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Abstract

We describe the maximum efficient subgame perfect equilibrium payoff
for a player in the repeated Prisoners’ Dilemma, as a function of the discount
factor. For discount factors above a critical level, every efficient, feasible, in-
dividually rational payoff profile can be sustained. For an open and dense
subset of discount factors below the critical value, the maximum efficient
payoff is not an equilibrium payoff. When a player cannot achieve this pay-
off, the unique equilibrium outcome achieving the best efficient equilibrium
payoff for a player is eventually cyclic. There is an uncountable number
of discount factors below the critical level such that the maximum efficient
payoff is an equilibrium payoff.

1. Introduction

While the discounted repeated Prisoners’ dilemma is one of the most intensively
studied games, little is known about the set of subgame perfect equilibrium payoffs
for a wide range of discount factors. It is known that for low values of the discount
factor, only the minmax payoff vector is an equilibrium payoff vector, while the
folk theorem asserts that for large values of the discount factor, every feasible
and individually rational payoff vector is an equilibrium payoff vector. In this

*The research reported here was undertaken while Sekiguchi was visiting the University of
Pennsylvania.

fMailath acknowledges financial support from the National Science Foundation.

fSekiguchi is grateful to the University of Pennsylvania for its kind hospitality.



paper, we describe the maximum efficient subgame perfect equilibrium payoff for
a player for the intermediate values of the discount factor.

Sorin [6] gives a complete characterization of the set of equilibrium payoffs of
the repeated Prisoners’ Dilemma for low discount factors—in particular, he shows
that for discount factors strictly below a critical value, the only Nash equilibrium
payoff of the repeated game is the myopic Nash equilibrium payoff. Sorin [6] also
calculates the set of equilibrium payoffs at the critical value of the discount factor.!
No structure on equilibrium payoffs is given for larger values of the discount
factor, the region of discount factors that is our focus. van Damme [8, Section
8.4], building on Sorin [6], shows that every feasible and individually rational
payoff vector is an equilibrium payoff vector when players’ mixed strategies are
observable. We make the more standard assumption that players’ mixed strategies
are not observable.

An important assumption in our paper is that public correlation devices are
not available. Such correlation devices considerably simplify the analysis. For
example, it is known that the equilibrium payoff set with public correlation is
monotonic with respect to the discount factor (see, for example, Abreu, Pearce,
and Stacchetti [2, Theorem 6] and footnote 9). However, as we will see, the ef-
ficient equilibrium payoff set is nonmonotonic in the absence of such correlation
devices.? The complete characterization of the equilibrium payoff correspondence
for the repeated Prisoners’ Dilemma when such a correlation device is available is
given in Stahl [7]. Building on an insight of Abreu [1], Cronshaw and Luenberger
[4] describe the set of symmetric equilibrium payoffs for general repeated sym-
metric games using a scalar equation to solve for the maximal level of deterrence,
and then describing the best and worst equilibrium payoffs as a function of this
deterrence level. Their analysis requires either a public correlation device, or a
convex set of pure actions (such as in a Cournot quantity setting game).

Our findings are as follows. First, and not surprisingly, there is a critical
value of the discount factor such that for discount factors above this value, any
efficient payoff vector that is individually rational is an equilibrium payoff. We
can immediately conclude that for patient players, the best equilibrium for one
player is the one that minimizes the other player’s payoff, subject to the individual
rationality constraint. Denote this value for player ¢ by v;".

For other discount factors, not all individually rational and efficient payoffs are

"While Sorin [6] states his results in terms of Nash equilibrium, it is immediate that the
characterization for the repeated Prisoner’s Dilemma also holds for subgame perfect equilibrium.

Cave [3] proves a similar result, as well as some results for the case where players’ mixed
strategies are observable, and where players are restricted to stationary strategies.

?Nonmonotonicity of the Nash equilibrium payoff set is reported in Sorin [6].



equilibrium payoffs. For an open and dense subset of discount factors below the
critical value,® v} is not an equilibrium payoff for player 4. On the other hand, the
set of discount factors below the critical value for which the maximum equilibrium
payoff for player ¢ is v] is uncountable. Thus, the maximum equilibrium payoff
does not exhibit monotonicity with respect to the discount factor.

If the discount factor is such that v} is not an equilibrium payoff for player i,
the (unique) best efficient equilibrium outcome for player i is eventually cyclic:
after some finite history, play follows a cycle. We also show that the best efficient
equilibrium payoff is sometimes different from the maximum of all equilibrium
payoffs for a player (the remark at the end of Section 3). On the other hand, when

*

v} is an equilibrium payoff for player ¢, various types of outcomes are consistent

with being the best equilibrium, among which are acyclic outcomes.

2. Preliminary analysis

We study the Prisoners’ Dilemma g : {C, D}2 — R2, where g is described in the
following bimatrix:

Player 2
C D

Player 1 C | 1,1 | —-1,2 ]
D|{2-1] 0,0

‘While we have chosen to work with a particular version of the Prisoners’ Dilemma
for clarity, our results hold for any Prisoners’ Dilemma.* The set of individually
rational and feasible payoffs is denoted V*. Our interest lies in equilibrium pay-
offs on the Pareto boundary of this set. Without loss of generality, we restrict
attention to the boundary B = {(vy,v2) : v1 = 3 — %, v € [0,1]} (see Figure 1).

We base our analysis on self-generation (Abreu, Pearce, and Stacchetti [2]).
A pair (o, w), where « is a (possibly mixed) action profile and w : A — V* is a
specification of continuation payoffs, is admissible if a is a Nash equilibrium of
the game with payoffs (1 —6) g (a) + dw (a). A payoff vector v is decomposable
with respect to an action profile o and continuation values w if the pair (o, w) is
admissible and has value v.

