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Abstract

We develop an auction model for the case of interdependent values and
multidimensional signals in which agents’ information is not independent. We
show that a modification of the Vickrey auction which includes payments to
the bidders will result in an efficient outcome under very general conditions.
Further, we provide a definition of informational size such that the necessary
payments to bidders will be arbitrarily small if agents are sufficiently informa-
tionally small.

Keywords: Auctions, Incentive Compatibility, Mechanism Design, Interde-
pendent Values.

JEL Classification: C70, D44, D60, D82

1 Introduction

The efficiency of market processes has been a central concern in economics since its
inception. Auction mechanisms constitute a very important class of market processes,
yet the analysis of auctions has typically focused on their revenue generating prop-
erties rather than their efficiency properties. This is partly due to the fact that, for
many of the problems typically studied, efficiency is trivial. When bidders have pri-
vate values, a standard Vickrey auction guarantees that the object will be sold to the
buyer with the highest valuation for the object. In the case of pure common values -
that is, when all buyers have the same value for the object - any outcome that with

*Postlewaite gratefully acknowledges support from the National Science Foundation. We thank
Johannes Horner, Matt Jackson, George Mailath, Steve Matthews, John Moore, Bob Rosenthal
and the participants at numerous seminars at which this paper has been presented for helpful
conversations. Earlier verstions of this paper circulated under the title “Efficient Auctions with
Multidimensional Signals.”



probability one assigns the object to some bidder will be efficient. The intermediate
case in which bidders’ values are interdependent but not identical is more problem-
atic. When bidders’ values are interdependent, any single bidder’s value may depend
on the information of other agents and, hence, he may not even know his own value.
It is not clear what it would mean for an agent to bid his “true” value, even before
we ask if it is optimal for him to do so.

Several recent papers have examined the possibility of efficient auctions. In the
case of two bidders, Maskin (1992) extended the Vickrey auction to the case of inter-
dependent values in a way that assures an efficient outcome. Dasgupta and Maskin
(1998) and Perry and Reny (1998) use the basic idea in Maskin (1992) to construct
auction mechanisms that guarantee efficient outcomes for the case in which there are
multiple units to be sold. In these papers, an agent’s information regarding the value
of the object(s) to be sold must be represented by a one dimensional signal. Dasgupta
and Maskin provide simple examples showing that, if agents’ types are independent,
there do not exist mechanisms that are efficient when signals are multidimensional.
Jehiel and Moldovanu (1998) prove a general theorem about the impossibility of effi-
cient mechanisms when bidders have independent types and multidimensional signals.

The exclusion of multidimensional types is quite restrictive. For many problems,
individuals have private information of two very different kinds: information about
the qualitative features of the object being sold and information about themselves that
affects their personal valuation of an object with particular physical characteristics,
but does not affect others’ valuations. Potential bidders for an oil tract may have
information about the size and nature of the oil field and, in addition, information
regarding their own cost of retrieving and processing the oil. Agents bidding in a
spectrum auction may have information about the number and characteristics of the
individuals covered by the license being sold, as well as information about the value
to their company from serving that population. In such problems, the information
(type) of an agent is multidimensional and, hence, existing papers on efficient auctions
provide no guidance.

The work described above on the possibility /impossibility of efficient auction
mechanisms restricts attention to the case in which agents’ types are independent.
While this is a natural place to begin, the independence assumption is not compelling
for all auctions. Many problems have the general structure of the problem described
in the previous paragraph. The value to a given prospective buyer of the object(s)
being sold depends on two qualitatively different things: objective characteristics of
the object itself (the quantity and quality of oil in a tract to be auctioned off or
the demographic characteristics of the consumers covered by a license in a spectrum
auction), and idiosyncratic characteristics of the buyer (his cost of extracting the oil
in the field or his cost of serving the customers covered by a given spectrum license).
When bidders’ types include information about objective characteristics of the object,
it is plausible that their types are correlated.



It is well known that, if agents’ types are correlated, then mechanisms can be
designed to induce truthful revelation of private information, and that information
can be used to ensure efficient outcomes. (See Cremer and McLean (1985,1988), and
subsequent work by McAfee and Reny (1992).) Mechanisms that rely on correlation
of types to induce truthful revelation are sometimes criticized on the grounds that
in such mechanisms, the payments to and from agents can be very large. The use of
very large payments makes it clear that such mechanisms will not be of use in the
presence of limited liability or nonlinear preferences over money.

In this paper, we show that there exist efficient auction mechanisms for interde-
pendent value auction problems when agents’ types are correlated. These auction
mechanisms are essentially Vickrey auctions augmented by payments to (not from)
the agents. Most importantly, we link the payment made to an agent to that agent’s
“informational size”. If all agents are receiving signals correlated with the common
but unobservable value of the object, then any single agent’s signal may add little to
the information contained in the aggregate of the other agents’ signals. Informally,
we can think of an agent as being informationally small if it is unlikely that the
probability distribution of the objective characteristics of the object is very sensitive
to that agent’s information, given the information of others. When agents are infor-
mationally small, the payments necessary for our augmented Vickrey auction will be
small. Hence, agents’ “informational rents” - as represented by the payments made to
them - are linked to their informational size. However, we should emphasize that we
are not proposing that agents are necessarily informationally small and, consequently,
that efficient outcomes can always be assured with small augmented payments.

Our model is described in Section 2, and in Section 3 we present an example with
a simple information structure in which agents receive conditionally independent sig-
nals of the state of nature. Section 4 provides an analysis for the more complicated
problem with general information structures that include the conditionally indepen-
dent structure of the example in section 3 as a special case. In section 5, we present
the most general result in the paper in a framework that subsumes the model of
section 4. Section 6 presents an example of a nonrevelation auction mechanism that,
for some auction problems, achieves the same outcome as the revelation mechanisms.
Some concluding comments are contained in Section 7 and the proofs are given in
Section 8.

2 Awuctions

Let © = {64, .., 0,,} represent the finite set of states of nature. Each 6 € © represents a
complete physical description of the object being sold (e.g., the amount and quality of
oil). Let 7 be a finite set of possible types of agent i. As stressed in the introduction,
an agent’s information may be of two qualitatively different kinds: information about
the objective characteristics of the object being sold, and idiosyncratic information
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about the agent himself. The former is of interest to other agents - and consequently
is the cause of the interdependence of agents’ valuations - while the latter is irrelevant
to other agents in calculating their valuations. The state of nature is unobservable
but agent i's information about the physical characteristics of the object to be sold
will be captured by the correlation between his type t; and nature’s choice of 6.
His type t; will also capture any idiosyncratic information he may have. Agent ¢ is
characterized by a utility function v; : © x T; — R, . That is, agent 's utility depends
on the physical characteristics of the object, and his type ;.

Let (0,%1,ta, ..., t,) be an (n41)-dimensional random vector taking values in © x T
(T'=T, x --- xT,,) with associated distribution P where

P(0,t1, ... tn) = Prob{0 = 0,1, = t1, ..., tn = t,}.

We will make the following full support assumptions regarding the marginal distri-
butions : P(f) =Prob{f = 6} > 0 for each 6 € © and P(t) =Prob{t; = t1,...,1,, =
tp} >0 for each t € T.

If X is a finite set, let Ax denote the set of probability measures on X. The set of
probability measures on © x T satisfying the full support conditions will be denoted
AjléxT

In problems with differential information, it is standard to assume that agents have
utility functions w; : T' — R, that depend on other agents’ types. It is worthwhile
noting that, while our formulation takes on a different form, it is equivalent. Given
a problem as formulated in this paper, we can define w;(t) = >, ¢ [vi(6,t:) P(0|t)] .
Alternatively, given utility functions w; : T — R., we can define © = T and define
vi(t,t;) = w;(t). Our formulation will be useful in that it highlights the nature of
the interdependence: agents care about other agents’ types to the extent that they
provide additional information about the physical characteristics of the object being
sold.

An auction problem is a collection (v1,..,v,, P) where P € Ay . An auction
mechanism is a collection {¢;, z; };eny where ¢; : T'— R, and z; : T — R are functions
satisfying

Z%‘(t) <lforalteT.
iEN
For any vector of types t € T, let
Bi(t) = ditinti) = Y vi(0,:) P(Olt_i, t:).
O

Although © depends on P, we suppress this dependence for notational simplicity. The
number v;(t) represents i's valuation for the object conditional on the informational
state t € T.

Definition: An auction mechanism {g;, z; }ien is:
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incentive compatible (IC) if for each i € N,

D lati t)0i(tis ti) = @ity t)] P(t-ilti) = D [asltis t)bi(t—rts) — malt—i, )] P(t-ilts)

t_g

whenever ¢;,t; € T;.
ex post individually rational (XIR) if

q;(t)0;(t) — z;(t) > 0 for all i and all t € T
ex post efficient (XE) if

0;(t) = max {v,(t)} whenever ¢;(t) > 0.
j

For a given auction problem (vy, .., v,, P), we will be interested in the second price
auction using the conditional values v;(t). For each t € T, let

1(t) = {i € NI#i(t) = max; (1)}

and define
w;(t) = max v;(t).
Jig#
Formally, we define a Vickrey auction with conditional values (Vickrey auction for
short) to be the auction mechanism {q}, z}};cn defined as follows:

v Em ifie I(t)
ai(t) = {#0 if i ¢ I(t)

and
i (t) = q; (H)wi(t) -

It is straightforward to show that this Vickrey auction mechanism is ex post effi-
cient and ex post individually rational. It will generally not be incentive compatible.
However, as we will show below, it is often possible to modify the Vickrey auction
payments so as to make truthful revelation an equilibrium when agents are informa-
tionally small in a sense to be defined below. .

