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Abstract

This paper studies the spatial implications of structural change. The secular decline in spending on

agricultural goods hurts workers in rural locations and increases the return to moving towards non-

agricultural labor markets. We combine detailed spatial data for the U.S. between 1880 and 2000

with a novel quantitative theory to understand this process and to quantify its macroeconomic im-

plications. We find that spatial reallocation across labor markets accounts for almost none of the

aggregate decline in agricultural employment. Despite ample migration, population net flows were

only weakly correlated with agricultural specialization. Spatial reallocation nevertheless had impor-

tant aggregate effects. Without migration income per capita would have been 15% lower and spatial

welfare inequality would have been substantially higher, especially among low-skilled, agricultural

workers.
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1 Introduction

Structural change is a key feature of long-run economic growth. As countries grow richer, aggregate
spending shifts towards non-agricultural goods and the share of employment in the agricultural sector de-
clines. This sectoral bias of the growth process also implies that economic growth is unbalanced across
space. In particular, by shifting expenditure away from the agricultural sector, the structural transfor-
mation is biased against regions, that have a comparative advantage in the production of agricultural
goods. To what extent this spatial bias affects welfare and allocative efficiency depends crucially on the
ease with which resources can be reallocated, in particular on the costs workers face to move towards
non-agricultural labor markets. In this paper we use detailed data on the spatial development of the US
between 1880 and 2000 and a novel quantitative theory of spatial structural change to analyze how this
spatial unbalancedness of the growth process affected the US economy.1

We start by documenting a striking - and to the best of our knowledge - new empirical fact: the spatial
reallocation of people from agricultural to non-agricultural labor markets accounts for essentially none of
the aggregate decline in agricultural employment since 1880. Rather, the entire structural transformation
is due to a decline in agricultural employment, which occurs within labor markets.2 While this is seem-
ingly inconsistent with the secular trend in urbanization, whereby the share of urban dwellers among US
workers increased from 25% to 75% between 1880 and 2000, we explicitly show that this is not the case.
In fact, like the change in agricultural employment, the process of urbanization was also a predominantly
local phenomenon taking place within labor markets.

The most obvious explanation for this pattern is that frictions to spatial mobility were prohibitively large
for the majority of workers throughout the 20th century. This, however, is not the case as US Census
data shows that throughout the last century, about 30% of every cohort of workers lived and worked in
states different from their state of birth. Moving frictions per se, therefore, cannot explain the quanti-
tative insignificance of the spatial reallocation channel. The reason why migration across labor markets
cannot account for much of the decline in agricultural employment is rather that the correlation between
agricultural employment shares and net migration outflows was essentially zero.

To understand these patterns and to analyze the implications for the spatial distribution of welfare and
aggregate productivity, we propose a new quantitative theory of spatial structural change. Our theory
combines an otherwise standard, neoclassical model of the structural transformation with an economic
geography model with frictional labor mobility. At the spatial level, regions are differentially exposed to
the secular decline in the demand for agricultural goods as they differ in their sectoral productivities, the
skill composition of their local labor force and the ease with which other, less agricultural labor markets
are accessible through migration.

1By “Spatial Structural Change” we refer to the simultaneous changes in sectoral employment and the spatial organization
of economic activity. The father of the study of structural change, Simon Kuznets, was maybe the first to highlight the
importance of studying spatial and sectoral reallocation in one unified framework (Lindbeck, ed (1992)).

2These patterns hold true regardless of whether we define labor markets at the state, commuting zone or county level.
There are roughly 700 commuting zones and 3000 counties. In our quantitative analysis we focus on commuting zones.
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To explain why migration flows were only weakly correlated with the initial level of agricultural special-
ization, our model highlights two forces. First, while the structural transformation indeed put downward
pressure on wages in rural labor markets, such shifts were small relative to the equilibrium level of
spatial wage differences. And because such wage differences are only imperfectly correlated with the
regional agricultural employment share, individuals, in their search for higher earnings, often relocate
towards agricultural areas. Additionally, we also find that the migration elasticity, i.e. the sensitivity of
migration flows to regional wages, is limited. In particular, we show that spatial population gross flows
are much larger than population net flows. This suggests that idiosyncratic, non-monetary preference
shocks, which by definition are uncorrelated with local industrial structure, are an important determinant
of migration decisions.

We then use the model to study the implications of spatial structural change for aggregate economic
performance and the spatial distribution of welfare. We first focus on the role of spatial reallocation for
aggregate productivity. Because we estimate that rural, agricultural-intensive regions are - on average -
less productive and generate less value added per worker than non-agricultural areas, the lack of spatial
reallocation suggests that the US economy potentially missed out on substantial productivity improve-
ments. Quantitatively, we find that such productivity losses were modest. If spatial mobility was costless,
aggregate income would only have been 4% higher in the year 2000. In contrast, if moving costs had
been prohibitively high, income per capita would have been 15% lower. The observed process of spatial
arbitrage in the US therefore seemed to have captured a large share of potential efficiency gains.

