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Abstract. This paper considers a class of two players games in the unit square
for which a similar and high enough responsiveness of each player’s strategy to the
other player’s strategy around a Nash equilibrium in pure strategies implies (i ) the
existence of at least two other Nash equilibria in pure strategies; (ii ) the non local
uniqueness of the strategies of this Nash equilibrium in the sets of rationalizable
strategies; and (iii ) the existence of nontrivial correlated equilibria arbitrarily close
to this Nash equilibrium. Although a similar result can be shown to follow from
Milgrom and Roberts’ (1990) results for supermodular games, the games considered
here are not necessarily supermodular, which makes clear that supermodularity is
not necessary to obtain it. The simultaneous emergence of phenomena of multiplic-
ity, instability and vulnerability to sunspots studied in this paper parallels similar
patterns observed in other frameworks (e.g. overlapping generations economies and
finite economies with asymmetric information), and thus hints at the existence of an
underlying relation between different avatars of the indeterminacy of the outcome of
economies and games that goes beyond the boundaries of any specific framework and
may be common to every decision-making problem faced of simultaneous, indepen-
dent and interrelated optimizers.

1. Introduction

The simultaneous and independent decision-making of several agents may lead to
a multiplicity of different outcomes. This is the case in, for instance, a competitive
exchange economy with two agents with standard preferences1 and two commodities

I want to thank David Cass, Jan Eeckhout, Armando Gomes, George Mailath, José Vı́ctor
Ŕıos and Antonio Villanacci for helpful discussions on the results presented in this paper. I also
thank Roger Guesnerie for detailed comments on a previous version of this paper that helped to
improve it and for useful discussions on this research.

1That is to say, representable by a continuous utility function u defined in R2
+, differentiable

in R2
++, and such that, for all c ∈ R2

++, Du(c) ∈ R2
++ and D2u(c) is negative definite in the space

orthogonal to Du(c), and moreover is ”well-behaved” in the boundary, in the sense that for all
i = 1, 2, Du(c) · ei → 0 as c → c̄, where c̄ is any point of the axis of the i-th good distinct from
the origin and ei is the i-th vector of the canonical basis.
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if it has a Walrasian equilibrium allocation with the adequate crossing of the two
agents’ offer curves (see Figure 1).2 Under these circumstances, firstly, at least
two other Walrasian equilibria do exist. Moreover, and secondly, the Walrasian
equilibrium with the adequate crossing of the offer curves is unstable under the
tâtonnement process; and finally, and thirdly, if an additional condition on the
slopes of the offer curves at the crossing is satisfied,3 then there exist arbitrarily
close to this equilibrium other equilibria in which the agents make depend their
choices on the realization of a sunspot on which they have asymmetric information4

(in Figure 1, where agents A and B exchange commodities 1 and 2 in abscissae and
ordinates respectively, it can be seen (i ) a multiplicity of competitive equilibria c̄,
c′, and c′′; (ii ) the instability of the tâtonnement around the equilibrium c̄; and
(iii ) the support of a correlated equilibrium –constituted by the four corners of
the small box in dashes– in which agent A (resp. B) supplies to the market two
possible amounts of good 1 (resp. 2) according to the uncertain realization of a
private sunspot correlated with the other agent’s equally private sunspot). Thus
multiplicity (of Walrasian equilibria), instability (of the the tâtonnement around a
Walrasian equilibrium) and vulnerability to sunspots (of nearby equilibria) come
hand in hand in this framework.

Figure 1
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Also in the simplest overlapping generations economy,5 whenever the agents

2Specifically, the determinant of the matrix formed by the gradients of the consumers’ offer
curves equations at the equilibrium allocation c̄, with that of the consumer whose excess demand
for good 1 is positive in the first row, must be negative, i.e.���� DuA(c̄A)t + (c̄A − eA)tD2uA(c̄A)

DuB(c̄B)t + (c̄B − eB)tD2uB(c̄B)

���� < 0

if A is the consumer such that eA
1 < c̄A

1 .
3Namely, the positive cone spanned by the gradient of agent A’s offer curve at the Walrasian

equilibrium allocation c̄, DuA(c̄A)t + (c̄A − eA)tD2uA(c̄A), and its symmetric image across the
axis of abscissae contains the opposite of the gradient of agent B’s offer curve at the same point,
−(DuB(c̄B)t + (c̄B − eB)tD2uB(c̄B)).

4By a sunspot is meant a signal conveying no information about the fundamentals of the
economy or, equivalently, a source of extrinsic uncertainty, i.e. uncertainty about a state of the
world with respect to which the fundamentals of the economy are constant. See Maskin and Tirole
(1987) for the existence of such an equilibrium in this setup. On this issue see also Dávila (1999).
For the seminal papers on the concept of sunspot and sunspot equilibrium, see Shell (1977) and
Cass and Shell (1982).

5A never-ending sequence of identical overlapping generations living for two periods with stan-
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want to trade in consumption today for consumption tomorrow,6 the steady state
is, firstly, not the only non-autarkic stationary perfect foresight equilibrium if the
slope of the offer curve of the representative agent at the steady state is smaller
than 1 in absolute value (in effect, at least another stationary perfect foresight
equilibrium exists in that case: a cycle of period 2).7 Moreover, a steady state
satisfying this condition is, secondly, indeterminate (i.e. unstable in the backward
perfect foresight dynamics); and thirdly, there exist local sunspot equilibria around
it8 (see Figure 2, where it can be seen (i ) a cycle of period 2 in which the global
resources e1 + e2 of the economy are split between young and old agents at either
c1 or c2 every other period; (ii ) the instability of the steady state in the backward
perfect foresight dynamics; and (iii ) the support of a sunspot equilibrium in which
the global resources are split at either cα or cβ randomly according to a first order
Markov chain).

Figure 2
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Again multiplicity (of stationary equilibria), instability (of the perfect foresight
dynamics around the steady state) and vulnerability to sunspots (of nearby equi-
libria) come hand in hand in this framework as well.

Another instance of this connection between the issues of uniqueness versus mul-
tiplicity, stability versus instability, and vulnerability to sunspots versus sunspot-
proofness is provided in this paper. In the case presented here, two players play
a game in which a similar and high enough responsiveness of each player’s best
reply to the other player’s strategy around a Nash equilibrium in pure strategies

dard preferences over the only existing good per period. For the seminal paper, see Samuelson
(1956).

6The so-called Samuelsonian case in Gale (1973).
7See Azariadis and Guesnerie (1986). The case in which every agent wants to consume more

today than what he is endowed with, borrowing against his future endowment (the so-called
classical case in Gale (1973)), leads to a different but symmetric implication: multiplicity is
guaranteed if the slope of the offer curve at the steady state is bigger than 1 in absolute value.