Let {z;}ien be an n-tuple of functions z; : T'— R each of which assigns to each
t € T a nonnegative number, interpreted as a “reward” to agent i. The associated
augmented Vickrey auction with conditional values (augmented Vickrey auction for
short) is the auction mechanism {¢}, z} — 2; }ien

We present an example in the next section that illustrates our notion of augmented
Vickrey auctions and the relationship between informational size and the payments
that agents receive. This example also illustrates the main ideas in the proofs of
Theorems 1 and 2 discussed in sections 4 and 5 below.



3 Example

3.1 The Problem

Three wildcatters are competing for the right to drill for oil on a tract of land. It is
common knowledge that the amount of oil is either 20 or 30, each equally likely. The
state in which the quantity is 20 is denoted #; and the state in which the quantity
is 30 is denoted Oy; let © = {01, 0y}. Each wildcatter i performs a private test that
provides information in the form of a noisy signal of the state which we denote s;.
That is, agent i’s private test yields a signal H (high) or L (low); for each i, let
S; = {H, L}. The distribution of the signal for agent i, conditional on the state, is
given in the table below (p > 1/2).

state 0, O
stgnal
L p 1—0p
H L—p p

Agents’ signals are independent, conditional on the state 6. For this information struc-
ture, it is relatively easy (though arithmetically tedious) to compute conditional prob-
abilities like P(6|s1, s2, s3) and P(s1, s2|s3). For example, let s3 = H. The conditional
distribution S; x S is defined for each (s1, s5) as follows: P(H, H|H) = p*>+ (1 —p)?
and P(H,L|H) = P(L,H|H) = P(L,L|H) = p(1 — p). These specific computations
will be used in the analysis that follows.

In addition to the signal regarding the amount of oil, each of the wildcatters
has private information regarding his own cost of extraction. We assume that the
extraction cost ¢; of wildcatter ¢ is drawn from a finite set. Hence, agent i’s type t; is
the pair (s;, ¢;) comprising his privately observed extraction cost ¢; and his privately
observed signal s;. We will assume that the vector of extraction costs (c1, ca,c3) is
independent of the state-signal vector (6, s1, s2, s3) although the ¢}s may be correlated.
The price of oil is 1. Agent i’s payoff v; as a function of the state # and his type depends
only on # and his private extraction cost. If t; = (¢;,s;), then his payoff should he
obtain the right to drill is given by:

vi(HL,ti) = 20— C;

vi(HH, tz) = 30— C;.
Consider the following auction mechanism. Agents announce their types and
the posterior distribution on # given the agents’ announcements of their signals is

calculated. Let Pg(+|s1, s2, s3) denote this posterior distribution on ©. Next, compute
the agents’ expected valuations v; for the object, where

0;(t1, ta, t3) = 0;(s1, Sa, 83, ¢;) = v;(0, ¢;)-Po(0L|s1, 82, 53)+0; (0, ¢;)- Po (0|51, 52, S3)-
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Let {qf,x}}icq1,2,3 be the associated Vickrey auction defined in section 2. The
drilling rights are then given to an agent ¢ for whom v;(s1, s2, $3, ¢;) is highest and
that agent pays a price equal to the higher of the other two agents’ valuations.

3.2 An Incentive Compatible Augmented Vickrey Auction

Suppose that the triple of signals (s1, $2, s3) is commonly known by the agents. Then
the “reduced” Vickrey auction in which only the values of the ¢s are private informa-
tion is a pure private value auction in which bidder i’s expected payoff depends only
on ¢; but not on ¢; for j # i. The vector of signals affects the payoffs as well, but this
is a vector of known parameters in the reduced auction. For each fixed triple of sig-
nals, the Vickrey mechanism {q}, z} };cq1,2,3y defined for the original auction induces
a Vickrey mechanism in the resulting reduced auction in which only the extraction
costs ¢; are private information.
More formally, fix ¢ = 3 and define

A Lk /AN * A
U3(31701, S2, Ca, 33703|33703) =gq; (31701,32702, 33703)%(31, S2, 33703)—%(31701, S2, Ca, 33703)-

¢From this definition, it follows (setting sy = s3) that Us(sy, c1, S2, 2, 3, ¢5]S3, ¢3) s
precisely the expected payoff to bidder 3 in the reduced auction when the (commonly
known) vector of signals is (s1, S2, $3), the announced vector of costs is (c1, ¢z, c5)
and bidder 3 has true cost c3. In the reduced auction, truthful reporting of c3 is a
dominant strategy in the following sense:

U3(317 C1, 82, C2, 83, C3|S37 03) > U3(317 C1, 82, C2, 83, Cg|337 03)

for all signal triples (s1, s2, $3), all pairs (c1, ¢2) and all costs ¢3 and ¢ for bidder 3.

Truthful announcement of private costs is a dominant strategy in the reduced
auction in which the true vector of signals is known. However, truthful announcement
of i’s type (s;,¢;) in the actual problem is not a dominant strategy for the Vickrey
mechanism; if bidder i announces L when he has in fact received signal H, he will
lower the expected valuations of all agents. In the event that agent i wins the object,
he will pay a lower price by doing so. We can, however, construct an augmented
Vickrey mechanism that is incentive compatible if p is sufficiently close to 1. Let
2i (81, S2, 53) denote the nonnegative reward to agent i when the announced vector of
signals is (s1, 2, s3). In general, the reward functions defining an augmented Vickrey
auction will depend on the vector of announced types. In this example, the reward
functions can be chosen to depend only on the announced signals and not on the
announced private costs.

Now, fix ¢ = 3 and suppose that his true type is t3 = (c3, H) where ¢3 € C3 (the
argument for other agents is exactly the same.) To evaluate the gain from a false
report of (¢4, L) in the augmented Vickrey mechanism {q¢;, ] — z;}icq1,2,33, we must



compute
[U3(317 C1, 82, Co, L7 Cg|H7 63) + 23(317 S2, L)]_[U3(317 1, S2, Ca, H7 C3|H7 63) + 23(317 52, H)]

and then weight these gains with P(s1, 1, s2, c2|H, ¢3) in order to compute the total
expected gain from a false report of (c¢;, L). When p is close enough to one, we will
show that the rewards z3(-) can be chosen so that this expected gain is nonpositive.
Hence, the resulting augmented Vickrey auction will be incentive compatible.

First, note that

Us(s1,¢1, S2, o, L, c5|H, c3) — Us(s1, ¢1, So, €2, H, c3|H, ¢3)
= Us(sy,c1, 82,0, L, c5|H, c3) — Us(s1, ¢1, 89, Co, H, 5| H, ¢3)

+Us(s1, €1, S, C2, H, ¢5|H, c3) — Us(s1, 1, $2, Ca, H, c3|H, c3)
< Us(sy,c1, 82,62, L, c5|H, c3) — Us(s1, ¢1, So, co, H, 4| H, c3)

since truthful reporting of c3 is a dominant strategy in the reduced auction. Since
the independence assumption implies that

P(31701,32,C2|H; 03) = P(31732|H)P(01702|03)7
it suffices to show that z3(-) can be chosen so that the sum of the terms
[U3(317 C1, S2, Co, L7 Cg|H7 63) + 23(317 S2, L)]_[U3(317 C1, S2, Co, H7 Cg|H7 63) + 23(317 S92, H)]

weighted by P(s1, s2|H) will be nonpositive for each ¢1, co, c3 and ¢ when p ~ 1.
First, we estimate the gain from a misreport of L when bidders 1 and 2 receive
different signals. In this case, P(s1,s2|H) =~ 0 if 51 # s and p ~ 1. Therefore,

[U3(31701, 32702;L70§,|H, 03) - U3(31701, S9, Ca, H, C§|H; 03)] P(31,32|H)

may be positive but will be close to zero since utilities are bounded. Hence, the
contribution to the total expected gain from misreporting when other bidders receive
different signals is close to

|23(L,H,L) — z(L,H,H)| P(L,H|H) + [23(H,L,L) — z3(H, L, H)| P(H, L|H).

What is the estimated gain to bidder 3 from a misreport of L when the other two
bidders receive the same signal? There are two possibilities. If the other two agents
receive signal L, then a false report of L results in a gain of

U3(L7 C1, L: Ca, L: Cg|H7 03) - U3(L7 C1, L: Ca, H: Cg|H7 63) + 23(L7 L: L) - 23(L7 L: H)
If the other two agents receive signal H, then a false report of L results in a gain of

U3(H7 ClH> C2>L7 Cg|H7 03) - U3(H7 ClvHv 627H7 Cg|H7 03) + 23(H7 H: L) - 23(H7 H7 H)
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When p is close to one, a bidder who observes H will believe it very likely that the
other bidders’ signals are both H and he will believe it very unlikely that the other
bidders’ signals are both L, i.e., P(H,H|H) ~ 1 while P(L, L|H) ~ 0.