Next, we turn to the evolution of spatial welfare inequality. We find that welfare inequality across US
commuting zones declined substantially between 1910 and 2000. In 2000 the interquartile range of the
distribution of spatial welfare corresponded to a doubling of lifetime income for the average region in
the US. In contrast, in 1910 one would have had to increase regional income by 160%. Importantly,
spatial mobility was an important driving force behind this reduction in spatial welfare inequality. If
spatial mobility had been prohibitively costly, the spatial dispersion of welfare had declined much less.
In particular, unskilled workers, who have a comparative advantage in the agricultural sector and are
hence particularly exposed to the urban bias of the structural transformation, would have seen no decline
in spatial inequality over the 20th century. This highlights the important role of migration to mitigate the
distributional consequences of structural shifts in the US economy.

Finally, our theoretical framework might also prove useful for applications beyond the one at hand.
Our model combines basic ingredients from an economic geography model (spatial heterogeneity, intra-
regional trade, costly labor mobility) with the usual features of neoclassical models of structural change
(non-homothetic preferences, unbalanced technological progress, aggregate capital accumulation). De-
spite this richness, the theory remains highly tractable. Building on recent work by Boppart (2014),
we first show that by combining a price independent generalized linear (PIGL) demand system with the
commonly-used Frechet distribution of individual skills, one can derive closed-form solutions for most
aggregate quantities of interest. We then show how this structure can be embedded in an otherwise
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standard overlapping-generation model. Doing so allows us to tractably accommodate both individual
savings (and hence aggregate capital accumulation) and costly spatial mobility. In particular, while indi-
viduals are forward looking in terms of their savings behavior, we show that the spatial choice problem
reduces to a static one as long as goods are freely traded. As a result, we do not have to keep track of
individuals’ expectations about the entire distribution of future wages across locations - the aggregate in-
terest rate is sufficient. Moreover, because our model essentially nests a version of a canonical aggregate
model of structural change as the number of regions collapses to one, we view our framework as a natural
spatial extension of neoclassical theories of the structural transformation.

Related Literature We combine insights from the macroeconomic literature on the structural transfor-
mation with recent advances in spatial economics. The literature on the process of structural change has
almost exclusively focused on the time series properties of sectoral employment and value added shares
- see Herrendorf et al. (2014) for a survey of this large literature.3 In contrast, the recent generation of
quantitative spatial models in the spirit of Allen and Arkolakis (2014) are mostly static in nature and focus
on the spatial allocation of workers across heterogeneous locations.4 We show that these two aspects in-
teract in a natural way. The structural transformation induces changes in demand, which are non-neutral
across space and hence affect the spatial equilibrium of the system. Conversely, the spatial topography,
in particular the extent to which individuals are spatially mobile, has macroeconomic implications by
determining equilibrium factor prices, capital accumulation and aggregate productivity.

Relatively few existing papers explicitly introduce a spatial dimension into an analysis of the structural
transformation. An early contribution is Caselli and Coleman II (2001), who argue that spatial mobility
was an important by-product of the process of structural change in the US. Michaels et al. (2012) also
study the relationship between agricultural specialization and population growth across US counties.
Their analysis, however, is more empirically oriented and does not use a calibrated structural model.
More recently, Desmet and Rossi-Hansberg (2014) propose a spatial theory of the US transition from
manufacturing to services and Nagy (2017) examines the process of city formation in the United States
before 1860.

In allowing for a spatial microstructure, this paper also offers a new interpretation of the so-called “agri-
cultural productivity gap”, i.e. the observation that value added per worker is persistently low in the

3Authors such as Kuznets (1957) and Chenery (1960) have been early observers of the striking downward trend in the
aggregate agricultural employment share and the simultaneous increase in manufacturing employment in the United States. To
explain these patterns, two mechanism have been proposed. Demand side explanations stress the role of non-homotheticities,
whereby goods differ in their income elasticity (see e.g. Kongsamut et al. (2001), Gollin et al. (2002), Comin et al. (2017)
and Boppart (2014)). Supply-side explanations argue for the importance of unbalanced technological progress across sectors
and capital-deepening (see e.g. Baumol (1967), Ngai and Pissarides (2007), Acemoglu and Guerrieri (2008), and Alvarez-
Cuadrado et al. (2017)).