8See Guesnerie (1986), Azariadis and Guesnerie (1986) and Woodford (1986). For the existence
of local sunspot equilibria in the classical case the condition to obtain local sunspot equilibria is
still that the slope of the offer curve at the steady state is in absolute value smaller than 1, driving
a wedge in that case between multiplicity on the one hand (which requires this slope to be bigger
than 1 in absolute value), and indeterminacy and vulnerability to sunspots locally around the
steady state on the other hand. As a matter of fact, in the classical case there are always sunspot
equilibria, although maybe not arbitrarily close to the steady state (see Dávila (1994)).
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(in a way such that a relatively low responsiveness on the part of one player can
be offset by a high responsiveness on the part of the other, and necessarily with
both players’ choices moving in the same direction) implies (i ) the existence of at
least two other Nash equilibria (Theorem 1); (ii ) the existence of (non-trivial) local
correlated equilibria around the Nash equilibrium (Theorem 2); and (iii ) the in-
stability of the ”virtual” eductive dynamics of beliefs that would make the players
converge on it as the only (at least locally) rationalizable outcome (Theorem 3).

All the three previous examples hint at the existence of an underlying relation
between the different manifestations of the problem of indeterminacy that plagues
economies and games alike, and that seems to go well beyond the borders of any
specific framework in which it has been exhibited until now. This paper intends to
be another contribution at unveiling this relation.

Two issues are closely related to the results presented in this paper, and I now
proceed to comment briefly on them. On the one hand, Milgrom and Roberts
(1990) established that in supermodular games there is a largest and a smallest
profiles of serially undominated strategies that, moreover, are Nash equilibria in
pure strategies. Since the set of profiles of serially undominated strategies contains
the supports of the Nash equilibria in pure strategies, the correlated equilibria (ei-
ther subjective or objective), and the profiles of rationalizable strategies, then the
uniqueness of a pure Nash equilibrium would imply the coincidence of the largest
and the smallest profiles of serially undominated strategies and, hence, the non-
existence of nontrivial correlated equilibria, as well as the local uniqueness of the
Nash equilibrium as profile of rationalizable strategies. Therefore, Milgrom and
Roberts’ result points implicitly also to the fact that multiplicity, vulnerability to
sunspots and lack of convergence of the iterative elimination of dominated strategies
must come hand in hand in some games, namely in supermodular games. Notwith-
standing, the games that I consider in this paper are not necessarily supermodular
(more specifically, the increasing differences hypothesis will not necessarily be sat-
isfied), and in this sense Milgrom and Roberts’ and this paper can be considered as
being, so to speak, linearly independent. On the negative side, while Milgrom and
Roberts’ result holds for strategic sets that are intervals in any finite dimensional
real vector space and, more generally, complete lattices, mine are intervals in the
real line. Still the results presented in this paper are enough to clarify that the
connection at hand between the different forms of indeterminacy has nothing to do
with supermodularity.

On the other hand, in the application of Guesnerie’s investigation on the eductive
justification of the rational expectations equilibrium of Guesnerie (1992) to simple
overlapping generations economies in Guesnerie (1993), he finds an equivalence
between the determinacy of the steady state, the non-existence of local sunspot
equilibria around it, and the steady state being strongly rational (i.e. a locally
unique rationalizable equilibrium).9 This paper, can be seen as an extension of
that result to a simple class of games.

The structure of the remainder paper is as follows. Section 2 presents the class of
games considered. Section 3 defines the Nash equilibria in pure strategies of these
games, establishes the existence of at least one and provides a sufficient condition
for the existence of multiple Nash equilibria in pure strategies (Theorem 1). Sec-

9As well as equivalent to the convergence of any ”reasonable” learning process. See also
Guesnerie (1999).
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tion 4 defines a type of simple nontrivial correlated equilibria of these games (they
have a finite support of profiles of strategies) and shows that the same sufficient
condition on a Nash equilibrium in pure strategies that guarantees the existence of
a multiplicity of other Nash equilibria, guarantees also the existence of nontrivial
correlated equilibria in every neighborhood of the former (Theorem 2). Section 5 es-
tablishes that the same sufficient condition on a Nash equilibrium in pure strategies
that guarantees the existence of other Nash equilibria and of nontrivial correlated
equilibria around it, suffices to establish the lack of convergence of the iterated elim-
ination of dominated strategies to a single profile, i.e. the non local uniqueness of
the Nash equilibrium as a profile of rationalizable strategies (Theorem 3). Section
6 presents other results relating the three previous issues from a global viewpoint,
as opposed to the local nature of the previous theorems. Section 7 concludes and
the Appendix collects proofs and lemmas.

2. The game

Consider a class of games Γ = {I, {Xi, fi}i∈I}, whose set of players is I =
{−1, 1}, and each player’s i ∈ I strategy set Xi and payoff function fi are, respec-
tively, the interval [0, 1] of the real line without loss of generality, and a C2 function
fi : Xi ×X−i → R that is strictly unimodal in its first argument, for every value of
the second argument.10

For every player i ∈ I, let ri(x−i) denote the set of best replies of i to −i’s strat-
egy x−i, i.e. {xi ∈ Xi|∀x′i ∈ Xi, fi(x′i, x−i) ≤ fi(xi, x−i)}. Under the assumption
made on the unimodality of the payoff functions, the set ri(x−i) is always a sin-
gleton whose only element will be denoted by ri(x−i) as well, abusing the notation
slightly, and is in the interval (0, 1). Hence ri = {(x−i, xi) ∈ X−i×Xi|xi = ri(x−i)}
is a function that takes values in (0, 1) and, moreover, is continuous because of the
theorem of the maximum. We will use r+

i and r−i to denote the epigraph and
hypograph, respectively, of ri, i.e. r+

i = {(x−i, xi) ∈ X−i × Xi|xi ≥ ri(x−i)} and
r−i = {(x−i, xi) ∈ X−i ×Xi|xi ≤ ri(x−i)} (see Figure 3).

Figure 3
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10More precisely, for each player i ∈ I and all x−i ∈ [0, 1], there exists an x̄i ∈ (0, 1) such that
fi(·, x−i) is strictly increasing in the interval (0, x̄i) and strictly decreasing in the interval (x̄i, 1).
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3. Multiplicity of Nash equilibria

A Nash equilibrium in pure strategies of the game Γ is a x̂ ∈ ×i∈IXi such that,
for all i ∈ I, and all xi ∈ Xi,

fi(xi, x̂−i) ≤ fi(x̂i, x̂−i). (1)

Since, for all i ∈ I, Xi is a nonempty, compact, convex set in the real line, and fi

is continuous and quasi-concave in xi, Nash’s theorem guarantees the existence of a
Nash equilibrium of this game.11 Two examples of a game fitting in this framework
with multiple Nash equilibria are characterized by the best reply functions ri(x−i) =
1
2 + 1

π sin
(

2π(x−i− 1
2 )

)

, for all i ∈ I, as well as ri(x−i) = 5(x− 1
2 )(x2−x)+ 1

2 , for all
i ∈ I. In particular, the last example has three Nash equilibria in pure strategies:
namely ( 1

2 −
√

5
10 , 1

2 +
√

5
10 ), ( 1

2 , 1
2 ), and ( 1

2 +
√

5
10 , 1

2 −
√

5
10 ).