Since utilities are bounded, the contribution to bidder 3’s total expected gain from
a misreport when the other two bidders receive the same signal is close to

[Ug(H, ClH, Ca, L, Cg|H, 03) - Ug(H, C1, H, Ca, H, Cg|H, 63)] P(H, H|H)
+[23(L, L, L) — 23(L, L, H)| P(L, L|H) + [23(H, H, L) — z3(H, H, H)| P(H, H|H).
Summarizing, the total expected gain from a false report of L is close to
[Ug(H, ClH, Co, L, Cg|H, Cg) — Ug(H, Cq, H, Co, H, Cg|H, 63)] P(H,H|H)
+ Z Z [23(317 52, L) - 23(317 52, H)] P(Slv S2|H)
$1€851 s9€855
when p =~ 1.

To complete the argument, we must show that this estimated total expected gain
can be made nonpositive, when p ~ 1, by a judicious choice of the reward function
23(+). Let 23(s1, 82, 53) = € if s = s3 or sy, = s3 (or both) and zero otherwise. Hence,
a bidder will receive a reward of ¢ for announcing a signal that is in the majority, and

nothing otherwise. When p = 1, the estimated total expected gain from a misreport
of L is now

[Us(H,c1H, ¢y, L, 4| H, c3) — Us(H, 1, H,co, Hy¢5|H, c3)| P(H, H|{H)—¢ [P(H,H|H) — P(L,L|H)] .

If p is sufficiently close to one, this estimate will be nonpositive. This hinges on
two features of this example. First, one can verify that Pe(-|H, H, H) ~ Po(-|H, H, L)
and P(H, H|H) =~ 1 when p ~ 1. Consequently', we can choose p sufficiently close to
one so that

[Ug(H, ClH, CQ,L, Cg|H, 03) — Ug(H, Cl,H, CQ,H, Cg|H, 63)] P(H,H|H) < 5/2
Second, P(H,H|H) — P(L,L|H) ~ 1 when p ~ 1. Consequently, we can choose p
sufficiently close to one so that

P(H,H|H)— P(L,LIH) > 1/2.

Combining these two observations, we see that for p sufficiently close to one, a mis-
report leads to a nonpositive expected “gain” in utility. The same argument holds
for the case in which an agent observes L but falsely reports H. In particular, the
estimated total expected gain from a misreport of H is close to

[Us(L,c1, Lyco, H,c4| L, c3) — Us(L, c1, L, o, L, &4\ L, c3)] P(L, L|L)—¢ [P(L, L|L) — P(H, H|L)] .

When p ~ 1, this estimate is also nonpositive and it follows that the mechanism is
incentive compatible.

'See Lemmas A.1 and A.2 in the appendix for a formal argument.
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3.3 Discussion of the Example

In this example, we have shown the following: for every € > 0, there exists a p > 0
such that, whenever p < p < 1, there exists an incentive compatible augmented
Vickrey auction {q;, z} — 2;}icq1,2,3 satisfying 0 < z;(t) < e for all t. These rewards
are small when the agents’ signals are accurate as a result of a subtle interplay of
two ideas: informational size and the variability of agent’s beliefs. We now illustrate
these concepts in the example.

In the example, we have shown that agent 3’s estimated total expected gain from
announcing signal L when his true signal is H is given by

[Ug(H,ClH,CQ,L,Cg|H,Cg) —Ug(H,Cl,H,CQ,H,Cg|H,Cg)] P(H,H|H)
+ Z Z [2’3(31,32,[/) —Zg(Sl,SQ,H)] P(31,32|H).

$1E€851 s9€855

Using a similar argument, agent 3’s estimated total expected gain in utility from
announcing signal H when his true signal is L is given by

[Ug(L,Cl,L, CQ,H, Cg|L,Cg) — Ug(L, Cl,L,Cg,L, Cg|L, 63)] P(L,L|L)
+ Z Z [Zg(Sl,SQ,H) —Zg(Sl,SQ,L)]P(31,32|L).

51€S51 s2€855

Consider the first terms in each of these estimates. These “utility” terms may be
positive but they will be bounded from above by small positive numbers because agent
3 is “informationally small” in the following sense: the probability that agent 3 has a
large effect on the conditional distribution on states Pg(-|s1, s2, 3) is small>. When
p ~ 1 in the example, then P(H,H|H) ~ 1 and Pe(-|H,H,H) — Po(-|H,H, L) =~ 0.
Given a positive number ¢, it follows that

[Ug(H, ClH, CQ,L, Cg|H, Cg) — Ug(H, Cl,H, CQ,H, Cg|H, 63)] P(H,H|H) < 5/2

for p close enough to one. Similarly, P(L, L|L) ~ 1 and Po(-|L,L,H) — Po(:|L,L,L) ~
0 imply that

[U3(L7 Clev 627H7 Cg’,|L7 03) - U3(L> Clev 027L7 C§|L703)] P(L7L|L) < 5/2

Now consider the second term (the “reward” term) in each of these estimates. We
constructed rewards z3(-) that satisfy

Z Z [23(51, 82, L) — 23(s1, 82, H)| P(s1, 82| H) < —¢/2

$1€S51 s2€852

2 Again, this follows from Lemmas A.1 and A.2.
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and

Z Z [23(81, S2, H) — 23(81, $2, L)] P(s1, 82|L) < —¢&/2

$1€S51 s2€S52
for p close enough to one. Hence the (negative) expected gain in the reward “domi-
nates” the (possibly positive) utility term in the expressions above. Combining these
observations, it follows that agent 3 will truthfully reveal his signal. In a more general
model in which the probabilistic structure is more complex than the conditionally in-
dependent noisy signal structure of the example, our ability to find z}s for which the
expected gain in reward will dominate the expected gain in utility will depend on the
difference in the conditional distributions P(-,-|H) and P(-,-|L) on S; x Ss. If, for
example, these conditional distributions were equal, then we cannot find a system of
rewards satisfying the inequalities

Z Z [23(s1, S2, L) — 23(81, S2, H)| P(s1, $2|H) < 0

51€851 s2€85

and

Z Z [23(31, S92, H) — 2’3(31, S92, L)] P(Sl, 32|L) < 0.

$1€S51 $2€852
If the utility gain terms can be small positive numbers, then we will have difficulty
constructing an incentive compatible mechanism. Hence, the closeness of 3’s beliefs
P(-,-|H) and P(-,-|L) on Sy x Sy will play a role in our analysis.

In summary, agents must be informationally small and beliefs must be sufficiently
variable in order to construct augmented Vickrey auctions that satisfy incentive com-
patibility. In the next section, we present a model that generalizes several features of
this example and formalizes the concepts of informational size and variability.

4 Efficient Auction Mechanisms: Informational In-
dependence

4.1 The Model

Let Sy,...,S, and C4,...,C, be finite sets. An element s; € S; will be referred to
as agent i’s signal. An element ¢; € C; will be referred to as agent i’s personal
characteristic. Let T; = S; x C;,T =Ty x --- x T, and T_; = x;T;. The product
sets S,C,S_;,C_; are defined in a similar fashion. We will often write ¢ = (s, ¢) and
ti = (si,¢;) where s and ¢ (s; and ¢;) denote the respective projections of ¢ (¢;) onto
S and C (S; and C;). An agent’s type is an element ¢; = (s;, ¢;) € T;. Both the signal
s; and the personal characteristic ¢; are private information to ¢ with the following
interpretations: s; represents a signal that is correlated with nature’s choice of 6
and ¢; represents a set of other idiosyncratic payoff relevant characteristics of agent
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i that provide no information about 6 or s_; beyond that contained in s;. In our
example, the extraction cost ¢; of each wildcatter corresponds to the agent’s personal
characteristic and, since costs are assumed to be independent of the state and the
agents’ signals, it is certainly the case that ¢; contains no information about 6 or s_;
beyond that contained in s;. The next definition formalizes this idea.

Definition: A probability measure P € Aj, ¢, satisfies Informational In-
dependence if for each (0,s,c) € © x S x C, (i) Po(0]s,c;) = Po(f|s) and (ii)
Ps_,(s5-ilsi,ci) = Ps_(s-ils:).

Let AL, denote the set of measures in AY, , satisfying Informational Indepen-
dence. If P satisfies Informational Independence, then for each s;, (i) implies that
the random variables 6 and ¢; are independent conditional on § = s while (ii) implies
that the random variables 5_; and ¢; are independent conditional on §; = s;. This
accounts for the use of the term “independence” in the definition.

The first condition captures the notion that i’s personal characteristic ¢; contains
no information beyond that contained in the signal profile signal s that is useful
for predicting the state of nature. The second condition states that i's personal
characteristic ¢; contains no information beyond that contained in his signal s; that
is useful predicting the signals of other agents.

It is easy to show that Informational Independence is satisfied when the random
vectors (6, §) and ¢ are stochastically independent, i.e., when

P(0,t) = P(0,s,c) = P(8,s)P(c).

The Informational Independence condition is weaker, however, than stochastic inde-
pendence of the random vectors (6, §) and é. In the example of section 3, (6,3) and ¢
are stochastically independent.