Equilibrium payoffs on B require player 2 to always play C, since they can only
be achieved as convex combinations of the action profiles CC' and DC'. The issue

3We do not know if the set of such discount factors has full measure.

*Since we focus on the maximum efficient payoff from a player’s (say 1) point of view, the
other player always plays C. As a consequence the only relevant payoffs are those from C'C and
DC.
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Figure 1: The sets V* and B.

is to determine how often player 1 can play D in equilibrium. While increasing
the proportion of periods that player 1 plays D increases player 1’s payoff, it
simultaneously decreases player 2’s payoff. We need to ensure that player 2’s
payoff still provides the incentive for player 2 to always play C. The profile we
describe specifies the most severe punishment possible: any deviation by either
player results in the grim outcome of DD forever. Note that player 1’s incentive
constraint is not an issue. The incentive constraint for player 2 in period ¢t > 0
is:®

(1—-10)g2 (aﬁ,C)—i—évé‘H > (1-06)gs(a},D) +6x0
1-6

= 5v§“21—6<:>v§“27.

Thus, as long as the continuation value (in periods ¢ > 1) to player 2 exceeds
(1 —146) /6, player 2 will play C.

Denote by V2C the set of payoffs for player 2 that can be decomposed using CC
and a payoff wy € [(1 — ) /6, 1] (any continuation payoff smaller than (1 —¢) /6
is inconsistent with 2 playing C):

vy e VE¥ <= Jug e [(1-16)/6, 1] (1)
st. vg = (1—10)g2(CC) + dwy = (1 —6) + dws.

Thus, V& = [2 — 26, 1].

®We index time so that the repeated game starts at t = 0.



Figure 2: Self-generating sets for 6 > %. This is drawn for 6 = %. Any v can be
decomposed into a current action profile and continuation value ws.

Denote by ViP the set of payoffs for player 2 that can be decomposed using
DC and a payoff wy € [(1 —06) /6, 1]:

vy €V = Jup e [(1-96)/6, 1] (2)
s.t. vg = (1 — (S)QQ (DC) +6w2 = 611)2 — (1 — (5)

Thus, Vi = [0,26 — 1].

Note that for § < %, V2C and VP are both empty and so any action profile
in which player 2 plays C is not admissible. In fact, it is easy to show that for
o< %, the only equilibrium payoff is (0,0). Moreover, for 6 > 1/2, grim trigger is
an equilibrium. Thus, the best symmetric equilibrium payoff is (0,0) for § < 1/2
and (1,1) for 6 > 1/2.

If V¥ U VP =[0,1] (which is implied by § > %), on the other hand, every
payoff on the segment {(Ul, vg) t v = % — %, v €0, 1]} can be supported as an
equilibrium payoff in the first period. This is illustrated in Figure 2. These last
two observations imply our first result. For 6 > 1/2, let v1(6) be the maximum
of player 1’s payoff in any equilibrium with payoffs on B, given discount factor 0.

Lemma 1. For 6 < %, (0,0) is the only subgame perfect equilibrium payoff. For
52%, @1(5):%.



The analysis of the case ¢ € (%, %) is more complicated, and is the concern

of this paper. Suppose § < %. Since V20 N VP = 0, there is a unique action and
continuation payoff vector corresponding to any decomposable payoff vector on
the efficient frontier. The following value dynamic (from (2) and (1)) is thus a
useful tool to describe continuation payoffs:

t+1 __

For § > 1, the value dynamic (3) describes a function from [—1, 1] into [—1,1],
and so the dynamic is well-defined for any choice of v € [~1,1]. We say a
sequence {vh}°, is generated by v (under §) if (3) holds for all ¢, starting with

0
U2 = .

Associated with the value dynamic (3) is the outcome path, m = {m¢};2,,

where

+138 il <26 -1,
1-6
-5

(3)

, otherwise

SR R

[ DO, iful <261,
= { CC, otherwise. (4)

We also call m the outcome path generated by v. Note that if {vé}zo and
{mi}i2, are generated by v, then for all ¢,

vy = (1= 6) g2 (me) +6v5™ ()

It is convenient to define player 2’s payoff of the repeated game as a function of
an outcome path and 6. When an outcome path 7w and § are given, we define

WY (ms6) = (1= 6) > 67 Tg(m,),
=T

i.e., h1(m;6) is player 2’s continuation payoff under 7 from period 7" on, given 6.
When T = 0, we will often write hg (7;8) rather than kS (;6).

Lemma 2. Fix § € [4,1) and v € [~1,1]. The outcome path generated by v
3—v

has value v and so achieves the payoff vector (25%,v). If the sequence {v5}32,
generated by v € [0,1] under § satisfies v5 > 1%5 for all t > 1, then the payoff

vector (3;”,1)) is an equilibrium payoff vector.




Proof. Let {v}}:°, and 7 be generated by v. Iteratively applying (5) yields

T-1
vh = (1-20) Z 8 tga(my) + 6Tt (6)

T=t

for any ¢ > 0 and any T > t. Since the sequence {v}}?°; generated by v is
bounded, taking 7" — oo in (6) gives

v = h(m; 6) (7)

for any ¢ > 0.

Suppose the sequence {v}}£°, generated by v € [0, 1] under 6 satisfies v5 >
for all £ > 1. Consider the strategy profile in which 7 is played on the path
any deviation is punished by the Nash reversion. Then A} (7,8) = v} >
for all ¢ > 1 ensures that player 2 has no incentive to deviate from the path.
Player 1 also has no profitable deviation because her continuation payoff from
any period is greater than player 2’s continuation payoff, which proves that 7 is

an equilibrium outcome and so (35” , v) is an equilibrium payoff. [

=
0'3|‘ 5m|
> Q.

Next we show that the path generated by v € [0, 1] is the unique equilibrium
path that achieves the equilibrium payoff (3%”, v) when § < %.
Lemma 3. Fix § < % and let m be the path generated by v € [0,1]. If a pure
outcome path u # 7w achieves (3%“,1)), then hg“(,u; 0) < 17_5 where T is the
smallest t > 0 such that p, # m¢.