4This literature has addressed questions of spatial misallocation (Hsieh and Moretti (2015), Fajgelbaum et al. (2015)), the
regional effects of trade opening (Fajgelbaum and Redding (2014), Tombe et al. (2015)), the importance of market access
(Redding and Sturm (2008)) and the productivity effects of agglomeration economies (Ahlfeldt et al. (2015)). See Redding
and Rossi-Hansberg (2017) for a recent survey of this growing literature.
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agricultural sector (see e.g. Gollin et al. (2014), Buera and Kaboski (2009) or Herrendorf and Schoell-
man (2015)). Our model endogenously generates an “agricultural productivity gap”, without resorting
to labor market frictions across sectors, as spatial mobility costs keep wages in agricultural areas low.
The existence of such spatial gaps and their implications for aggregate productivity and welfare has been
subject to a recent active literature (see e.g. Young (2013), Bryan et al. (2014), Hsieh and Moretti (2015)
or Lagakos et al. (2017)). Bryan and Morten (2017) and Hsieh and Moretti (2015) use spatial models
related to ours to study the aggregate effects of spatial misallocation. In contrast to us, their models are
static and they do not focus on the structural transformation.

On the theoretical side, we build on Boppart (2014) and assume a price independent generalized linear
(PIGL) demand structure. This demand structure has more potent income effects than the widely-used
Stone-Geary specification, a feature which is required to generate declines in agricultural employment of
the magnitude observed in the data. At the same time, we show how it can be introduced in a general
equilibrium trade model in a tractable way.5

The remainder of the paper is structured as follows. In Section 2, we document the empirical fact that
spatial reallocation accounts for essentially none of the aggregate decline in agricultural employment
over the last 120 years. Section 3 presents our model. In Section 4, we calibrate the model to time-series
and spatial data from the US. In Sections 5 and 5.2, we explain why the spatial reallocation component
of the structural transformation is small and we quantify the implications for aggregate productivity and
spatial inequality. Section 7 concludes. An Appendix contains the majority of our theoretical proofs and
further details on our empirical results.

2 Spatial Reallocation and Structural Change

The long-run decline in the agricultural employment share in the US has been dramatic: since 1880 it
fell from 50% to essentially nil. Naturally, this secular reallocation of resources across sectors has spatial
consequences as it is biased against regions, which specialize in the production of agricultural goods.
From an accounting perspective, there are two margins through which the economy can accommodate
this spatial bias of the structural transformation. Either the process of structural change can induce spatial

reallocation, whereby labor reallocates from agricultural to non-agricultural labor markets. Or it can
lead to regional transformation, whereby agricultural employment shares decline within labor markets.
Formally, the aggregate decline in the agricultural employment share since 1880 can be decomposed as

5Between 1880 and 2000 the aggregate agricultural employment share declines from around 50% to 2%. A model with
Stone-Geary preferences can match the post-war data (see e.g. Herrendorf et al. (2013)), but has difficulties at the longer
time horizon as income effects vanish asymptotically. Alder et al. (2018) show that the PIGL demand system provides a good
fit to the data since 1900. The non-homothetic CES demand system, recently employed by Comin et al. (2017), has similar
favorable time-series properties. However, it has less tractable aggregation properties making it harder to embed it in a spatial
general equilibrium model.
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sAt− sA1880 = ∑
r

srAt lrt−∑
r

srA1880lr1880 = ∑
r

srA1880 (lrt− lr1880)︸ ︷︷ ︸
Spatial Reallocation

+∑
r
(srAt− srA1880) lrt︸ ︷︷ ︸

Regional Transformation

, (1)

where sAt is the aggregate agricultural employment share at time t, lrt denotes the share of employment
in region r at time t and srAt is the regional employment share in agriculture. As highlighted by (1),
the spatial reallocation margin is important for the decline in agricultural employment, if net population
growth, lrt− lr1880, and the initial agricultural employment share, srA1880, are negatively correlated.

For the case of the U.S., the relative importance of the reallocation and transformation margins is striking:
in an accounting sense the spatial reallocation of labor accounts for essentially none of the structural
transformation observed in the aggregate. To see this, consider Figure 1, where we implement (1) by
empirically equating labor markets with US commuting zones.6 Out of the total decline of about 48%,
only 3% is due to the reallocation of workers across commuting zone boundaries.

Reallocation Component

Decline in Ag. Empl. Share

-.6

-.4

-.2

0

1880 1910 1940 1970 2000
Year

Spatial Reallocation

1880191019401970

0

1

2

3

4

5

0 .2 .4 .6 .8 1
Agricultural Employment Share

Regional Transformation

Notes: In the left panel, the light grey line shows the absolute decline in the aggregate agricultural employment share since 1880, sAt − sA1880, and the
across labor market reallocation component highlighted in Equation 1, i.e. ∑r srA1880 (lrt − lr1880), where srAt and lrt are the agricultural employment share
and the population share of region r at time t(dark grey line). The gap between the two lines is accounted for by sectoral reallocation taking place within
labor markets. In the right panel we show the cross-sectional distribution of agricultural employment shares between 1880 and 1970. We omit the 2000
cross-section from the left panel for expositional purposes only: the agricultural employment share does not change much between 1970-2000. For a detailed
description of the construction of the regional data we refer to Section 4.