The next proposition establishes a sufficient condition for the existence of multi-
ple Nash equilibria in pure strategies. Namely, if the responsiveness of the players’
best replies to the other player’s strategy is similar and high enough around a Nash
equilibrium in pure strategies,12 then there exist at least two other Nash equilibria
in pure strategies.

Theorem 1. If x̂ ∈ ×i∈IXi is a Nash equilibrium in pure strategies of Γ and
∏

i∈I

r′i(x̂−i) > 1, (2)

then there exist at least two other Nash equilibria in pure strategies.

In effect, intuitively in order to have the right crossing of the best reply curves
for a multiplicity of crossings to appear, the slope of ri, for any given i, at the Nash
equilibrium in pure strategies x̂ must be bigger in absolute value to the reciprocal
of the slope of r−i at the same point, and both must have the same sign (see Figure
4).

Figure 4
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11Notwithstanding, this result is proved in Proposition 1 in the appendix by means of an
argument that requires little more than the intermediate value theorem and, more interestingly,
will reappear in the proof of Proposition 5 in the appendix, which in turn will be needed in Section
6. Hence we state it explicitly there. More specifically, a Nash equilibrium of this game is shown in
Proposition 1 to be associated to a zero of an adequately defined real-valued function on the real
line. Note incidentally that the argument does not imply the uniqueness of the Nash equilibrium
in pure strategies, since the function may have several zeros.

12Actually, it is the joint responsiveness of both players’ best replies that matters, in such a
way that if one player’s best reply is not responsive enough, then the other’s must be responsive
enough to compensate for it
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This intuitive proposition is a straightforward consequence of an also intuitive
lemma that can be found along with its proof and that of Theorem 1 in the
appendix (see Lemma 1). As a matter of fact, a much more simple proof of
Theorem 1 can be produced resorting to more sophisticated mathematics, i.e.
by means of the Poincaré-Hopf index theorem. In effect, the Nash equilibria
in pure strategies of Γ happen to be zeros of an outward-pointing vector field
F (xi, x−i) = (xi − ri(x−i), x−i − r−i(xi)) defined on the unit square by the equi-
librium equations. The sufficient condition for the existence of another Nash equi-
librium stated in Theorem 1, is nothing else than the condition on the index of the
Nash equilibrium x̂ to be distinct from the Euler characteristic of the unit square.
Since the sum of the indices of all the zeros of the vector field must coincide with
the Euler characteristic, hence the necessary existence of at least two other zeros
of the vector field. i.e. two other Nash equilibria in pure strategies.

4. Non-trivial Correlated Equilibria around a Nash Equilibrium

I consider next a particularly simple class of correlated equilibria of this game,
namely those with a finite support.

A finite support correlated equilibrium {pi, Si, x∗i }i∈I of the game Γ consists of
(i ) a joint probability distribution over two privately observable random signals si

(one for each player i ∈ I, taking values in Si = {1, 2, . . . , |Si|} with |Si| ≥ 2, and
denoted pi whenever defined over Si × S−i),13 and (ii ) two increasing14 functions
x∗i ∈ XSi

i ,15 for all i ∈ I, such that, for all i ∈ I and all ξi ∈ XSi
i ,

|Si|
∑

si=1

|S−i|
∑

s−i=1

pi(si, s−i)fi(ξi(si), x∗−i(s−i)) ≤

|Si|
∑

si=1

|S−i|
∑

s−i=1

pi(si, s−i)fi(x∗i (si), x∗−i(s−i)).16

(3)

13That is to say, for each i ∈ I, pi : Si × S−i → [0, 1] is a function such that pi(si, s−i) =
p−i(s−i, si) holds for all i ∈ I and all si ∈ Si, s−i ∈ S−i, in such a way that they denote actually
the same joint distribution. Therefore these are objective correlated equilibria.

14That is to say, such that if si < s′i, then x∗i (si) < x∗i (s′i). Note that, therefore, by correlated
equilibria I actually mean only the non-trivial ones, i.e. those for which the players truly randomize
their choices.

15Throughout the paper any function xi ∈ XSi
i is, as usual, trivially supposed to have the

entire Si as domain, i.e. x−1
i (Xi) = Si.

16Note that whenever, for all i ∈ I, |Si| = 2, then the support {x∗i }i∈I of a correlated
equilibrium {pi, Si, x∗i }i∈I must be such that,0BBB@

D11
1 D12

1 0 0
0 0 D21

1 D22
1

D11
−1 0 D12

−1 0
0 D21

−1 0 D22
−1

1CCCA
with D

sis−i
i = D1fi(x∗i (si), x∗−i(s−i)), for all i ∈ I, si ∈ Si, and s−i ∈ S−i, is singular; otherwise

the system of equations formed by the necessary and sufficient first order condition for the payoff
maximization in mathematical expectation for each player and each realization of the uncertainty
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The next proposition provides a sufficient condition on the relative slopes of the
players’ best reply functions at a Nash equilibrium in pure strategies for the exis-
tence of finite support non trivial correlated equilibria arbitrarily close to the Nash
equilibrium strategy profile. I refer to them as local correlated equilibria, follow-
ing the analogy with the local sunspot equilibria in the literature on overlapping
generations economies. The proof of Theorem 2 can be found in the appendix.

Theorem 2. If x̂ ∈ ×i∈IXi is a Nash equilibrium in pure strategies of Γ and

∏

i∈I

r′i(x̂−i) > 1, (4)

then there exist nontrivial correlated equilibria of Γ with support arbitrarily close
to x̂.

Thus, according to Theorems 1 and 2, the same condition guarantees the ex-
istence of local correlated equilibria around a Nash equilibrium in pure strategies
and the existence of at least two other Nash equilibria.

5. Nash Equilibria with non locally unique
rationalizable profiles of strategies

As in the overlapping generations framework and the finite economy with asym-
metric information, an additional stability test can be carried out on an equilibrium
to check whether a spontaneous coordination on it can be claimed on the grounds of
such stability. The stability criterion used here to single out a Nash equilibrium in
pure strategies is that of its local uniqueness as a profile of rationalizable strategies,
i.e. as the result of iterative elimination of strategies that are not going to be best
responses to any strategy once the common knowledge of this fact is taken into
account.

More specifically, given the best reply functions ri, for all i ∈ I, xi is a rational-
izable strategy for player i if, and only if, for all n ∈ N,

xi ∈ (ri ◦ r−i)n ◦ ri(X−i). (5)

Accordingly, let Ri be the set ∩n∈N(ri ◦ r−i)n ◦ ri(X−i) of rationalizable strategies

would be determinate and, hence, that system of equations along with the equation

pi(1, 1) + pi(1, 2) + pi(2, 1) + pi(2, 2) = 1

with the probabilities pi(si, s−i) as unknowns would be overdeterminate and, thus, would have
no solution, contradicting the fact that {x∗i }i∈I was the support of a correlated equilibrium. As
long as |Si| > 2 for some i ∈ I, the system has non-negative degrees of freedom |Si||S−i| − (|Si|+
|S−i|+ 1), which are strictly positive indeed but for the case (|Si|, |S−i|) = (2, 3) for any i ∈ I.
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of player i (see Figure 5 for a few iterations).