Proof. For any t > 1, we have

t—1

v=ha(p;8) = (1= 6) > 67ga(hr) + 8 (115 6) (8)
7=0

By the definition of T, if T > 1, (6) and (8) imply that hb(u;6) = v} for any

1
A 6) = ghg(u; 0) +——>1. 9)

However, since p achieves (3%, v) and therefore consists of CC and DC' only, we

must have hi ™ (1;6) < 1, a contradiction.



Suppose then that 77 = DC, in which case hi (1;6) = vI' < 26 — 1 by (4).
Since pup = CC,

1 1-6 306—2 1-96
T+1/,,. — _pT,,. _ <
where the last inequality follows from ¢ < %. |

Lemmas 2 and 3 imply that, for any equilibrium with the payoff vector
(3%”, U), there is a unique pure outcome path 7 (and hence continuation pay-
offs {v4}2°,) that achieves this equilibrium payoff, and that this 7 is described by
(4). Note that we restrict attention to pure strategies; we justify this in Section
2.1. The following result is immediate from Lemmas 2 and 3.

Proposition 1. Fix § < % and v € [0,1]. The payoff vector (3%”,1)) is an
equilibrium payoff if and only if the sequence {v5}{°, generated by v under &
satisfies vé > 1%5 for allt > 1.

Proposition 1 provides a characterization of all efficient equilibrium payoffs
when 6 < %.

For 6 = %, 1%5 =1, and so v3 = 1 is a fixed point of the value dynamic
(3). Thus, (1,1) is an equilibrium payoff vector (implied by C'C' in every period).
In addition, (%, 0) is also an equilibrium payoff vector, since the payoff sequence
generated by 0 is {0,1,1,1,...} (the associated outcome path has DC' in the
initial period, followed by C'C forever). However, any other payoff vector (3%”, v),
where v € (0, 1), is not an equilibrium payoff: the payoff sequence generated by
v € (0,1) satisfies v =20 -1 <v < 1= 1%‘5 by (3). To sum up, we have two

equilibrium payoff vectors in the region B, and v1(3) = 3.
Consider now § € (3, %) (see Figure 3). The inequality § < 1/4/2 is equiv-

alent to 26 — 1 < (1—6) /6. Observe that, as for § = 3, the outcome paths
CC*® and DC,CC® are equilibrium outcome paths, so that the payoff vectors
(1,1) and (2 — 6, 26 — 1) are equilibrium payoffs.® Moreover, no other payoff
in B is an equilibrium payoff. Consider first v € (26 — 1,1). The sequence
generated by v is decreasing (with the decrements increasing in magnitude as
v falls) as long as v5 > 26 — 1 (see Figure 3), and so there exists T such that
vi < 26 — 1. Since § < 1/4/2, that implies v < 1%‘5. Thus (3;“,1)) is not
an equilibrium outcome. Next, suppose v < 26 — 1. Then, from the value dy-
namic (3), v3 € [1%5, 1) C (26 —1,1). Since we have just seen that no element of

The outcome paths CC*> and DC, CC™ are equilibrium outcomes for all § € (3,1) . This
monotonicity property in terms of outcome paths is proved in Section 6.



Figure 3: The dynamic for ¢ € (%, ) This is drawn for § = 2.

3

S

(26 — 1,1) is an efficient equilibrium payoff for player 2, (35“,1)) is again not an

equilibrium outcome. Therefore, for all § € (3, %), v1(6) =2 —6.

It is also straightforward to show that 1’)1(%) = %, because the path gener-

ated by 0 is (0,v/2 —1,1,1,...), with associated outcome path DC, DC, CC>.
Therefore (2,0) is an equilibrium payoff when 6 = 1/v/2 (see Figure 4). More-
over, for § = 1/1/2, there are a countable number of equilibrium payoff vectors in
B: any path of the form (DC)*, (CC)t, DC, (CC)*, where z € {0,1} and ¢ is
a nonnegative integer, is an equilibrium outcome path. The path DC, CC, CC,
DC, (CC)® is illustrated in Figure 4.

We have thus proved the following proposition.

Proposition 2. Suppose § > % For 6 ¢ (%, %), the maximum efficient equilib-
rium payoff for player i is

Things are more complicated when ¢ € (%, %), because there are too many
equilibria to describe explicitly. This multiplicity is due to the ability of the



25 -1 2-2§ 1

Figure 4: The dynamic for § = 1/4/2. The equilibrium path DC, DC, (CC)>
(indicated by solid circles) yields a payoff vo = 0. The equilibrium path DC, CC,
CC, DC, (CC)* is indicated by hollow circles.

dynamic to revisit both V& and VP, without violating the requirement of v} >
1%‘5 (see Figure 5).

The remaining case of § € (%, 3
helpful to introduce the following terminology:

) is considered in the next section. It will be

Definition 1. An equilibrium is wonderful if it has payoff (%,O). A discount
factor 6 is wonderful if there is a wonderful equilibrium for that discount factor.

Thus, we have seen that any 6§ > % is wonderful, while the only wonderful
i

i L 1 L
discount factors less than or equal to 75 ¢ 3 and 75

2.1. The role of mixed strategies

We argue here that allowing for mixed strategy equilibria does not change the set
of equilibrium payoffs in B. Since payoffs in B can only be convex combinations
of g (DC) and g (CC), player 2 must always play C, and player 2’s continuation
value cannot exceed 1. In order for player 1 to randomize in some period between
C and D, he must be indifferent between C' and D, so

(1-68)+6f =1 —68)2+ P,

10
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Figure 5: The dynamic for § € <%, %) This is drawn for 6 = 0.74.

where v{ is player 1’s continuation value after action a. Moreover, on B, we have
v§ = 3 — 20, so that

p_ ¢, 20-9)

3(1-96
Uy :U2+ 3 ( )

o

>

For 6 > %, every payoff in B can be achieved in a pure strategy equilibrium, and
so mixing is redundant. For § < %, the above inequality implies véj > 1, which is
impossible if the continuation values are to lie in B.