Figure 1: Spatial Structural Change: Spatial Reallocation vs. Regional Transformation

It follows that most of structural change takes place within labor markets through a transformation of
the local structure of employment. This is seen in the right panel of Figure 1, where we display the
distribution of agricultural employment shares across US commuting zones for different years. There is
substantial cross-sectional dispersion in regional specialization. While the majority of commuting zones
had agricultural employment shares exceeding 75% in 1880, many labor markets were already much
less agriculturally specialized and had agricultural employment shares below 25% at the end of the 19th
century. Throughout the 20th Century, there is a marked leftwards shift, whereby all commuting zones

6In the paper, we use the commuting zone definition by Tolbert and Sizer (1996) as our baseline definition of a labor
market. There are 741 such commuting zones in the US. We describe our data in more detail in Section 4 below. In Section A
in the Appendix, we replicate Figure 1 at the county and state level and it looks effectively identical.
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see a decline in agricultural employment. Hence, the structural transformation did not induce regional
specialization, but rather features a fractal property whereby all local economies undergo changes in their
sectoral structure akin to the aggregate economy.

These patterns might seem surprising as they are seemingly at odds with the process of urbanization,
whereby between 1880 and 2000 the fraction of the US population living in cities tripled from about 25%
to 75%. This, however, is not the case. While inconsistent with a view of urbanization as a movement of
workers towards urbanized commuting zones, Figure1 is consistent with a world in which workers move
towards local urban centers within commuting zones. In Section A of the Appendix, we replicate Figure
1 for the increase in the aggregate urbanization rate, and show that the increase in urbanization in the US
was indeed a within labor market phenomenon, ie. was very local in nature. In particular, like for the
change in agricultural employment, the reallocation of individuals from rural to urbanized commuting
zones explains almost none of the sharp rise in urbanization. Furthermore, this local incidence of the
structural transformation is not unique to the US but present in many countries around the world - again
we refer the reader to Section A of the Appendix for details.

The patterns in Figure 1 raise two question. First, why did the spatial bias of the structural transformation
not cause a more pronounced migration response towards non-agricultural labor markets? Secondly, does
this “missing spatial reallocation” have important consequences for aggregate productivity and spatial
welfare differences across labor markets? To answer these questions we need a theory of spatial structural
change, which we present next.

3 A Quantitative Theory of Spatial Structural Change

In this section we present a novel theory of spatial structural change. Our model rests on two pillars. In
particular, we combine an essentially neoclassical model of the structural transformation featuring both
non-homothetic preferences and unbalanced sectoral technological progress with a quantitative economic
geography model. The latter introduces the spatial dimension by allowing for variations in local industrial
structure, intra-regional trade and costly spatial mobility.

3.1 Environment

We consider an economy consisting of R regions indexed by r. Each region produces two goods, an
agricultural good and a non-agricultural good, indexed by s = A,NA. We identify a region with a local
labor market, i.e. to supply labor in region r, individuals have to reside there. While population mobility
across labor market is subject to migration costs, the allocation of labor across sectors within a labor mar-
ket is frictionless. Since the model is dynamic we additionally index most objects by t. For expositional
simplicity, we sometimes omit time subscripts when there is no risk of confusion.
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Technology Each of the two goods is a CES composite of differentiated regional varieties with a con-
stant elasticity of substitution σ , i.e.

Ys =

(
R

∑
r=1

Y
σ−1

σ
rs

) σ

σ−1

, (2)

where Yrs is the amount of goods in sector s produced in region rand Ys is aggregate output in sector s. As
is standard in macroeconomic models of the structural transformation (see e.g. Herrendorf et al. (2014))
we assume that regional production functions are fully neoclassical and given by

Yrst = ZrstKα
rstH

1−α
rst ,

where Krst and Hrst denote capital and labor (in efficiency units) in region r, sector s and time t respec-
tively, and Zrst denotes productivity.7 It is conceptually useful to decompose regional productivity Zrst as
follows

Zrst≡ZstQrst with ∑
r

Qσ−1
rst = 1. (3)

Here Zst is an aggregate TFP shifter in sector s, which affects all regions proportionally. Additionally,
there are region-specific sources of sectoral productivity denoted by the vector {Qrs}rs. The common
component of Qrs across sectors within region r captures differences in absolute advantage. Regional
differences in Qrs/Qrs′ capture differences in comparative advantage. Given the normalization embedded
in (3), the vector {Qrs}rs can be thought of as parameterizing the heterogeneity in productivity across
space.

