discrimination can be easily seen in the Schwarz criterion (an asymptotic approximation of the log
Bayes Factor) that explicitely penalizes the difference in the dimensionality of the parameter space.
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7. Appendix

This appendix presents the omitted proofs from the text and offers some additional details
about the computational procedures.

7.1. Proofs

[Lemma 1] Let i ∈M . We can rewrite fT (Y T |θ, i) as:

fT (Y T |θ, i) = fT (Y T |bθT ¡i, Y T¢ , i) exp hlog fT (Y T |θ, i)− log fT (Y T |bθT ¡i, Y T¢ , i)i =
= fT (Y T |bθT ¡i, Y T¢ , i) exp hlog fT (Y T |bθ∗T (i) , i)− log fT (Y T |b|θT (i) , i)i×

exp
h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i

Then: Z
θ∈Θi\E(bθT (i,Y T ),δT (i)) π(θ|Y

T , i)dθ =

fT
¡
Y T , i

¢−1
fT (Y T |bθT ¡i, Y T¢ , i) exp hlog fT (Y T |bθ∗T (i) , i)− log fT (Y T |bθT ¡i, Y T ¢ , i)i

×
Z
θ∈Θi\E(bθT (i,Y T ),δT (i)) π (θ, i) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ (30)

but by (10)

lim
T→∞

P T0

³h
exp

h
log fT (Y T |bθ∗T (i) , i)− log fT (Y T |bθT ¡i, Y T¢ , i)i ≤ exp [−kT (δT , i)T ]i´ = 1

which implies that exp
h
log fT (Y T |bθ∗T (i) , i)− log fT (Y T |bθT ¡i, Y T¢ , i)i = Op (1) as T → ∞

in P0-probability.
With this last statement, we only need to check that

fT
¡
Y T , i

¢−1 Z
θ∈Θi\E(bθT (i,Y T ),δT (i)) π (θ, i) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ→ 0

as T →∞ in P0-probability. Since:

fT
¡
Y T , i

¢−1 Z
θ∈Θi\E(bθT (i,Y T ),δT (i)) π (θ) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ

by (10), for T large enough,

fT
¡
Y T , i

¢−1 Z
θ∈Θi\E(bθT (i,Y T ),δT (i)) π (θ) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ ≤

≤ exp [−kTT ] fT
¡
Y T , i

¢−1 Z
θ∈Θi\E(bθT (i,Y T ),δT (i)) π (θ, i) dθ ≤ exp [−kT (δT , i)T ] f

T
¡
Y T , i

¢−1
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but, (10) also implies that exp [−kT (δT , i)T ]→ 0 as T →∞ in P0-probability and the results
follow.

[Lemma 2] Assume Lemma 2 is not true. Then ∃ γ > 0 such that

lim
T→∞

P T0

³¯̄̄bθ∗T (i)− bθ∗ (i)¯̄̄ > γ
´
> 0

and ∃ η > 0 such that

lim
T→∞

P T0

³
B(bθ∗T (i) , η) ∩ E ³bθT ¡i, Y T¢ , δT (i)´ = ∅´ > 0

since δT (i) & 0. But since B(bθ∗T (i) , η) ∩ E ³bθT ¡i, Y T¢ , δT (i)´ = ∅ =⇒ B(bθ∗T (i) , η) ⊆
Θi\E

³bθT ¡i, Y T¢ , δT (i)´Z
Θi\E(bθT (i,Y T ),δT (i)) π (θ, i) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ >

Z
B(bθ∗T (i),η) π (θ, i) exp

h
log fT (Y T |θ, i)− log fT (Y T |bθ∗T (i) , i)i dθ (31)

but 12 implies that the right hand side is bigger than zero in P0-probability. Then 6, 11 and
(30) imply: Z

θ∈Θi\E(bθT (i,Y T ),δT (i)) π(θ|Y
T , i)dθ > 0

as T %∞ in P0-probability, that contradicts Lemma 1.

[Theorem 2] First note that Bj,i|Y T =
fT (Y T |j)
fT (Y T |i) and

fT
¡
Y T |i¢ = Z

Θi

fT
¡
Y T |θ, i¢π (θ|i) dθ =

=

Z
E(bθT (i,Y T ),δT (i)) f

T
¡
Y T |θ, i¢π (θ|i) dθ + Z

Θi\E(bθT (i,Y T ),δT (i)) f
T
¡
Y T |θ, i¢π (θ|i) dθ

SinceZ
Θi\E(bθT (i,Y T ),δT (i)) f

T
¡
Y T |θ, i¢π (θ|i) dθ = fT (Y T , i)−1 Z

Θi\E(bθT (i,Y T ),δT (i)) π
¡
Y T |θ, i¢ dθ

Lemma 1 and 7 imply limT→∞ P T0
³R

Θi\E(bθT (i,Y T ),δT (i)) fT
¡
Y T |θ, i¢π (θ|i) dθ = 0´ = 1. We

can writeZ
E(bθT (i,Y T ),δT (i)) f

T
¡
Y T |θ, i¢π (θ|i) dθ = Z

Θi

χ (θ){E(bθT (i,Y T ),δT (i))} fT ¡Y T |θ, i¢π (θ|i) dθ
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Let{Yt}∞t=1 ∈ Ω\Ω0. Using Lemma 2, we can construct a sequence
n
E
³bθT ¡i, Y T¢ , δT (i)´o∞

i=1

such that bθ∗T (i) ∈ E ³bθT ¡i, Y T¢ , δT (i)´ ∀ T and ∀ i ∈M that makes

χ (θ){E(bθT (i,Y T ),δT (i))} fT ¡Y T |θ, i¢π (θ|i)− χ (θ){bθ∗T (i)} fT
¡
Y T |θ, i¢π (θ|i)→ 0

pointwise as T →∞. At the same time,
χ (θ){E(bθT (i,Y T ),δT (i))} fT ¡Y T |θ, i¢π (θ|i)− χ (θ){bθ∗T (i)} fT