3. The Set of Nonwonderful Discount Factors

Now we consider § € (%, %) We do not attempt to derive the whole set of

equilibrium payoff vectors in B explicitly. Rather, we describe the equilibrium in
B that maximizes player 1’s payoff for any nonwonderful 6. We also show that
the set of nonwonderful § is open.

We start with some preliminary results.

Lemma 4. Suppose {vé}zo and {m};°, are generated by 0 under some ¢ €

(%, 3). Define T (8§) = max {T : vy > (1—6) /6, t=1,...,T}. Then, T (§) >3
and the first four periods of the outcome path are given by DC, DC, CC, and

CC'. Moreover, for 1 <t <T\(6), if 7y = DC' then w441 = w0 = CC.

11



Proof. The first two claims are immediate. To prove the last, note that for
T
1 <t <T(), iffrt:DCthenlf;’S S{/é §25—1andsoﬁ§+1 :%16 >

15262 > 26 — 1, where the last inequality is implied by § < %. Since @éﬂ > 1g2‘52,
N

P = =2 R 148 1_2g§+53 > 26 — 1 where again the last inequality is implied

by 6 < %. ]

While not needed for what follows, it is not hard to verify that in fact
T(6) > 5, and that m4 = CC. Moreover, if 6 < 0.74763, 75 = CC (note
that 1/4/2 ~ 0.70711). However, for § € (0.74636,0.74763), v§ < 1%‘5, and so no
6 € (0.74636,0.74763) is wonderful.

Lemma 5. A discount factor 6 € (%, %) is not wonderful if and only if there

exists a finite path {Mt}tT:o; T > 3, satisfying:

k
= 8'ga(py) = 8 (11)
t=0
for k€ {0,1,2,--- ,T — 2},
T-1 T
6" (26 —1
= galp) > %5) (12)
t=0
and
T
= 8'ga () < 67 (13)
t=0

Proof. A discount factor § is not wonderful if and only if {v5}$°, generated
by 0 satisfies, for some T, v§ > (1 —68) /6 for t = 1,...,T, and va "+ < (1 —§) /&.
Using (6), the first inequality is equivalent to (11) and the second inequality is
equivalent to (13) for the path generated by 0. Moreover, vg > 26 — 1, since
otherwise vZ ™! > (1 — 6) /& from the value dynamic (3), which in turn is (12) for
the path generated by 0. Lemma 4 implies T' > 3. So, if § is not wonderful, the
finite path {ut}f:(g) generated by 0 satisfies (11), (12), and (13).

Conversely, suppose that the conditions (11), (12), and (13) hold for some
{1} Note that pg = p; = DC (evaluate (11) at k = 0 and 1 and use
o> % > 1). Moreover, (12) implies

T
20 —1
= 6ga(py) > 6" (16—_5 - 1) >0, (14)
=0

12



where the first inequality follows from go(u7) < 1, and the second from § > 1/+/2.
Let 7' = {m}}$2, be the path generated by w = —% I 0 6tga (). Define

the path p as

P L ift <T,
t T_p_q, ft>T.

Note that, by construction, ha(p;8) = 0, and that (11) and (12) imply hb(p; ) >
1%5 forallt € {1,2,--- ,T}.

Suppose that 6 is wonderful, and let 7w be the wonderful equilibrium outcome
path. Then, by Lemma 3, 7 is generated by 0. Observe that the actions in the
first T periods of m and p coincide. [If not, Lemma 3 implies that there exists ¢ €
{1,2,...,T} such that h%(p; ) < 1%6, which is a contradiction.] Hence, h1 (7;6) =
hl (p;6), and from (12), hi (7;6) = hl (p;6) > 26 —1. By (4), we then have 7 =
CC. Moreover, hl (p;6) = (1 —8) g2 (up) +6w < (1 — 8) (g2 (1) + 1) (since (13)
implies w < L= )) The inequality hZ (p; §) > 26—1 then requires pp = CC. But
now 7 and p also agree in period T, and so ha ! (m;8) = b3 ™ (p;6) = w < 1%5’5,
contradicting the assertion that 7 is an equilibrium outcome path. Consequently,
6 is not wonderful. [

Lemma 6. Suppose {63}21 and 7 are generated by 0 under se [%, %)
1. If

k
= Z 67 g2(77),

then 3 fy,(#;6)/06 > 0 for all § € (<=, 2] and any k such that 2 < k < T(5).

1

7

2. Suppose T'(8) = co. Then hy (7;6) < 0 for all § € (
for all § € (6, 3]

T 8) and hy (7;6) > 0

Proof. Since
k

3ka6 ZT(ST 1

we just need to prove Zle 76" Lgo(7t,) > 0. For £ > 1, define sy = ZE:Z 76" Lgo(7r),
and recall from Lemma 4 that 71 = DC and 7o = CC. For k =2, 8 = —1+4+26 >
0. For k > 3,

$1=—1+26+ s3 > s3, (15)

13



because 6 > % For any ¢ > 2 such that 7, = DC, we have ( again from Lemma
4) t > 4 and 7,1 = CC. Therefore, for such ¢,

(t —1)8 g (7p_1) + t6 Lga(7y) = (t — 1)672 — 6871,

which is non-negative, since § < 2 < =L Hence s3 > 0, and (by (15)) s1 =
Ofr(7;6)/06 > 0, which proves the first part of the lemma.