The aggregate capital stock accumulates according to the usual law of motion

Kt+1 = (1−δ )Kt + It ,

where It denotes the amount of investment at time t and δ is the depreciation rate. For simplicity, we
assume that the investment good is a Cobb-Douglas composite of the agricultural and non-agricultural
good given in (2). Letting φ be the share of the agricultural good in the production of investment goods,
the price of the investment good is given by PIt = Pφ

AtP
1−φ

NAt .
8 For the remainder of the paper the investment

good will serve as the numeraire of our economy.

Note that our environment imposes some restrictions. First of all, we assume that goods are freely traded
so that prices are equalized across locations. As we explain in detail below, this assumption considerably

7For simplicity and building on the work of Herrendorf et al. (2015), we assume that capital shares are identical across
sectors. These authors find that sectoral differences in the capital shares and elasticities of substitution are of second order
importance and conclude that “Cobb–Douglas sectoral production functions that differ only in technical progress capture the
main forces behind postwar US structural transformation that arise on the technology side” (Herrendorf et al., 2015, p. 106).

8The accompanying production function for the investment good is given by It = φ φ (1−φ)φ Xφ

A X1−φ

NA , where Xs is the
amount of sector s goods used in the investment good sector. We abstract from changes in sectoral spending within the
investment good sector (see (Herrendorf et al., 2017)).
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simplifies workers’ spatial choice problem. However, in Section B.1 of the Appendix, we show that
differences in productivity Qrst are isomorphic to some forms of trade costs. Secondly, note that we do
not explicitly include land as a factor of production in the agricultural sector. This assumption is in fact
not very restrictive and we do mainly to keep the production side comparable to macroeconomic models
of the structural transformation. In Section B.1 in the Appendix we formally derive the equilibrium of
our model with an explicit role for land and we show that these economic forces can be captured by
assuming the production in the agricultural sector is subject to decreasing returns to scale. We cover this
case specifically as on our robustness exercises. Finally, we assume that capital is traded on a frictionless
spot market. We abstract from capital adjustment costs to highlight spatial frictions in the reallocation of
workers.

Demographics and Labor Supply We phrase our analysis as an overlapping generations (OLG) econ-
omy. Individuals live for two periods. When young, individuals decide on their preferred regional labor
market (subject to migration costs), work to earn labor income and save to smooth consumption over their
life-cycle. When old, individuals solely consume the receipts of their saving decision and have a single
off-spring, who has the option migrate to a new region. The OLG structure is analytically extremely
convenient. Crucially, it generates a motive for savings (and hence capital accumulation), while still be-
ing sufficiently tractable to allow for spatial mobility subject to migration costs. In addition, it is also
empirically attractive in that it captures the importance of cohort effects in accounting for the structural
transformation (see e.g. Hobijn et al. (2018) and Porzio and Santangelo (2017)). Because individuals’
labor market opportunities depends on their location choice, the migratory response of young workers is
an important determinant of the sectoral labor supply function for the aggregate economy.

In order to focus on this novel spatial dimension of our model, we first follow the macroeconomic lit-
erature on structural change and assume that individuals’ labor supply is perfectly substitutable across
sectors within labor markets, i.e. there is effectively only a single dimension of skill. This implies that
the sectoral allocation of labor within labor markets is only determined from the labor demand side. In
our quantitative analysis, however, we will allow for an upward sloping labor supply function across sec-
tors within labor markets: while migration costs affect the costs of spatial reallocation, the sectoral labor
supply elasticity determines the costs of transforming the local labor market through sectoral reallocation.

Individuals are heterogenous in the number of efficiency units they can provide to the market, zi, and
we assume that these are drawn from a Frechet distribution, i.e. F (z) = e−z−ζ

.9 Here, the parameter ζ

governs the dispersion of skills across individuals and the average level of efficiency units is given by
E [z] = Γζ , where Γζ ≡ Γ(1− 1

ζ
) and Γ(.) denotes the Gamma function. The distribution of earnings of

individual i in region r at time t, yi
rt = ziwrt , is therefore also Frechet distributed with mean Γζ wrt .

9Strictly speaking, the individual heterogeneity in skills is not essential at this point. We introduce it here in anticipation
of our two-sector extension in Section 3.3. To generate an upward sloping supply function across sectors, we assume that
individuals face an occupational choice problem and draw a vector of sector–specific of efficiency units

(
zi

NA,z
i
A

)
. As we will

show below, all our expressions seamlessly generalize to this two-sector case. Hence, it is attractive for exposition purposes
to introduce skill heterogeneity already at this point.
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Hence, in our framework individuals make three economic choices: (i) a spatial decision on where to
live and work in the beginning of life, (ii) an inter-temporal choice on how much to consume and save
when young and (iii) an intra-temporal choice of how to allocate their spending optimally across the two
consumption goods in both periods of life.