4.2 Informational Size and Variability of Beliefs

We now formalize the idea of informational size discussed in section 3.3 above. Our
example indicates that a natural notion of an agent’s informational size is the degree
to which he can alter this posterior distribution on © when other agents are announc-
ing truthfully. Any vector of agents’ signals s = (s_;,s;) € S induces a conditional
distribution on Pg(-|s—;, s;) on © and, if agent 4 unilaterally changes his announce-
ment from s; to s}, this conditional distribution will (in general) change. If i receives
signal s; but announces s, # s;, the set

{s—i € S_il [[Po(-[s-i,s:) — Po(-[s—i, 57)l| > e}

consists of those s_; for which agent i’s misrepresentation will have (at least) an “c—
effect” on the conditional distribution. (Here and throughout the paper, || - || will
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denote the 1-norm.) Let v/>°(s;, s}) be defined as the smallest e such that
Prob{ [|Pe(-[5-i,5:) — Po(|5-i, )|l > €ls; = s;} <e
and define the informational size of agent i as

v’ = max v (s;, 5)).
54,55€8;
Note that v/ = 0 for every i if and only if Pg(:|s) = Po(:|s_;) for every s € S and
i€N.3

There are two important features of this definition. First, an agent’s informational
size depends only on that part of his information that is useful in predicting 6. Hence,
an agent’s type t; = (s;,¢;) can embody substantial amounts of information (in ¢;)
that is not known to other agents, yet agent ¢ can still be informationally small. This
is a feature of the example in section 3. Second, an informationally small agent may
have very accurate information about the state 6. Informational size depends on how
much the information contained in his signal adds to the information contained in
the aggregate of the other agents’ signals. When other agents also have very accurate
information, an agent with accurate information may add little. This is also a feature
of the example of section 3 where the conditional Pg(-|s;) is nearly degenerate for
each i and each s; when p is close to 1. Hence, agents have very good estimates of
the true state conditional on their signals, yet each agent is informationally small.

In our discussion in section 3.3 above, we indicated that the ability to give agent 7
an incentive to reveal his information will depend on the magnitude of the difference
between Ps_.(+|s;) and Ps_,(:|s;), the conditional distributions on S_; given different
signals for agent 7. We will refer to this magnitude informally as the variability of
agents’ beliefs.

To define formally the measure of variability, we treat each conditional Ps ,(-|s;) €
Ag_, as point in a Euclidean space of dimension equal to the cardinality of S_;. Our
measure of variability is defined as

P,S . .
APS = mig min [|Ps.,(ls:) = Ps., (15}

4.3 The Result

We now state our first result on the possibility of efficient mechanisms.
Theorem 1: Let (vy,..,v,) be a collection of payoff functions.

(i) If P € AL, satisfies AL® > 0 for each i, then there exists an incentive compat-
ible Augmented Vickrey auction {q;, 7 — z; };c n for the auction problem (vq, .., vy, P).

3This is essentially the case of nonexclusive information introduced by Postlewaite and Schmeidler
(1986) and is discussed further in the last section.
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(ii) For every & > 0, there exists a 6 > 0 such that, whenever P € A}, , satisfies
max ViP,S < dmin Af’s,
1 1

there exists an incentive compatible Augmented Vickrey auction {¢},z} — z; }ien for
the auction problem (vy, .., v,, P) satisfying 0 < z;(¢) < ¢ for every ¢ and t.

Part (i) of Theorem 1 states that, if Af’s is positive for each agent i, then there
exists an incentive compatible augmented Vickrey mechanism for the auction problem
(v1, .., Un, P). The hypotheses of part (i) only requires that each Af S be positive and
places no lower bound on the magnitude of Af *S Furthermore, the informational size
of the agents is not important. On the other hand, the conclusion of part (i) places
no upper bound on the size of the reward z;. These rewards can be quite large.

Part (ii) of the theorem states that there exists an incentive compatible augmented
Vickrey mechanism with small payments if, for each i, Af’s is large enough relative to
the informational size of agent i. To illustrate part (ii), consider again the example
in section 3 where we showed the following: for every € > 0, there exists a p > 0 such
that, whenever p < p < 1, there exists an incentive compatible augmented Vickrey
auction {q}, ] — zi}icq1,2,3y satisfying 0 < z;(t) < e for all ¢. This result can now
be deduced as an application of (ii) since, in the example, each l/ip 5 0 and each
APP S 1asp— 1

While the technical details of the proof are deferred until the last section, we can
sketch the ideas here for the special case in which 7; = S; (i.e., each C; is a singleton).
There are two key steps. First, we show (see Lemmas A.1 and A.2) that for all i , all
Si,S; € S;and all s_; € S,

(g7 (s)0i(s) — 27 (5))=(q; (54, 8;)0i(s) — 7 (523, 57)) = =M||Po(-|s—i, s:)—Po(-|s—i, )|

where
M = MAX MAx max v;(0, 8;).

i S;

This result is of some interest in its own right. If ||Po(:|s—s, si) — Po(-|s—i, s})|| is
“small” uniformly in s;, s; and s_;, then truthful reporting is an “approximate” dom-
inant strategy in the (unaugmented) Vickrey mechanism {¢},z}}. For example, if ¢
and § are independent, then 0;(s) depends only on s;. In this case, ||Pg(:|s_s, si) —
Po(-|s_ist)|| =0 for alli, all s;,s, € T; and all s_; € S_; and we deduce the clas-
sic result for Vickrey auctions: truthful reporting is a dominant strategy with pure
private values.

Of course, ||Po(-|s—i, si)—Po(:|s—i, s;)|| is generally not uniformly small. However,
we can use the concept of informational size to show that

D g (s)0us) = 27 (5)) = (g5 (535 80)0ul8) — 27 (54, 87))] Pls—ilss) = —3Mo*.

s
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If all agents are informationally small, then truthful reporting is “approximately”
incentive compatible in the (unaugmented) Vickrey mechanism {q;,z;}. If z;(s) is
the reward to i when the bidders announce s, then the associated augmented Vickrey
auction {q;, z — z;} will be incentive compatible if and only if

Z [2i(s_s, 8i) — 2i(5_i, 8)] P(s_i|s:) —3M° >0

s

for each s;, s; € S;. This is the generalization of the analysis of the example in section
3.3.
It can be shown that there exists a collection of numbers (;(s) satisfying 0 <
Gi(s) <1and
> [Gils—i, 1) = Gils—i, )] P(s il si) > 0

s

for each s;, s, € S; if and only if A7 > 0. Part (i) of the theorem now follows: choose
Gi(s) to satisfy these inequalities, define z;(s) = a(;(s) and choose a large enough
so that incentive compatibility is satisfied. Of course, as we mentioned above, the
resulting z.s can be large.

Part (ii) is more delicate. Unfortunately, the optimal value val;(P) of the linear
program

max
ﬂ7<i(s) ﬂ

s.t. Z [Gi(5—iy8i) — Gi(s—4, 8)] P(s—i|si) > [ for all s;, s

0<¢(s) <1foralls

is not bounded from below by a positive number, uniformly in P. If this were the
case, then the existence of an incentive compatible augmented Vickrey auction with
small payments would depend only on informational size. Instead, val;(P) — 0 as
Af’s — 0. In order to prove (ii), we require that each Af’s be large enough relative
to the informational size of agent .

5 Efficient Auction Mechanisms: The General Case

5.1 The model

The information structure in the previous section assumed that the set of types of
an agent could be expressed as the Cartesian product of signals and personal charac-
teristics and that the information structure satisfied our informational independence
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assumption. In this section, we show how the information structure for general in-
complete information problems, even those without a product structure, can be rep-
resented in a way that decomposes agents’ information into “signals” and “private
characteristics.”

Definition: For each i, let TI; = { A, A2, ..., A%} be a partition of T}. The collec-

tion of partitions C = {IIy, .., II,,} is an information decomposition (ID) of P € A§,
if for each (Ay, .., A,) € II; x - -+ x II,,, the following hold:

(i) for all t,£ € Ay x - x A,,
Po('[t) = Po('|t).
(ii) for all i and for all ¢;,t; € A,,
Prob{t; € A;,j #ilt; = t;} = Prob{t; € A;,j #ilt; = t,}.

Roughly speaking, one can identify the event A; € II; with the signal s; in the
model of section 4 and t; with the personal characteristic ¢;. To see this, choose
an “event” profile (A4, .., A,) and note that condition (i) in the definition of ID is
equivalent to

Prob{f = 0| i€ A; x --- x A,} = Prob{f = 0| t =t}

for each t € Ay x --- x A,. Therefore, condition (i) has an interpretation similar to
that of condition (i) in the definition of informational independence: a specific type
profile t € A; x --- x A, contains no information beyond that contained in the event
profile (A4, .., A,,) that is useful predicting the state of nature.

Condition (ii) is equivalent to

PI’Ob{fj S Aj,j 7é 'L|Ez S Az} = PI’Ob{fj S Aj,j 7é 'L|t~z = tz}

for all ¢; € A;. Hence, condition (ii) has an interpretation similar to that of condition
(ii) in the definition of informational independence: a specific type t; € A; contains
no information beyond that contained in the event A; that is useful predicting the
events of other agents.

Every measure P has at least one information decomposition: this is the triv-
ial decomposition in which II; = {{¢;}};,er,. However, a measure P can have more
than one ID. If each T; = S; x C; as in section 4 and if P satisfies Informational
Independence, then P has a second common value decomposition defined by

II; = {{si} x Ci}sies.
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5.2 Informational Size and Variability of Beliefs

For each information decomposition C of a measure P, one can define informational
size and variability. To see this, define a “natural” probability measure P¢ on © x
Iy x --- x II,, as follows: for each (A;,..,A,) € II; x --- x II,,,

€A}

PC(0, Ay, .., A,) = Prob{f =0t € Ay, .1,
t).

