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Abstract

We examine a general equilibrium model with asymetrically informed agents.
The presence of asymmetric information generally presents a conflict between
incentive compatibility and Pareto efficiency. We present a notion of infor-
mational size and show that the conflict between incentive compatibility and
efficiency can be made arbitrarily small if agents are sufficiently small informa-
tionally .

1 Introduction

The incompatibility of Pareto efficiency and incentive compatibility is a central theme
in economics and game theory. The issues associated with this incompatibility are
particularly important in the design of resource allocation mechanisms in the presence
of asymmetrically informed agents where the need to acquire information from agents
in order to compute efficient outcomes and the incentives agents have to misrepresent
that information for personal gain come into conflict. Despite a large literature that
focuses on these issues, there has been little work aimed at understanding when
informational asymmetries are quantitatively important.

Virtually every transaction is characterized by some asymmetry of information:
any investor who buys or sells a share of stock generally knows something relevant
to the value of the share that is not known to the person on the other side of the
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and numerous participants of seminars at which this paper was presented for helpful comments. We
also thank Drew Fudenberg and the referees for very helpful comments, and thank Ichiro Obara for
pointing out an error in an earlier version. Postlewaite gratefully acknowledges support from the
National Science Foundation.



transaction. In order to focus on more salient aspects of the problem, many models
(rightly) ignore the incentive problems associated with informational asymmetries in
the belief that, for the problem at hand, agents are “informationally small.” However,
few researchers have investigated the circumstances under which an analysis that
ignores these incentive problems will yield results similar to those obtained when
these problems are fully accounted for.

In this paper, our goal is to formalize informational size in a way that, when
agents are informationally small, one can ignore the incentive problems associated
with the presence of asymmetric information without substantially affecting the re-
sulting analysis. We analyze a pure exchange economy with incomplete information
in which there is uncertainty regarding the characteristics of the goods that are traded
and hence, uncertainty regarding the utility agents will derive from the goods. In our
model, the set of states of nature is finite, with each state corresponding to a given
profile of characteristics for the goods. Hence, each state of nature corresponds to
a complete information Arrow-Debreu pure exchange economy. Agents do not know
the state of nature, but each agent privately observes a signal that is correlated with
the state of nature.

Our objective is to determine when an arbitrary allocation, conditional on the
unobservable state, can be approximated in utility by an incentive compatible allo-
cation. We focus on the case of negligible aggregate uncertainty: the state of nature
can be inferred with high precision from all agents’ signals. We show that approx-
imations are possible when (i) each agent is informationally small in the sense that
the conditional distribution on the state of nature does not vary much in that agent’s
signal if other agents’ signals are known, and (ii) for each agent, the distributions
on the state space, conditional on different signals the agent might receive, are not
“too close”. More specifically, we show that any given precision of approximation is
possible if each agent is sufficiently informationally small relative to the variability of
the conditional distributions on the state space conditioned on his possible signals.

In mechanism design problems, truthful reporting can be ensured with a scheme
of the kind suggested by Cremer-McLean (1985): each agent is rewarded when he
announces a signal that is likely given other agents’ signals, and punished otherwise.
Very large rewards and punishments may be necessary to ensure truthful reporting
and may limit the applicability of such mechanisms for two reasons. First, large pay-
ments may be inefficient when agents are risk averse and second, limited liability may
preclude large punishments. In this paper, we show that truthful reporting can be as-
sured while avoiding the problems of large payments when agents are informationally
small relative to the variability of the distributions on the state space conditioned on
their signals.

Agents will be informationally small in our sense in two natural economic settings.
When all agents receive noisy signals of the state that are independent conditioned
on the state and if each agent’s signal is very accurate, then agents will be informa-



tionally small regardless of the number of agents. Alternatively, agents will become
informationally small as the number of agents increases, regardless of the (fixed) ac-
curacy of the agents’ signals. This is a consequence of the law of large numbers and
plays a crucial role in the replica theorem of section 5.

We present our basic model in the next section and in section 3, we present an
example illustrating the model and our results. Section 4 contains our result for
economies of fixed size and Section 5 contains our theorem for replica economies. We
discuss possible extensions of our work in Section 6, related literature in Section 7,
and close with a discussion section. All proofs are contained in the appendix.

2 Private Information Economies:

Let N = {1,2,...,n} denote the set of economic agents. Let © = {64,..,0,,}
denote the (finite) state space and let 73,75, ..., T;, be finite sets where T} represents
the set of possible signals that agent i might receive. Let J,, = {1,..,m}. Let
T=T x---xT,and T_; = x;,T;. If t € T, then we will often write t = (¢t_;,¢;). If
X is a finite set, we will denote by Ax the set of probability distributions on X. If
x € R* for some positive integer k, then ||z|| will denote the £;—norm of x and ||z||»
will denote the ¢5—norm of z.

In our model, nature chooses a state # € ©. All uncertainty is embedded in 6 :
if # were known, there would be complete and symmetric information. Examples
of uncertainty of this kind include problems in which different 6’s correspond to
different quantities (or qualities) of oil in a field, different outcomes of a research
and development program, or different underlying qualities of objects that have been
manufactured in a particular way. The state of nature is unobservable but each agent
i receives a “signal” t; that is correlated with nature’s choice of . More formally, let
(0,1, 12, ,%Vn) be an (n+1)-dimensional random vector taking values in © x 7" with
associated distribution P € Agyr where

P(,t1, .., tn) = Prob{f = 0,8 = t1, ...t = t,,}.

We assume that for each 6, Prob{f = 6} > 0 and for cach t € T, Prob{f =t} > 0.
Fort € T, let Po(-|t) € Ag denote the induced conditional probability measure on O,
and let Iy € Ag denote the degenerate measure that puts probability one on state 6.

The consumption set of each agent is S%ﬁ and w; € §Rﬂ, w; > 0, denotes the
initial endowment of agent i (an agent’s initial endowment is independent of the
state 0). For each 6 € O, let u;(-,0) : R, — R be the utility function of agent i in
state 6. In this specification, the utility that an agent derives from a given bundle of
goods is determined by the state. The utility from owning an oil field (or a share of
the field) will be determined by the quantity and quality of the oil in the field, the
utility of a share of a company engaging in a research and development project will
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be determined by the product that emerges from the project, and the utility from a
used car depends on the quality of the engineering design of the car. The assumption
that v depends only on the bundle of goods and on the state #, but not on the vector
of agents’ types t, is clearly without loss of generality, since one can always include ¢
as part of #. We will, however, make assumptions below regarding how much different
agents know about the state 6. Given these assumptions, our model captures better
the case in which 6 embodies uncertainty about the characteristics of goods that
might be of direct interest to many agents rather than the case in which # embodies
uncertainty about a single agent’s utility function.

We will assume that each w,;(-,0) is continuous, u;(0,6) = 0 and satisfies the
following monotonicity assumption: if z,y € R4 Y, x>y and x # y, then u,;(z,0) >
u;(y, 9).

Each 6 € © gives rise to a pure exchange economy and these economies will play
an important role in the analysis that follows. Formally, let e(0) = {w;, u;i(-,8) }ien
denote the Complete Information Economy (CIE ) corresponding to state 6. For
each € O, a complete information economy (CIE) allocation for e(f) is a
collection {z;(0)}icn satisfying x;(0) € R for each i and Y,y (x:(0) — w;) < 0. For
each 0 € O, a CIE allocation {z;()};cn for the complete information economy e(6)
is efficient if there is no other CIE allocation {y;(#)}:cn for e(f) such that

ui(yi(0),0) > ui(2:(6),0)

for each v € V. B

The collection ({e(6)}oco, 0,t, P) will be called a private information economy
(PIE for short). An allocation z = (x1,x, ..., x,) for the PIE ({e(0)}sco, 0,%, P)is
a collection of functions z;: T — R satisfying >,y (z;(t) —w;) < 0 forall t € T.
We will not distinguish between w; € R4 and the constant allocation that assigns the
bundle w; to agent i for all t € T

We next introduce standard notation in order to define standard properties of
allocations. For a given PIE allocation z = (z1, x2, ..., z,,) define

Ui tilt) = Y > wilwi(t_it)),0)P6,t_; | t;)

0cO t_,eT_;

- E[uz(mz(t—w z) é) | 1]
for each t,t; € T; and

Ui(wi | t) =Y wiai(t),0)Py(0 | 1)

0cO

= Blui(x:(f),0) | T =1]



for each t € T.
A PIE allocation = = (x1, x2, ..., z,) is said to be:

(incentive compatible) (IC) if

Ui(z, ti]t;) > Ui, th|t:)
for all i € N, and all t;,t, € T;;
(ex post individually rational) (XIR) if

Ui(zi | t) = Us(w; | t)

for all i € N and for all t € T,

(ex post e—efficient)(X.E) if there exists E C T such that Prob(f € F) > 1 — ¢ and
for no other PIE allocation y(-) is it true that, for some t € E,

Ui(yi(t) [ 1) > Ui(zi(t) [ 1) +- €

for all 2 € N.

Note that allocations can depend on agents’ types (their information) but not
on A, which is assumed to be unobservable. Hence, our use of the term “ex post”
refers to events that occur after the realization of the signal vector ¢ but before the
realization of the state 6.