The intra-temporal problem: Non-homothetic preferences and the allocation of spending To gen-
erate the structural transformation at the aggregate level, we follow the existing macroeconomic liter-
ature by including two channels: Non-homothetic preferences imply a form of Engel’s Law whereby
consumers reduce their relative agricultural spending as they grow richer, while sectoral differences in
technological progress induce a relative price effect that begets reallocation in consumer spending.10

We follow Boppart (2014) and assume that individual preferences can be represented by the indirect
utility function 11

V (e,P) =
1
η

(
e

pφ

A p1−φ

NA

)η

− ν

γ

(
pA

pNA

)γ

+
ν

γ
− 1

η
. (4)

This is a slight generalization of the PIGL demand system employed by Boppart (2014).12 In particular,
Roy’s Identity implies that the expenditure share on the agricultural good, ϑA (e, p), is given by

ϑA (e, p) ≡ xA (e, p) pA

e
= φ +ν

(
pA

pNA

)γ

e−η , (5)

and hence incorporates both income effects (governed by η) and price effects (governed by γ).13 For
η > 0, the expenditure share on agricultural goods is declining in total expenditure. This captures the
income effect of non-homothetic demand, whereby higher spending reduces the relative expenditure
share on agricultural goods. Holding real income e constant, the expenditure share is increasing in the
relative price of agriculture if γ > 0. We can also see that this demand system nests important special
cases. The case of η = 0 corresponds to a homothetic demand system, where expenditure shares only
depend on relative prices. The case of η = γ = 0 is the Cobb Douglas case where expenditure shares are

10Both of these mechanisms have been shown to be quantitatively important. See for example Herrendorf et al. (2014),
Alvarez-Cuadrado and Poschke (2011), Boppart (2014) or Comin et al. (2017).

11The most common choice among non-homothetic preferences is the Stone-Geary specification, which relies on subsis-
tence requirements to generate a less than unitary income elasticity for consumers’ spending on agricultural goods (see e.g.
Kongsamut et al. (2001)). Herrendorf et al. (2013), for example, show that these preferences do a good job at quantita-
tively accounting for the decline in agricultural spending in the US in the post-war period. However, Alder et al. (2018)
show that the Stone-Geary specification is unable to generate the large decline in agricultural employment since 1880, as the
the non-homotheticity vanishes asymptotically. In contrast, they find that Price-Independent Generalized Linear ("PIGL")
Preferences, introduced in the literature on structural change in Boppart (2014), provide a much better fit to the data.

12For V (e, p) to be well-defined, we have to impose additional parametric conditions. In particular, we require that η < 1,
that γ ≥ η . These conditions are satisfied in our empirical application. See Section B.7 of the Appendix for a detailed
discussion. Boppart (2014) uses this demand system to study the the evolution of service sector. In terms of (4) he assumes
that PA is the price of goods and PNA is the price of services and considers the case of φ = 0. In his Appendix, however,
Boppart (2014) also discusses the case of (4).

13Roy’s Identity implies that ϑA (e, p) = xM
A (p,e) pA

e = − ∂V (p,e(p,u))/∂ pA
∂V (p,e(p,u))/∂e

pA
e , where xM

A (p,e) denotes the Marshallian de-
mand function. For V (p,e) given in (4), this expression reduces to (5). See Section C.1 in the Online Appendix for details.
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constant and equal to φ .14

The preference specification in (4) also has advantageous aggregation properties in our context. In partic-
ular, we show below that these preferences (combined with the Frechet distribution of individuals skills)
allow us to derive closed-form expressions for the economy’s aggregate demand system, despite the fact
that they fall outside the Gorman class.15

The inter-temporal problem: The consumption-saving decision Given the indirect utility function
above, life-time utility of individual i after having moved to region r, U i

rt , is given by

U i
rt = max

[et ,et+1,s]
{V (et ,Pt)+βV (et+1,Pt+1)} , (6)

subject to

et + st = yi
rt

et+1 = (1+ rt+1)st .

Here, yi
rt = ziwrt is individual i’s real income in region r, st denotes the amount of savings and rt is the

real interest rate.

