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1 Introduction

A leading question in macroeconomics is the identification of forces that determine
the cyclical allocation of time. Modern dynamic stochastic general equilibrium anal-
ysis emphasizes random shifts in labor demand due to technological progress. Em-
pirical studies on the decomposition of working hours (e.g., Shapiro and Watson,
1988, and Hall, 1997) have called for an attention to labor-supply movements. For
example, Hall (1997) finds a predominant role of labor-supply shifts for fluctuations
in hours worked. He suggests non-market activities such as job-search or home

production as possible causes for labor-supply shifts.

This paper examines the importance of labor-supply shifts as a source of eco-
nomic fluctuations by combining two important advances in macroeconomics in re-
cent years: identified vector autoregressions (VAR) and dynamic stochastic general
equilibrium (DSGE) models. First, we propose a new VAR identification scheme to
decompose the fluctuation of hours and output into disturbances to labor-supply and
labor-demand schedule. Impulse responses are computed to assess whether the dy-
namics of the identified VAR conform with economic intuition on the effects of labor
supply and demand shifts. Second, we investigate whether the aggregate dynamics
unveiled in the VAR analysis can be reproduced by a DSGE model. In particular,
we consider a model that explicitly deals with non-market activity, namely home
production, developed by Benhabib, Rogerson, and Wright (1991).! The model
specification on the labor-supply side is much more general than the utility funec-
tion commonly used in the literature. In fact, it nests conventional time separable

preferences for consumption and leisure as a special case.

Economic fluctuations are viewed as a series of equilibria generated by competi-

tive households and firms whose tastes and technologies are pertubated by stochastic

"The Beckerian home production models are motivated by the fact that, in any economy, agents
spend a significant amount of time on non-market activities. For example, according to the Michigan
Time-Use Survey, a typical married couple in the U.S. allocates about 25 percent of its discretionary
time to home production activities, while the couple spends about 33 percent of its time for paid

compensation (see Hill (1984), or Juster and Stafford (1991)).



disturbances. Our VAR analysis assumes that there are three fundamentals in the
labor market. First, labor-supply shocks cause movements of the economy along
the short-run labor-demand schedule. Such disturbances generate a negative con-
temporaneous correlation between labor productivity and hours, which we exploit
to identify the temporary labor-supply shock. Second, permanent technological
changes affect the long-run level of productivity. A permanent increase in produc-
tivity eventually shifts the labor supply as well as labor demand - via wealth effect
in a conventional utility or via accumulation of home capital stock in a home pro-
duction model- leaving hours constant at a higher equilibrium wage. It is possible to
identify such shocks through restrictions on their long-run multiplier matrix implied
by the VAR representation of the data. The third shock is identified by the assump-
tion that all shocks are orthogonal. Based on the shapes of the impulse responses
we will argue that this shock can be broadly interpreted as temporary labor-demand
shock. While we interpret it as a temporary shifts in market production function in

our DSGE model, its interpretation can be much broader than ours. 2

The proposed identification scheme differs from previous approaches. Shapiro
and Watson (1988) assume that both hours and aggregate output are non-stationary.
Their identification is based on a long-run restriction: labor-supply shocks have a
permanent effect on both hours and output, whereas technology shocks only affect
output in the long-run. However, the evidence on the non-stationarity of hours is
inconclusive. A researcher who believes that hours follow a stationary process will
find the data consistent with his belief. Vice versa, there is not much evidence
in hours data that would contradict that hours are (locally) non-stationary. Our

investigation treats hours as stationary process. This assumption is consistent with a

2Qur analysis does not consider other disturbances such as monetary and fiscal policy shocks.
For post-war U.S. data, government policy shocks are often considered as a secondary importance
in business-cycle analysis. ['or example, according to King, Plosser, Stock and Watson (1991),
permanent nominal shocks identified by imposing long-run neutrality explain little of the variability
in real variables. The cyclical components of government spending is not highly correlated with
output measures - it is less than 0.2 for Hodrick-Prescott filtered data. Also, expanding the list of

shocks often invites arbitrary identifying restrictions in the VAR analysis.



large class of theoretical DSGE models, including the one presented in this paper, in
which stochastic growth is induced by a non-stationary labor augmenting technology

process and the economy evolves along a balanced growth path.

Hall (1997) identifies the labor-supply or preference shocks by deriving short-run
labor supply and demand functions based on assumptions on consumer preferences
and the firms’ production technology. He expresses the equilibrium hours as a func-
tion of the labor-supply shock and several observable variables contained in the
first-order condition of utility maximization of households. Based on the labor-
market equilibrium the labor supply shocks are calculated as residuals from the
first-order conditions of household labor supply decision.® Similar to Hall’s Ianaly—
sis, we also exploit the short-run labor market equilibrium to identify the supply
shocks. However, our VAR identification scheme does not rely on a specific form of

households’ preferences.

Unlike many VAR identification schemes that have been used in the literature,
our scheme cannot be implemented solely based on zero-restrictions on the con-
temporaneous relations among endogenous variables, the long-run multipliér matrix
for the structural shocks, and the covariance matrix of the structural shocks. Uhlig
(1997) and Canova and De Nicolo (1998) develop identification schemes based on in-
equality restrictions on the direction of impulse responses. Gordon and Boccanfuso
(1998) proposed to express the VAR as a moving average (MA) of structural shocks,
specify a proper prior for the MA representation and update the prior based on the
sample observations. While the MA representation is not identified in a classical
sense, it is still possible to compute a proper posterior distribution of the impulse re-
sponses. However, in general the specification of the proper prior distribution is even
more demanding than the specification of inequality restrictions. In our scheme, we
separate the identifiable reduced form VAR parameters from one non-identifiable
parameter, that is, the slope of the labor-demand schedule. Since the reduced form

parameters are updated through the sample information, the implied distribution

“The same strategy to identify preference shocks is used in Hall (1986), Parkin (1988) and Baxter

and King (1991).



of the impulse response functions is updated with every observation.* To make the
VAR analysis consistent with the DSGE model analysis, the same prior distribution

for the slope of the labor-demand schedule is used in both specifications.

Our findings can be summarized as follows. According to the variance decompo-
sition from the VAR, consistent with Shapiro and Watson (1988) and Hall (1997),
we find an important role of labor-supply shifts in fluctuations of hours. Temporary
shifts in labor supply account for about half (46 percent) of the cyclical variation of
working hours, whereas temporary labor-demand shifts account for 38 percent. The
stochastic trend in productivity account for 16 percent of variation. This decompo-
sition is fairly robust across various business-cycle frequencies. Labor—supply shifts
are less important for output fluctuations. They explain 17 percent of the variation

in output growth.

When the fully-specified general equilibrium model is fitted to the data, most
variation of hours is attributed to the temporary shift in labor-demand, as it ac-
counts for 70 percent of the variation. Labor-supply shifts, postulated by stochastic
shifts to home technology, continue to play an important role for hours as they
account for 25 percent of hours variation. However, for output fluctuation, only 4
percent of the variation is due to the movements of home production productivity.
The equilibrium model reproduces the responses of labor productivity and spending
on consumer durable goods in the VAR reasonably well. The response of market
hours from the model exhibits a temporal shift compared to the VAR. While the
response of hours is immediate in the model, it is delayed by 2-3 quarters in the

data.