3 Example

There are six agents, three of whom are potential buyers of cars (B) and three of
whom are potential sellers (S). The engineering design of the car is either flawed
or not flawed with equal probability. Let F' denote the state in which the design is
flawed and let N denote the state in which the design is not flawed. Agents cannot
observe whether the design is flawed or not, but sellers have private information
which we represent as signals (G or B) correlated with the state of nature. Buyers
receive no signal and therefore, have no private information. The sellers’ signals are
independent conditional on the state and the matrix of conditional probabilities of
the signals given the state is

state N F
stgnal
G P 1—0p
B L—p p

All agents have linear, separable utility functions. Buyers and sellers of the cars
have respective utilities of ug(m,x;#) and ug(m,x;0) for m units of money and z
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cars in the two states, 8 = F' and # = N. These utilities are given in the following
table.

state N F
agent
Buyer m+24x m+ 8x
Seller m+20x m+ 4z

Each buyer has an initial endowment of money and no car. Each seller initially has
no money and one car. Given the utility functions, ex post efficiency dictates that all
cars be transferred from sellers to buyers. If we want trade to be ex post individually
rational, then each seller must receive an amount of money that compensates him for
giving up the car and this amount will depend on the state: the payment must lie
between 20 and 24 in state N, and between 4 and 8 in state F.

If the goal is to effect a transaction that is ex post individually rational and ex
post Pareto efficient, we must induce the sellers to truthfully reveal their signals in
order to determine whether the payment should be relatively high (when the design is
not flawed) or relatively low (when it is flawed). An obvious incentive compatibility
problem arises since the sellers have a clear interest in making it appear that the
design is not flawed.

Consider the following revelation mechanism. Sellers announce their signals and
the state of nature is “estimated” to be N if a majority of the sellers announce G,
and F' if a majority of the sellers announce B. Each seller will then transfer his car
to a buyer in return for a payment that depends on both the estimated state and his
announcement according to the following table.

seller’'s own estimated

announcement(t;) state(0) payment
G N 22
B N 21
G F 5
B F 6

For example, if the sellers other than ¢ both announce G, then N is the estimated
state independent of ¢’s announcement. In this case, i receives a payment of 22
if he announces G and 21 if he announces B. One can interpret the mechanism as
specifying a payment that depends on the majority announcement and “punishes”
a seller (by lowering the transfer price by 1) whose announcement differs from the
majority.

We note several things about the mechanism. First, if p is close to 1, then the
information of the three sellers is sufficient to predict the state nearly perfectly. In
particular, when p is close to 1, Po(N|t1,ta,t3) ~ 1 if a majority of sellers receive
the signal G, while Pg(F|t1,t2,t3) =~ 1 if a majority of sellers receive B. Hence, the
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mechanism yields an ex post efficient allocation for every vector of agents’ types when
p ~ 1. Furthermore, the allocation is ex post individually rational.

The mechanism is incentive compatible for p sufficiently close to 1. To see this,
suppose that a seller receives signal B. A false report of G may change the estimated
state or may leave it unchanged. The estimated state will change only when the
other two sellers receive different signals. The probability that the other two sellers
receive different signals approaches zero as p approaches 1. In our example, the gain
in revenue from lying when the other two sellers receive different signals is 16 and,
therefore, a misreport that changes the estimated state is profitable. However, these
gains contribute very little to the total expected gain in revenue from misreporting
since they will be weighted by probabilities that are close to zero when p is close to
one.

What happens when a misreport does not change the estimated state? There are
two possibilities. If the other two agents receive signal B, then a false report of G
results in a loss of 1. If the other two agents receive signal GG, then a false report
of G results in a gain of 1. When p is close to one, a seller who observes B will
believe it very likely that the other sellers’ signals are both B and he will believe it
very unlikely that the other sellers’ signals are both G. Hence, the contribution to the
total expected gain in revenue from a misreport that does not change the estimated
state is close to —1. Therefore, the total expected gain from false reporting is close
to —1 and we see that for p sufficiently close to one, a misreport leads to an expected
decrease in utility. The same argument holds for the case that a seller observes G
but falsely reports B, hence the mechanism is incentive compatible.

We are able to induce truthful revelation of information (and, consequently, ensure
a Pareto efficient and individually rational outcome) in the case when p is close to 1
as a consequence of three features of this example. First, agents are informationally
small: with high probability, sellers are not able to change the estimated state by
misreporting their signals. Second, sellers’ types are correlated. Despite the fact that
a seller who receives the signal B can increase the expected price he will receive by
falsely announcing the signal G, an offsetting benefit for truthful announcement is
possible because the most likely signal received by either of the other two sellers is also
B. If agents’ types had been independent, it would be impossible to construct such an
offsetting benefit. Finally, the combined information of any pair of the agents resolves
nearly all the uncertainty about the state of nature with very high probability.

The linear utilities of the example make it possible to construct a mechanism that
is incentive compatible, ex post individually rational and ex post Pareto efficient for
p close to 1. In the case of general (nonlinear) utilities, exact Pareto efficiency will
not be obtained. However, we will demonstrate that, when appropriate versions of
the three conditions above hold, there will exist incentive compatible, individually
rational allocations that are nearly Pareto efficient. The proof of this result will
roughly parallel the construction of the mechanism of the example. The agents’



announcements will be used to estimate the state of nature and, for each estimated
state of nature, the outcome will be an allocation that is efficient for that state,
modified slightly so as to induce truthful revelation.

It is important to mention several features of the example that do not play any role
in our results. To illustrate the basic idea in a straightforward way, we constructed
an example in which (i) the agents’ information had the form of a noisy signal of the
state of nature, (ii) agents’ information was independent, conditional on the state of
nature, and (iii) each agent’s information alone provided a very accurate estimate of
the state of nature. Our analysis includes information structures with features such
as these, but is not restricted to such structures.

4 Economies of Fixed-Size

Before stating the main result, we will discuss the three features mentioned above
that are key to ensuring that an incentive compatible, individually rational and ap-
proximately Pareto efficient PIE allocation exists.

4.1 Informational Size

In the mechanism of the example, sellers reveal their signals and the announced sig-
nals are used to estimate the state of nature. The mechanism is incentive compatible
because each seller is informationally small in the following sense: with high proba-
bility, he does not have a “large” influence on the conditional probability of a design
flaw when other sellers announce truthfully.

We will formalize this notion of informational size for general problems. If t € T,
recall that Po(-|t) € Ag denotes the induced conditional probability measure on
O. Our example suggests that a natural notion of an agent’s informational size is
the degree to which he can alter the posterior distribution on © when other agents
are announcing truthfully. Any vector of agents’ types t = (t_;,t;) € T induces a
conditional distribution on © and, if agent 7 unilaterally changes his announced type
from ¢; to t., this conditional distribution will (in general) change. If i’s type is t; but
he announces t, # t;, the set

{t-i € Tl [[Po (-, ti) — Po(-[t—i, )|l > €}

consists of those ¢t_; for which agent i’s misrepresentation will have (at least) an
“c— effect” on the conditional distribution. Let vf'(¢;,t;) be defined as the smallest
positive ¢ (formally, the infimum over all € > 0) such that

Prob{ ||Pe("[t-i,t:) — Po([t—i, t})l| > elti =t:} <e



and define the informational size of agent i as

vl = maxv! (t;,t))

t,th
Loosely speaking, we will say that agent i is informationally small with respect to
P if his informational size v is “small.” An agent is informationally small if for each
of his possible types t;, he assigns small probability to the event that he can have a
“large” influence on the distribution Pg(-|t_;,t;), given his observed type.

There are several important aspects of this definition of informational size. First,
note that v = 0 for every i if and only if for every ¢ € T, the probability distribution
on O given t is the same as the probability distribution on © given ¢_;. More formally,
vP = 0 for every i if and only if Pg(-|t) = Po(:|t_;) for each t € T and each i. Second,
informational smallness is not determined by the “quality” of an agent’s information
in isolation. In the example of section 3, Pg(-|t;) is nearly degenerate for each ¢;
when p is close to 1. In this case, agents have very good estimates of the true
state conditional only on their own signals, yet each agent is informationally small.
However, it is true that, holding other agents’ information fixed, an increase in the

accuracy of a given agent’s signal will increase that agent’s informational size.

4.2 Negligible Aggregate Uncertainty

In the example, the information of any pair of sellers will “almost” resolve the un-
certainty regarding the state §. We will introduce a measure that quantifies this
aggregate uncertainty that we will use in our theorem. Recall that [, is the degen-
erate probability distribution on © that puts probability 1 on the state #. For any
teT, ||Po(-|t) — Ip]| is a measure of the degree to which the posterior on © resolves
completely the uncertainty regarding the state. A measure of an agent’s estimate
of the aggregate uncertainty when agent ¢ is of type t; is then the probability that,
conditional on ¢;, the posterior on © is not close to Iy for any 6. Formally,

Definition: Let
pf = gnajg(inf{e > 0|Prob{t € T and ||Pe(-|t) — Iy|| > ¢ for all 6 € OJt;} < ¢}
i€l
We define the aggregate uncertainty as p = max; uf’ and we will say that P exhibits
negligible aggregate uncertainty if u” is small. In this case, each agent knows that,

conditional on his own signal, the aggregate information of all agents will, with high
probability, provide a good prediction of the true state.