Figure 5
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ri(r−i(ri(X−i)))...

Not surprisingly, every Nash equilibrium is a profile of rationalizable strategies.16

The nonemptiness of the set of rationalizable strategies then follows immediately,
while its convexity follows from the intermediate value theorem.17 Thus from the
non-emptiness and convexity of the sets of rationalizable strategies one can conclude
the following sufficient condition for a Nash equilibrium being a profile of non
isolated rationalizable strategies. Interestingly enough, this condition happens to be
the same one as the one that guaranteed the existence of local correlated equilibria
around the Nash equilibrium and the existence of other Nash equilibria in pure
strategies as well. Its proof is provided in the appendix.

Theorem 3. If x̂ ∈ ×i∈IXi is a Nash equilibrium in pure strategies of Γ and
∏

i∈I

r′i(x̂−i) > 1, (6)

then x̂ is not an isolated point of the set of profiles of rationalizable strategies.

It may be worth to mention that although in general, if a game Γ has multi-
ple Nash equilibria, then no profile of strategies is an isolated point of the set of
profiles of rationalizable strategies (that is to say, the iterative elimination of dom-
inated strategies will not converge to a single profile), nonetheless there still may
be a Nash equilibrium for which the iterative elimination of dominated strategies,
when constrained to start in a small enough neighborhood of it, does succeed to
converge to it. In the context of his investigation about an eductive justification
of some rational expectations equilibria as sensible outcomes of an economy, Gues-
nerie (1992) names such equilibria locally strongly rational. In effect, if the game
has a finite number of multiple Nash equilibria in pure strategies, then according
to the Poincaré-Hopf theorem there must be an odd number of them for which
∏

i∈I r′i(x̂−i) < 1. If moreover for some of them 0 <
∏

i∈I r′i(x̂−i), then such equi-
libria are locally strongly rational in the sense defined above, as the next theorem
shows, whose proof can be found in the appendix.

16A proof of this fact in this setup can be found in the appendix (see Proposition 2).
17See Proposition 3 in the appendix.
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Theorem 4. If x̂ is a Nash equilibrium of Γ such that

0 <
∏

i∈I

r′i(x̂−i) < 1, (7)

then x̂ is locally strongly rational.

6. Global results

The links connecting correlated and Nash equilibria in pure strategies are not
constrained to be characterized by local conditions only. As a matter of fact, the
mere existence of a multiplicity of Nash equilibria in pure strategy has immediate
consequence on the existence of correlated equilibria and the the of rationalizable
profiles of strategies, as the next theorems establish.

Theorem 5. If there exist multiple Nash equilibria in pure strategies of the game
Γ, then there exist non trivial correlated equilibria also.

Similarly, multiplicity of Nash equilibria in pure strategies implies almost trivially
that the set of rationalizable profiles is an interval of R2 with non empty interior and,
hence, the lack of convergence of the iterated elimination of dominated strategies,
as the next theorem states.

Theorem 6. If there exist multiple Nash equilibria in pure strategies of the game
Γ, then the set of rationalizable profiles of strategies has no isolated point.

The converse statements are far from being true. For instance, if for all i ∈ I,
ri(x−i) = 1

2 + 1
4 i sin 2π(x−i− 1

2 ), then the only Nash equilibrium in pure strategies
of this game is xi = 1

2 for all i ∈ I, while every strategy xi ∈ [ 14 , 3
4 ] is rationalizable,

for all i ∈ I. Also, if for all i ∈ I, ri(x−i) = 1
2 + 1

2 i(x−i − 1
2 )

1
3 , then the only Nash

equilibrium in pure strategies of this game is xi = 1
2 for all i ∈ I, while the game

can be shown to have correlated equilibria (by the same argument exposed in the
proof of Theorem 2).

Nevertheless, a weaker version of the converse statement linking correlated equi-
libria to multiple Nash equilibria can be obtained on the grounds of global properties
of the best reply functions that are a consequence of the two following properties
of the supports of both correlated and Nash equilibria in pure strategies. On the
one hand, at a correlated equilibrium no player will play with positive probability
a strategy that may lead only to outcomes, so to speak, laying on the same side of
his or her best reply function.18 A consequence of this is that the best reply curve
of every agent has to enter and exit the convex hull of the support of any correlated
equilibrium at points where he plays either the minimum or the maximum of his

18The rationale for this is quite intuitive: should a player play with some probability a pure
strategy such that, no matter what the other player does, the outcome is for sure in the, say,
hypograph of the first player’s best reply, then his payoff from every outcome would be bigger
for a slightly higher strategy, and hence his expected payoff as well. See Proposition 4 in the
appendix.
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strategies played with positive probability (see Figure 6).

Figure 6
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On the other hand, it can be shown that there exists a Nash equilibrium in pure
strategies within the convex hull of the support of any non trivial correlated equi-
librium with finite support.19

The two previous properties allow to establish the existence of multiple Nash
equilibria whenever there exists a correlated equilibrium (not necessarily local to
any Nash equilibrium in pure strategies) at the cost of giving conditions guaran-
teeing the existence of a Nash equilibrium not contained in the convex hull of the
support of the correlated equilibrium. This is precisely what the next theorem does.

Theorem 7. If there exists a non trivial correlated equilibrium of Γ and the best
reply functions ri are both non-decreasing or both non-increasing, then there exist
multiple Nash equilibria in pure strategies.

In effect, if x∗i ∈ XSi
i is player i’s strategy in the correlated equilibrium, and the

best replies are, say, both non-increasing (see Figure 7), then ri(x∗−i(|S−i|)) < x∗i (1)
and x∗−i(|Si|) < r−i(x∗i (1)) necessarily . Therefore, since both best replies are non-
increasing, the restriction of the continuous vector field of equilibrium equations
F (xi, x−i) = (xi− ri(x−i), x−i− r−i(xi)) to the subset [0, x∗i (1)]× [x∗−i(|S−i|), 1] is
still outward-pointing and hence must have at least one zero according to Poincaré-
Hopf theorem, i.e. a Nash equilibrium in pure strategies of the game Γ. Since, ac-
cording to Proposition 5 in the appendix, there is at least another Nash equilibrium
in pure strategies in the convex hull of the support of the correlated equilibrium,
then there is a multiplicity of these equilibria (a similar argument can be developed
for the case of non-decreasing best replies).20

19See Proposition 5 in the appendix.
20In the appendix can be found an alternative proof that does not resort to the use of the

Poincaré-Hopf theorem. Moreover, Proposition 6 gives a version of this result that does not
require the monotonicity of the best reply functions.