According to equilibrium models with preference shocks, recessions can occur
because agents find it optimal to spend more time in non-market activities. The
DSGE model provides estimates of the evolution of market and home technology over
time. The latter measures the attractivness of non-market activities. While there

are alternative explanations for recessions that are not captured by the simple DSGE

*Poirier (1998) provides a survey and several examples of Bayesian analyses of non-identified

econometric models.



model, we find it interesting to compare the estimates of the latent technologies to
the NBER business cycle dates. Taken at face value, two out of six business cycle
troughs during the period from 1960:1 to 1997:1V, namely March 1975 and November

1982, coincide with unusually high productivity of non-market activity.

The paper is organized as follows: In Section 2, we illustrate the economic
intuition behind our identification scheme for a vector autoregression. Section 3
presents a general equilibrium model that explicitly considers non-market activity.
Section 4 discusses our estimation method for VAR and DSGE model and provides a
formal description of the identification scheme. Empirical findings are summarized
in Section 5, and Section 6 is conclusion. Data definitions and computational aetails

are collected in the Appendix.

2 Identifying Labor Market Fluctuations

Labor market fluctuations are viewed as a series of equilibria generated by compet-
itive households and firms whose tastes and technologies are pertubated by three
types of stochastic disturbances. Figure 1 depicts time series plots of hours, la-
bor productivity and spending on consumer durable goods. For the past several
decades, labor productivity and hourly compensation of labor exhibited strong
trends, whereas aggregate hours did not show an apparent trend. This observa-
tion has led macroeconomists to adopt the notion of a so-called balanced growth
path. There are permanent productivity shocks that cause fluctuations in hours
in the short-run, but leave hours counstant in the long-run as they shift both labor
demand and labor supply — via wealth effect in a conventional utility and via ac-
cumulation of consumer durable goods in home production models. As in King,
Plosser, Stock, and Watson (1991), the permanent productivity shock, which we
will denote by ¢, , can be identified by the common trend in labor productivity and

spending on consumer durable goods.

In addition to the permanent shock we consider two innovations that cause

temporary shifts of labor demand and supply, denoted by ¢, and ¢4, respectively.



All three fundamental shocks are assumed to be uncorrelated. The identification of
the temporary shocks is based on the following assumptions on the aggregate labor

market.

The inverse labor demand of a competitive profit-maximizing representative firm
can be written in terms of market capital stock K, ; and the state of market tech-
nology Sy at time ¢:

Wi = MPL; = ¢} (L; Kty St), (1)

where W; represents real wage rate, M PL; the marginal product of labor, and L,
hours employed at time t. The state of market technology is a function of current
and past innovations to productivity €, and ¢, ¢, reflecting, respectively, permanent

and temporary components: S; = S({€.;, €a;}j=0,..t)-

Similarly, the inverse labor supply by the representative household can be written

in a generic form:

W, = ‘Pf(Lm,t; Qt(St, Tt), Tt)~ (2)

where ; represents endogenous variables that influence the labor supply of the
household, such as real interest rate, consumption, and wealth. Ty represents the
exogenous random shifts in labor supply. T} is a function of current and past innova-
tions ¢, ;, which may be called “taste shocks” or “productivity shocks” to non-market

activity: Ty = T'({€;}j=0,...t)-

The important distinction is that ¢, enters the labor-supply function only, as
the capital stock is predetermined from period ¢t — 1. According to traditional
econometric analysis, the slope of labor-demand schedule is identified through an
instrument for ¢, ;. In our VAR analysis, however, we identify ¢,; conditional on

the slope of the marginal product of labor.

As the capital stock K, ; is inherited from the previous period, the labor-demand
schedule is stable despite exogenous shifts in T; at time ¢. This allows us to iden-
tify the labor-supply shift that is orthogonal to the labor-demand shifts given the

slope of marginal product of labor. For example, with a Cobb-Douglas production



technology, in response to an orthogonal shift in labor supply, real wage and hours

must exhibit the following relationship:

dln Wt ) Jdln Lm t
= - 1) ‘
e (@ -1) Jene (3)

where « is the labor share parameter in the production function. Unlike in Hall’s
(1997) analysis, no assumptions with respect to the labor-supply function ¢° have
to be made. We will show in Section 4, how the posterior distribution of the VAR

based impulse response functions depends on the prior distribution for «.

Even though it is plausible to assume that the capital stock is predetermined, its
utilization may fluctuate over the business cycle and lead to shifts in labor demand
schedule at impact. However, we demonstrate in Appendix A that even in the
presence of variable capital utilization our identification scheme is still valid. In
equilibrium allowing for utilization makes the labor demand schedule flatter than
the case without utilization reflecting an extra margin for the firms to exploit. In the

empirical analysis below, we allow for variation in « through the prior distribution.

3 A Fully Specified Model Economy

A fully-specified-dynamic-general-equilibrium model provides a rigorous interpreta-
tion of structural shocks and their propagation. It also helps to understand the
economic intuition behind our identification scheme used for the VAR analysis. The
model economy consists of identical infinitely lived households who maximize the
expected discounted lifetime utility U defined over consumption C; and pure leisure
Il — Lyt — L. Ly is the fraction of time supplied to the representative firm
described in the previous section and Ly, is the fraction of hours spent on home
production activities (e.g., lawn-mowing, dish-washing, or cooking), which often
require the use of consumer durable goods.

[ee]

I =Ey Y B (log O+ klog(l = Ly — Lis)) (4)

s=t



FE is the expectation operator conditional on information available at time ¢ and 3
is the discount factor. Consumption is an aggregate of market consumption ', ,

and the consumption of home produced goods Ch ¢ :

v—1 v

C(Comty Cht) = XCry + (1= X)C, 5 17T, (5)

where v is the substitution elasticity, reflecting the household’s willingness to sub-
stitute market and home-produced goods. Output from home production depends
on the state of technology and capital stock at home. It is produced according to a

constant-returns-to-scale technology with inputs home capital Ky, and labor Ly,

Che = [W(XnyLn) = + (1- 9K, 177, (6)

>

where 7 is the substitution elasticity between labor and capital in home production.
Xy is a labor augmenting productivity process that will be specified below. It is
important to note that this specification of home production is much more general
than the conventional utility with leisure only. In fact, the commonly used separable-

in-log utility can be obtained by simply setting v=7=1.°

The household owns the market capital stock and rents it to the representative

firm. The budget constraint is of the form
Cm,t + [m,t + ]h,t - VVth,t + Ril{m,h (7)

where I, ; and I, are investments on the capital stock in the market K, ;, and at
home K} ;. In each period t, the household chooses Cy i, Cht, Ity Iniy Linyt, and

Ly . Market capital and home capital accumulate according to:

I{m,t-}—l - gf)(lm,t/l{m,t)Aﬁm,t -+ (l - 5) I(m,t (8)

Kniv1 = OUne/Kn)Kni+ (1= 0)Kpy,

where ¢ is the depreciation rate of capital. The capital accumulation is subject to

convex adjustment cost: ¢’ > 0, ¢"” < 0.

“ Also, one can always write down a utility function with preference shock that is identical to

the stochastic shift in home technology.