Spatial Mobility A crucial aspect of our theory are agents’ endogenous location choices. Because
our focus is on a model of long-run growth, we model individuals’ migration decisions as referring to
life-time migration. Hence, agents have the option to move once, in the beginning of their lives, before
they learn the actual realization of their labor efficiency zi.16 We follow the literature on discrete choice
models and assume the value of a bilateral move from j to r to agent i can be summarized by

U i
jr = E

[
U i

rt
]
−MC jr +Ar +κν

i
r,

where E
[
U i

rt
]

is the expected utility of living in region r, MC jr denotes the cost of moving from j to r, Ar

is a location amenity, which summarizes the attractiveness of region r and is common to all individuals
and ν i

r is an idiosyncratic error term, which is independent across locations and individuals. Furthermore,
κ parametrizes the importance of the idiosyncratic shock, i.e. the extent to which individuals sort based
on their idiosyncratic tastes relative to the systematic attractiveness of region r. The higher κ , the less

14Note that φ is also the agricultural share in the investment good sector. Hence, this case is akin to the neoclassical growth
model, where consumption and investment goods are identical.

15This is in contrast to the non-homothetic CES demand system, which has recently been analyzed in Comin et al. (2017)
and for which no closed form aggregation results exist.

16This structure has two convenient analytic properties. First, allowing mobility to depend on the realization of the effi-
ciency bundle zi would be less tractable as we would need to keep track of a continuum of ex-ante heterogenous individuals.
Secondly, this structure retains the convenient aggregation properties of the Frechet distribution. If workers’ spatial choice
was conditional on zi, the distribution of skills within a location would no longer be of the Frechet form.
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responsive are individuals to the fundamental value of a location r.

As in the standard conditional logit model, we assume that ν i
r is drawn from a Gumbel distribution. This

implies that the share of people moving from j to r is given by

ρ jrt =
exp
( 1

κ

(
E
[
U i

rt
]
+Art−MC jr

))
∑

R
l=1 exp

( 1
κ

(
E
[
U i

lt

]
+Alt−MC jl

)) . (7)

Hence, individual flock towards regions which offer large earnings (and hence promise large future life-
time utility E

[
U i

rt
]

) and high amenities Art . The extent to which population flows are directed to-
wards such regions is moderated by moving costs MC jr and the importance of idiosyncratic shocks,
parametrized by κ .

Importantly, expression (7) highlights the determinants of the spatial reallocation component of the struc-
tural transformation: individuals leave agricultural areas if the correlation of the initial agricultural em-
ployment share srAt−1 and future utility and amenities is negative and the elasticity of moving flows with
respect to such fundamental differences is large, i.e. κ is small.

From Equation (7) we also obtain the law of motion for the spatial reallocation of workers between t and
t−1 as

Lrt =
R

∑
j=1

ρ jrtL jt−1, (8)

i.e. the number of people in region r at time t is given by the total inflows from all other regions (including
itself). Since in the model workers only move once, we will discipline the model with data on lifetime

migration, i.e. the fraction of people who live (and work) in a different location from where they were
born (see Molloy et al. (2011)).

3.2 Competitive Equilibrium

Given the environment above, we can now characterize the equilibrium of the economy. We proceed in
three steps. First we characterize the household problem, i.e. the optimal consumption-saving decision
and the spatial choice. We then show that the solution to the household problem together with our
distributional assumptions on individuals’ skills delivers an analytic solution for the economy’s aggregate
demand system, despite the fact that our economy does not admit a representative consumer. Finally, we
show that individuals’ migration choices only depend on the distribution of equilibrium wages and not
on any other future equilibrium prices. This implies that the dynamic competitive equilibrium of our
economy has a structure akin to the neoclassical growth model: given the sequence of interest rates {rt}t ,
we can solve the entire path of spatial equilibria from static equilibrium conditions. The equilibrium
sequence of interest rates can then be calculated from households’ savings decisions. The model can
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then be solved by iteratively computing the sequence of spatial equilibria and finding a fixed point for the
path of interest rates.

Individual Behavior

First consider the households’ consumption-saving decision given in equation (6). Let the optimal level of
expenditure when young (old) of the generation that is born at time t be denoted by eY

t
(
eO

t+1
)
. This two-

period OLG structure together with the specification of preferences in equation (4) has a tractable solution
for both the optimal allocation of expenditure and the consumers’ total utility Ur. . We summarize this
solution in the following Proposition.

Proposition 1. Consider the maximization problem in equation (6) where V (e,P) is given in equation

(4). The solution to this problem is given by

eY
t (y) = ψ (rt+1)y (9)

eO
t+1 (y) = (1+ rt+1)(1−ψ (rt+1))y (10)

U i
rt =Ut (y) =

1
η

ψ (rt+1)
η−1 yη +Λt,t+1

where

ψ (rt+1) =
(

1+β
1

1−η (1+ rt+1)
η

1−η

)−1
(11)

Λt,t+1 = −ν

γ

((
pAt

pNAt

)γ

+β

(
pAt+1

pNAt+1

)γ)
+(1+β )

(
ν

γ
− 1

η

)
.