4.3 Distributional Variability

In the example in section 3, a car seller is induced to truthfully reveal his signal by
conditioning the price at which his car will be sold on whether or not his reported

9



signal is equal to the estimated state. Denote the set of states in that example by
© = {N, F'}. When the accuracy of the signals that sellers receive is close to 1, the
probability distributions on © given the private signals G and B will be approximately
the degenerate distributions that put probability close to 1 on the states N and F
respectively. That is, Pg(N|G) = 1 and Po(F|B) =~ 1. Furthermore, Po(N|G) =
P(G,G|G) and Po(F|B) = P(B, B|B) when p ~ 1.

Suppose that a seller receives signal B. We showed that the expected gain from
misreporting is the sum of two components: the gains when a false report changes
the estimated state and the gains when a false report does not change the estimated
state. The gains of the first type are positive but negligible if p ~ 1. The size of
the gains of the second type are related to the variability in agents’ beliefs. If the
other two agents receive signal B, then a false report of G results in a loss of 1. If
the other two agents receive signal GG, then a false report of G results in a gain of 1.
A seller who observes B will believe that the other sellers’ signals are both B with
probability P(B, B|B) and he will believe that the other sellers’ signals are both G
with probability P(G,G|B). Hence, the contribution to the total expected gain in
revenue from a misreport that does not change the estimated state is P(G,G|B) —
P(B,B|B).If p~ 1, then P(G,G|B)—P(B, B|B) ~ Po(N|B)— Ps(F|B) so the total
expected gain from false reporting is close to Po(N|B) — Po(F|B). Since Po(N|B) —
Po(F|B) ~ —1, a misreport leads to an expected decrease in utility.

Now consider what would happen if the accuracy of the signals of sellers 1 and 2
were close to 1, but the accuracy of seller 3's signal, ps, is reduced. One can verify
that P(G,G|B) ~ 1—p3 and P(B, B|B) = ps and that these approximations become
better as the accuracies of the signals of agents 1 and 2 approach one. Furthermore,
one can also verify that Pg(F|B) = p3 and Pg(N|B) = 1 — p3 irrespective of the
accuracies of the signals of agents 1 and 2. Suppose seller 3 receives the signal B. If
the accuracy of the siognals of 1 and 2 are close to 1, then the expected gain to 3 from
misreporting is approximately Po(N|B) — Po(F|B) = 1 — 2p3, which is negative as
long as p3 > 1/2. Now the contribution to the total expected gain from a misreport
that does not change the estimated state is approximately 1 — 2p3. This contribution
to expected gain is close to 0 when pj3 is close to 1/2.

The contribution to expected gain from a misreport that does change the esti-
mated state is positive and one may verify that this contribution depends on the
accuracies of the signals received by agents 1 and 2 but does not depend on ps.
Therefore, the total expected gain from a false report will be positive if ps3 is close
enough to 1/2, and the agent who sees signal B will have an incentive to lie. Hence,
incentive compatibility for an agent who sees signal B depends on the magnitude of
Po(N|B) — Po(F|B) = 1 — 2p3. In more general problems, whether an agent ¢ can
be given incentives to reveal his information will depend on the magnitude of the
difference between Pg(:|t;) and Po(-|t;), the conditional distributions on the states
of nature given different types t; and t; for agent i. We will refer to this magnitude
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informally as the variability of agents’ beliefs.
To formally define the measure of variability that is convenient for our purposes,
we first define a metric d on Ag as follows: for each a, 5 € Ag, let

& g
lallz (18]l
where || - ||2 denotes the 2-norm. Hence, d(a, ) measures the Euclidean distance

between the Euclidean normalizations of o and . If P € Agxr, let Po(:-|t;) € Ag be
the conditional distribution on © given that ¢ receives signal ¢; and define

e ) = |

2

Af:min min d(P@('|ti)7P@('|t;))2

t,€T; t; eT; \ti

This is the measure of the “variability” of the conditional distribution Pg(-|t;) as a
function of ¢;. Let

A ={P € Agxr| for each i, Pg(-|t;) # Po(-|t;) whenever ¢; # t:}.

The set A§,, is the collection of distributions on © x T' for which the induced
conditionals are different for different types. Hence, A > 0 for all i whenever P €

*
oOxT-

4.4 Results

In this section, we present our main result on the existence of incentive compatible,
individually rational and nearly Pareto efficient allocations when aggregate uncer-
tainty and the agents’ informational sizes are both small relative to the variability
of agents’ beliefs. This will follow from the stronger result (Theorem 1 below) that
any collection of complete information economy allocations, A = {z(#)}gco can be
approximated in utility under these conditions.

Theorem 1: Let © = {6y,..,0,,}. Let {e(f)}sco be a collection of CIE’s and
suppose that A = {x(0) }gco is a collection of associated CIE allocations with z;(6) #
0 for each i and 6. For every € > 0, there exists a 6 > 0 such that, whenever P € Agyxr
and satisfies

max !l < 6 miin AP

max v < §min AY
(2 (2

there exists an incentive compatible PIE allocation z(-) for the PIE ({e(6)}sco, 0, I, P)
and a collection Ay, .., A,, of disjoint subsets of T" satisfying:

(i) Prob{t e U™ Az} >1—¢

(ii) Prob{f = )|t =t} > 1 — ¢ for each k € J,, and t € A,
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(iii) For all i € N,
ui(2i(t); k) = ui2i(0r); 0k) — €

for each k € J,, and t € A;.

To understand Theorem 1, first note that § depends on ¢, the collection {e()}gco
and the collection A, but is independent of the distribution P. The theorem requires
that the measures of aggregate uncertainty (uf) and informational size (v}) be suf-
ficiently small relative to the variability of beliefs (Af). For any distribution P for
which these conditions hold, we can find an incentive compatible PIE allocation z(-)
and sets Aj, .., A, such that Prob{t € U A} ~ 1. Furthermore, Pg(f;|t) ~ 1 and
u;i(2i(t); Ok) > wi(z;(0r); 0) — € for each i whenever t € Ay.

If the collection A = {z(0)}sco in the statement of Theorem 1 has the property
that each z(0) is a strictly individually rational, Pareto efficient allocation for e(f),
then z(-) will satisfy XIR and X.E. More formally, we have the following result.

Corollary 1: Let {e(f) }sco be a collection of CIE’s and suppose that there exists
a strictly individually rational, efficient allocation for each PIE e(f). Then for every
g > 0, there exists a 6 > 0 such that, whenever P € Ag.r and satisfies

max pf < § min AY
1 1

max v < §min AY
(2 (2

there exists an allocation z(-) for the PIE ({e(0) }oco, 0,1, P) satistying XIR, XIC and
X.E.

A second consequence that immediately follows from Theorem 1 is the following
corollary.

Corollary 2: Let © = {64,..,0,}. Let {e(f)}sco be a collection of CIE’s and
suppose that A = {x(0)}gco is a collection of associated CIE allocations such that
z;(0) # 0 for each i and . For every ¢ > 0, there exists a 6 > 0 such that, whenever
P € Agyr and satisfies

max pl <6 miin AF

max v} < §min AY
(2 (2

there exists an incentive compatible allocation z(-) for the PIE ({e(0)}sco, 0,1, P)
such that for all : € N and all € ©,

Yrerui(2i(t); 0)P(t|0) > u;(z:(0);0) — €.

The lefthand side of the inequality, ;eru;(2;(t); 0) P(t]0), is agent i’s conditional
expected utility from the allocation z when the state of nature is . Thus, Corollary
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2 states that, if aggregate uncertainty and agents’ informational size are sufficiently
small relative to the variability of beliefs, we can find an incentive compatible allo-
cation that assures every agent in every state 6 an expected utility that is nearly as
large as his utility from the CIE allocation z(0).

The details of the proof of Theorem 1 and Corollary 1 are left to the appendix,
but we will sketch the proof of Theorem 1 informally. Suppose that A = {z(0)}yco
is a collection of CIE allocations and suppose that € > 0. For our purposes, we can
assume that z(0) is Pareto efficient for e(#). (If it is not, we can find a Pareto efficient
allocation that gives each agent higher utility than z in state #). We partition 7" into
m + 1 disjoint sets with Ay = {t € T|||P(:|t) — Iy, || < max; uf} for k =1,...,m, and
Ay = T\[Up>1A4]. In words, Ay, is the set of ¢t € T for which the posterior distribution
on O is close to the degenerate distribution that puts probability 1 on ;. Therefore,
Ag is the set of ¢t € T' for which the posterior is not close to Iy for any 6.

We begin with a PIE allocation y with y(t) = x(0x) for t € A, k = 1,...,m,
and y(t) = w (the initial endowment) for ¢ € Ay. When aggregate uncertainty is
small, the vector of agents’ information ¢ € T will, with high probability, resolve
most of the uncertainty regarding the state of nature . There are two consequences
of small aggregate uncertainty: the probability that ¢ € Ay is small, and for each
t € Ag, Po(6k|t) is close to 1. Since y(t) is efficient for the CIE e(6y), it follows that
Yrwi(yi(t); 0k ) Po(0k|t) is close to u;(z;(0); 0)) whenever t € Ay. As a result, the PIE
allocation y(-) is approximately efficient for most realizations of the signal vector.
However, y(-) is not incentive compatible in general.