Suppose T'(6) = oo (so that # is an equilibrium outcome path). For any &
satisfying he (7;6) = 0 (i.e., foo(7;6) = 0),

Of oo (3 6)
96

25 — Joo(#;6) > 0.

Thus, ha(7;6) can only equal zero for one value of §, implying the desired result.
|

Lemma 7. Fix g € (%, 3) and (25%,v) an equilibrium payoff vector for 8y. Let

7 be the outcome path generated by v under 6y, and set 61 = min{6 < 6y : 7 is
an equilibrium outcome path for all & € [6,8¢]}. Then, §; is wonderful. If, in
addition, mo = DC' and hb(m;80) > hi(m;80) for allt > 1, then 7 is the wonderful
equilibrium path at 61.

Proof. Define w = infy>1 hb(m;61). Iffw > (1 — 81) /61, then 7 is a strict equi-
librium path at 6;.” Since for all ¢ > 1, the function h¥ (7; 6) satisfies the Lipschitz
condition with constant 2/ (1 — §), we can lower 7 slightly, while keeping 7 an
equilibrium path, contradicting the definition of §;. Hence, w = (1 — 1) /61. By
compactness of equilibrium payoffs, there exists an equilibrium outcome path p
with payoffs (25%,w) under §;. Since w = (1 — 1) /61, the path starting with DC
and then playing p is a wonderful equilibrium path at 61. Hence, §; is wonderful.

Next, assume hb(m;80) > hi(m;8¢) for all t > 1. Suppose first hb(m;61) <
hi(m;61) for some ¢ > 1. Then the continuation path starting in period ¢ must
be different from that starting in period 1, and so Lemma 3 implies hb(m; 8¢) >
hi(7;80). Thus there exists 82 € (61, 60) such that hb(m; 62) = hi(m; 62). However,
since 7 is an equilibrium path at 6 (by definition of 61), so too are the paths
starting in period ¢ and in period 1, contradicting Lemma 3. Hence hb(m;81) >
hi(m;61) for all ¢ > 1, which implies hi(m;61) = w = (1 —6&1) /1. Finally, if
mo = DC, ho(m;61) = 0, which proves that 7 is wonderful at 8;. [

"Here, and elsewhere, we say that an outcome path is a strict equilibrium path if deviating
from the path results in a strictly lower payoff.

14



We are now ready to state and prove the main result of this section: if no
wonderful equilibrium exists, only cyclic behavior, namely, a path eventually
ending in a cycle, forms the best efficient equilibrium outcome for a player. In
other words, other behavior is only consistent with the best efficient equilibrium
if it is wonderful. One virtue of the result is that we are able to provide the best
efficient equilibrium explicitly and to describe the range of discount factors for
which the same path continues to be the best efficient equilibrium.

Definition 2. A path m = {m:}72, is eventually n-cyclic, where n is a positive
integer, if

1. there exists T > 1 such that for all s > T and t = kn + s for some integer
k, m; = ws, and

2. the above property does not hold for any n’ < n.
Proposition 3. If g € (%, 3) is not wonderful, then the best efficient equilib-
rium outcome for player 1 under 6g is a path 7* that is eventually n-cyclic with
n # 1. Moreover, there exists a half-open interval [61, 82) containing 8y such that

1. for any § € [61,62), ©* is the best efficient equilibrium outcome for player
1, being wonderful if and only if §' = &1; and

2. 69 is wonderful, and the corresponding wonderful equilibrium outcome is
eventually 1-cyclic.

Proof. Let 7 and {v}}$°, be the path and the sequence generated by 0 under
8. Since &g is not wonderful, T (6g) < oo. From Lemma 4, T'(69) > 3. We write
T for T (6g) in this proof.

Definition of 6; and 6s5:

As in the proof of Lemma 5, we have at 6 = §¢ the following three inequalities:

k
= 6ga(my) = 6 (16)
t=0
for any k € {0,1,2,... ,T — 2},
T-1 T
6" (26 —1
-3 st > S 1
t=0
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and

T
- Zétgg(m) <6
t=0

We define §; and 62 as the unique discount factors satisfying

T
- Z‘Sﬁgz(ﬁt) = 5{
t=0

and

67285 — 1
_25292 7Tt 2(1——262)

(18)

(20)

We first verify that d1and 62 are well-defined. Note that Lemma 6 applies to the

left hand sides of (17) and ( ) Thus the left hand sides of (17) and (1

8) are

strictly decreasing in ¢ on ,— , while the right hand side of (17) and (18) are
\/_

clearly increasing in 6.
The inequality in (18) is reversed at § = 1/1/2, since

T T
6T+ Zétgz(ﬁt) =6T—1-6+ Z5t92(ﬁt)
t=0 t=2

(from mp = m1

T
To1-6+4) ¢
t=2

62
1-6

< —1-6=0,

— DC)

using 6 = 1/1/2 in the last line. Therefore, §; € (%,60) is well-defined. Note

also that (18) holds for all 6§ > 6;.
Turning to 2, note that § = 3/4 implies

T T— T-1
6 (26 1 Z 7Tt —26T+Z(5927Tt
=0 t=0
T
—5T+Z5tgz(ﬂ't) > 0,
t=0



where the first equality follows from § = %, the second from mp = CC (because
vl > 26 — 1, recall the first paragraph of the proof of Lemma 5), and the last
inequality from (18). Thus, 62 € (8o, 2) is also well-defined. The above argument
also shows that (17) holds for all 6 € (61,02).

No ¢ € (61, 62) is wonderful:

Recall that (17) and (18) hold for all 6 € (61,62). Thus, if (16) holds at all
ke€{0,1,2,---,T — 2} for any 6 € (61,02), Lemma 5 implies the desired result.
Lemma 4 implies that (16) always holds for £ = 0 and 1. Since Lemma 6 applies
to the left hand side of (16) for any k € {2,...,T — 2}, it suffices to show that
(16) is true for all k € {2,... ,T —2} at 63 (note that the right hand side of (16)
is always increasing).