Unlike one-sector models, in a multi-sector model, the investment in one sector can increase



Output Y; is produced by a representative firm that operates a Cobb-Douglas

technology with the inputs capital K, ; and labor L,, ;

Yt - I(I_Q(Xm,t[fm,i)a~ (9)

m,t

Xt represents a labor augmenting technology process. The firm solves the one-

period problem

max I(I‘Q(meth’t)a - Wth,t — Ril(ﬂl,h (10)

- m,t
l/Tll,tyI\Tﬂ,t !

which leads to an inverse demand function of the form (1). In equilibrium the output
produced by the representative firm is equal to the consumption of market goods

and the investment in home and market capital:
th = Cm,t + [m,t + Ih,t- (11)

The labor augmenting productivity of the market and home technology are of
the form X,,; = exp[z: +a;] and X}, ; = exp[z; + b;], respectively. Here z, represents

a common technology process that follows a random walk with drift:
Zp =Y+ Zp1 €y (12)

The processes a; and by capture temporary productivity movements that are modeled

as stationary first-order auto-regressions:

At = Pali—1+ €ay (13)

by = pebi_1+ ey (14)

Define ¢; = [€.4, €44, €5¢)/. We assume that ¢, is serially uncorrelated with diagonal

covariance matrix .. Its diagonal elements will be denoted by o2, o2, and 0’5,

respectively.

enormously at the price of the investment in the other sector, without affecting consumption sig-
nificantly, resulting in unreasonably volatile investments over time. Adjustment costs of capital
accumulation generate a more reasonable behavior of sectoral investment (e.g., Baxter (1996) and

Fisher (1997}).
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Due to the random walk process 2, the economy evolves along a balanced stochas-
tic growth path. Except for Ry, L, and Ly, all endogenous variables exhibit a
stochastic trend exp[z;]. This stochastic trend shifts both the labor supply and de-
mand curves, such that in the long-run a unit shock ¢, raises the equilibrium wage
rate by one percent but does not affect hours worked. The DSGE model is consistent
with the identification scheme proposed in Section 2 in the following sense: based
on a long series of observations generated from a log-linear approximation of the
DSGE model, it is possible to recover the structural shocks ¢; through an identified

VAR with sufficiently many lags.

4 Econometric Approach

Two specifications are considered: the just-identified VAR, denoted by My, and
the over-identified DSGE model, denoted by M;. The VAR includes hours L,, ;
and labor productivity F; and investment on home capital stock (expenditure on
consumer durable goods) Ij, ;. According to our home production model, the use of
expenditure on consumer durables is obvious as it reflects the productivity in home
technology in the long-run, thus allows us to identify the common productivity
shocks. Moreover, its use is also justified without the home-production argument.
To identify the permanent technological progress which will eventually shift labor
supply through wealth effect, one needs a measure that reflects the wealth of the
household. The long-run behavior of spending on consumer durables serves as a
good proxy for permanent income of households. One expects important techno-
logical innovations reflected in productivities of consumer durable goods as well
as producers’ durable goods.” Under either interpretation, common trends in la-
bor productivity and consumer durable goods identify the permanent component in

productivity &, ;.

Both Mg and M generate probability distributions for the data Yr = [y, ..., y7]

“While the consumption expenditure shares for non-durables and services shifted substantially

in the past four decades, the share of durables stayed fairly constant.
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where y, is the 3 X 1 vector of observables.® Define the cumulative market hours
process im,i = 23:0 Ly and let y; = [In P, In 1}, 1n im,t]’. In general, we will
assume that hours are integrated of order zero, I(0), and productivity and home
investment are integrated of order one, /(1). This assumption is consistent with

the DSGE model presented in the previous section. Hence, all the elements of the

vector Ay, = [AP,, Al ¢, Ly, 1) are 1(0).

The VAR and DSGE model parameters, except for «, are stacked in vectors
0 € Opy, @ = 0,1. We assume that both models share the parameter . The
likelihood functions are denoted by p(Yr|6;), @, M;). In the context of the VAR,
o is only needed to identify structural shocks. It does not affect the likélihood
function:

p(Yr|0(0), @, Mo) = p(Y116,0y, Mo). (15)

Since our analysis is Bayesian, we place a probability distribution on the two models
and their parameters, denoted by the priors m; 9, p(f(;)|M;), and p(«). The joint
distribution of data and parameters is of the form

p(Y: 00y, 01y, @) = p(e) D> mi0p(B()| M) p(Yrl8(i), o, M), (16)

i=0,1

The use of an informative prior distribution for the DSGE model allows us to incor-
porate information on structural parameters from microeconomic studies. The next
three subsections explain our estimation and evaluation approach, the formal spec-
ification and identification of the VAR, and the variance decomposition at business

cycle frequencies.

4.1 Estimation and Evaluation

A straightforward application of Bayes Theorem shows that the posterior distribu-

tion of the parameters 6g), #(;y and « is given by:

P00y, 01y Y1) = Z 7 700y, @Y1, M), (17)

1=0,1

*Here, we use y, and Yy to generically denote the dependent variables, not aggregate market

output as i Sections 2 and 3.
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where

T 0p(Y7r| M)

T y
2 i=0,1 P(YT|M5)
p(YT]Mu 0(2)’ a)p(g(z)laa MZ)p(a)
0 )y &X Y, ,Mi = y
P8y, oY, Mi) (VI

p(YrIM) = / p(0) (10| M) p(Yr 1615, 0y M) d(B, ).

The densities p(6;), «|Yr, M;) characterize the posterior distribution of 8;) and «
of an individual who fits model M; to the data Yr. According to the VAR, the data

contain no information on a:
p(Y7|8(0), Mo)p(8(0)] Mo)p(a)
I |p(Y7l00), Mo)p(8(0)| Mo)[ | p(a)da]|db g,
= p(bo)|Yr, Mo)p(e). (18)

p(by, YT, Mo) =

Thus, the marginal posterior distribution of « is equal to the prior distribution.

The posterior model probabilities m; r measure the relative time series fit of the
two models. Due to the restrictive dynamics of the DSGE model, its posterior prob-
ability turns out to be Small.. However, our empirical analysis does not focus on
a comparison of VAR and DSGE model through posterior probabilities. Instead,
we will construct an overall posterior distribution for a variance decomposition of
aggregate hours and output and examine to what extent these population charac-
teristics can be reproduced by the DSGE model alone. Details of this methodology

are provided in Schorfheide (2000).

Let o € IR™ be an m X 1 vector of population characteristics such as a variance
decomposition or a truncated impulse response function. According to model M;,
the implied population characteristics are functions @;(6;), «). The overall poste-
rior distribution of ¢ is a mixture of two components: with probability 797 the
distribution of ¢ is induced by the function @o(6 o), @) where [020),01]' has density
P(0(0y)| Mo, YT)p(er). With probability 7y 7 = 1 — 7o 7 the distribution is character-

ized through $1(6(1), @) and p(8(1), o| My, Y7).

Bayesian simulation techniques are used to approximate the posterior model

probabilities m; p and to generate draws from the posterior distributions p(é,y, o|Y7r, M;)
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of model parameters. Draws [‘%)’O‘]I are converted into draws of ¢ through the
mapping ;. A noteworthy feature of our approach is that despite the presence of
the DSGE model M, and the informative posterior p(a|Yr, M;) that it generates,
the VAR impulse responses have to be identified through the prior p(a), not the
DSGE model posterior p(a|Yr, M), or the overall marginal posterior p(a|Yy) =
mo,rp(@) + m1,rp(elYT, My).