Suppose that 7 receives signal ¢; and the other agents truthfully report ¢_;. It may
be the case that (t_;,t;) € A; while (t_;,t;) € Ag, j # k. Hence, ¢ receives x;(6;)
if he reports t;, while he receives z;(6y) if he reports t;. If x;(0;) results in higher
utility than x;(#;), agent i may have an incentive to misreport. To say that agent
1 is informationally small means that there is a low probability that the posteriors
on O given (t_;, ;) and (t_;,t;) put probability close to 1 on 6; and 6 respectively.
Thus, if an agents’ informational size is small, the expected gain to that agent from a
misreported his type goes to zero. In order to offset this (small) potential gain ¢ might
get from misreporting, we modify the bundle z;(6;) that i receives when t € Ay. If
agent i’s posteriors on © for different types ¢; and ¢, are different for any t; # ¢,
we can construct bundles z;(t) with the properties that (i) z;(t) is close to z;(6)) for
every ¢ and for every t € Ag,and (ii) the mechanism z(-) thus defined is incentive
compatible.

The fact that z;(t) is close to z;(0y) for t € Ay implies that ¢’s utility from z;(¢) is
close to his utility from x;(6x) and the conclusion of the theorem follows.
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5 Large Economies

In the presence of a large number of agents, we might expect agents to be informa-
tionally small. However, the presence of many agents by itself is clearly not enough
for agents to be informationally small. An economy with a large number of agents
who have no information, and one agent who is perfectly informed would provide a
trivial counterexample to any such conjecture.

The fact that one of the agents in the example above is informationally large even
though the economy is also large is not at all surprising given the asymmetry of the
agents. Even in the presence of a large number of symmetric agents, all agents may
be informationally large as the next example illustrates.

Example. Let the number of agents, n, be odd. Let © = {a, §} and let T; = {a, b}.
For each t € T, let a(t) = #{i|t; = a}. We now define P € Agxr as follows.

Pla,t) — G)n if a(t) is odd
Pla,t) = 0if a(t) is even
P(B,t) — (%)n if a(t) is even
P(3,t) = 0ifa(t) is odd.

It is straightforward to verify that P(a) = P(8) = 1/2 and P(t) = (1/2)" for each
t € T. Hence, the random variable ¢ has full support. Since P(alt) = 1 if a(t) is odd
and P(0[t) = 11if a(t) is even, the measure P exhibits zero aggregate uncertainty, so
that the agents’ signals completely determine the state of nature.

For our purposes, this example exhibits another intersting feature: while the
signals of the n agents together completely resolves all uncertainty, the signals of any
n — 1 agents resolve nothing. Indeed, the random variable § and the random vector
t; are stochastically independent for each i since

P(Oz|t_i,CL)P(t_i,CL) +P(()z|t_z,b)P(t_z,b) 1

Plalts) = e = > =Plo)
and

Thus, with probability 1, every agent will be able to “maximally” affect the pos-
terior on ©: the posterior probability distribution puts probability 1 put on one state
when he announces truthfully (the correct state if others also announce truthfully),
and will put probability 1 on the other state if he misreports his signal. Hence, even
in arbitrarily large, symmetric economies, informational smallness is not assured.
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There are circumstances, however, under which a large number of agents will
ensure informational smallness. Roughly speaking, if any single agent’s information
adds little to the aggregate information, agents will become informationally small
when the number of agents increases. We investigate next a replica framework in
which this sort of substitutability of agents’ information naturally occurs.

5.1 Replica Economies

Let {e(6)}oco be a collection of complete information economies and recall that J, =
{1,2,..r}. For each positive integer r and each 6, let €"(0) = {wis, wis (-, 0) }i,5)en %,
denote the r replicated Complete Information Economy (r-CIE ) corresponding to
state 6 satisfying:

(1) wis = w; for all s € J,
(2) uis(+,0) = uy(+,0) for all s € J,.

For any positive integer r, let 77 = T x --- x T denote the r-fold Cartesian
product and let t" = (¢, .., t",.) denote a generic element of 7" where t', = (t7,, .., t..).
If P € Agxrr, then ¢ = ({e"(0)}oco,0,t", P") is a PIE with nr agents. If A =
{z(0) }oeo is a collection of CIE allocations for {e(0)}sco, let A" = {z"(0) }4co be the
associated “replicated” collection where x" () is the CIE allocation for e” () satisfying

z; (0) = x;(0) for each (i,s) € N x J,

Definition: A sequence of replica economies {({e"(8)}oco, 8, 7", P")}>2, is a con-

ditionally independent sequence if there exists a P € Ag, , such that

(a) For each r, each s € J, and each (0,14, ..,t,) € © x T,

Prob{f = 0,7, = t1, 5, = ta, ..., = tu} = P(6,t1, 12, ... tn)

oy lns

(b) For each r and each 6, the random vectors

(71017 517---7 ;1)7“7(~§r7 grv"'vt;r)

are independent conditional on the event 6=0. R
(c) For every 6,0 with 6 # 6, there exists a t € T' such that P(t|0) # P(t|0).

Thus a conditionally independent sequence is a sequence of PIE’s with nr agents
containing r “copies” of each agent i € N. Each copy of an agent i is identical, i.e., has
the same endowment and the same utility function. Furthermore, the realizations of
type profiles across cohorts are independent given the true value of . As r increases
each agent is becoming “small” in the economy in terms of endowment, and we will
show that each agent is also becoming informationally small. Note that, for large r,
an agent may have a small amount of private information regarding the preferences of
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everyone through his information about . We now state our main result for replica
economies.

Theorem 2: Let {e(f)}pco be a collection of CIE’s such that each u;(-;6) is con-
cave, and suppose that A = {x(6)}sco is a collection of associated CIE allocations
with 2(6) strictly individually rational and efficient for e(6). Let {({e"(8) }oco, 0, 1", PT)}2,
be a conditionally independent sequence. Then for every € > 0, there exists an integer

7 > 0 such that for all r > 7, there exists an incentive compatible allocation z" for
the PIE ({e"(0)}oco,0,t", P") satisfying XIR, XIC and X_E.

It is important to point out that Theorem 2 is not an immediate application of
Theorem 1. As the economy is replicated, agents become informationally small and
aggregate uncertainty converges to zero. In addition, the measure of variability is
independent of r, the size of the replication. When Corollary 2 is applied to the
r-replicated PIE ({e"(0)}¢co,0,t", P"), the number § can depend on r. To prove
Corollary 3, we must show that  can be chosen to depend only on the collection A
and not on r.

6 Extensions

1. In the presence of negligible aggregate uncertainty and informationally small
agents, we prove the existence of nearly efficient, incentive compatible allocations.
The assumption of negligible aggregate uncertainty is not a necessary condition for
the existence of approximately efficient incentive compatible allocations, however.
Consider, for example, the case in which the vector of agents’ types ¢ is indepen-
dent of the state 6. In this case, the agents’ information can be ignored with no
loss in efficiency and a simple incentive compatible mechanism satisfying individual
rationality and (exact) ex post efficiency is available. Simply choose an allocation T
that is individually rational and efficient for the economy in which agent i has initial
endowment w; and utility w;(-) = >, u;(+;8)Po(f) where Pg is the marginal measure
on O. Now define the mechanism z(¢) =7 for all t € T..

In this example, aggregate uncertainty is nonnegligible if Pg is not degenerate.
Furthermore, the variability A = 0 for each i. Therefore, examples of this kind are
not covered by Corollary 1 even though an incentive compatible mechanism yielding
exact ex post efficiency exists. In Mclean and Postlewaite (2001), we present a more
general approach to the problem addressed in this paper. In that paper, we present a
more general definition of informational size that allows for P(t) = 0 for some ¢t € T'.
Using this extended definition, we can prove that all agents have zero informational
size if and only if the information structure exhibits a property that Postlewaite and
Schmeidler (1986) called nonezclusive information (NEI). An information structure
satisfies NEI if for all i € N, Pg(-|t) = Pg(:|t_;) whenever P(t) > 0. In words,
an information structure satisfies NEI if the distribution on ©, conditional on all
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agents’ information, is the same as the distribution conditional on all but one agent’s
information. When P satisifies NEI, then there exists a a PIE allocation satisfying
incentive compatibility, ex post individual rationality and exact ex post efficiency.
The case in which ¢ and 6 are independent is a special case of NEI and all agents
have informational size zero. When agents have small (but positive) informational size
in the general setup, then we show in McLean and Postlewaite (2000) that Theorem 1
and Corollary 2 can be extended for appropriately generalized definitions of incentive
compatibility, ex post individual rationality and approximate efficiency.

2. When Po(-|t;) # Po(-|t;), we can find punishments depending on i’s announce-
ment and the estimated state that gave ¢ a strict incentive to truthfully announce
his type. When Pg(:|t;) = Po(-|t;), we may still be able to construct more elaborate
punishments that might provide agents with a strict incentive to truthfully reveal
their types. These punishments are based on other conditional distributions associ-
ated with a measure P € Agyr. For example, we could use Pr_,(+|t;), the conditional
distribution on T"; given t;. If Py (-|t;) # Pr_.(-|t;) for each i and t;,t; € T}, then we
can find punishments z;(t_;,t;) with the property that

t_; t_;

These punishments peg payoff of agent i on the complete vector of announced types,
rather than simply on his announced t¢; and some “estimate” of the state . We
should note, however, that when the number of agents is large relative to the number
of states, the vectors of punishments that depend on ¢_; are commensurately larger
than punishments depending on 6. In other words, the mechanisms constructed in
this way are somewhat more complicated than those constructed in this paper.