= Z Z p(gﬂgl,.

tl €A1 tn eAn

Let P§(+|Ay, .., A,) € Ag denote the induced conditional distribution on © given the
events Aj,.., A,. Let Pﬁﬂ,(-|Ai) € Ap_, denote the induced conditional distribution
on II_; = x;4lI; given that i’s event is A;. These induced conditional probability
measures can be used to define informational size and variability in ways analogous

to the definitions of these concepts given in section 4. Let
O (A, A7) = {A € IL; |[|PS(-|A-s Ai) — PS(|Ai, ADI| > e}

Let v/ °(A;, A}) be defined as the smallest € such that

> PiL(AL]A) <e

A_;€®E(A;,AL)
and define the informational size of agent i as

PC PC
v; " = max v; (A A).
Ai,AQGHi

Proposition 1: If C and C’ are information decompositions of a measure P €
PC _  PC

*
A, 7, then v; ™ =

Proposition 1 states that informational size is invariant with respect to the choice
of information decomposition. For example, when each T; = S; x C; and the informa-
tional independence assumption is satisfied, then the ID with II; = {{s;} X C;}es,
for each i and the ID with II; = {{t;}}+,er, for each i yield the same informational
size for each agent.

The correct notion of distributional variability for an information decomposition
should depend only on the partitions II;. The relevant notion of variability measures
the difference between P (-|4;) and PS (-|A}) for A;, A, € I1;.

7 12

Formally, our measure of variability is defined as

PC . .
APE = in min (PR (1A = P CLADIP:
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5.3 The Results

Using these definitions of informational size and variability of beliefs, we can gener-
alize Theorem 1 as follows.

Theorem 2: Let (vy,..,v,) be a collection of payoff functions.

(i) Let P € A§, 4. If there exists an information decomposition C = {IIy, .., II,,}
with Af ‘ > 0 for each i, then there exists an incentive compatible Augmented Vickrey
auction {q;, x} — z; }ien for the auction problem (vy, .., v,, P).

(ii) For every € > 0, there exists a 6 > 0 such that, whenever P € A, , satisfies

P AP
max v ¢ < § min AFC
(2 (2

for some information decomposition C of P, there exists an incentive compatible
Augmented Vickrey auction {qf, 27 — z;}iey for the auction problem (vy,..,v,, P)
satisfying 0 < z;(t) < ¢ for every i and t.

Theorem 1 is an immediate corollary of Theorem 2. To see this, let II; = {{s;} x
Ci}sies;- If § € S is a vector of signals and if A; = {5;} x C; for each j, then
PS (A|{3:} x C;) = Ps_,(5_4|8;) and P§(:|As,..,A,) = Po(+|8) for each i. Hence,
v = vl APC = AP® and Theorem 1 follows.

It is possible that a measure P has only one ID, the trivial decomposition which
we denote C°. For this decomposition, it is easy to verify that ViP’CO(A,-,A’i) is the
smallest positive € such that

PI’Ob{ ||P@(|t~_z,tz) — P@(|t~_z,t;)|| > €|t~z = tz} <e.

Furthermore,

pCcY . . ) AANE
ACC = Fg%lt/nglI\lt || Pr_,(-|t:) — Pr_, (-|t;)]]

where Pr_(-|t;) is the conditional on T_; given #; = t;. For the trivial ID C°, we have
the following corollary to Theorem 2.

Corollary 1: Let (vy,..,v,) be a collection of payoff functions.

(i) If P € Aexr satisfies Pr_(-|t;) # Pr_,(-|t}) for each i = 1,...,n and for each
t;, t; € T; with t; # t;, then there exists an incentive compatible Augmented Vickrey
auction {qf, x¥ — z;}ien for the auction problem (vy, .., v,, P).

(ii) For every € > 0, there exists a ¢ > 0 such that, whenever P € Agyr satisfies

pco . pco
maxy; " <éminA;" |
(2 (2

there exists an incentive compatible Augmented Vickrey auction {g},z} — 2; }sen for
the auction problem (vy, .., v,, P) satisfying 0 < z;(¢t) < ¢ for every ¢ and t.
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As a final remark on the relationship between our results, we note that Corollary
1 can also be deduced as a special case of Theorem 1 in which each C; is a singleton
and T; is identified with S;. If each C} is a singleton, then informational independence
is trivially satisfied and Corollary 1 follows from Theorem 1.

6 A Simple Nonrevelation Mechanism

We analyzed augmented Vickrey auctions above and demonstrated that they can
achieve efficient outcomes with small augmenting payments when agents are infor-
mationally small. The general mechanism design approach that we use in this paper
has been criticized on the grounds that revelation games are unrealistic for many
problems. The examples used to illustrate mechanisms typically have simple infor-
mation structures, as in our example in section 3, in which an agent’s type is simply
a pair of numbers - the quantity of oil and the cost of extracting it. In general, how-
ever, an agent’s type encompasses all information he may have, including his beliefs
about all relevant characteristics of the object, his beliefs about others’ beliefs, etc.
When types are realistically described, it seems unlikely that the revelation game
could actually be played.

We are sympathetic to this argument; however, we want to stress that the under-
lying logic by which efficient outcomes are obtained in our model does not depend on
the particular revelation game we used; the same outcome can be obtained through
a non-revelation game. Consider first the following two-stage reformulation of our
augmented Vickrey auction. In the first stage, agents announce their types; each bid-
der i receives a payment, z;(t), that depends on the vector of announcements. The
announced types are made common knowledge among the bidders. In the second
stage, the bidders engage in a standard Vickrey auction.

This reformulation is still essentially a revelation game, but it differs from the
original form in that agents control their bids for the object rather than having
those bids computed by the mechanism directly. However, if the announced vector
in the first stage, ¢, is truthful, each agent i knows his value for the object given
this information, 0;(¢). Then, just as in a standard Vickrey auction, announcing this
value in the second stage is a dominant strategy. The argument that there exist
augmented payment functions {z;(t)};cn that make truthful revelation in the first
stage a Bayesian equilibrium is exactly as before.

This reformulation of our augmented Vickrey auction focuses attention on the
way the revelation of agents’ types affects the second stage: it transforms the initial
asymmetric information problem into a symmetric information problem in which all
agents have the aggregate information available to the set of agents. It also suggests
nonrevelation games that might serve the same purpose as the revelation stage in the
mechanism above. We will illustrate this two stage game in an example.

Consider a three bidder problem (similar to that of section 3) in which © =
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{0,060y} where 6, = 20 and 6y = 30. An agent’s type is a noisy signal of the state
denoted ¢;. In particular, agent i’s signal ¢; will be H (high) or L (low), and the
distribution of the signal for agent i, conditional on the state, is given in the table
below.

state 0r, O
stgnal
L p 1—0p
H L—p p

Agents’ types are independent, conditional on the state 6, the two states are equally
likely and p > 1/2. Suppose that

Ui(ev tz) =0

for each i. As p gets closer to one, the informational size of each agent goes to zero.
Furthermore, P(H, H|H) = p* + (1 — p)> = P(L, L|L), so both converge to one as p
gets closer to one. For every € > 0, we can apply Corollary 1 and deduce that, for all
p close enough to 1, there exists an incentive compatible augmented Vickrey auction
{qf, 2} — ziticn,2,3) with 0 < z; < ¢ for every i.

Our goal here is to construct a nonrevelation game that proceeds in two stages.
The second stage is a sealed bid second price auction. In the first stage, each bidder
forecasts the highest bid, different from his own, that will be submitted in the second
stage. At the end of stage 1, the forecasts are publicly revealed to all agents. Agents
then submit their bids and the winner is determined. In addition, any agent whose
forecast of the highest second stage bid other than his own is within 4 of that bid will
receive a payment equal to 1. We will exhibit strategies for this two stage mechanism
that are equilibrium strategies when agents are sufficiently small informationally, and
which assure an efficient outcome.

A strategy for bidder i is a pair (o, ;) where

o; Ty — R

and

BT, x R — R

where «;(t;) represents i’s forecast of the higher of the other two second stage bids as
a function of his signal ¢;, and (;(;, a1, as,as) represents i’s bid in the second stage
Vickrey auction as a function of his signal ¢; and the vector of forecasts (as, as,as).
Consider strategies for which an agent’s forecast function is the highest expected
value of the object, conditional on ¢;, to the players different from i. Formally,

JigF#e
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Because of the symmetry of the example, this expected value is the same for all other
players. Therefore,

&;(H) = 6(H) = E[f|t; = H] = 30p + 20(1 — p)

and .
&;(L) = &(L) = E[0|t; = L] = 20p + 30(1 — p).

Since p > 1/2, it follows that &(H) > &(L) so the function & is “invertible.” If each
agent i uses &;(-) = &(-) at the first stage, then, at the second stage, each bidder can
infer the signals of the other two agents from their forecasts. To construct the second
stage strategies, define an “inference” function o : ® — {H, L} where o(a) = H if
a > 25 and o(a) = L if a < 25. In the second stage, each bidder bids his expected
value given his own type and the inferred signals:

Bi(tr, a1, a3, a5) = 0i(t1, 0(az), o(as))

B2(t27 ai, Gz, CL3) = @2(0-(&1)7 lo, U(a3))

B3(t37 ay, az, CL3) = @3(0-(&1)7 U(a2)7 t3)
To show that (&, ﬁz)ze ~ is a perfect Bayesian equilibrium, we need beliefs. Agent
1 will use the forecasts of other agents to form beliefs about the signals those agents
have received. A belief function for 7 is a map that associates with each forecast vector

a_; a probability measure p;(-|a—;) € Ar .. For any number a, define a probability
measure §(-|a) on {H, L} as follows

(6(H|a),8(L|a)) = (1,0)ifa > 25
(6(H|a)5(Lla)) = (0,1) if a < 25.