¡
Y T |θ, i¢π (θ|i) =

= χ (θ){E(bθT (i,Y T ),δT (i))} fT ¡Y T |θ, i¢π (θ|i)
a.s. in Lebesgue measure. Then

χ (θ){E(bθT (i,Y T ),δT (i))} fT ¡Y T |θ, i¢π (θ|i)− χ (θ){bθ∗T (i)} fT
¡
Y T |θ, i¢π (θ|i) ≤

≤ χ (θ){E(bθT (i,Y T ),δT (i))} fT
³
Y T |bθT ¡i, Y T¢ , i´π (θ|i) ≤ sup

T
fT
³
Y T |bθT ¡i, Y T¢ , i´π (θ|i)

also a.s. in Lebesgue measure. Using Condition 7:Z
Θi

π (θ|i) dθ = sup
T
fT
³
Y T |bθT ¡i, Y T¢ , i´ <∞

Then, we can apply the Dominated Converge Theorem to conclude that

lim
T→∞

P0T
³
fT
¡
Y T |i¢− fT ³Y T |bθ∗T (i) , i´π ³bθ∗T (i) |i´ = 0´ = 1

and find:

lim
T→∞

P0T

fT ¡Y T |i¢
fT (Y T |j) −

fT
³
Y T |bθ∗T (i) , i´π ³bθ∗T (i) |i´

fT
³
Y T |bθ∗T (j) , j´π ³bθ∗T (j) |j´ = 0

 = 1 (32)

Now, to prove that limT→∞ P0T

µ
fT (Y T |bθ∗T (i),i)π(bθ∗T (i)|i)
fT (Y T |bθ∗T (j),j)π(bθ∗T (j)|j) = 0

¶
= 1 and since

 1
T
log fT

³
Y T |bθ∗T (i) , i´π ³bθ∗T (i) |i´−

− 1
T
log fT

³
Y T |bθ∗T (j) , j´π ³bθ∗T (j) |j´ = −∞


⊆

 fT
³
Y T |bθ∗T (i) , i´π ³bθ∗T (i) |i´

fT
³
Y T |bθ∗T (j) , j´π ³bθ∗T (j) |j´ = 0


we only need to show

lim
T→∞

P0T

 1
T
log fT

³
Y T |bθ∗T (i) , i´π ³bθ∗T (i) |i´−

− 1
T
log fT

³
Y T |bθ∗T (j) , j´π ³bθ∗T (j) |j´ = −∞

 = 1 (33)
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Now, using the factorization log fT
³
Y T |bθ∗T (i) , i´ =PT

t=1 log ft
³
Y t|bθ∗T (i) , i´ we can rewrite

(33) as

lim
T→∞

P0T

 1
T

PT
t=1 log ft

³
Y t|bθ∗T (i) , i´+ log π ³bθ∗T (i) |i´−

− 1
T

PT
t=1 log f

T
³
Y T |bθ∗T (j) , j´− log π ³bθ∗T (j) |j´ = −∞

 = 1 (34)

Conditions (10)-(12) allow us to use an argument similar to Wald (1949) to prove (33) and
use (32) and (34) to finish the proof.

7.2. Some Computational Details

The cattle cycle model was computed using Vaughan’s eigenvector method to solve the asso-
ciated Algebraic Riccati equation to the representative farmer problem. This method exploits
the linear restrictions that stability imposes among multipliers and the state vector, resulting
in an efficient algorithm feasible for constant revaluation.
With respect to the Metropolis-Hasting algorithm, its success depends on the fulfillment

of a number of technical conditions. In practice, however, the main issue is to assess the
convergence of the simulated chain to the ergodic density. In addition to the more formal
tests of convergence discussed in the text, it is key to adjust the parameters of the transition
density (in the case of the random walk, the variance of the innovation term) to get an
appropriate acceptance rate (the percentage of times when the chain changes position). If
the acceptance rate is very small, the chain will not visit a set large enough in any reasonable
number of iterations. If the acceptance rate is very high, the chain will not stay enough time
in high probability regions. Gelman, Roberts and Gilks (1996) suggest that a 20% acceptance
rate tends to give the best performance. We found that an acceptance rate of around 40%
outperformed different alternatives.
The code for the evaluation of all the likelihoods and all the simulations was written in

Matlab 5.3 and compiled when feasible with MCC 1.2. Theoretically, it should be portable to
any machine equipped with the Matlab interpreter. The code was run on a Sun Workstation
Ultra-2 with SunOS 5.6.
All the programs and their corresponding documentation, the simulation output (including

additional empirical distributions, time series graphs, trial runs and additional convergence
assessments) are available upon request from the corresponding author.
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Figure 2 : Empirical Distribution of the Posterior
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