We could even use the conditionals Pgoyx7 . (:|t;) on © x T_; to construct punish-
ments. Indeed, these are the best in the sense that it is possible for Poyr_,(-|t;) #
Poxr ,(-|t;) each i and t;,t; € T; even if Pg(-|t;) = Po(-|t}) for each i and ¢;,t, € T;
and Pr ,(-|t;) = Pr_,(:|t;) for each i and t;,t, € T;. These issues are discussed more
thoroughly in McLean and Postlewaite (2001).

7 Related Literature

1. As mentioned in the introduction, our work is closely related to that of Cremer
and McLean (1985,1989). Those papers, and subsequent work by McAfee and Reny
(1992), demonstrated how one can use correlation to obtain full extraction of surplus
in certain mechanism design problems. The key ingredient there is the assumption
that the collection of conditional distributions {Pr_,(:|t;)}+,er; is a linearly indepen-
dent set for each i (where Pr_,(-|t;) is the conditional distribution on 7"; given t;).
Linear independence implies that the elements of the collection { Pr_,(+|t;) }+,e7; must
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be different, but they can be arbitrarily “close” and full extraction will be possible.
In their quasilinear framework, Cremer and McLean use the full rank condition (or
a weaker cone condition) to construct rewards and punishments z;(t_;,t;) with the
following features:

Z Zi(t_,‘, ti)PT,i (t_z|tz) =0

t_;

and
Zzi(t_i,t;)PTfi(t_Jti) < 0if t; 7é t;

t_g

These reward /punishments can then used to ensure incentive compatibility.

In the present work, the collection { Po(:|t;) }+;,er; need not be linearly independent
and we can always find rewards and punishments z;(¢t_;,t;) satisfying the weaker
property that

> z(0,t:) Po(6lt:) > > 2(0,1) Po(0lt:) if t; # ).
0

0

However, the “closeness” of the members of {Po(+|t;) }i,er; is an important issue. If
the posteriors { Po(+|t;) }+,er, are all distinct, then the incentive compatibility inequal-
ities are strict but the inequalties become weaker as the posteriors get closer. The
difference in the expected reward from a truthful report and false report will be very
small if the conditional posteriors are very close to each other. Our results require
that informational size and aggregate uncertainty be small relative to the variation
in these posteriors.

Weak incentives for truthful reporting are not a serious problem in the surplus ex-
traction problem studied by Cremer and McLean since the rewards and punishments
can be rescaled so that a false report results in a large negative expected payment.
Of course, the punishments themselves may then become very large.

However, such rescaling is not possible in our framework for two reasons. First,
we deal with pure exchange economies where the feasibility requirement limits the
size of punishments. Second, we do not restrict attention to quasilinear preferences.
Since agents may be risk averse, punishments and rewards that have small (or zero)
expected value can have large negative welfare effects.

2. Gul and Postlewaite (1992) considered a model similar to that in this paper in
which an economy with asymmetric information is replicated. They show that, when
an economy is replicated sufficiently often in their framework, an allocation that is
approximately Walrasian for the replica economy will be incentive compatible.

Our work differs from Gul-Postlewaite in several important ways. First, unlike
this paper, Gul-Postlewaite dealt only with replica economies. They did not formal-
ize the notion of informational size (although they did discuss the idea informally in
the context of the replication process considered there). An important part of our
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paper is the formalization of informational size, independent of agents’ endowments
and utility functions. This notion of informational size allows us to determine the cir-
cumstances in which asymmetry of information is important in general frameworks.
While the informational size of agents decreases when an economy is replicated, the
applicability of the concept is not limited to that case. Our theorem can be inter-
preted as providing limits on the informational rents due to private information when
agents are informationally small. This implies that in situations in which there is a
small number of agents with similar, but not identical information, informational size
captures the degree to which the asymmetry of information leads to inefficiency.

In addition to the formalization of informational size, the model in the present
paper treats an important class of economies excluded by Gul and Postlewaite. In
the economies analyzed there, agents’ utilities may depend on the state 6, but an
individual agent’s utility cannot be independent of his own type (i.e., his signal).
This eliminates from consideration problems in which the uncertainty stems from
characteristics of the object(s) being traded. If, for example, the only uncertainty
pertains to the quantity of oil in a given tract to be traded, agents’ utility naturally
depends only on the state 6.1

Finally, Gul and Postlewaite demonstrate the existence of an incentive compatible,
nearly Walrasian allocation for sufficiently large replica economies. In this paper, we
show that a large class of allocations (including Walrasian allocations) can be approxi-
mated by incentive compatible allocations when agents are sufficiently informationally
small.

3. Our measure of informational size is motivated in part by the concept of nonexclu-
sive information introduced in Postlewaite and Schmeidler (1986) which was shown
to be a sufficient condition for the implementation of social choice correspondences
satisfying Bayesian monotonicity. An economy with asymmetric information exhibits
nonexclusive information if we can exclude any single agent’s information and use only
the information of the remaining agents to predict the economically relevant state of
nature. Loosely speaking, our measure of informational size will be the “degree” to
which an agent’s information affects the prediction of the economically relevant state
of nature, given other agents’ information. The case of nonexclusive information is
precisely the case in which each agent has zero informational size.

4. In a mechanism design framework, Al-Najjar and Smorodinsky (2000) study the
circumstances under which an agent is pivotal in a mechanism in the sense that an
agent can nontrivially affect the outcome of the mechanism through his reports. They
provide conditions under which the proportion of agents who are pivotal must go to
zero as the number of agents goes to infinity. Our measure of an agent’s informa-

Tt should be noted that our model does not just allow for the case that agents’ utility functions
depend only on the state 6, but requires that they depend only on 6, and not also on their own
signal.
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tional size is related somewhat to the notion of pivotal presented in Al-Najjar and
Smorodinski, but differs in several ways. Our notion of informational size measures
(loosely speaking) the degree to which an agent is “pivotal” with respect to the con-
ditional distribution on states. In the setup of Al-Najjar and Smorodinski, an agent
is pivotal with respect to a particular mechanism. For example, in a voting model,
we can compute the probability that an agent will affect the outcome under some
voting rule, say majority rule. However, the probability of affecting the outcome
might be quite different if the voting rule were unanimity rather than majority rule.
Our definition of informational size depends only on the information structure, and
is independent of any particular mechanism.

8 Discussion

1. We were motivated in this paper by the question of how an agent’s informational
size would affect the degree to which efficient reallocation was possible. Our analysis
depends on the construction of incentive compatible mechanisms that generate nearly
ex post efficient allocations. We should emphasize that, while this provides a relatively
clear understanding of the degree to which inefficiency will stem from informational
asymmetries alone, it does not shed much light on how much inefficiency will result
from asymmetric information within a specific institutional setting. The fact that an
optimally designed mechanism will result in a nearly efficient outcome for a particular
informational structure tells us little about how a specific institution, for example an
anonymous market, will perform. We believe that it is important to identify those
institutions that will do well, relative to the theoretical bounds we establish, in the
face of uncertainty.?

2. Suppose that ({6(9)}969,5, t, P) is a PIE. If some agent is “informationally
large,” then our Corollary 1 will generally not be useful in determining whether or
not an allocation satisfying the desired efficiency, individual rationality and incentive
properties will exist for this PIE. However, the following example suggests a way
to improve the theorem to encompass certain problems with informationally large
agents. Consider the following simple replica example. There are two equally likely
states of nature, 6; and 6,. In the nth economy, there are n agents, each of whom
receives a noisy signal of the state. That is, each agent will receive a signal s; or ss,
with P(s;]6;) = ¢ where .5 < ¢ < 1. Agents’ signals are i.i.d. conditional on the state.
When n is large, the economy will exhibit negligible aggregate uncertainty and agents
will be informationally small, both consequences of the law of large numbers. We
could then use the vector of announced types t to estimate the probability distribution

2 Along these lines, Krasa and Shafer (1998) analyze a related notion of informational smallness
in a Walrasian market.
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over O, and choose an allocation that is approximately optimal for that the most likely
state; this is exactly what we did in Theorem 2.

Suppose now that we alter this example by letting agent 1 receive a perfect signal
of the correct state, while all other agents continue to receive the noisy signal. In this
case, Pg(+|t) will be either (1,0) or (0, 1), depending only on agent 1’s signal, since his
is the only non-noisy signal. It is clear that with this modification, our Theorem 2 no
longer applies. Aggregate uncertainty will still be negligible but the assumption that
agents are informationally small no longer holds since agent 1’s announcement alone
determines whether the conditional distribution on © is (1,0) or (0,1). However, it
is important to note that this does not preclude our finding an incentive compatible
allocation that is individually rational and ex post nearly efficient. A mediator could
simply ignore agent 1’s announcement and estimate the distribution on © using only
the other agents’ announcements. When this distribution puts probability close to 1
on some state 6, the allocation for that state would be assigned. In this way, we can
construct an incentive compatible allocation that is individually rational and nearly
ex post efficient despite the fact that agent one is not informationally small.