Suppose, then, that (16) does not hold for some k € {2,... ,T—2} at §3. This
implies the existence of 83 € [dg, 62) such that (16) is true for all k € {2,... ,T—2}
at 63, with an equality for some k € {2,... , T —2}. Since (17) and (18) hold at
63, 03 is not wonderful by Lemma 5. Now consider the path p that starts with
DC and then cycles through {m;}F_,. We have

ha(p; 63) = —(1 — 63) + 0 25392 Tr), (21)
3 =1

because p, = DC. Since (16) holds at k with equality, (21) implies ha(p;63) =0
Furthermore, since (16) holds at any k < k, it follows that

1—5 1—5
h?(pv 53 3 25392 7T7' e 53 3

for any k = 2,..., k. Since for any ¢ > k, hb(p; 63) = h&(p;63) for some k < k,
p is a wonderful equilibrium path, a contradiction. Thus, (16) holds for all k €
{2,---,T — 2} at 62, and therefore at any ¢ € (61,62). Hence no discount factor
6 € (61,62) is wonderful.

Definition of 7*: 7} =m; if t < T, and for t = kKT + s, for positive integers
kand 1 <s <T, w; =ms. Thus, 7* is an eventually T-cyclic path starting with
DC' and then cycling through {m}7_;.

The path 7* is an equilibrium path for any ¢ € [61, 2], being won-
derful at 67:

Since 7y = DC, we have

1-6 «
ha(m*38) = =(1—6) + T—F > 87 ga(mr).
T=1
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Thus (19) implies ha(7*;61) = 0, while (18) implies ho(7*;6) > 0 for any 6 €
(61,062]. Now fix § € [61,62]. Since (16) holds at any 0 < k=t —1<T — 2, we
obtain (as above)

1— 6 1-6
M) 2 == 3 8l 2 5 (22)
for any 1 <t < T — 1. Next, (22) is valid at t = T, too, because (17) and
§ > 1/+/2 implies (16) holds strictly at k& = T'— 1. Finally, (22) holds for any
t > T, because hb(7*;8) = h&(n*;6) for some k < T. Thus we have proved that
h(7*; 6) > 1%‘5 for any ¢. Since ¢ € [61, 62] is arbitrary, 7* is an equilibrium path
for any 6 € [61, 02, which is wonderful if and only if 6 = §;.

The path 7* is the best (though not wonderful) equilibrium for any
b€ (61, (52):

Suppose at some § € (61, 62) there exists an efficient equilibrium path p which
gives a greater payoff to player 1 than 7*. As a result, we have ha(p; 6) < ha(7*; ).
Lemma 7 implies the existence of a wonderful § < & with p an equilibrium path
for all 8 € [6,6]. Since no § € (81,60) is wonderful, § < &;. Thus p is an
equilibrium path at §; and therefore ha(p;61) > 0 = ha(7*;61). This implies
the existence of §” € [61,8) such that ha(p;8”) = ha(7*;6”). Because p and 7*
are both equilibrium paths at ¢”, we have a contradiction to Lemma 3. This
establishes that 7* is the best equilibrium outcome and uniqueness also follows
from Lemma 3.

02 is wonderful, and the corresponding wonderful outcome path is
1-cyclic:

Consider the path p* defined as: p; = m; for any t < T — 1, pp = DC and
pi =CC for all t > T + 1. Since

T-1

ha(p*;62) = (1= 62) Y _ 859a(ms) — (1 — 62)85 +65 7,
7=0

(20) implies ha(p*;62) = 0. Moreover, since the second inequality in (22) holds
for all 1 < ¢ < T, we obtain h(p*; ) > %2 for all 1 <¢ <T. We also have
hh(p*;62) = 1 for all t > T + 1. Hence hb(p*;82) > 1%252 for any ¢ > 1, which
proves p* is an equilibrium path, which is wonderful and unique (by Lemma 3).
| |

The best efficient equilibrium for nonwonderful discount factors has a simple
structure in that the path immediately cycles after playing DC' in the first period.
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In other words, the best equilibrium outcome has no “frills.” Proposition 3 also
shows what type of equilibrium dominates the original best equilibrium when
it ceases to be best at d3. The equilibrium plays the same as the original one
until the very last period of the first phase of the cycle, then switches to DC
followed by CC forever. Therefore, the equilibrium is eventually 1-cyclic and,
more importantly, wonderful.

Remark. We have so far considered the best efficient equilibrium for player 1,
i.e., the equilibrium which gives the greatest payoff to player 1 among equilibrium
payoffs on the Pareto frontier of the feasible payoff set. We should emphasize that
the best efficient equilibrium payoff is sometimes different from the maximum of
all equilibrium payoffs for player 1.

To illustrate this possibility, fix a nonwonderful discount factor ¢ and consider
the half-open interval [61, 02) presented in Proposition 3. Let p be the wonderful
equilibrium path for 6, which is eventually 1-cyclic. This path is not an equi-
librium path for 6 < 62 but in a neighborhood of 63 (Lemma 6). Intuitively, the
problem is that in period T', the path p requires DC, leading to ha (p;6) < 0. In
contrast, the best efficient equilibrium outcome path specifies 77 = CC. Now
modify p by replacing C'C' in a distant future period with C'D. The modified path,
denoted p/, results in a greater payoff for player 2. So, if we consider § < 6o suffi-
ciently close to 62, p’ gives player 2 more than 0 and player 1 almost % It is easy
to see that p’ is indeed an equilibrium path, which gives player 1 a greater payoff
than the eventually cyclic efficient equilibrium path we consider in Proposition 3.

The above argument suggests that the full characterization of the best equilib-
rium for player 1 is significantly more complicated when we remove the restriction
to efficient paths. Nonetheless, we conjecture that the optimality of cyclic behav-
ior is a general phenomenon.