4.2 VAR and Its Identification

According to the assumptions in Section 2 the fluctuations in the vector ;. of de-
pendent variables are caused by three structural shocks. One of them, €., has a
permanent effect on productivity F; and a transitory effect on market hours L., .
The other two shocks have transitory effects on both hours and productivity. The
DSGE model implies that labor productivity and home investment have a common
stochastic trend generated by ¢, ;. The VAR is expressed in vector error correction

form

P
Ays = Py + Pyecyi—1 + Z Qi Ay + 1y, U ~ 1id N(0,5,). (19)
=1

The reduced form disturbances u; are related to the structural disturbances ¢; by

u; = ®,é, where € is a standardized version of ¢; with unit variance.

The DSGE model suggests that &,.. has rank one and can be expressed as
¢uee = pA'y where both g and A are 3 x 1 vectors. Strictly speaking, the model
implies that In Py —1In [}, ; is stationary, that is, A = [1, —1,0])". However, rather than
iinposing this particular co-integration vector, we parametrize A as A = [1, — Ay, 0]
and estimate A;p to allow for a possibly steeper Engel curve for expenditure on
consumer durable goods. The VAR specification ensures that productivity and
home investment have a common stochastic trend and the cumulative hours process
L¢ has a second stochastic trend. Let 1y be a3 x 2 matrix with columns that are
orthogonal to p and define A as matrix with columns [A;,1,0] and [0,0,1]. The
stochastic trend in y; has the form C,, er:o 1u; where

P —1
Cy= /\L[u; (13x3 - Z@)AL] 17y (20)

=1
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see for instance Theorem 4.2 in Johansen (1995). I3x3 denotes the 3 x 3 identity
matrix. Due to the composition of A the first to rows of the matrix C, are pro-
portional. The factor of proportionality is Aj2. In our empirical analysis, we report
posterior model probabilities of VAR specifications in which ®,.. has rank one versus
specifications in which the matrix has full rank. We also use posterior probabilities

to determine the appropriate lag-length p.

The structural shocks € are identified within the VAR specification, if the ele-
ments of the 3 x 3 matrix ®. can be uniquely determined based on &g, ..., ®,, Do,
and ¥,. Six restrictions can be obtained from the covariance matrix relationship
Y = @,9.. Define C, = C,®.. The assumption that the common stochastic: trend
in productivity and home investment only depends on the disturbances ¢, gener-
ates two additional restrictions: C, 12 = 0 and C. ;3 = 0. Here C;; denotes the
element of matrix C. in row ¢ and column j. From the proportionality of the first to
rows of C, it follows that C, 22 = 0 and C\ 23 = 0. Thus, neither €, ; nor ¢, have a
permanent effect on productivity and home investment. The last restriction is ob-
tained by observing that in response to a temporary home productivity shock, labor
productivity and market hours move in opposite directions at impact. Specifically,

the restriction @, ;3 = (@ — 1)®, 33 obtained from Equation (3) is used.

4.3 Variance Decomposition and Impulse Response Functions

Under the vector autoregression and the log-linear approximation to the DSGE
model, the vector process Ay, has a moving average representation in terms of the
standardized shocks é;: .
Ay =Ay+ ) Ciéy (21)
7=0
Define the vectors M, = [1,0,0], M, = [0,1,0], and M, = [0,0,1}". The impulse
responses to the shock €, are given by

OAYeih

D

=CyMy, h=0,1,..., s€{za,b}. (22)
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The h-th order autocovariance matrix of Ay, is
Lay(h) = Z CiCltn- (23)
J=max{0,—h}
The autocovariances can be decomposed according to the contributions of the three

structural shocks:

Pay(h) =T (h) + TE () + T8 (1), (24)
where
Fgg)/(h): Z CJ'M/CMIQCJ/'»M’ = {Z,a,b}.
j=max{0,—h}

Let ['ay (mj)(h) denote the m’th row and j’th column of the matrix I'ay(h). The
decomposition of the unconditional variance of the j’th element of Ay, is given by

the ratios F(As;,(j].)(h)/FAy’(jj)(O), s € {z,a,b}.

The spectrum of the stationary process Ay, is
oo .
Sayw) = Z Dage™™. (25)
h=—o0
Just as the autocovariances, the spectrum can be decomposed into the contributions
of the three shocks. Let S(As;(w) denote the contribution of shock s to the spectrum.
Since Ay, = [Aln P, Aln Iy, In Ly, 4] is stationary according to Mg and M, the

variance decomposition of log hours at frequency w is given by

SS;,(BB)(M)/SAy,(SS)(W)- (26)

Due to the definition of productivity, aggregate output can be recovered from the
vectors Ay, and Ay, as Aln P+ Aln Ly, ;. The autocovariance of output growth
can be easily obtained from I'p, (h) and its spectrum can be computed according to
Equation (25).

Both My and M, imply that the level of output is integrated of order one.
Hence, its autocovariances do not exist and the infinite sum in Equation (25) is not
well defined. Let S_E;%n y (w) denote the three components of the spectrum of output

growth. We define the spectrum of output at business cycle frequencies as

(s)
{s) — I SAlnY(w) ¢
Sy (@) = (})1311 14 ¢? — 2¢cos(w)’ w >0 (27)
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The term 1/[1+4 ¢* — 2¢cos(w)] is the power transfer function of the AR(1) filter

[1—¢L]™!, where L denotes the temporal lag operator. Equation (27) implies that

Sy () _ 8Ky ()
SlnY(w) SAlnY(w)

(28)

The relative importance of the shocks is not affected by the filter that cumulates the
growth rates of output. The filter only alters the relative contribution of different

frequencies to the total variance of the filtered process.

4.4 A Small Simulation Experiment

To illustrate the VAR identification procedure and the effect of the non-identifiability
of the parameter «, a small simulation experiment is conducted. Data is generated
from the DSGE model M;. Posterior mean estimates obtained in the empirical
analysis are used to parameterize the DSGE model. In particular, « is set equal
to 0.74 (see Table 1). We use sample sizes 7' = 20 and 7' = 5000. The former
corresponds to the length of the pre-sample that is used in the empirical analysis to
set the prior for the reduced form VAR parameters. The latter sample size, much
larger than the typical macroeconomic data set, will highlight the large sample
characteristic of our approach. Based on the artificial data we estimate VARs and
generate a posterior distributions for the variance decomposition of output at the

frequency 1/12 cycles per quarter.

As in the actual empirical analysis, the prior mean of « is chosen to be 0.66.
Two different values for the prior standard deviation of « are used. The value
o(a) = 0.02 implies a 95 percent confidence interval ranging from 0.62 to 0.70. This
interval is consistent with a short sample of postwar U.S. labor income shares. The
value o(a) = 0.2 leads to a confidence interval from 0.46 to 1.06, which covers most

plausible as well as many implausible values of «.