11



Figure 7
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Finally, as for the global relations between correlated equilibria and rationaliz-
ability in this setup, the existence of non-trivial correlated equilibria implies triv-
ially that the set of profiles of rationalizable strategies is an interval of R2 with
nonempty interior,21 while the converse does not hold in general, as the following
example shows. Let, for all i ∈ I,

r−i(xi) =











xi + 1
2 xi < 1

4

−xi + 1 1
4 ≤ xi < 3

4

xi − 1
2

3
4 ≤ xi.

(8)

The set of rationalizable strategies of player i, for all i ∈ I, is in this game [ 14 , 3
4 ],

while there is no nontrivial correlated equilibrium.22 Nonetheless, the very knife-
edge nature of this example conveys the intuition that a generic converse may very
likely still hold.

7. Conclusion

The previous sections have exhibited, in a specific class of games, a close connec-
tion between the issues of the existence of a multiplicity of Nash equilibria in pure
strategies, the existence of local correlated equilibria around a Nash equilibrium,
and the lack of local uniqueness of a Nash equilibrium as a profile of rationalizable
strategies, i.e. the instability of the process of iterative elimination of dominated
strategies around it. This connection parallels similar ones between the notions of
multiplicity, instability, and vulnerability to sunspots in other seemingly completely
unrelated frameworks as, for instance, the overlapping generations economies. Such
a pervasive link between different forms of indeterminacy across economies and
games, hints at a general phenomenon that may be common to every setup con-
sisting of several optimizers that must, simultaneously and independently, make a
decision as in the economies and games do, independently of whether they behave
strategically or not.

21Since the set of profiles of rationalizable strategies contains the support of every correlated
equilibrium and, moreover, the set of rationalizable strategies of each player is convex (see Propo-
sition 3 in the appendix).

22There is no candidate to support that satisfies the necessary condition for it to be that of a
correlated equilibrium established in Proposition 5 in the appendix.
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Appendix

Proposition 1. There exists at least one Nash equilibrium in pure strategies of
the game Γ.

Proof. For any i ∈ I, let φi be the function from [0, 1] to itself mapping each
x−i ∈ X−i to φi(x−i) = x−i − r−i(ri(x−i)). The function φi is continuous and
takes positive and negative values, specifically φi(0) = −r−i(ri(0)) ∈ (−1, 0) while
φi(1) = 1− r−i(ri(1)) ∈ (0, 1) (see figure 1A).

Figure 1A
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Therefore, necessarily there exists an x̂−i ∈ X−i such that φi(x̂−i) = 0, i.e. such
that x̂−i = r−i(ri(x̂−i)) or, equivalently, (ri(x̂−i), x̂−i) ∈ r−i. Letting x̂i be ri(x̂−i),
then (x̂−i, x̂i) ∈ ri ∩ r−1

−i . Q.E.D.

Lemma 1. Any two continuous curves in an open ball of the real plane whose
endpoints alternate at the boundary of the ball, cross within it.

Proof. Without loss of generality let the ball be B1(0) and the curves f and g be
the ranges of two continuous functions from [0, 1] to the closure of B1(0) such that,
in polar coordinates, for all t ∈ (0, 1), ρf (t), ρg(t) ∈ (0, 1), and

ρf (0) = ρf (1) = ρg(0) = ρg(1) = 1 (9)

θf (0) < θg(1) < θf (1) < θg(0). (10)

Moreover, without loss of generality as well, let g be such that min[0,1] ρg ≤
min[0,1] ρf .

Then there exists a continuous mapping φ from [0, 1] to itself such that, for all
t ∈ [0, 1], ρg(t) ≤ ρf (φ(t)) (e.g. φ(t) = 1

2 (t − min[0,1] ρf )
1

2n+1 + 1
2 , for n ∈ N big

enough). Let f̃ = (ρf ◦ φ, θf ◦ φ) and note that f is the range of f̃ as well. Also,
for α > 1 big enough, a zero of the equation

ρg(t
1
α ) = ρf̃ (t) (11)

bifurcates in two branches that converge to the zeros 0 and 1 each. On the other
hand, min θ−1

f̃
(θg(1)) ∈ (0, 1) is an asymptote to a zero of

θg(t
1
α ) = θf̃ (t) (12)
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as α goes to infinity. Therefore, there exists some α > 1 and some t ∈ (0, 1) such
that both equations hold. Let ψ be such that ψ(t) = t

1
α . Since the ranges of (ρf̃ , θf̃ )

and (ρg ◦ ψ, θg ◦ ψ) are still f and g, then there exists t ∈ (0, 1) such that

(ρf̃ (t), θf̃ (t)) = (ρg ◦ ψ(t), θg ◦ ψ(t)) ∈ f ∩ g. (13)

Q.E.D.

Proof of Theorem 1. Assume, without loss of generality, that r′i(x̂−i), r′−i(x̂i) < 0.
Then there exists λ such that

r′i(x̂−i) < λ <
1

r′−i(x̂i)
. (14)

For ε > 0 small enough, consider the restriction of the best reply functions to the
square formed by the segments joining consecutively (0, x̂−i + ε), (x̂i− ελ, x̂−i + ε),
(x̂i − ελ, 1), (0, 1), and (0, x̂−i + ε) again (see Figure 2A).

Figure 2A
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Since Lemma 1 applies to the continuous transformation of this restriction that,
for a given point x̃ within the restriction, maps every point x of the restriction
to its homothecy by the reciprocal of the norm of the longest segment within the
restricted set starting at x̃ and going through x (see Figure 3A),

Figure 3A
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then the crossing of the transformed best replies guaranteed by Lemma 1 corre-
sponds to a crossing of the best reply curves in the restricted set, i.e. to a Nash
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equilibrium x̂′ distinct from x̂. A similar argument shows the existence of a third
Nash equilibrium x̂′′ with x̂′′i > x̂i and x̂′′−i < x̂−i. Q.E.D.

Proof of Theorem 2. In effect, if
∏

i∈I r′i(x−i) > 1, that is to say
∏

i∈I D12fi(x̂i, x̂−i) >
∏

i∈I D11fi(x̂i, x̂−i), then, since
∏

i∈I D11fi(x̂i, x̂−i) > 0,23 necessarily
∏

i∈I D12fi(x̂i, x̂−i) > 0 holds as well. Therefore, either, for all i ∈ I, D12fi(x̂i, x̂−i) >
0, or for all i ∈ I, D12fi(x̂i, x̂−i) < 0.