4. Denseness

One message of the analysis in the previous section is that the set of nonwonderful
discount factors is open. The purpose of this section is to show that it is also
a dense subset of (%, %) With this result, our previous finding that the best
efficient equilibrium behavior is eventually cyclic is shown to be pervasive in the
discount factor. We should note here that we do not know the Lebesgue measure
of the set of nonwonderful discount factors.®

8Recall that there are open and dense subsets of [0, 1] of arbitrarily small measure, for example
complements of generalized Cantor sets (see Royden [5, Problem 14.b, page 64]).
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Proposition 4. The set of nonwonderful discount factors in (%, %) is an open

and dense subset of (T’ 3).

Proof. We only need to show denseness, since Proposition 3 immediately
implies openness of the set of nonwonderful discount factors.
We need to show that if §' € (2= 75 i) is wonderful, any neighborhood of ¢ has

a nonwonderful discount factor. Let 7’ be the wonderful equilibrium path corre-
sponding to &’. We start from the observation that any neighborhood of 8 has an
element " that is wonderful and whose wonderful equilibrium path is eventually
I-cyclic. The observation follows immediately if the wonderful equilibrium at ¢’
itself is eventually 1-cyclic, so assume otherwise. For each T', define an eventually
I-cyclic path 77" as

T 7'(';:7 lft < T,
Tt = { CC, otherwise (23)
For any T and any ¢ > 0,
(x5 6') > By (w5 &) (24)

Since hb(7';¢) > 15—,‘5/ for any ¢ > 1 (because 7’ is an equilibrium path), (24)
shows that 77 is an equilibrium outcome for any 7. In addition, we have
R (715 8") > hd(xT; &) for any ¢t > 1, because the impact of replacing any DC
in a future period with CC on hi(r7;¢), 1 < t < T, is greater than that on
hi(7T;6") and kL (wT;6") = 1 for t > T. Therefore Lemma 7 applies, and for any
T there exists 67 < § such that 77 is a wonderful equilibrium outcome at &7
(recall that 78" = DC because 7' is wonderful.). Obviously, 67 — &' as T — oo.
Choose any neighborhood of &’'. Then there exists T' such that 67 belongs to
that neighborhood. Let T' be the last period in which DC is played on 77, and
consider a finite path {7} }t 01 Since 71" is wonderful at é7, we obtain

—Z&TgQ ) > 6% Vke{0,1,...,T -2} (25)
and
T'-1 T! _
_ Z 5T92 T = M (26)
1—ér
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Choose an element of the neighborhood ¢ < 67 so that (12) holds at 6, and that

T'-1

= > stga(r]) < 26" (27)
t=0

This is possible because 267 —1 < 2(1 — 67) and Lemma 6 applies. Lemma 6 also
guarantees that 25 continues to hold. Consider a finite path p = {,ut}gll defined
as: i, = i for any t # T", and pp = CC. Then, (27) implies

T/
- Z 8t g2 () < 67" (28)
=0

By Lemma 5, (25), (12) and (28) imply that 6 is not wonderful. Since the neigh-
borhood of ¢ is arbitrarily chosen, the set of nonwonderful discount factors is
dense. |

5. The Set of Wonderful Discount Factors

So far, we have limited our attention to nonwonderful discount factors, and de-
scribed the best equilibrium outcome paths for nonwonderful discount factors.
Now we turn to the set of wonderful discount factors and the properties of corre-
sponding wonderful equilibria. We start by classifying behavior consistent with
wonderful equilibria.

Unlike the case of nonwonderful discount factors, where we can derive a certain
type of behavior as the best equilibrium path, wonderful equilibria exhibit much
more diversity. For example, a wonderful equilibrium may be eventually 1-cyclic,
like the one we have seen at 62 of Proposition 3. Or it may be eventually n-
cyclic like the one we have observed at §; of Proposition 3. However, wonderful
equilibrium paths need not be of the type considered there, that is, an eventually
n-cyclic path with no frills. An eventually n-cyclic path with o frill, denoted by
m = (DC, u, p™), where pu is a finite path, p is a different finite path, and p™ is
the infinite repetition of p, could be a wonderful equilibrium.

To make things far more complicated, there is another type of wonderful
equilibrium path, which never converges to any cycle. Consider the following
path p:

_ | DC, ift=0,1lort= 100* for some integer k,
Pe = CC, otherwise.

21



There exists 6 € (%,%) such that p gives player 2 the payoff of 0. Thus

ha(p;6) = 0, while hi(p;8) = (1 —6)/6. We also have h(p;8) > (1—6) /6
for any t > 2, because all DC’s are located more distantly and/or more sparsely
in the continuation play from period ¢ than in the continuation play from period
1. Therefore, p is a wonderful equilibrium given 6, while it is not eventually cyclic.

Thus, we have several types of behavior, in addition to the one that is eventu-
ally n-cyclic without a frill: the eventually 1-cyclic path, the eventually n-cyclic
path with a frill, and the nonconvergent or acyclic path (such as p above). One
interesting fact about those wonderful equilibria is that, other than the eventually
n-cyclic path without a frill, such an equilibrium fails to be the best equilibrium
in a neighborhood of the discount factor that makes it wonderful. For any neigh-
borhood of the discount factor, there exists a slightly larger discount factor where
the outcome is not the best equilibrium outcome. Consider an eventually n-cyclic
path with a frill, for example. As before, we write it as 7 = {(DC), u, p>}, and
assume it is a wonderful equilibrium path at some 6* € (%, %) Then, the av-
erage payoff of the path p (for player 2) is smaller than the average payoff of p.
Therefore, if we define 7" = {(DC), (i, p")*°}, where p™ is the n-fold repetition
of the finite path p, we obtain

ho(7™; 6%) < ha(m;6*) = 0. (29)
for all n. It also follows that

lim ho(7";6%) = 0. (30)

n—oo

There exists n* such that for n > n*, ho(7™; %) > 0. By (29), we can show that
for any n > n*, there exists &, € (6*,2) at which 7" is wonderful. In addition,
7™ is an equilibrium for any 6 > 6, satisfying ha(7";6) < ha(m;6). Since (30)
implies 6, — 6™ as n — oo, we can conclude that any 6 > 6* is greater than some
0n and therefore 7™ is a better equilibrium path for player 1 than .