Figure 2 visualizes the variance decomposition of output at frequency /12 ob-
tained from simulated data. Since the variance decompositions have to sum to one

across shocks, they lie in a two dimensional triangular shaped subspace (simplex)
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of IR®. Each dot in the four panels of Figures 3 corresponds to a draw from the
posterior distribution of the variance decomposition based on the VAR. Clusters of
points indicate regions of high posterior density. V signifies the posterior mean for
the VAR. The three corners z,a,b of the simplexes correspond to decompositions
that assign 100 percent of the variation to one structural shock, and 0 percent to

the other two shocks.

Informal inspection of the plots suggests that for small samples, such as T =
20, the uncertainty with respect to the variance decomposition is dominated by
the uncertainty about the reduced form VAR parameters. The dispersion of the
posterior draws is quite similar for both choices of o(a). As the sample size is
increased to T = 5000, the posterior variance of the identifiable VAR parameters
decreases substantially. Nevertheless, there remains substantial uncertainty about
the role of permanent versus temporary market technology shocks. A drawback of

the long-run identification restriction is that it leads to imprecise decompositions.

This paper focuses on the role of the labor demand shock versus the two tech-
nology shocks. For o(a) = 0.02 the posterior uncertainty, reflected by the vertical
spread of the draws, is very small. If o(«) is increased to 0.2 the spread becomes
larger. Nevertheless, a comparison of Panel 1 with 3, and Panel 2 with 4 shows
that the sample information leads to an update of the beliefs about the relative
importance of labor supply shocks. Due to the non-identifiability of «, the proposed
identification procedure is not consistent in the sense that the posterior degenerates
to the “true” decomposition that corresponds to the parametrized DSGE model as
the sample size approaches infinity. Nevertheless, it enables the researcher to extract
information from the data and learn about impulse responses and variance decom-
positions. Under a tight prior for «, e.g. o{a) = 0.02, which we think is justified
in the subsequent analysis, our procedure will lead to a concentrated posterior in a

large sample.
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5 Empirical Analysis

The models are fitted to post-war quarterly U.S. data on labor productivity growth,
home investment growth and market hours. The construction of the data set is
described in Appendix B. Home investment is measured as expenditure on consumer
durable goods. The sample period ranges from 1955:1 to 1997:IV and the overall
sample size is T' = 172. The first 7\, = 20 observations are used as training sample
to initialize lags and parameterize the prior distributions. The data are plotted in
Figure 1. Solid vertical lines correspond to the NBER business-cycle peaks, while
dashed lines denote troughs. The peaks coincide with periods in which aggregate
hours is high, and troughs coincide with periods in which hours and expenditure on
consumer durable goods were at a low. The hours series has no apparent trend, yet

its movement is quite persistent.

5.1 Priors

For the DSGE model, we use informative priors for parameters that can be easily in-
fered (e.g. labor share, average growth rate of productivity), whereas uninformative
priors are used for those that cannot be easily observed (e.g. home production tech-
nology). The prior distribution used in the estimation is summarized in columns 3
to 5 of Table 1. The shapes of the densities are chosen to match the domain of the
structural parameters.

The prior means of labor share in the market production function o and de-
preciation rate of capital § are set to 0.666 and 0.025, respectively. The quarterly
growth rate of productivity v is 0.004, and discount factor /3 is set to 0.993 to yield
a 4 percent annual real interest rate a priori. These values are commonly used
in the literature and can be justified based on a training sample that ranges from
1955:1 to 1959:1V. The steady state hours spent for market work L., and home work
Ly are 0.33 and 0.25, respectively, from the Time Use Survey. A larger standard
deviation is allowed for Lj, as hours spent on home work may be measured with

a greater uncertainty. The prior mean and standard deviation for the steady-state
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ratio of home investment to market investment I /I, are obtained from the infor-
mation in the training sample 1955:1 to 1959:1V. For market investment, we use
non-residential fixed investment for market investment. The steady-state share of
market investment in aggregate output s;,, is determined by the estimated steady-
state real interest rate and capital share in the market production function. The
steady-state share of home investment s;;, and consumption s;. in output can be

calculated by s;, x I,/1,, and 1 — s;,,, — s;3,, respectively.

We allow for large standard deviations in the prior distributions of home technol-
ogy parameters as they are not easy to observe. As prior means of the substitution
elasticity between market goods and home goods v, and the substitution elésticity
between capital and labor in home production 7, we use 1 for both. This case is
essentially identical to a conventional utility separable-in-logs in consumption and
leisure. The prior mean of the labor share parameter ¢ in the home production func-
tion is set to 0.666. The weight parameter in the utility x is determined by other
parameters to be consistent with the steady state hours in the market and at home.
For the parameters of stochastic process of structural shocks, p,, ps, 02, 04, and oy,
we use very diffuse priors. Prior means of persistence parameters for temporary

shocks are set to 0.9.

The adjustment cost function is parameterized as follows. First, there is no
adjustment cost incurred maintaining the steady-state level of capital. That is,
Tobin’s ¢ is one: ¢'(I*/K*) = 1 and ¢(I*/K*) = I"/K*. The elasticity of the
investment/capital ratio with respect to Tobin’s ¢, n = (|(I*/K*)¢"/¢'|7!) is to be
estimated. With no available prior estimate, the prior mean is set to 100 implying
small adjustment costs, with a large standard deviation of 100. In the empirical
specification of the home production model, we introduce two additional parameters
& and &; to adjust the normalization of total hours to one in the data and to capture
the average growth rate differential between labor productivity and home investment

in the data.

It is assumed that the structural parameters are « priori independent of each

other. Thus, the joint prior density is simply the product of the marginal densities.
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Since all the marginal densities integrate to unity, it follows that the joint prior
distribution is proper. The prior distribution for the VAR parameters is described

in Appendix C.

5.2 Estimation

Draws from the posterior distributions p(6;)|Y7, M) cannot be generated directly
because in our setup the posteriors do not belong to well-known classes of prob-
ability distributions. Draws QES;, s = 1...90,000 from the posterior distribution
of the VAR parameters are obtained by Gibbs sampling, described in Appendix B.
For the parameters of the home production model a random walk Metropolis al-
gorithm, discussed in Schorfheide (2000), is used to obtain a sequence of draws
HES)), s =1...90,000. Posterior means, standard errors and confidence intervals are
calculated from the sequences of parameter draws. We estimated the VAR model,

Equation (19), for different choices of the lag-length p as well as with and without

the rank restriction on @ ...

Except for Az, the VAR parameters themselves are not of primary interest. For
p = 1 and ®,.. = pA’ the 90 percent posterior confidence interval for Ay ranges
from 0.80 to 1.15. The posterior mean of Ay is 0.97. While the model implies
a cointegrating vector of A = [1,~1,0} among productivity, home investment and
hours, our estimate of A= [1,-0.97, 0] reflects a steeper Engel Curve for consumer
durable goods. According to consumer demand analysis (e.g. Houthakker and
Taylor (1970) and Bils and Klenow (1998)), most consumer durable goods exhibit
income elasticities greater than one. Our estimate of 1/0.97 corresponds to the

income clasticity of expenditure on consumer durable goods.

Columns 6 and 7 of Table 1 contain posterior means and standard errors for the

parameters of the home production model.” We will not discuss the parameters of

?While McGrattan, Rogerson and Wright (1995) also estimate home production models based
on aggregate time series, our analysis distinguishes itself from theirs in several dimensions. First,
our approach enables us to compare the predictions from the model to those from the VAR driven

by the same set of structural shocks. Second, our approach makes use of indirect evidence from
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market labor share, discount factor, average growth rate of productivity, deprecia-
tion rate and market hours in detail as they are very standard in the literature. The

estimates are & = 0.740, 8 = 0.978, % = 0.004, § = 0.016, and L, = 0.343.