If, for all i ∈ I, D12fi(x̂i, x̂−i) > 0, then

0 < −D11f1(x̂1, x̂−1)
D12f1(x̂1, x̂−1)

< −D12f−1(x̂−1, x̂1)
D11f−1(x̂−1, x̂1)

, (15)

and, for all i ∈ I, there exist 0 < ξi such that

−D11f1(x̂1, x̂−1)
D12f1(x̂1, x̂−1)

<
ξ−1

ξ1
< −D12f−1(x̂−1, x̂1)

D11f−1(x̂−1, x̂1)
(16)

and λ > 0 small enough, such that for all i ∈ I, (x̂−i − λξ−i, x̂i − λξi), (x̂−i −
λξ−i, x̂i + λξi) ∈ r+

i while (x̂−i + λξ−i, x̂i − λξi), (x̂−i + λξ−i, x̂i + λξi) ∈ r−i . Thus
letting, for all i ∈ I,

x∗i (1) = x̂i − λξi

x∗i (2) ∈ r−1
−i (x∗i (1)) ∩ (x∗i (1), x∗i (3))

x∗i (3) = x̂i + λξi,

(17)

for it to be the support of a correlated equilibrium with a joint distribution pi, it
should satisfy the equations

3
∑

s−i=1

pi(si, s−i)D1fi(x∗i (si), x∗−i(s−i)) = 0, (18)

for all i ∈ I, and all si ∈ {1, 2, 3}. The existence of such a joint distribution pi

is guaranteed for this support. In effect, the matrix of coefficients of the previous
system of linear equations is















D11
1 D12

1 D13
1 0 0 0 0 0 0

0 0 0 D21
1 D22

1 D23
1 0 0 0

0 0 0 0 0 0 D31
1 D32

1 D33
1

D11
−1 0 0 D12

−1 0 0 D12
−1 0 0

0 D21
−1 0 0 D22

−1 0 0 D23
−1 0

0 0 D31
−1 0 0 D32

−1 0 0 D33
−1















(19)

where Dsi,s−i
i = D1fi(x∗i (si), x∗−i(s−i)), for all i ∈ I, si, s−i ∈ {1, 2, 3}. Therefore,

for given probabilities p1(1, 1), p1(1, 2), p1(2, 1), and p1(2, 2), the two first equations
determine p1(1, 3) and p1(2, 3), which along with the last three equations determine

23Recall that, for all i ∈ I, x̂i maximizes fi(xi, x̂−i), and fi is differentiable and strictly
quasi-concave. Hence D11fi(x̂i, x̂−i) < 0 for all i ∈ I.
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p1(3, 1), p1(3, 2), and p1(3, 3). But all these probabilities must satisfy as well the
third equation, and hence the following consistency condition

(

D11
−1

D13
−1
− D33

1

D31
1

D31
−1

D33
−1

D11
1

D13
1

)

p11
1 +

(

D32
1

D31
1

D21
−1

D23
−1

− D33
1

D31
1

D31
−1

D33
−1

D12
1

D13
1

)

p12
1 +

(

D12
−1

D13
−1

− D33
1

D31
1

D32
−1

D33
−1

D21
1

D23
1

)

p21
1 +

(

D32
1

D31
1

D22
−1

D23
−1

− D33
1

D31
1

D32
−1

D33
−1

D22
1

D13
1

)

p22
1 = 0.

(20)
For this equation to be satisfied by positive probabilities, there must be to co-
efficients with opposite signs, which is what happens to the coefficient of p12

1
(which becomes positive) and the coefficient of p21

1 (which becomes negative) if,
for all i ∈ I, x∗i (2) is such that D12

i = 0. This is indeed the case given that
x∗i (2) ∈ r−1

−i (x∗i (1)) ∩ (x∗i (1), x∗i (3)) (see Figure 4A). Such a support is then the
support of a continuum of correlated equilibria. Q.E.D.

Figure 4A
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Proposition 2. The strategies of every Nash equilibrium of the game Γ are ratio-
nalizable, i.e. for all i ∈ I,

ri ∩ r−1
−i ⊂ R−i ×Ri. (21)

Proof. Assume that there exists i ∈ I such that ri ∩ r−1
−i 6⊂ R−i × Ri. Then there

exists (x̂−i, x̂i) ∈ ri ∩ r−1
−i such that (x̂−i, x̂i) /∈ R−i × Ri. Thus there exists i ∈ I

such that x̂i /∈ Ri, i.e. such that there exists n ∈ N such that

x̂i /∈ (ri ◦ r−i)n ◦ ri(X−i)

= (ri ◦ r−i) ◦ (ri ◦ r−i)n−1 ◦ ri(X−i).
(22)

Hence there does not exist x′i ∈ (ri ◦ r−i)n−1 ◦ ri(X−i) such that (x′i, x̂i) ∈ ri ◦ r−i

or, equivalently, for all x′i ∈ (ri ◦ r−i)n−1 ◦ ri(X−i), (x′i, x̂i) /∈ ri ◦ r−i. Therefore,
for all x′−i ∈ X−i, either (x′i, x

′
−i) /∈ r−i or (x′−i, x̂i) /∈ ri. Since the domain

of r−i is Xi and (ri ◦ r−i)n−1 ◦ ri(X−i) ⊂ Xi, it cannot be true that, for all
x′i ∈ (ri ◦ r−i)n−1 ◦ ri(X−i) and all x′−i ∈ X−i, (x′i, x

′
−i) /∈ r−i. Thus necessarily,

for all x′−i ∈ X−i, (x′−i, x̂i) /∈ ri must hold. But x̂−i ∈ X−i and (x̂−i, x̂i) ∈ ri!
Therefore it must be true that, for all i ∈ I, ri ∩ r−1

−i ⊂ R−i ×Ri. Q.E.D.
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Proposition 3. For each player i ∈ I of the game Γ, the set Ri of rationalizable
strategies in nonempty and convex.

Proof. Since, for all i ∈ I, ri is continuous and Xi is a closed interval, then ri(Xi)
is a closed interval, because of the intermediate value theorem, and hence convex.
Moreover, ri ◦ r−i is continuous as well, and hence, for all N ∈ N, ∩N

n=1(ri ◦ r−i)n ◦
ri(X−i) is convex. Assume ∩n∈N(ri ◦ r−i)n ◦ ri(X−i) is not convex. Then there
exist x, x′ ∈ ∩n∈N(ri ◦ r−i)n ◦ ri(X−i) and x′′ ∈ (x, x′) such that x′′ /∈ ∩n∈N(ri ◦
r−i)n ◦ ri(X−i). Then there exists N ∈ N such that x′′ /∈ (ri ◦ r−i)N ◦ ri(X−i)
while x, x′ ∈ (ri ◦ r−i)N ◦ ri(X−i), and hence x′′ /∈ ∩N

n=1(ri ◦ r−i)N ◦ ri(X−i)
while x, x′ ∈ ∩N

n=1(ri ◦ r−i)N ◦ ri(X−i), which contradicts that, for all N ∈ N,
∩N

n=1(ri ◦ r−i)n ◦ ri(X−i) is convex. Therefore, ∩n∈N(ri ◦ r−i)n ◦ ri(X−i), i.e. Ri is
convex. Q.E.D.