Now define a belief function fi; for i as follows: for each a_; € R?,

t_ila_;) = H(5 (tjla;).

JFi

Note that these beliefs are consistent with Bayes rule given the forecasting functions
Q.
Proposition 2: The strategy profile (&, Bz‘)izl’g’g, together with the belief func-

tions (f1;)i—1.23, constitute a symmetric perfect Bayesian equilibrium of the two stage
bidding problem.

As we noted above, when agents follow these strategies, all private information is
revealed prior to the second stage Vickrey auction, since the first stage forecasts are
completely revealing. Conditional on all private information being revealed prior to
the second stage Vickrey auction, it is a dominant strategy to bid one’s true value
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for the object in the Vickrey auction, and the second stage strategies ﬂAz are optimal
if the first stage strategies a; are followed. It remains to be shown that the first stage
strategies @; are optimal.

When a bidder makes a forecast in the first stage, he faces the same problem
described in the example in section 3: making an accurate forecast may reveal in-
formation to other bidders, and hence may affect the price that the bidder will pay
should he win the object in the second stage. Since agents are using belief functions
that convert forecasts into degenerate probabilities on signals, forecasting is equiv-
alent to a revelation game. Making deliberately misleading forecasts is similar to
misreporting one’s type in the original revelation game. The same argument made
there applies here. If p is close to one (so the informational size of each bidder is close
to 0), then with very high probability, a misreported type by a single bidder will not
greatly affect other bidders’ expected values. Thus, the expected gain to any given
bidder from misleading the other bidders, and possibly lowering the price he will pay
should he win goes to 0 as p goes to 1. Furthermore, as p goes to 1, it is increasingly
likely that all bidders receive a signal that is identical to the true state of nature.
If bidder i sees signal H, then the highest of the other second stage bids will, with
high probability, be close to 30 irrespective of bidder i’s announcement. Forecast-
ing 30 when the signal H is received will get the prize of 1 almost surely (similarly
forecasting 20 when the signal L is received will almost surely get the prize). For
p sufficiently high, the strategies (&;, ﬂAz) then constitute an equilibrium of the two
stage mechanism.*

The mechanism described above appends a forecast stage to a standard Vickrey
auction and bears some resemblance to problems in which a communication stage
is added to a Bayesian game. While there is some similarity, there is an important
difference. When a Bayesian game is expanded to include the possibility of cheap
talk, the equilibrium set of the resulting communication game typically includes a
“babbling equilibrium” in which all players send messages independently of their
types (and, consequently, no information is revealed). In the second stage, player
i ignores the messages of other players and chooses an action in the second stage
as a functions his type only. More precisely, for any first stage message profile, the
beliefs of a player i of type t; regarding the types of other players are constant and
equal to his prior given t; and players choose second stage strategies that are identical
to a Bayes-Nash equilibrium of the original game. In the communication game, it is
optimal for players to babble in the first stage since players do not condition actions in
the second stage on first stage messages. Since players’ beliefs are simply their priors,
irrespective of the first stage messages, any Bayes-Nash equilibrium of the original
game can be used in the second stage to complete the description of the babbling

4 As in previous sections, there may be other equilibria as well; we focussed only on the equilibrium
that corresponds to the truthful equilibrium in the revelation game. The issue of multiple equilibria
is discussed in more detail in the next section.
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equilibrium. This is simply the standard argument used to show that any equilibrium
outcome of the original Bayesian game corresponds to an equilibrium outcome of the
communication game.

An augmented Vickrey auction is a Bayesian game and each Bayes-Nash equilib-
rium is naturally associated with a babbling equilibrium in the expanded communi-
cation game. However, the forecast stage of the game above is not a “cheap talk”
extension of the Vickrey auction since the forecasts have payoftf implications: play-
ers who forecast well will receive rewards. There are strategies in our forecast game
with features similar to the babbling equilibrium in a game with communication. In
the first stage, players make forecasts that are constant with respect to their signals
(and, consequently, no information is revealed). In the second stage, players ignore
the forecasts and choose bids in the second stage as functions of their personal signals
only. More precisely, for any first stage forecast profile, the beliefs of a bidder i of
type t; regarding the signals of other bidders are constant and equal to his prior given
t; and bidders choose second stage strategies that are identical to a Bayes-Nash equi-
librium, say (oy, 02,03), of the original augmented Vickrey auction. These strategies
and beliefs, however, may not constitute a perfect Bayesian equilibrium in our game
because of the payoff relevance of the forecasts. To get the prize in the example,
an agent’s forecast of the high bid other than his own must be within 4 of that bid.
If p is close to 1, and bidder 1 (e.g.) receives the signal H, then bidder 1 believes
it very likely (since P(H, H|H) ~ 1) that the other two bidders will be submitting
Bayes-Nash equilibrium bids o9(H) and o3(H). If p is close to 1, and bidder 1 receives
the signal L, then bidder 1 believes it very likely (since P(L, L|L) ~ 1) that the other
two bidders will be submitting Bayes-Nash equilibrium bids o5(L) and o3(L). If

| max{oo(H),o3(H)} — max{os(L),03(L)} > 8

then a first stage separating strategy will yield the prize with high probability irre-
spective of bidder 1’s signal while a pooling strategy in the first stage will yield the
prize for only one of these realized signals.

This example suggests how a pre-auction stage in which agents forecast some
aspect of the auction can be of use. If agents forecast the winning bid, the median
bid, the average bid, or some other statistic of the actual auction bids, when their
valuation is correlated with other agents’ valuations, their best forecasts will typically
at least partially reveal their private information. Payments that are related to the
accuracy of their forecasts can give them an incentive to improve their forecasts, and
when bidders are informationally small, the prizes needed to provide incentives need
not be large.
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7 Discussion

1. As pointed out in the example, truthful revelation is an equilibrium for our aug-
mented Vickrey auction mechanisms, but not the unique equilibrium. Furthermore,
the additional equilibria will generally be inefficient. There are two relevant points
in this regard. First, much of the work on auctions is in the tradition of “weak”
implementation where the approach is to maximize an objective function subject to
incentive constraints. The models of this paper give rise to the same concerns regard-
ing additional equilibria as those in the previous literature. In fairness, however, the
nontruthful equilibrium in the example in section 3 is potentially more problematic
than the nontruthful equilibria in some models simply because agents can presumably
identify the equilibrium strategies in the example more easily than in many models.

The second point is that, while truth is not a unique equilibrium, there is a vast
literature on “exact” implementation (see, e.g., Postlewaite and Schmeidler (1986),
or the surveys of Moore (1992) and Palfrey (1992)) that demonstrates how outcomes
that are truthful equilibria of revelation games can be achieved as unique equilibrium
outcomes through a clever choice of a nonrevelation game. There is no reason to
believe that such techniques could not be used for the problem considered in this
paper, but it is beyond the scope of this paper to do so.

2. In section 4, we assume that agents’ type sets are finite. If the signals and personal
characteristics of agents’ information are separated, it is only the signal sets that
need to be finite. The personal part can be finite, a continuum or some combination
without affecting the possibility of efficient mechanisms.

3. In McLean and Postlewaite (2000) we used a notion similar to the idea of infor-
mational size above. That paper dealt with pure exchange economies with private
information in which an agent’s utility functions depended only on the realized state
0 € ©. The preferences in the present paper are more general in the sense that agent
i’s utility may depend on depend on his type ¢; as well as the state. The extension
of the methods is possible because of the properties of the Vickrey auction for which
there are no counterparts in a general equilibrium environment.

4. We treated the case of a single object to be sold. Our techniques can be extended
to the problem of auctioning K identical objects when bidders’ valuations exhibit
“decreasing marginal utility.” i.e., when v;(k+1,0,t;) —v;(k,0,t;) > v;(k+2,60,t;) —
vi(k+1,0,t;) where v;(k,0,t;) is the payoff to bidder when the state is 6, his type is
t; and he is awarded k objects.

5. We now expand briefly on the relationship of our paper to those of Cremer and
McLean on full surplus extraction (1985,1988). The main point of the Cremer-
McLean papers is that correlation of agents’ types allows full surplus extraction.
In the models in those papers (as in the present paper), players’ payoffs include pay-
ments that depend on other agents’ types. In the Cremer-McLean setup, the type
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of correlation (for example, the full rank condition in their 1985 paper) permits the
construction of announcement dependent lotteries, where truthful revelation gener-
ates a lottery with zero conditional expected value while a lie generates negative
conditional expected value. If the lotteries are appropriately rescaled, then the incen-
tive for truthful reporting can be made arbitrarily large and an incentive compatible
mechanism that extracts the full surplus can be found.

In part (i) of (for example) Corollary 1, we only require that the conditional
distribution on 7_; be different for different t.s. That is, we only require that Af’co
be positive. This is weaker than the full rank condition (and is also weaker than
the cone condition in their 1988 paper) and the implication is concomitantly weaker.
Our assumption only permits the construction of announcement dependent lotteries
where truthful revelation generates a lottery whose conditional expected value exceeds
the conditional expected value from a lie. Using the full rank condition and some
additional assumptions on the conditional payoff v(¢), Cremer-McLean construct a
mechanism that extracts the full surplus from bidders (see Corollary 2 in Cremer-
McLean, 1985). This mechanism is necessarily ex post efficient. Under the weaker
conditions of this paper, we construct (in part (i)) a mechanism that is ex post efficient
but which may not extract the full surplus. In addition, the payments in a Cremer-
McLean mechanism can be positive or negative and they can be large in absolute
value. Our paper differs in that we introduce only nonnegative payments. Hence,
our techniques do not require unlimited liability on the part of buyers (although the
seller may be constrained by the necessary payments that would induce incentive
compatibility).