Estimates of home technology and structural shocks are as follows. The substi-
tution elasticity between market goods and home goods v is 2.376. This is slightly
higher than the estimates of Rupert, Rogerson and Wright (1995) and McGrattan,
Rogerson and Wright (1997). The substitution elasticity between capital and labor
in home production 7 is 2.568 implying that goods and time are substitutes in home
production activity. The labor share in home technology % is 0.778 which is slightly
higher than that in the market technology. Hours spent on home productibn ac-
tivity Ly is 0.165. Temporary home production shock is somewhat more persistent
than that of market: p, = 0.774 and p, = 0.869. The nature of stochastic variation
of home technology X, ¢, in particular, its relative magnitude and correlation with
market productivity shock X,,;, is important for business-cycle analysis. Once we
identify the underlying innovation to three structural shocks, conditional on time

t—1 information, the correlation between the market and home productivity In X, ;

and In X, can be obtained:

N\ -1/
corry_q[In X ¢y In Xp 4] = ([l + (0a/0:) %[0 + (ab/02)2]> (29)

The posterior mean correlation between innovations to market and home productiv-
ity In X, and In X} ¢ is 0.22. The 90-percent posterior confidence interval ranges
from 0.16 to 0.27. The estimates are somewhat lower than the values that have been
used in the literature. Finally, the adjustment cost parameter 7 is 23.72 implying a
small adjustment cost in capital accumulation.

i op(Yop|M:)
Z;:o,n 7 0p(Yr M,

To obtain posterior model probabilities m; 1 = ] conditional
on the training sample 1955:1 to 1959:1V, one has to evaluate the marginal data

densities p(Y7|M;) = [ p(Yr|0), Mi)p(8;)IM;)db;y. Since for both models this

micro studies as a prior in our Bayesian estimation. Third, unlike their study, we uncover the

comovement of innovation to market and home productivity. This is an important distinction as
the relative magnitude of shifts in home technology and its comovement with market technology

plays an important role in business cycle analysis.



22

integral cannot be solved analytically, we use a numerical approximation, known
as modified harmonic mean estimator, and described in Geweke (1999). The log

marginal data densities are summarized in Table 2.

The results imply that the VAR specification with the highest posterior prob-
ability has two lags, that is, p = 1 in the notation of Equation (19), and reduced
rank ®,.. = pX'. The posterior odds of the DSGE model versus the preferred VAR
specification are essentially zero. The likelihood based fit of the DSGE model is
poor, compared to a simple just-identified reduced rank VAR.'© Consequently, the

overall posterior distribution of population characteristics ©

p(elYT) = mo,rp(0|Y7, Mo) + m1,70(0| Y7, M)) (30)

is dominated by the first term (77 ~ 0), which reflects the contribution of the
VAR. Here p(p|Yr, M;) denotes the density of ¢ induced by the mapping ¢; and

the posterior distribution of [021.), a}’ conditional on model M;.

5.3 Variance Decompositions and Impulse Responses

Our primary interest is to unveil the sources of cyclical variation in hours and output.
Table 3 presents the variance decomposition of hours, from both VAR and DSGE,
into three structural innovations ¢4, ¢, 4, and €. [t contains posterior means and

confidence intervals for the decomposition of the unconditional variance and the

'To check whether the assumption that hours is stationary is consistent with the estimated
model we examine the largest eigenvalue of the autoregressive representation for (A'y,, N Ay;).
The 90-percent posterior confidence interval ranges from 0.895 to 0.972. None of the posterior
draws of 8(g) implied an eigenvalue greater or equal to one.

Furthermore, we generate posterior predictive distributions p(7}(Y"*")|Y}), and examine how far
the transformation of the observed data T,(Y7) lies in the tails of this predictive distribution. We
define 77 and 7> as OLS estimator jp and t-statistic (Ho : p = 1) for the regression In L, =
Bo + pln Lm—1 + ve. Moreover, T3 and Ty are OLS estimator and t-statistic for the regression
In Lyne = Bo+Bit+pIn Lin 1 +v:. The Bayesian p-values are 0.47, 0.24, 0.49, and 0.15, respectively.
This indicates that the autocorrelation observed in the actual hours series In L ¢ is consistent with

the predictive distribution of the model.
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variance at several business cycle frequencies: 1/32, 1/20, 1/12, and 1/6 cycles per

quarter.

According to the VAR based decomposition, the temporary labor-supply shifts
play a very important role as a source of fluctuations in hours. Looking at the
last row of the table, the posterior mean of unconditional variance decomposition
indicates that the labor-supply shifts account for about half (46 percent) of the
variation. Temporary labor-demand shifts and permanent technology account for
38 percent and 16 percent, respectively. The decomposition is fairly robust across
various business-cycle frequencies. Our finding of important labor-supply shifts is
comparable to Shapiro and Watson as they assign about 60% of cyclical variation in
hours to the stochastic trend component in labor supply. Almost the entire cyclical

variation of hours is attributed to preference shocks in Hall (1997).

According to the estimated DSGE model much of the variation of hours (about
70 percent) is caused by the temporary labor-demand shifts due to market produc-
tivity fluctuations. Labor-supply shifts caused by home production shocks continue
to play a significant role as they account for 25 percent of the variance. The stochas-
tic trend in productivity contributes almost negligible variation in hours, less than
5 percent. This is due to the so-called balanced growth path property. A perma-
nent common productivity shock shifts both labor demand and supply in a similar
magnitude at impact. The same is true for the model with conventional utility in
consumption and pure leisure, as the income and substitution effect are likely to

offset each other in response to a permanent increase in productivity.

Figure 3 visualizes the variance decompositions. The three corners z, a, b of the
simplexes correspond to decompositions that assign 100 percent of the variation to
one structural shock, and 0 percent to the other two shocks. The plots indicate
that the VAR decompositions have considerable posterior uncertainty. As described
above, while the posterior mean VAR decomposition, V| lies around the center of
the simplex, slightly toward b, the posterior mean of the DSGE D lies at the lower
right corner, a, as most of variation is caused by temporary demand shifts in the

DSGE models.
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The decomposition of output variation is reported in Table 4. Compared to the
hours series, the role of labor supply shifts for output fluctuations is smaller, as they
account for about 17 percent of the variation according to the decomposition of un-
conditional variance. The most important driving force behind output fluctuations
are permanent shifts in technology, as they account for more than half the variation.
Temporary shifts in labor demand account for about 36 percent of output variation.
Again, the decomposition is robust across various business-cycle frequencies. The
DSGE model generates most of output variation from permanent productivity shifts,
as they account for almost 90 percent of variation. The contribution of home pro-
duction shocks is negligible (less than 4 percent). Figure 4 clearly shows that most
variation in output is created by either permanent or temporary productivity shifts

according to the VAR, as the dots are concentrated at the bottom of the simplex.