Proof of Theorem 3. Since
∏

i∈I r′i(x̂−i) > 1, then by Theorem 1 there exist two
more Nash equilibria whose strategies are one at each side of the original Nash
equilibrium strategies. Since every Nash equilibrium is rationalizable and the set
of rationalizable strategies of each player is convex, then it is an interval with the
original Nash equilibrium in its interior. Q.E.D.

Proof of Theorem 4. If 0 <
∏

i∈I r′i(x̂
′
−i) < 1, assume with no loss of generality

that

0 < r′−i(x̂
′
i) <

1
r′i(x̂

′
−i)

. (23)

Then, for all i ∈ I, there exist λi > 0 small enough such that,

r′−i(x̂
′
i) <

λ−i

λi
<

1
r′i(x̂

′
−i)

(24)

and hence, for all i ∈ I, the image of [x̂−i−λ−i, x̂−i + λ−i] by ri is a proper subset
of [x̂i−λi, x̂i +λi]. The convergence to x̂i of the iterative elimination of dominated
strategies, if constrained to the interval [x̂i − λi, x̂i + λi] × [x̂−i − λ−i, x̂−i + λ−i],
follows immediately. Q.E.D.

Proof of Theorem 5. Assume there exist two distinct Nash equilibria in pure strate-
gies x̂ and x̂′, and assume both

∏

i∈I r′i(x̂−i) < 1 and
∏

i∈I r′i(x̂
′
−i) < 1 (otherwise,

Theorem 2 guarantees the existence of correlated equilibria already). Applying the
Poincaré-Hopf theorem again, there must exist another zero of the vector field de-
termined by the equilibrium equations with and index opposite to those of x̂ and
x̂′, i.e. another Nash equilibrium in pure strategies x̂′′ such that

∏

i∈I r′i(x̂
′′
−i) > 1.

Therefore, according to Theorem 2, there must exist non trivial correlated equilibria
in every neighborhood of x̂′′. Q.E.D.

Proof of Theorem 6. It follows immediately from the facts that, on the one hand,
every Nash equilibrium is a profile of rationalizable strategies (see Proposition 2)
and, on the other hand, the set of rationalizable strategies of every agent is convex
(see Proposition 3). Therefore, the multiplicity of Nash equilibria in pure strategies
implies immediately that the set of rationalizable profiles is a cartesian product of
intervals with nonempty interior and, hence, has no isolated point. Q.E.D.
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Proposition 4. If {pi, Si, x∗i }i∈I is a finite support correlated equilibrium of the
game Γ, then, for all i ∈ I and all si ∈ Si,

{(x∗−i(s−i), x∗i (si))}s−i∈S−i 6⊂ r+
i and

{(x∗−i(s−i), x∗i (si))}s−i∈S−i 6⊂ r−i .
(25)

Proof. Since {pi, Si, x∗i }i∈I is a finite support correlated equilibrium of Γ, then, for
all i ∈ I, x∗i ∈ XSi

i solves

max
xi∈XSi

i

|Si|
∑

si=1

|S−i|
∑

s−i=1

pi(si, s−i)fi(xi(si), x∗−i(s−i)), (26)

and hence, for all si = 1, 2, . . . , |Si|, x∗i (si) solves

max
xi(si)∈(0,1)

|S−i|
∑

s−i=1

pi(si, s−i)fi(xi(si), x∗−i(s−i)). (27)

Therefore, since fi is differentiable and strictly unimodal, x∗i (si) is a critical point
of the maximand

∑|S−i|
s−i=1 pi(si, s−i)fi(x∗i (si), x∗−i(s−i)), i.e.

|S−i|
∑

s−i=1

pi(si, s−i)D1fi(xi(si), x∗−i(s−i)) = 0. (28)

Assume, without loss of generality, that {(x∗−i(s−i), x∗i (si))}s−i∈S−i ⊂ r+
i , then, for

all si ∈ Si,
D1fi(x∗i (si), x∗−i(s−i)) ≤ 0, (29)

and hence, for all si ∈ Si,

D1fi(x∗i (si), x∗−i(s−i)) = 0. (30)

Therefore, because of the strict unimodality of fi, for all si, s′i ∈ Si, x∗(si) = x∗(s′i),
i.e. x∗ would be a Nash equilibrium in pure strategies actually. Therefore, if
{pi, Si, x∗i }i∈I is a non-trivial correlated equilibrium, then

{(x∗−i(s−i), x∗i (si))}s−i∈S−i 6⊂ r+
i . (31)

Similarly, it can easily be established that {(x∗−i(s−i), x∗i (si))}s−i∈S−i 6⊂ r−i . Q.E.D.

Proposition 5. If there exists a finite support correlated equilibrium of the game
Γ, then there exists a Nash equilibrium in pure strategies whose profile of strategies
is in the convex hull of the support of the correlated equilibrium.

Proof. Let {(pi, x∗i )}i∈I be a finite support correlated equilibrium. Assume, without
loss of generality, that x∗i (1) < · · · < x∗i (|Si|), for each i ∈ I. Consider, for each
i ∈ I as well, the function

r̃i(x−i) = min{max{ri(x−i), x∗i (1)}, x∗i (|Si|)} (32)
18



for all x−i ∈ [x∗−i(1), x∗−i(|S−i|)], and for any i ∈ I consider the function φ̃i from
[x∗−i(1), x∗−i(|S−i|)] to itself mapping each x−i to φ̃i(x−i) = x−i − r̃−i(r̃i(x−i)).

According to Proposition 4, for each i ∈ I, either r̃i(x∗−i(1)) = x∗i (1) or r̃i(x∗−i(1)) =
x∗i (|Si|) holds. If r̃i(x∗−i(1)) = x∗i (1) holds for both i ∈ I,24 then for any x′−i >
x∗−i(1) but close enough to x∗−i(1), it still holds r̃i(x−i) = x∗i (1) and hence φ̃i(x′−i) >
0. Moreover, there exists some x′′−i in the interval [x∗−i(1), x∗−i(|S−i|)] such that
φ̃i(x′′−i) < 0, i.e. such that x′′−i < r̃−i(r̃i(x′′−i)). In effect, on the one hand, such
an x′′−i exists whenever there is some xi in [x∗i (1), x∗i (|Si|)] such that r̃−i(xi) >
inf r̃−1

i (xi), since then there exists some x−i ∈ r̃−1
i (xi), satisfying r̃−i(xi) > x−i

and r̃i(x−i) = xi,25 i.e. such that r̃−i(r̃i(x−i)) > x−i. On the other hand,
should there be no xi in [x∗i (1), x∗i (|Si|)] such that r̃−i(xi) > inf r̃−1

i (xi), then
it would hold that, for all xi in [x∗i (1), x∗i (|Si|)], r̃−i(xi) ≤ inf r̃−1

i (xi), but since
r̃−1
i (xi) ⊂ [x∗−i(1), x∗−i(|S−i|)], certainly inf r̃−1

i (xi) ≤ x∗−i(|S−i|) would hold as well,
and hence so would r̃−i(xi) ≤ x∗−i(|S−i|) for all xi in the interval [x∗i (1), x∗i (|Si|)].
Thus, {(x∗i (si), x∗−i(|S−i|))}si∈Si ⊂ r+

−i would have to be true, which contradicts
Proposition 4.