The more interesting part of our results - the ability to induce incentive compati-
bility with small payments when agents are informationally small - has no counterpart
in the Cremer-McLean analysis.

6. We have focused on efficient auction mechanisms in this paper. As mentioned
above, the problem is closely related to the problem of surplus extraction. The revenue
raised in our auctions leaves bidders with some surplus. This is easy to see, since the
outcome of the auction mechanism is the same as if all information were common
knowledge and we used a standard Vickrey auction, which typically leaves bidders
with positive surplus. The mechanism does extract most of the surplus associated
with the signal part of agents’ information. Agents get some surplus through the
receipt of the payments used to induce incentive compatibility, but as the theorems
demonstrate, the size of that surplus is related to agents’ informational size.

We do not claim, however, that our mechanism maximizes the seller’s surplus; it
clearly does not in some cases. If the personal parts of bidders’ types are correlated,
some of the surplus that buyers get in the conditional Vickrey auction can be captured
with a Cremer-McLean type scheme. It is easy to see that there sometimes exist such
modifications that do not alter the efficiency of the outcome.

7. Many auction papers restrict attention to symmetric problems in which bidders’
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types are drawn from the same distribution. It should be noted that we make no
assumptions on the distribution of bidders’ types. However, if agents’ beliefs exhibit
positive variability, then their types cannot be independent. Several papers analyzing
interdependent value auction problems make assumptions regarding the impact of a
bidder’s information on his own valuation relative to other bidders’ valuations (see,
e.g., Maskin (1992), Dasgupta and Maskin (1998) and Perry and Reny (1998). We
make no such assumptions.

8. The example in section 3 illustrates the way in which multidimensional signals
naturally arise, where agents receive signals both about the quantity of oil in the tract
and their cost of extracting the oil. Situations in which the signal space would be of
even higher dimension would naturally arise if there is more than a single physical
characteristic that describes the object being sold. For the example of the oil field, in
addition to the amount of oil, it might be important to account for the depth of the oil,
the kind of rock through which one must drill to reach the oil, the sulphur content
of the oil, etc. Although signals sets are finite, we make no assumption regarding
the dimension an agent’s signal.> The earlier comments regarding the plausibility
of a revelation mechanism, however, become more relevant when the signal space
is substantially more complex. It should be noted, though, that the nonrevelation
mechanism in which each agent forecasts the highest bid different from his own is no
more complex in the case of more complicated signals, although the bidders’ problem
in deciphering the information contained in those forecasts presumably becomes more
complex.

9. Our definition of informational size generalizes the concept of nonexclusive infor-
mation introduced in Postlewaite and Schmeidler (1986). Nonexclusive information
was introduced to characterize informational problems in which incentive compat-
ibility would not be an issue. Heuristically, this would be the case when, for any
agent and for any information he might have, the agent’s information was redundant
given all other agents’ information. When nonexclusive information obtains, it is
straightforward to induce truthful revelation. Roughly speaking this is because when
a single agent misrepresents his information in this case, the agents’ reports will be
inconsistent, thus revealing that some agent misreported with probability one.

One can characterize this as an agent having no scope for altering the posterior
distribution as he contemplates announcing various types he might be. Our measure
of informational size extends this concept in the sense that, when an agent has positive
informational size, the agent’s different types (typically) result in different posterior
distributions, given other agents’ reported types. Being small informationally means
that an agent is unlikely to alter much the posterior given other agents’ reported

types.

50f course agents might have different informational sizes for the different characteristics, and
hence, get different informational rents for them.

26



8 Proofs:

8.1 Proof of Proposition 1:

Let P € A§, r and suppose that C is an information decomposition of P. In addition,
let C° be the trivial ID in which II? = {{¢;} }+,er, for each i. To prove Propositionl,
it is enough to show that v/*° = "¢ for each i.

Choose t;,t; € T;. Let A; and A} denote the elements of II; with ¢; € A; and

t; € A.. Next, define
i (ti ;) = {t—i € Ti| [|[Po(-[t—i,ti) — Po(-[t—iti)|| > €}

and

OF (A, Af) = {Ay € IL |||Pe (A, Ai) — PS(A-i, A})[] > e}
Since P§(-|A_;, A;) = Po(:t_i,t;) and P§(-|A_;, A}) = Po(-|t_;,t;) whenever t_; €
A_;, it follows that

t; € Si(t;,t)) =t € A for some A_; € F(A;, A).

Therefore,
>R (ALl = )] S Pt = D Pltlt)
A,ierbf(Ai,A;) A,ieq?'f(Ai,A;) t_;€A_; t,iesif(ti,t;)

and we conclude that
PO AEY) = mi{e >0 Y Ptk <)
t_;€SE(t )

= inf{fe>0 Y = Pi.(As4)<e}

A_;ed5(A;,A))
o P,C /
= v (A, AY).

P,Co P

This implies that v, = v/ and the proof of Proposition 1 is complete.

8.2 Preparations for the Proof of Theorem 2:
In this section, we begin with two lemmas that are of some independent interest.

Lemma A.1: Let (vy, .., v,) be a collection of payoff functions and let {¢}, z} }icn
be the associated Vickrey auction mechanism. For every ¢ € N and for each t € T
and t; € T;,

(g7 (0)0s(t) — 27 () — (g7 (E=s, 1) 0i(t) — 7 (=5, 83)) = —wilt—i, ;) — wi(t—i, ;).

27



Proof: Choose t € T and t; € T;.
Case 1. Suppose that v;(t_;, t) < w;(t_;, ;). Then

g (t—i, 1) = = (ti,t;) = 0

(7 (B)0i(t) — x7(t)) — (g7 (¢, 1)) 0s(t) — 27 (t-i, 17))
q; (1)0:(t) — z;(t)

0

—lw;(ti, ;) — wilt_i, ;)]

>
>

Case 2: Suppose that v;(t_;, t}) > w;(t_;, ;). Then
q; (t—i, 1) 0i(t) — @i (t—i, t;) = Di(t) — wilt—s, &)
If 0;(t_;, t;) > w;(t_;,t;), then
q; (£)05(t) — 27 (t) = 0(t) — wilt—s, ts).
If 0;(t—i, t;) < w;(t_;,t;), then
g (0)0;(t) — 27 () = 0 = 0;(t) — wi(t—s, 1)
Therefore,

(¢ (B)0i(t) — o7 (t)) — (g7 (t—i, t))0u(t) — ] (t—i, 1))

> (04(t) —wilt i, ti)) — (0:(F) — wilt_i, 1))
wi(t_,-, t;) — wi(t_,-, t,)
> —|wi(t-i, t;) —wi(t-i, ti)|.

V

Case 3: Suppose that v;(t_;, t) = w;(t_;, ;). Then

1

oAl (0i(t) —wit_i, 1)) -

q; (-4, 1)0:(t) — 27 (t—s, 1) =
If ’lA)i(t_i, t,) > Ww; (t_i, tz), then

GEO3(E) = (1) = 5:0) = wit-55) > T (4(0) = wilt1,8).

(t—iv t;)|

If 9;(t_;, t;) < w;(t_;,t;), then

Ty (B0 — wilti ).
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Therefore,

(g; (£)0i(t) — 27 (£)) — (g5 (t-i,1)0i(t) — 27 (s, 1))
1 1

> Tt (0:(t) —wilt—i, t:)) — 1] (0:(t) — wilt-i, ;)
1 A W .t
= m (wz‘(t—i: ti) 1(t—17 tl))
1 /
> _m|wi(t—ivti) — w;(t_, t;)]

> —|wi(ti, ;) —wi(t_i, ;)|

This completes the proof of Lemma 1.

If each 9;(t) is a function of ¢; only, then |w;(t_;,t}) — w;(t_;,t;)| = 0 and Lemma
A.1 yields the familiar result for Vickrey auctions with pure private values: it is a
dominant strategy to truthfully report one’s type.

Lemma A.2: Let (vy, .., v,) be a collection of payoff functions and let {¢}, z} }icn
be the associated Vickrey auction mechanism. Let

M = m(?X max max (0, ;)

7 t;

and let P € Ag, ,. For every ¢ € N and for each t_; € T_; ,t; € T; and t; € T},

|wilt—s, t;) — wit—s, t;)| < M[Po(-[t—i, t;) — Po(-[t—i, t)]|-
Proof: Choose t_;,t;,t;, 5 # i and j' # i so that

wi(t—i; t:) = max > [ox(0,1x) Po (0]t )] = > [i(0,t) Po(6]t_i, t:)]
7 heo 0eo

and

wi(t-i, t;) = 1223(2 [04(6, t) Po (0]t s, £))] = > _ [v;:(8,t57) P (8t i, 1})]

0cO 0cO

Note that ¢; and t; are, respectively, the j and j' components of the vector ¢_;. From
the definitions of ¢; and ¢j, it follows that

Z [Uj(ev tj) - Uj/(ev tj’)] P@(9|t—i7 tl) >0
ASC]

and

> i, t5) — v (6, 1;)] Po(8t_s, ;) < 0.