This example suggests a way to extend our results. Our proof uses the Bayesian
posterior given the agents’ announcements as an estimate of the state of nature. The
above example illustrates how one could find a mechanism with the desired properties
using a subset of the agents’ announcements. More generally, one could estimate the
state of nature using a general function of the agents’ announcements. This is a topic
for further research.

3. We assumed that both © and 7" were finite. In general, it should be possible
to extend the results to the case in which © is a compact subset of R!. If the utility
functions are uniformly continuous in #, one could take a finite partition of © and
use agents’ announcements to estimate the most likely cell in the partition. For each
estimated cell, one could prescribe a given allocation for that cell, with appropriate
punishments to induce truthful announcements. There would be an additional effi-
ciency loss in that the allocation so constructed would be constant across any cell
in the partition, but this utility loss can be made arbitrarily small by constructing
increasingly finer partitions.

The situation with respect to 7" is much more delicate, however. In our construc-
tion, the ability to give any agent an incentive to announce his type truthfully depends
on the variation in the distributions Pg(-|t;) and Pg(:|t;) on ©, conditional on different
types t; and t;. If the T} are intervals and the conditionals Pe(:|t;) are continuous in
t;, then Po(-|t;) and Pe(-|t;) will be close when t; and ¢; are close. Hence, the required
“balance” between informational smallness, aggregate uncertainty and variability in
the conditional distributions is more complicated. This is also a problem for further
research.

4. There is a possible generalization of our results related to the previous point.
Consider a PIE allocation that satisfies the assumptions of Theorem 1. Now alter
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the PIE in the following way. Choose an agent i and some type ?; for that agent and
suppose that his signal ¢; is replaced by two signals, ¢; or ;. Furthermore, suppose
that the new information structure P is defined as

B > P 9 t—iy.[?i
PO,t_;,t)) = PO,t_;t]) = P,t-it)

P(O,t_;,t;) = P(0,t_;t;) for all @ and t_; and all t; # {;.

for all 0 and ¢_;.

That is, we have taken the original information structure and altered it by separating
one signal for agent ¢ into two different signals in a way that has no effect on the
information conveyed by those signals. In particular, ]5@(-|t_i,t§) = ]5@(-|t_i,t§’ ) =
Po(-|t_;, ;) for all t_; and Po(-|t}) = Po(-|t!) = Po(:|f;).

One can think of this as agent ¢ flipping a coin after he receives signal ¢; and
labeling the outcomes t; = (#; and heads) and ¢! = (¢; and tails). For this altered
PIE, the assumptions of Theorem 1 will generally not hold since min; Af = 0. Clearly,
however, this alteration should not affect what outcomes can be approximated. We
can, in fact, still approximate an allocation by treating the two signals ¢, and ¢! as
a single signal, ¢;. The crucial feature of this simple splitting example is the fact
that Po(:-|t_;,t)) = Po(-|t_;,t") for all t_;. Whenever this is true, we can collapse
types into equivalence classes and treat each class as a single type. With appropriate
modifications of the definitions of informational size and aggregate uncertainty, we
would expect to be able to prove a result analogous to our Theorem 1 when each
agent’s type set can be partitioned so that, within each element of the partition, the
types are sufficiently similar.?

5. We used the revelation principle to analyze the constraints imposed by incentive
compatibility on the set of incentive compatible utility vectors. As is often the case
with revelation games, there are additional equilibria in our mechanism different from
the truthful reporting equilibrium. We do not view this as problematic since we do
not propose the mechanism as one to be used in practice; we use the revelation
mechanism simply to determine the degree to which incentive constraints limit the
utilities that can be obtained. The issue of multiplicity of equilibria in settings such
as ours has been addressed, however. Postlewaite and Schmeidler (1986) and Jackson
(1991) demonstrate how revelation mechanisms can be augmented so as to eliminate
nontruthful equilibria in a large set of problems. While we do not do so here, there
is reason to expect that those techniques could be similarly applied to our setting.

3We thank Ichiro Obara for making this point.
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A Appendix

A.1 Preliminary Definitions and Lemmas:

Throughout this appendix, we will assume that |©| = m. Suppose that A = {z(0) }¢co
is a collection of CIE allocations such that, for each 6 € O, the allocation (z;(0));en
is a CIE allocation for e(f) with z;(6) # 0 for all § € © and for all i. For each n > 0,
let

c(n, A) = minmin{u, (2;(0); 0) — ui(5:(0, 7, A)z:(6); 0) }

where

Bi(0,n, A) = min{F]1/2 < B < 1,u;(x;(6);0) — w;(Bz;(6);6) < n}.

Since z;(#) # 0 for each i and each 6, it follows from the monotonicity assumption
that ¢(0,.4) = 0 and that ¢(n,.A) > 0 whenever 1 > 0.

Finally, recall that
AP = min min d(Po(-|t;), Po(-|t)))?

t, €T; tgGTi \ts

where 3
a
d(av ﬂ = ‘ -
)= el ~ T,
for each o, 3 € Ag and || - |[2 denotes the 2-norm.

Lemma A.1: Let {e(0)}sco be a collection of CIE’s and suppose that P € Agxr
with conditionals Pg(-|t;) € Ag for all i and t; € T;. Furthermore, suppose that A =
{z(0) }oeo is a collection of CIE allocations such that, for each 6 € ©, the allocation
{z;(0) }ien is a CIE allocation for e(6) with z;() # 0 for all  and for all i. For each
n > 0, there exists a collection {{z;(0,t)},0)er <o ticn satistying:

(i) z:(6,t;) € §Rﬂ and ) . y(2i(0,t;) —w;) < 0forallt; € T; and all 6 € ©.

(i) w;i(z:(0);6) > u;(2:(0,1;);0) > u;(x;(6);0) —n for all t; € T; and all 6 € ©

(iii) for each ¢;,t; € T; with t; # ¢,

S i 0:10:) w0, 00500 PoOt) 2 S

Proof: Suppose that P € Ag.r with conditionals Py (-|t;) € Ag for all i and
t; € T;. Next, define

min AY
(2

o Palll)
az(97t’) ||P@(|tz)||2

24



for each 6 € ©. Hence,

AP = i t) — oG- t 2.
i = min min floi(, ) — a5l
Let A = {z(6)}x=1,..m be a collection of CIE allocations with z;(#) # 0 for all ¢
and for all i. If » = 0, then ¢(7n,.A) = 0 and the result is trivial (let z;(0,t;) = z;(9)).
So suppose that 7 > 0. For each i, ¢; and 0, there exists a number 7;(6,¢;) > 0 such
that

ui((1+7:(0,t:))5:i(0,n, A)wi(0); 0) — ui(B:(0,n, A)z:(0); 0) = c(n, A)ai (0, t;).

[This is possible because 0 < ¢(n, A);(0,t;) < c¢(n, A) and G;(0,n, A)x;(6) # 0.]
Furthermore, (1+ 7;(0,1t;))5:(6,n,A) < 1. [If (1+7,(6,t))5:(0,m, A) > 1, then mono-
tonicity implies that

wi(1+75(0,1))8:(0, 1, A)ei (6); 6) — wi(B;(0,m, A)ai(0):0) > wi(wi(6);0) — wil(Bi(0,m, A)(6); 0)
> c(n,A)
> e(n, A)ai(6, ;)

a contradiction.] Defining

zi(0,t:) = (1 + 7:(0,:))8:(0,m, A)z:(0)
it follows that the collections {z;(0,t;)}+, x satisfy
z(0,t;) € R and Y (2(6,1;) —w;) <0
ieN

and part (i) is satisfied. From the definitions of 3;(6,7,.4) and z;(0,t;) and the fact
that

we conclude that
u;(zi(0);0) > ui(2:(0,:);0) > wi(5;(0,m, A)zi(0); 0) > ui(z:(0);0) —n

and part (ii) is satisfied. Finally, part (iii) follows from the observation that

> [ui(z:(0,1:); 0) — wi(z:(6, ,); )] Po (0]t:)

— Z[c(n,A)ai(H,ti) —c(n, A)ai(0,t;)] Po (0]t:)
= c(n, A) Z[Ozi(g, t;) — i (0, 1) Po(0|t;)

0
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= c(n, A)l|Po(-[t)l2 Y [ei(B, t:) — (B, t)]u(6, 1:)

0

= AN o, 1y — o e
MAP,

>
= o m

A.2 Proof of Theorem 1:

Let {e(f)}oeco be a collection of CIE’s and suppose that P € Agyxr with conditionals
Po(:|t;) € Ag for all i and t; € T;. Furthermore, suppose that A = {x(6)}sco is a
collection of CIE allocations such that, for each § € ©, the allocation {x;(0)};cn is a
CIE allocation for e(f) with z;(6) # 0 for all 6 and for all i. Choose € > 0. Let

K, (A) = max mlax{uz(z w;; 0)}

JEN

and choose ¢ so that (e A) .
cle €
0<dé<mn{———>m— — -1
N AN
(Note that K;(A) > 0 since 3y w; € R, .) Finally, define pf = max; uf, 0F =
max; v} and AY = min; A and suppose that,

P 6AP

SAY .

1%

/:LP

IA A

For each k, let
Ap = {t € T|[|Po(-|t) — In, || < 4"}

and let
Ag = T\[ULAg].