Therefore, for some x̂−i in (x′−i, x
′′
−i), φ̃i(x̂−i) = 0 holds, that is to say x̂−i =

r̃−i(r̃i(x̂−i)), and letting x̂i be r̃i(x̂−i), then (x̂−i, x̂i) ∈ r̃i for all i ∈ I. Now,
should it be that case that x̂i ∈ {x∗i (1), x∗i (|Si|)}, then for (x̂−i, x̂i) ∈ r̃i to hold for
all i ∈ I, necessarily it would have to be true that x̂−i ∈ {x∗−i(1), x∗−i(|S−i|)} as
well. Therefore, since x̂−i ∈ (x′−i, x

′′
−i), with x′−i ∈ (x∗−i(1), x∗−i(|S−i|)) and x′′−i ∈

[x∗−i(1), x∗−i(|S−i|)], then x̂−i /∈ {x∗−i(1), x∗−i(|S−i|)}, and hence x̂i /∈ {x∗i (1), x∗i (|Si|)}
neither. Thus, x̂i ∈ (x∗i (1), x∗i (|Si|)) for all i ∈ I and hence r̃i(x̂−i) = ri(x̂−i) and
r̃−i(ri(x̂−i)) = r−i(ri(x̂−i)) for any i ∈ I. As a consequence, x̂−i = r−i(ri(x̂−i)) as
well, and then (x̂−i, x̂i) ∈ ri for all i ∈ I, i.e. {x̂i}i∈I is a Nash equilibrium. Q.E.D.

In what follows a proof of Theorem 7 is provided without resorting to the
Poincaré-Hopf Theorem.

Proof of Theorem 7. Let {(pi, x∗i )}i∈I be a finite support correlated equilibrium.
Then Proposition 3 guarantees that, for all i ∈ I, there exists a x−i(1) ∈ X−i such
that x∗i (1) is the best reply to x−i(1), i.e. ri(x−i(1)) = x∗i (1), and x−i(1) is in the
interior of the convex hull of the range of x∗−i; there exists also x−i(|Si|) ∈ X−i

such that x∗i (|Si|) is the best reply to x−i(|Si|), i.e. ri(x−i(|Si|)) = x∗i (|Si|), and
x−i(|Si|) is in the interior of the convex hull of the range of x∗−i. For each i ∈ I, let
r∧i be such that r∧i (x−i) = min{ri(x−i), ri(x−i(1))}, and r∨i be such that r∨i (x−i) =
max{ri(x−i), ri(x−i(|Si|))}, that is to say, in the case both ri are strictly decreasing
functions

r∧i (x−i) =
{

ri(x−i(1)) = x∗i (1) ∀x−i ∈ [0, x−i(1)]
ri(x−i) ∀x−i ∈ [x−i(1), 1]

(33)

and

r∨i (x−i) =
{

ri(x−i) ∀x−i ∈ [0, x−i(|Si|)]
ri(x−i(|Si|)) = x∗i (|Si|) ∀x−i ∈ [x−i(|Si|), 1].

(34)

Consider the continuous function φ∧i (x−i) = x−i−r∨−i(r
∧
i (x−i)) from [0, 1] to itself.

Then φ∧i (0) = −r∨−i(r
∧
i (0)) ∈ (−1, 0) while φ∧i (1) = 1 − r∨−i(r

∧
i (1)) ∈ (0, 1). Thus

24A similar argument can be easily developed for each of the three other possible cases.
25For all xi in [x∗i (1), x∗i (|Si|)], r̃−1

i (xi) contains its greatest lower bound because of the con-
tinuity of r̃i
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there exists x̂−i ∈ X−i such that x̂−i = r∨−i(r
∧
i (x̂−i)), i.e. letting x̂i be r∧i (x̂−i),

it holds that (x̂−i, x̂i) ∈ r∧i and (x̂i, x̂−i) ∈ r∨−i. Now, since both ri and r−i are
strictly decreasing, r∧i does not meet [0, x∗−i(|S−i|))× (x∗i (1), 1], nor does r∨−i meet
(x∗i (1), 1] × [0, x∗−i(|S−i|)). Then, necessarily, x̂−i ∈ [x∗−i(|S−i|), 1] ⊂ [x−i(1), 1]
and x̂i ∈ [0, x∗i (1)] ⊂ [0, xi(|S−i|)], and therefore r∧i (x̂−i) = ri(x̂−i) and r∨−i(x̂i) =
r−i(x̂i), that is to say, (x̂−i, x̂i) ∈ ri and (x̂i, x̂−i) ∈ r−i. Thus {x̂i}i∈I is a Nash
equilibrium of the game not contained in the convex hull of the support of the
correlated equilibrium, and hence distinct from the one contained in it.

Similarly it can be proved that there is another Nash equilibrium x̂′i ∈ [x∗i (|Si|), 1]
and x̂′−i ∈ [0, x∗−i(1)] by means of the function φ∨i (x−i) = x−i − r∧−i(r

∨
i (x−i)).

Finally, an analogous argument shows the existence of two Nash equilibria outside
the convex hull of the support of the correlated equilibrium in the case that both
best reply function are strictly increasing. Q.E.D.

Proposition 6. If there exists a finite support correlated equilibrium of the game
Γ and either,

(1) for all i ∈ I, xi(|Si|) < ri(x−i(1)) and ri(x−i(|S−i|)) < xi(1) or
(2) for all i ∈ I, xi(|Si|) < ri(x−i(|S−i|)) and ri(x−i(1)) < xi(1),

then there exist at least three Nash equilibria.

Proof. In effect, the existence of a correlated equilibrium guarantees the existence
of a Nash equilibrium in pure strategies (x̂i, x̂−i) in the convex hull of its support.
Moreover, Lemma 1 applies necessarily to a continuous deformation of a set of pro-
files of strategies, e.g. in the case (1) the set circumscribed by the polygon formed
by the segments joining the points (0, 1), (0, x̂−i), (x∗i (1), x̂−i), (x∗i (1), x∗−i(|S−i|)),
(x̂i, x∗−i(|S−i|)), (x̂i, 1), and (0, 1) again (see Figure 5A).26 Clearly, using the same
argument, another Nash equilibrium must exist also in this case to the southeast
of x̂.

Figure 5A
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26Consider the same continuous transformation is in the the proof of Theorem 1. Notice also
that the call for Lemma 1 is essential here: a restriction of the vector field defined by the best
reply functions that includes the Nash equilibrium within the convex hull of the support of the
correlated equilibrium, needs not be outward-pointing, and thus no general argument based on
the Poincaré-Hopf theorem can be made.
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