0cO
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Therefore,

ZUJ 0,tj) [Pe(0]t—iti) — Po(0lt—i,t;)]

0cO

< Z’U] 9 t P@ 9|t_“ ) P@(9|t_,,t;)] + Z [vj(H,tj) - ’Uj/(g,tj/)] P@(9|t_,,tz)
6co e

= w;(ti, t;) — wi(t_;, t;)

= > vi(0,1)) [P0t i, t:) — Po(Blt i, )] + Y [0;(0, ;) — v;e (0, ;)] Po (0]t i, 1))
0co 6co

> v (0,4 [Po(Blt_i,t;) — Po(B]t_i, 1})]

0cOe

IN

and we conclude that
[wit_i i) —wi(t—s, t;)| < M|[Po(:[t_iti) — Po(-[t—i, t;)||-
This completes the proof of Lemma 2.

We prove one final technical result.

Lemma A.3: Let X be a finite set with cardinality k£ and let p,q € Ax. Then

p g k‘%
- 2~ [llp—dll
L|pllz ||Q||J
where || - ||2 denotes the 2-norm and || - || denotes the 1-norm.

Proof: Direct computation shows that

{p _q }.pzllpllz
lIpll2 lall2 2

The result follows by combining the facts that ||p||s > 1/Vk, k(||[p—ql|2)? > ||p—q||?
and

2
q

ol lall2

2

| =l

I~
Pll> lall

8.3 Proof of Theorem 2:
We prove part (ii) first. Choose € > 0. Let
M = mgmxmaxmtaxvi(&ti)

and let K be the cardinality of T'. Choose ¢ so that

0<éd<

6MK>
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Suppose that P € Ay, , has an information decomposition satisfying

max v, < § min APC.
Define 77¢ = max; v “and AP¢ = min; AP, Therefore ¢ < §APC,
Next, define
Pf  (Ail4)
G(Aiy Ai) = e
175, (143l

for each (Ay,.., A,) € I} x --- x II,, and note that
0<G(AL,A) <1

for all i, A_; and A;. Now we define an augmented Vickrey auction mechanism. For
each t € T, let
zi(t) = eGi(Ay, .., Ay,) if t; € A; for each i.

*

The mechanism {q}, 7 — z; }ien is clearly ex post efficient. Individual rationality
follows from the observations that

q; (t)0s(t) — xj(t) > 0

and
Zi(t_i, tz) Z 0.

To prove incentive compatibility, we consider two cases. First suppose that t;,t; € A;
for some A; € II;. From part (i) of the definition of information decomposition, it
follows that |w;(t_;,t.) —w;(t_;,t;)| =0 for all t_; € T_; and incentive compatibility
is a consequence of Lemma A.1.

Now suppose that t; € A; and t; € A, with A; # A, . The proof of incentive
compatibility will follow from the next two claims.

Claim 1: For each i and for each t;,t, € T; with t; # t.,

[N] [

K-
2

eAPC,

D (Eltosts) =zt 1)) P(tlt:) =

t—;

Proof of Claim 1: The definition of common value decomposition implies that
Dot eA P(t_j|t;) = P§ .(A_;|A;) whenever ¢; € A;. Therefore,

Y (Eltsts) =zt 1) P(tilt:)

t_;

= 52 [Gi(Ai, Ai) — G(A, A)] Z P(t_i[t;)

t_;€A__;
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= ey [G(A A) = G(A, ADI PR (A A))

= )

A,'
eK~

P (Ald) P (A4
175, CIADI2  [IPE_, (A7) |2

—1 7

P (A-il4)

ot

>

2
1P (Al A) = PS_ (A4 ]

Jov

eK™2
2
where the last inequality is an application of Lemma A.3.
Claim 2:
S l(a; (O0:(t) — 25 (8) — (g5 (b )B:(8) — 25 (ti, 1)) P(t_|t:) > —3Mi™C
t_i

Proof of Claim 2: Choose t;,t; € T; and define
Si(tit;) ={t_; € T_;| [|Po(-|t_s,t;) — Po(-[t_it))|| > 2}

> ATE

If C° denotes the trivial information decomposition of P in which II? = {{t;} }1,er,
~P.C

. PC PC s . PC
for each i, then v, ™ = v, as a consequence of Proposition 1. Since v; = < "¢ we

conclude that
PI’Ob{Z?_i € Sz(t;,tz)ﬁz = tz} < l/z-P’CO = l/z-P’C < IQP’C.

Ift_; ¢ Si(t;,t;), then Lemmas A.1 and A.2 imply that

> UG @ait) — 23 () — (g (b, t)0:(t) — @7 (ts, 1)) P(tilts) > —MDPC.
t_ & S;(t],ts)

Finally, note that
g7 (¢, 1) 0 () — 27 (E—i, )| < M
for all 4,¢;,t; and t_;.
Combining these observations , we conclude that

D g @:t) — 25 (1) = (g5 (ti, 1)0:(t) — 7 (¢, )] P(E]1:)

t_;

= D @ On) =i (t) = (@ (b t)oult) — 27 (t-s, 1)) P(t-ilts)

tfiGSi(t;,ti)
+> 0 @ @)oi(t) — w3 (8) — (g (b, ) 0i() — 2 (t—s, 1)) P(t-ilt;)
t,iQSi(t;,ti)
—MpPC —2MDPE
—3MP°
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and the proof of claim 2 is complete.

Applying Claims 1 and 2, it follows that

D Uqi®)di(t) — zi(8)) — (gt t)0:(t) — oy, 1)) P(t_i|ts)

t—;

= Y U@ Ow(t) — 25 (t) = (g (toi, ))0:(t) — @} (b4, £7))] Plt_ilt:)

t—;
+ > (ailtits) = z(ti, 1)) P(tit:)
t_;
STAP’C — 3MﬁP’C

0.

(AVARVS

and the proof of part (ii) is complete.
Part (i) follows from the computations in part (ii). We have shown that, for any
ID of P and for any positive number «, there exists an augmented Vickrey auction
{qF, xf — 2 }ien satisfying
I 5
> Uai(t)di(t) — mi(t)) — (gt ) 0u(t) — ilt_s, t)))] P(ti|ts) > QTAf’C—3MVP’C

t_i

for each i and each ¢;,t,. If Af’c > ( for each i, then « can be chosen large enough so
that incentive compatibility is satisfied. This completes the proof of part (i).

8.4 Proof of Proposition 2:

Suppose that player 1 sees signal ¢t; = H and the players announce ap, as,as. Let
to = o(a2) and t3 = o(as). We must consider bidder 1’s best response for the case
in which his first period forecast a; is constrained to satisfy a; > 25 and the case in
which this forecast is constrained to satisfy a; < 25.

If 1 forecasts a; > 25, then 2 bids 0(H, ta,t3) and 3 bids 0(H, ts,t3). Player 1’s
best response in the second stage is a bid of 0(H, t5,t3). Hence, 1 receives no surplus
even if he wins the object. However, he will gain a reward of 1 if his forecast a; of the
highest bid different from his own is close to 0(H, ta, t3). Therefore, Player 1’s payoff
in the second stage is equal to

F(|@(H7t27t3) —CL1|)

where
Flz) = 1lifz<4
= 0if z > 4.
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In order to determine his optimal first period forecast when that forecast is con-
strained to satisfy a; > 25, bidder 1 must solve the optimization problem

max Y _ F(|6(H, ta,t3) — ar|) Ptz ts| H)
al

to,t3
subject to a; > 25.
Note that

S F(16(H, ta, ts) — ar|)Pta, ts| H) > F(16(H, H, H) — a\[) P(H, H|H)

to,t3

and that P(H,H|H) — 1, o(H,H,H) — 30 and &(H) — 0 as p — 1. Therefore,
bidder 1 can guarantee himself an expected payoff close to 1 if p = 1 by choosing
a; = d(H)

Now suppose that bidder 1 forecasts a; < 25. In this case, 2 bids (L, to, t3) and
3 bids v(L,ts,t3). Bidder 1’s second stage best response is still 0(H,s,t3). Since
0(H, ta,t3) > 0(L, t2,t3) for each (tq,t3) pair (recall that p > 1/2), bidder 1 now wins
the object and receives a surplus equal to 0(H,te,t3) — 0(L,t2,t3). In addition, he
will gain a reward of 1 if his forecast a; is close enough to 0(L, s, t3). Thus, Player
1’s payoff in the second stage is equal to

O(H, ta,t3) — 0(L, to, t3) + F(|0(L, L2, t3) — ar)-
As p — 1,it follows that

Z [@(Hv t27t3) - @(Lv t27t3)] P(t27t3|H) —0
t2,t3
since P(H,H|H) — 1 and
o(H,H,H) —0(L,H,H) — 30 — 30 = 0.

Since 0 < F(-) <1, it follows that

> F([0(L, ta, ts) — an])] Plta, ts|H)

t2,t3

< Y [F(jo(L, H,H) — a)|)] P(H, H|H)

+1 - P(H, H|H).
Since 0(L, H, H) — 30 as p — 1, it follows that

max 3 [F(0(L, b, t5) — aa])] Plta, 15| ) < 1~ P(H, H|H)
a1
t2,t3
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when p is close to one. Combining these observations, it follows that

Hl<a§§) [’[)(]j,tg, tg) — ’lA)(L, tg, tg) + ; (|’[)(L, tg, tg) — CL1|)] — 0
al
t2,t3

as p — 1.

(From these computations, it follows that, when p is close enough to one, bidder

1’s best response to (aq, F2), (s, F3) is a first stage announcement of a; = a(H) and
a second stage bid of ©(H, o (az),o(as)). A similar argument applies if s; = L.
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