We next examine the impulse response functions of the DSGE model and VAR
to see if the structural shocks identified from the VAR conform to our economic
interpretation. Figure 5 depicts the impulse responses of labor productivity, home
investment and market hours to three structural shocks. It shows the DSGE model
responses (solid line) and those from the VAR along with the 90 percent confidence
interval (dotted lines). In response to a permanent common productivity increase,
labor productivity both in the model and data approach the new steady state at
a similar pace. Home investment and hours increase immediately in the model,
whereas they exhibit somewhat delayed responses, especially for hours, in the VAR.
Model responses to a temporary market productivity increase closely trace those
from the VAR confirming our interpretation of temporary labor-demand shifts. The
response of hours in the VAR is again delayed for about 2 quarters. Finally, in
response to a temporary increase in home productivity, while the responses of labor
productivity is within the 90 percent confidence interval, it shows a very persistent
response in the data, whereas it decays rapidly in the model. Home investment
initially decreases and moves above the steady state after 12 quarters in the data,
whereas it increases immediately and decays at a much higher pace in the model.

Again, hours exhibits somewhat delayed response in the data. Overall, the model,
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by and large, reproduces the impulse response in the VAR. Yet the response of hours

is delayed for about 2-3 quarters in the data suggesting frictions in the labor market.

According to models with preference shifts, recessions can occur because agents
find it optimal to allocate more time in non-market activities. In our DSGE model
the attractiveness of non-market activity, or labor-supply shifts in general, is mea-
sured by the home technology process. For each draw from the posterior distribution
of DSGE model parameters [0;1), «” a smoothing algorithm is applied to compute ex-
pected values for the technology sequences {a;}1_,, {b:}_,, and {2z}, conditional
on M and the sample of observations Y. These sequences are averaged across the
parameter draws and plotted in Figure 6 together with the NBER businesé cycle
peaks and troughs. All six recessions during the sample period are associated with
low levels of market productivity. Two business cycle troughs, in March 1975 and
November 1982, coincide with unusually high productivity of non-market activities.
The strong interpretation of this finding is that an aggregate preference shift con-
tributed to low market employment and output. A weaker interpretation is, that
in March 1975 and November 1982 the economic downturn cannot solely be ex-
plained by an adverse technology shock in the market. The other four recessions are

associated with low productivity in home technology as well as market technology.

6 Conclusion

We investigate the sources of economic fluctuations in the context of a dynamic
general equilibrium. A new VAR identification scheme is proposed that identifies
three types of underlying disturbances in the aggregate labor market equilibrium:
temporary labor-supply shifts, temporary labor demand shocks, and permanent
productivity shifts, that eventually move both demand and supply. According to the
variance decomposition from the VAR, the labor-supply shift is the most important
driving force for the cyclical fluctuation of hours, as they account for about half the
variation. However, for output fluctuations, the role of labor-supply shifts is modest.

Isither permanent or temporary shifts in labor demand, interpreted as permanent
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and temporary productivity shifts, respectively, explain more than three-quarters of

the variation.

To assess the role of labor-supply shifts in an equilibrium model, a home pro-
duction model with stochastic variation in non-market technology is estimated, and
its predictions are compared to those from the VAR. When the equilibrium model
is estimated with the same set of structural shocks, most of the variation of hours
is still attributed to the temporary labor-demand shifts. However, the temporary
labor-supply shifts play a significant role as they account for 25 percent variation of

hours.

In order to make the VAR and DSGE model analysis comparable, it is desirable
to use an identification scheme for the VAR that correctly identifies the structural
shocks, if the data were in fact generated from the DSGE model. This has also been
widely pointed out in the literature on the identification of monetary shocks. How-
ever, for many DSGE models the correct identification cannot be achieved based on
simple “zero-restrictions” (Canova and Pina, 2000). To overcome this problem, the
DSGE model could be re-specified to make it consistent with the “zero-restrictions”,
e.g., Rotemberg and Woodford (1998). On the other hand, one could employ an
identification scheme that does not solely rely on these “zero-restrictions”. We fol-
lowed the second path. Unlike in recent papers by Canova and DeNicolo (1998) and
Uhlig (1997), who achieve identification based on inequality restrictions, we develop
a scheme conditional on one non-identifiable parameter. For our analysis, we find
it justifiable to specify a tight prior on this non-identifiable parameter. We view
this approach as a promising alternative that has potentially a wide application in

macroeconomics and time series analysis.



Parameters Prior Posterior
Name Range || Density Mean S.E. | Mean S.E.

o [0,1] || Beta 0.666 0.020 | 0.740  0.020
B [0,1] || Beta 0.993 0.001 | 0.978 0.003
v IR Normal 0.004 0.0005 | 0.004 0.0004
] [0,1] | Beta 0.025 0.001 | 0.016 0.003
L, [0,1] | Beta 0.330  0.020 | 0.343 0.020
Pa [0,1] || Beta 0.900 0.200 | 0.774  0.035
Pb [0,1] | Beta 0.900 0.200 | 0.869 0.038
Ly, [0,1] || Beta 0.280 0.100 | 0.165 0.040
n R* || Gamma 100.0  100.0 | 23.72  3.727
P [0,1] || Beta 0.666 0.100 | 0.766  0.072
v IRt Gamma 1.000 2.000 | 2.376  0.325
In/ 1 IR* Gamma 0.700 0.020 | 0.684 0.020
T R* || Gamma 1.000  2.000 | 2.568  0.475
& IR Normal 2.960 1.600 | 3.151  0.005
& IR Normal 0.000 0.020 | 0.005 0.0004
., Rt InvGamma 0.01* 2.000* | 0.009 0.0008
oy IR* InvGamma 0.01* 2.000* | 0.009 0.0008
o IRt InvGamma 0.01*  2.000% | 0.021 0.0049
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Table 1: Prior and posterior distribution for DSGE model parameters. S.E. denotes

standard error. For the Inverse Gamma (u, s) priors we report the parameters u and

s. For u = 2 the standard error is infinite. The posterior moments are calculated

from the output of the Metropolis algorithm.



VAR(p)
rank(®pe.) = 1

VAR(p) DSGE
rank(®ye.) = 3

p:
p:
p=2

p:

1230.98
1413.57
1408.28
1395.00

1218.54
1390.89
1378.21
1355.45

1304.11
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Table 2: Log marginal data densities In p(Y7|M;) for VAR specifications and DSGE

model. Under equal prior probabilities, posterior odds of specification 7 versus

specification j are given by exp{in p(Y7|M;) — In p(Yr|M,)].



Cycles

Vector Autoregression

DSGE Model

Per Quarter Shock || CI(low) Mean Cl(high) Mean
1/32 €, 0.000 0.211 0.547 0.012
€4 0.000  0.300 0.654 0.752

€p 0.117 0.490 0.803 0.236

1/20 €2 0.000  0.215 0.554 0.007
€a 0.001  0.273 0.608 0.800

€p 0.121 0.512 0.831 0.193

1/12 €, (.000 0.213 0.547 0.005
€ 0.009  0.262 0.579 0.825

€ 0.122  0.524 0.845 0.170

1/6 € 0.000 0.194 0.494 0.004

€q 0.049 0.266 0.532 0.839

€p 0.134 0.541 0.846 0.157

Uncond. €, 0.000  0.160 0.512 0.048
Variance €a 0.000 0.380 0.723 0.701
€ 0.107 0.461 0.782 0.251
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Table 3: Decomposition of spectral density for market hours In L,, ; at 32, 20, 12, and

6 quarters per cycle for horizons 1, 4, and decomposition of unconditional variance.