Since AP < 2, it follows that

P p_Ll,p_2
oo < 0N < 3A < 3
and the collection IT = {Ay, Ay, .., A, } is a partition of T
Applying Lemma A.1, there exists a collection {{z;(6,t;) } 0.t )coxr, }icn satisfying:
(i) z:(0,¢;) € RL and Yoien(2i(0,t;) —w;) <0 forall t; € T; and all 6 € ©.
(i) w;i(z:(0);6) > ui(2:(0,1;);0) > u;(x;(6);0) — e for all t; € T; and all § € O
(iii) for each t;,t; € T;

D (0, 1):6) = w0, £):6)] Po(6ts) = S 2 A7

0
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Next, let z(-) be the PIE allocation for ({e(6)}sco, 8,1, P) defined as

= w; ift € Ao.

Before proving that the PIE allocation z(-) is incentive compatible, we first prove

two claims.

Claim 1. For each i and each t; € T;,

> " |Po(bi|t:) — Prob{f € Aylf; = t;}] < 24",
k

Proof of Claim I: First, note that

Po(Oult:) = > Pol(lt_its) P(t_ilt) + > POkt

/=1 t_; t_;

:(t,i,;il)EAg H(t—iti)EAD
and ) )
Prob{t € Ault; =t} = > P(t_ilty).
t_g
Ht—isti)EAR
Therefore,

P@(9k|tz) — PI‘O‘b{lf~ S Akﬁz = ti}

NE

ST Po(ilt_it)Ptoilt) | — | Y Pltolt)| +

t_; t_;
(t_g,ti)EA, | (t—isti) €A,

~
Il
—

NE

~
Il

1 t_g = t_;
Ht_sti)EA, Ht—iyti)EA,

+ 1 D POk tilt)

t_;
H(t—isti)EAp

NE

~
Il

1 t_g t_;
H(t—s,ti)EAp H(t—s,ti)EAD

27

> Po(Bklt—it)P(toilts) | — D 1o (6) > Pt
(=1

—ilti)

2.

t—;
H(t—isti)EAD

—ilti)

> POl t) = Io,(0R)Pt_ilts) | + | > POk t_ilty)

PO, t_i|t:)



where the last equality uses the fact that Ip,(0x) = Iy, (6,) for each k and /.
Hence,

> " |Po(By|t:) — Prob{t € Aylt; = t:}]
k=1

Yo > D NP@tt) — I, )Pt + Y Pt

<
/=1 t_; k=1 t_;

H(t—iti)EA, H(t—isti)EAp
< AP0 ) P+ > Pt

(=1 tfi tfi

H(t—iti)EA, H(t—iti)€EAp

< AP+
< 2p"

and the proof of Claim 1 is complete.

Claim 2: For each i, t; and ¢,

> Ptlt) <"

k=1 t_;
H(t—iyti)EAL
(t—ist;) ¢ AU Ag

Proof of Claim 2: Choose t;,t; € T; and define
U = U {t_z € T_,|(t_,,tl) S Ae and (t_,,t;) € Ag U Ao}

Ledm
and
D = {1, € T_i| IPol-ltsts) — Pollt_tl)]| > 97},
Since .
k=1 t_;
H(t—iyti ) EAL
(t,i,t;)QAkUAO
and

Prob{t € ®|t; = t;} < ¥,
it suffices to prove that ¥ C ®. Suppose that t_; € U but t_; ¢ ®. Then there exist
g,k € J,, with k 7é ¢ such that (t_i,ti) < Ae and (t_i,t;) < Ak and ||P@(|t_z,tz) —
Po(-|t_i,t)|| < oF. Since AT < 2, it follows that
1

2
P < SAY < AP < =2
B> 3% =3
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and that

~P P 1 P 2
Therefore,
o, = Ig || < |[Po(-[t—i,ti) = Io,|| + [|Po(-[t—i,t;) — Po(-|t—i &)l + [[Po(-|t—i, ;) — Io||
< pP 4P 4P
2
< 35
= 2

an impossibility. This completes the proof of Claim 2.

Next , we observe that

ui(z(1);0) < Ki(A)
for all t € T and all 8 € © since
wi(2i(t); 0k) = wi(2:(Ok, t:); Ok) < wi(z4(0);0) < K1(A)
ifte Ak and
Uz(Zz(t), Gk) = u,(wz, Gk) < Kl(A)

t € Ap.
To prove incentive compatibility, note that

DD izt ti);0) — wilzi(ti, t1); O P(B, tilt:)
= D luilmtint); 0) — wiz(t i, £); )] P(6, i)

t—;
H(t—i,ti)EAQ

= :(tfif;iljeAk ’

> 2K (Al + )0 D w20k 1) 0) — wilzi(t i, £7); 0)1P (6]t i, t:) P(tilts)

~
=
|
-
~
S
NP
2
ES
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[ (26 (k3 13); 0) — w200 1) 06)) | Y Pltilts)

t_g
H(t—isti) EAR

[i(2i(0h; £7); O) — wilzi (s, 17); On) P (] i)

NE

= 2K (A + "]+

e
Il
—

(]

m
2
k=1 t_;

H(t—s,ti) EAR

> 2K (Al + 7+ 2071+ w20k 8); k) — wilz:(t i, 17); 04)] Po (k] t:)
k=1
+Z Z [wi(2i (0 1)); 0) — wi(zi(t_s, 1)): 0x) P (t_;|t:) (applying Claim 1)
(t, )GAk
(t—ist )¢AkUA0

> e, A) —2 AP — 2K, (A)[44" + 77] (applying Claim 2)

c(e, A) ce, A p
> _ G S 7
= 2\/_ 216(A) [520\/EK1(A)A ]

= 0.

To complete the proof of Theorem 1, we must show that z(-) satisfies conditions (i),
(ii) and (iii) in the statement of the theorem. To prove (i), note that Prob{t € Ag|t; =
t;} < it for each i and t;. Hence,

Prob{f € A} = ) Prob{f € Ag|f; = ;} P(t;) < i < 6A" < %AP <e
€T
from which we conclude that
Prob{t € Ul ;Ay} =1 —Prob{t € Ag} >1—¢.
To prove (ii), suppose that ¢t € Ay. Since
[1— Po(6ult)] + 3 Po(6elt) = | Po( 1) — o | < 4" < 8A” < SA” <<,

£k

it follows that
1—¢ S P@(9k|t)

Finally, (iii) is satisfied since the construction of z(-) implies that for all i € N,
i (7 (0r); O) > wizi(t); O) > ui(wi(Ok); ) — €

whenever t € Ay,.
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A.3 Proof of Corollary 1:

Let {e(f)}oco be a collection of CIE’s and suppose that A = {x(0) }sco is a collection
where, for each 0, x(6) is a Pareto efficient, strictly individually rational CIE allocation
for the CIE e(f). Let

K (A) = max mlax{uz(z w;; 0)}
and let
Ky(A) = min m()in[u,-(a:,-(@); 0) — wi(wy; 0)].

Since each z(0) is strictly individually rational for the CIE e(f), it follows that
K5(A) > 0. Choose € > 0 and choose € so that

KQ(A) 15

O<e<m T w1

Applying Theorem 1, there exists a & > 0 such that, whenever P € Agyr and

max jiF < émin AY
1 1

max §(§ nAP

i

there exists an incentive compatible PIE allocation z(-) for the PIE ({e(0) }4co, 0.1, P)
and a collection Ay, .., A,, of disjoint subsets of T" such that Prob{t € Uj" | A} > 1—¢
and for all k =1,...,m and all t € Ay,

(i) Prob{f = Ol =t} >1—¢
(ii) For all i € N,
ui(@; () O) = ui(2i(t); O) = wizi(On); 6k) — €.
If t € Ay, for some k > 1, then Pg(0)|t) > 1 — ¢ implies that
|1Po(-[t) — In,|| = [1 = Po(0ult)] + > Po(felt) < 2¢
4k

To prove XIR, suppose that t € A, and note that

D uizi(t); 0) — uiws; 0)] P(6]t) D [wilzi(t); 00) — i(wi; 00)] Po (6elt)

0 ¢
ui (2 (t); Or) — wi(w;; 0;) — (2K1(A))(28)
wi(;(0k); 01) — u;(w;; 0) — € — 4K, (A)é

K3(A) — (4K (A) +1)e

VoIV IV IV

31



Hence, z(-) satisfies XIR.
To show that z(-) satisfies X.E, let £ = U}"; A and note that

- - m N e
PI’Ob{t € E} = PI’Ob{t € Uk:lAk} Z 1-¢ Z 1— m Z 1—e.

Now suppose that y(-) is a feasible PIE allocation and that

D lui(yi(t); ) — wil=:(t);0)] P(6]¢) >

0

for each ¢ € N. Since y(-) is a feasible PIE allocation, it follows that
ui(yi(t);0) < Ki(A)

for all 7,t and 6. If t € Ay, for some k € J,,, then for each i € N, it follows that

e < [wi(yi(1):0) — wilz:(t);0) P(O]t)

< (2K1(A))(28) + ui(ya(t); Or) — us(2i(2); Or)
= 4K (A)E + [ui(i(t); Or) — wilzi(Ok); On)] + [wizi(Oh); O) — wi(zi(t); 0h)]
< AK(A)E + [ui(yi(t); 0p) — us(z5(k); 0)] + €

Therefore,
0<e—4K(A)E —¢& < [ui(yi(t); O) — ui(z;(0k); Or)]

for each i, contradicting the assumption that {z;(0x)}icn is Pareto optimal in e(6y).
Therefore, t ¢ E = UJ" | A;, and 2(-) satisfies X.E.