Given this classification, the next question is: What is the cardinality of the
set of wonderful discount factors in (%, 3)?

Proposition 5. Let W be the set of wonderful discount factors. Then for any

RS (%, 3), the set W N (%, 8) is uncountably infinite.

Proof. Fix ¢ € (%, 3). Tt is easy to verify that the path 7* = {DC, DC, CC*>}
is a strict equilibrium path under 8, and that ho(7*;8) > 0. Therefore, there exists
T such that the path defined as 77 = {DC, {(DC)(CC)T=1}°°} is an equilibrium
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path. Note that 77 assigns DC to periods 0 and 1, and any period written as
mT + 1 for a positive integer m.

Let s = {s:}§2, be a sequence of natural numbers. Associated with s, define
the set of natural numbers

¢
Z(s)={m:m= Zsi for some t}.
i=1

We also define the path 7(s) as

(s) = DC, ift=0,1o0rt=mT+1forme Z(s),
TRS) = CC, otherwise.

It is immediate that hb(7w(s);8) > hi(wT;6) for any ¢t > 1. Therefore 7(s) is an
equilibrium path. Moreover, we obtain hb(7(s);8) > hi(w(s);8) for any t > 1,
because in the continuation path from period ¢t > 1, DC’s are located more
distantly and more sparsely than in the continuation path from period 1. Thus
Lemma 7 applies, and we have a wonderful discount factor 6(s) € (%, 8) at which

7(s) is the wonderful equilibrium path. Therefore, 6(s) € W N (%, 5).

Note that if we choose a different sequence s', Z(s') # Z(s) and therefore
7(s") # 7(s). Consequently, 6(s") # 6(s). Since the set of all sequences of natural
numbers has the power of continuum, W N (%, 0) has at least the same power,

hence there are uncountably infinite elements in W N (%, 6) for any 6 € (%, 3).
|

6. Monotonicity

Our analysis in the previous sections has shown that the maximum efficient equi-
librium payoff, 91(8) is not monotonic with respect to §, in the region (0, 2). The
analysis has also demonstrated that the set of all efficient equilibrium payoffs
given § does not exhibit monotonicity with respect to 6.°

However, while we do not have monotonicity of the maximum equilibrium
payoff or the equilibrium payoff set, we do have monotonicity of efficient equi-
librium paths with respect to ¢, for 6 < %. Indeed, this monotonicity is a nice
aspect of efficient equilibrium; for the set of (not necessarily efficient) equilibrium
outcomes, it does not increase monotonically as ¢ increases.

9This observation does not contradict Abreu, Pearce, and Stacchetti [2, Theorem 6], which
proves monotonicity of equilibrium payoff sets, since they assume the public signal is distributed
on a subset of a finite Euclidean space, and that the distribution function has a density. In our
context, this is equivalent to requiring the presence of a public correlating device.
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Proposition 6. Let 7w be an efficient equilibrium path for some 6y € (0, %) Then
it is an equilibrium path for any & € [6, 3).

Proof. Without loss of generality, we can assume that the payoff vector of 7
lies on B. If 6y < 1/4/2, either 7 = {(CC)*®} or 7 = {(DC), (CC)>®}. Tt is easy
to verify that 7 is an equilibrium path for any § > §y. So assume 6y € [%, %)

We start from the case where 7 is eventually 1-cyclic. We claim that if 7 is an

equilibrium outcome path at some §' € (%, %), then there exists € > 0 such that

7 continues to be an equilibrium outcome path for § € [¢’,8’ + ¢). Since the set
of continuation payoffs of 7 is finite (because it is eventually cyclic), there is a T’
that minimizes hb(m;8'). Let T = {t : hb(m;¢') > (1 —§')/8'}. Then, for all § in
a neighborhood of &', and for all ¢t € 7, hb(m;6) > (1 — §)/é (using the finiteness
of the set of continuation payoffs).

IfTeT,ie, hl(mé) > (1 — (5') /&', this then implies that 7 is an equilib-
rium path for § € [¢', 8" + ) for € small.

Suppose now that T ¢ 7, i.e., hi(m &) = (1—¢') /8. Define p as py =
DC and p, = mr4i—1 for all t > 1. Then, ha(p;8’) = 0. Since hb(p;&) =
R (3 67) > (1—¢") /¢ for all ¢ > 1, p is the wonderful equilibrium at &'
Therefore, Lemma 6 implies that ha(p;8) > 0 for § > §', which is equivalent to
hI(7,6) > (1 —6)/8, for 6 > &'. This proves our claim.

Since the set of discount factors for which 7w is an equilibrium outcome is
closed, we thus have that 7 is an equilibrium outcome path for all § € [éy, %)

Now, suppose 7 is not eventually 1-cyclic. Let 77 be the path such that 7} =
m for t < T, and 7} = CC for t > T. It is easily seen that if 7 is an equilibrium
path, so is 77 for any T'. Since each 77 is eventually 1-cyclic, the above argument
shows that it is an equilibrium outcome for any 6 € (69,3/4). Thus, for all
§ € (80,3/4) and all t > 1, bl (x7;6) > (1—6) /6. Since limp_,c h (7756) =
Rt (73 6), we also have hi, (m;8) > (1 — 6§) /6 for all t > 1, and so 7 is an equilibrium
path for all 6 € [69,3/4). ]
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