Cl(Low) and CI(High) denote the boundaries of the 90 percent highest posterior

density intervals (Bayesian confidence intervals). Mean denotes the posterior mean.
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Cycles Vector Autoregression DSGE Model
Per Quarter Shock || Cl(low) Mean CI(high) Mean
1/32 € 0.021  0.463 0.855 0.183
€y 0.000  0.364 0.742 0.770
€p 0.010  0.173 0.291 0.047
1/20 €, 0.001  0.487 0.853 0.116
€q 0.000  0.341 0.732 0.844
€p 0.002  0.172 0.281 0.040
1/12 €2 0.000  0.499 0.860 0.091
€y 0.000  0.329 0.721 0.874
€p 0.000  0.172 0.277 0.035
1/6 €, 0.102  0.514 0.947 0.078
€q 0.000  0.308 (0.688 0.889
€ 0.012  0.178 0.280 0.033
Uncond. € 0.177 0.558 0.957 0.085
Variance €a 0.001 0.275 0.622 0.882
€ 0.043  0.167 0.262 0.033

Table 4: Decomposition of spectral density for output InY; at 32, 20, 12, and 6
quarters per cycle for horizons 1, 4, and decomposition of unconditional variance
of output growth AlnY;,. CI{Low) and CI(High) denote the boundaries of the 90
percent highest posterior density intervals (Bayesian confidence intervals). Mean

denotes the posterior mean.
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Figure 1: Time series plots of Hours, Labor Productivity, and Consumption Ex-
penditures on Durable Goods (home investment). Solid vertical lines correspond to
business cycle peaks, dashed lines denote business cycle troughs (NBER Business

Cycle Dating).
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Figure 2: Spectral decomposition of output at frequency 1/12 cycles per quarter

based on artificial observations generated from DSGE model. Sample size: T' =

20 and T = 5000. Prior standard errors of a are 0.02 and 0.20, respectively.

Dots correspond to 200 draws from VAR posterior distribution. V indicates

posterior mean of VAR.
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Figure 3: Spectral decomposition of hours at frequencies 1/32,1/20, 1/12, and 1/6
cycles per quarter. Dots correspond to 200 draws from posterior distribution. V

and D indicate posterior mean of VAR and DSGE models, respectively.
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Figure 4: Spectral decomposition of output at frequencies 1/32, 1/20, 1/12, and

1/6 cycles per quarter. Dots correspond to 200 draws from posterior distribution.

V and D indicate posterior mean of VAR and DSGE models, respectively.
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A Labor Demand with Variable Capital Utilization

Consider a Cobb-Douglas production function with inputs in capital services and

hours:

Vi = (wihK i)' ™ (Xomt L i), (31)
where u; represents the utilization of the capital stock. Suppose the intensive use
of capital results in a fast depreciation. As in the main text, the firm solves a profit
maximization problem, taking into account the effect of utilization on depreciation:

max (uth,t)l“a(Xm,th,t)“ — Wth,t d (Rt + 6(ut))l(m,t~ . (32)

Lot ,\Kom, ¢ us

For illustrative purposes, assume that the elasticity of depreciation is constant:
Ouy) = 50%\‘:_;11, where A > 0. As A — oo, the utilization is held constant and
the depreciation rate is fixed. The first order conditions of the profit maximization
problem with respect to L, , and u; imply that the inverse labor demand schedule
still depends on the predetermined capital stock and the market productivity shocks

only. However, its slope changes:

(9 In Wt
aCb,t

011’1 Lﬂl,[ A

— v — 1 - < 1 33
pla )0%,, nETTa S (33)

Therefore, the proposed identification scheme is still valid but the slope of the labor
demand schedule is smaller than in the constant utilization case, reflecting an extra

margin for the firm to exploit.

B Data Set

The following time series are extracted from DRI: real gross domestic product
(GDPQ), consumption of consumer durables (GCDQ), employed civilian labor force
(LHEM), civilian noninstitutional population 20 years and older (PM20 and PF20).
Population is defined as POPQ = 1E6 x (PF20 + PM20) and used to convert
GDPQ and GCDQ into real dollar per capita terms. Thus, Y, = GDPQ/POPQ
and [, = GCDQ/POPQ.
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From the BLS we obtained the series: average weekly hours, private non-
agricultural establishments (EEU00500005). Prior to 1963 the BLS series is an-
nual. We used these annual averages as monthly observations without further mod-
ification. Our measure of annual hours worked at monthly frequency is L,,; =
92+ EEU00500005% LHEM / POPQ. Hours are converted to quarterly frequency

by simple averaging. Our measure of labor productivity is P, = Yi/Lot.

C Vector Autoregression
C.1  Prior

Let AYr be the (T — p) x n matrix with rows Ay;, ¢t = p+ 1,...,T (the first p
observations are used to initialize lags). Let k = 3+ np, X7(Ay1) be the (T — p) x k
matrix with rows z; = [1,t, (1, =A2;, 0)ye—1, Ay)_,, .. Ayl Ur be the matrix
with rows uj, and B = [®q, @, «, Py, ..., ®,]’. We include a deterministic trend
with coeflicient vector ®,, in the specification of My to capture long-run shifts in
market hours due to structural changes in labor market participation behavior. The

reference model can be expressed in matrix form as
AYT = .XT(/\gl)B + U] (34)

The home production model implies that Ay; = 1. We relax this implication and

use the prior

Aot ~ N (1,0.01). (35)

The prior for B and ¥ is constructed from a training sample { = p + 1,...,T,.
Let AY, and X,.(XAz;) be matrices with rows Ay; and z} as defined above, t =

p+1,..., T Define
B = (XIX)T'XIAY., Sy = (T —p) (Yo — X.B)(Y. — X.B.).  (36)
Then we obtain

Yo Y. ~ 1W((J;_p)$u,*,7;~A~,Wp>

vee(B)| Xy, Agr, Ve ~ N<vec(C*), Y. ® (X)’KX*)_1>, (37)
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where IW denotes the Inverted Wishart distribution. In our empirical analysis the

size of the training sample is 7, = 20 and the lag-length is p = 2.

C.2 Posterior Simulation

A Gibbs sampler is used to generate draws from the posterior distribution of the
VAR parameters (B, X, Ag;). We draw successively from the conditional posteri-
ors p(B, Xy|Aa1, Y7, Mg) and p(Aq| B, 3., Y7, Mg). The distribution of ¥,|Agy, Yo
is Inverted Wishart and B|X,, Az1, Y7 is multivariate normal. The parametriza-
tion is given by replacing AY,. and X.(\y;) with AYy and X7 in Equationsv (36)
and (37). To characterize the posterior distribution of Ay, define AYy with rows
Agy = [Ays — Po — Pyt — p(1,0,0)y-1 — Y F_ | ®;Ay; ;] and X; with rows &}, where

Ty = 41(0,—1,0)y—1. Then one obtains
A2l B, Xy, Y ~ N (may, vy, (38)

~ ~ r —1 ',l v
where v = 1/0.01 + tr[S™1XEX7], my = vy (T%n + %%%%), and tr].]

denotes the trace operator.