A.4 Proof of Theorem 2:

Let {({e"(6)}oeo, 6,7, PT)}>2, be a conditionally independent sequence and suppose
that each u;(-; ) is concave.

Step 1:

For each t" € T", let ¢(t") denote the “empirical frequency distribution” that ¢
induces on 7. More formally, ¢(¢") is a probability measure on 7" defined for each

7 €T as follows:
|{S€ ‘] |( 1,89 ns) _7-}|

r

e(t")(1) =

(We suppress the dependence of ¢ on r for notational convenience.)
Claim: For every p > 0, there exists an integer 7 such that for all » > 7,

pPT PT
st S p and lui,s < p-
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Proof of Claim: Choose p > 0. Applying the argument in the appendix to Gul-
Postlewaite(1992) (see the analysis of their equation (9)), together with the definition
of ¢ and the law of large numbers, it follows that there exists A > 0 and an integer 7
such that for all » > 7,

llo(t") — Pr(-10k)|| < A= ||P5(|t") — Iy, || < p/2 for all t"and k > 1,
llo(t" s, t:) — @(t s, to)|| < A/2 for all t;,¢; € T; and all t"and all 4,
and
Prob{||o(t") — Pr(-|0:)|| < A/2|E, = t;,0 = 6} > 1 — p for all t;,t, € T; and k > 1.

Choose t;,t; € T;, k > 1 and r > 7. Then

Prob{|| 5 (17, t:) — P (s, )] < plti, = 15,0 = O}
> Prob{|lp(f;,, t:) — Pr(:|0k)|| < A/2 and [[o(t7;,, ;) — Pr(-|0w)]] < Alt;, = 5 Ok
> Prob{[|p(f" . t:) — Pr(:16)]| < A/2 and [|p(F . 1) — (s 2] < A/21E, = £:,8
= Prob{||p(t";,. t:) — Pr(-|0k)|| < A/2 |tis=ti,9=9k}
> 1—p
Hence,

PrOb{||PT(|t—zs7 ) PT(|t—zsv z)||<p|t _tl}zl_p

and we conclude that l/ " < p. Since

H,—/

o (#")=Pr(10)| < A/2 = [lo(t")=Pr(|0)| < A= [P (-[t")— 1o, || < p/2 < p for all 7,

whenever r > 7 and k > 1, it follows that
Prob{|[P5 () = Io || < plfl, = t:,0 = 6,}

> Prob{||p(f") — Pr(-|6k)|| < M/2lt;, = t;,0 = 6x}

> 1—0p.

Hence,

> Prob{||P5(-[I") = g, |l < plff, = t:} 21— p

and we conclude that p), < p.
Step 2:

For a conditionally independent sequence,
Pé('|ti,8) = PG('|ti,S)
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for all r and all ¢, € T;. In particular, P§(-|t;s) is independent of r and it follows
that
AP — AP

for all r. Furthermore, AY > 0 since P € A}, 1.
Step 3:

Claim: Suppose that A = {z(0)}sco is a collection of CIE allocations such
that, for each 6§ € ©, the allocation {z;(0)},cn is a CIE allocation for e() with
z;(0) # 0 for all  and for all i. For every ¢ > 0, there exists an 7# > 0 such that,
for all » > 7, there exists an incentive compatible PIE allocation z"(-) for the PIE
({eT(H)}gee,g, ", P") and a collection B, .., B!, of disjoint subsets of T" such that

m

Prob{{" € U | Bi} > 1 —¢ and, for all k € J,,, and all t" € B,
(i) Prob{f = G|t =t"} > 1—¢
(ii) For all i € N,

wi(@i(0k); Ok) = wi(2(¢); 0k) = wi(i(Or); k) — €

Proof of Claim: We will sketch the proof since the details, while notationally
cumbersome, are identical to those in the proof of Theorem 1. Suppose that A =
{z(0) }seco is a collection of CIE allocations such that, for each 6 € ©, the allocation
{z;(0) }ien is a CIE allocation for e(#) with z;(0) # 0 for all  and for all i. Choose
¢ > 0. As in the proof of Theorem 1, let

K, (A) = max mlax{uz(z w;; 0)}
jEN
and choose ¢ so that (e A) .
c(e €
0<é<min{——="—t— - -}
i R () 2 3
Finally, define 4" = max; ,uf ., DP = max; l/fsrand A" = min, Af .. Applying
steps 1 and 2, there exists an 7 such that for all r > 7,
P < GNP = AT
pr < SN = oA .
For each k, let
By ={t" e T"|[|P5(-t") — I || < ™"}
and let
By = T"\[U A7)
Since AT < 2, it follows that
1 2
i <GNP < AP < 2
o= 37 =3
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and the collection II = {B, B}, .., Bl,} is a partition of T".

Since A = AP’ we can apply Lemma A.1 and conclude that there exists a
collection {{zi(0,%:)}.4)cox bien satisfying:

(i) z:(0,¢;) € RL and Y ien(2i(0,t;) —w;) <0 forall t; € T; and all 6 € O.

(i) w;i(z:(0);6) > ui(2:(0,1;);0) > u;(x;(6);0) — e for all t; € T; and all § € O

(iii) for each ¢;,t; € T;

AP

S a0:10:) w0, 00500 Pl > T

Next, let 2" (-) be the PIE allocation for ({€"(6)}see, 8, ", P") defined as
2i(t") = 20k, t;) if t" € B and t], = t;
= w; if th e Bg

Note that
wi(Z,(87);0) < K (A).

The proof of the claim is now completed using exactly the same arguments as those
used in the proof of Theorem 1.

Step 4. We now complete the proof of Theorem 2. Let € > 0 be given. Suppose
that A = {z(0) }sco is a collection where, for each 6, z(0) is a Pareto efficient, strictly
individually rational CIE allocation for the CIE e(6). Let

K (A) = max mlax{uz(z w;; 0)}

JEN

and let
K5(A) = min m(}n[ui(xi(e);H) — u;(wy; 0)).

7

Since each z(0) is strictly individually rational for the CIE e(f), it follows that
K5(A) > 0. Choose ¢ so that

Ky(A) €
4K, (A) + 174K, (A) + T

0 < & < min{

Applying Step 3, there exists an # > 0 such that, for all » > 7, there exists
an incentive compatible PIE allocation 2" (-) for the PIE ({e"(0)}¢co,0,t", P") and a
collection BY,.., B", of disjoint subsets of 7" such that Prob{t" € Ul B} > 1 —¢&
and, for all k € J,,, and all t" € By,

(i) Prob{f = G|t" =t"} >1—¢
(ii) For all i € N,

Ui (25(0); O) > wis (27 (1) 01) > ui(5(0k); 01) — €.

35



Suppose that r > 7. If t" € By, for some k > 1, then P§(6,|t) > 1 — ¢ implies that

1PS(-|t") = T, || = [L = P(0ult")] + Y Polbelt") < 22.
£k

To prove that 2"(-) satisfies XIR, suppose that ¢t € B}, and note that

D lis(2is(87); 0) = wis (wi; O] PORT) = > [us(z55(87); 62) — wilwi; 60)] Po (G]")

0 l

;i (2is(t); Or) — wi(wi; 6x) — (2K (A))(2€)
u; (24(0r); Or) — wi(wi; Op) — € — 4K1(A)E
Ko(A) — (4K, (A) + 1)

0.

AR AVARAVAR V]

Hence, 2"(-) satisfies XIR.
To show that 2" (-) satisfies X.E, let E" = UJ", B}, and note that

~ ~ 15
Prob{t" e E"} =Prob{t" e U Bi}>1—-§¢>1— ——— >1—=¢.
I'O{ } ro { k=1 k}— €z 4K1(A)+1 - €

Now suppose that y"(+) is a feasible PIE allocation for e” satisfying

> s (0 ()5 0) — wis(27,(£7); )| P(O]t7) >

0

for each (i,s). For each i, let
- 1 - T T
s=1
and therefore,

Zgz Zzyzs tT <sz
=1

i=1 s=1

Note that u;(7;;0) < K1(A) since Y 0 7, < D0 w;.
Suppose that t" € B}, for some k. Then for each i € N,

Zu, 22 (1);0)POI) > w21 (1); 0) — 2K, (A)é > wy(:(6),); 65) — 2K, (A)é — €

and

Dl O)POIF) < (i) + 2K ()2
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Combining these inequalities and using the concavity of each wu;(+;6), we conclude
that

i (Y O) + 2K, (A)E > Zuz (Y:;0)P(O]t")
> Z ( Zu NG ) P(9]t")
> —Z [Zu 2L (1);0) POt | +

3

v

Therefore,
0 <e— (4K1(A) + 1)e < [ui(Ys; Or) — uil@i(0k); Or)]

for each i, Since (7,)ien is feasible for the CIE e(6y), we conclude that (z;(0k))ien is
not Pareto optimal in e(fy), a contradiction. Hence, " ¢ U™ ; B = E” and the proof
is complete.

37