Proof. See Section B.2 in the Appendix.

Proposition 1 characterizes the solution to the household problem. Four properties are noteworthy. First
of all, the policy functions for the optimal amount of spending are linear in earnings. This will allow
for a tractable aggregation of individuals’ demands. Secondly, these expenditure policies resemble the
familiar OLG structure, where the individual consumes a share

eY
t (y)
y

= ψ (rt+1) =
1

1+β
1

1−η (1+ rt+1)
η

1−η

of his income when young and consumes the remainder (and the accrued interest) when old. Because η <

1, the consumption share ψ (rt+1) is decreasing in the interest rate and decreasing in the discount factor
β as both increase the value of saving. If η = 0, i.e. if demand is homothetic, we recover the canonical
OLG solution for log utility where the consumption share is simply given by 1/(1+β ). Importantly,
the consumption share ψ (rt+1) only depends on the interest rate rt+1 and not on relative prices Pt or
Pt+1. This is due to our assumption that nominal income e is deflated by the same price index as the
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investment good. This is convenient for tractability and similar to the single-good neoclassical growth
model, where the consumption good and the investment good uses all factors in equal proportions. For
our purposes, this ensures that an increase in the price of the investment good, pIt , makes savings more
attractive but at the same reduces the marginal utility of spending. Third, lifetime utility U i

rt only depends
on the location r via individual income yi

rt . This is due to our assumption that trade is frictionless so that
the price indices (which determine Λt,t+1) do not vary across space. Finally, lifetime utility is additively

separable in income yrt and current and future prices Pt and Pt+1 (which determine Λt,t+1).

Moreover, we can calculate individuals’ lifetime utility E
[
U i

rt
]

analytically: because life-time utility
is a power function of individual income yi

r and individual income is Frechet distributed, we get that
E [yη ] = Γη/ζ wη

rt . Together with equation (7), this delivers closed form expressions for individual migra-
tion decisions, which we summarize in the following Proposition.

Proposition 2. Consider the environment above. Define the relative life-time value of location r at time

t, Wrt , by E
[
U i

rt
]
+Art = Wrt +Λt,t+1. Then

Wrt =
Γη/ζ

η
ψ (rt+1)

η−1 wη

rt +Art . (12)

The share of people moving from j to r at time t, ρ jrt , is then given by

ρ jrt =
exp
( 1

κ

(
Wrt−MC jr

))
∑

R
l=1 exp

( 1
κ

(
Wrt−MC jl

)) . (13)

In particular, ρ jrt is fully determined from static equilibrium wages {wrt}r and exogenous amenities and

does not depend on future prices.

Proposition 2 implies that individuals’ migration decisions are fully captured by Wrt , which is a summary
measure of regional attractiveness. Note that the cross-sectional variation in Wrt results from differences
in average wages, wrt , and in amenities Art across labor markets. The former is endogenous and depends
on the extent of spatial sorting and aggregate demand conditions. The latter is fully exogenous. Impor-
tantly, the expression for individuals’ spatial choice probabilities in (13) does not feature Λt,t+1, which
is constant across locations (because of the absence of trade costs) and hence does not determine spatial
labor flows. It is here that the additive separability of future prices embedded in Λt,t,+1 is crucial, since it
implies that agents’ spatial choice problem reduces to a static decision problem, which depends only on
current, not future, equilibrium objects (in particular the distribution of wages). This structure allows us
to calculate the transitional dynamics in the model with a realistic geography, i.e. with about 700 regions.

Equilibrium Aggregation and Aggregate Structural Change

The spatial equilibrium of economic activity is shaped by the heterogeneous local incidence of aggregate
demand and supply conditions. Our economy does not admit a representative consumer, since the PIGL

13



preference specification falls outside of the Gorman class. To see this, consider a set of individuals i∈S ,
with spending ei. The aggregate demand for agricultural products of this set of consumers is given by

PCA
S =

∫
i∈S

ϑA (ei,P)eidi =
(

φ +ν

(
pA

pM

)γ ∫
i∈S

e−η

i ωidi
)

ES ,

where ES =
∫

i∈S eidi denotes aggregate spending and ωi = ei/ES is the share of spending of individual
i. Hence, as long as preferences are non-homothetic, i.e. as long as η > 0, aggregate demand does not
only depend on aggregate spending ES and relative prices, but on the entire distribution of spending {ei}i.
Characterizing the aggregate demand function in our economy, which features heterogeneity through
individuals’ location choice (which determines the factor prices they face) and the actual realization of
the skill vector zi, is therefore in principle non-trivial.

Our model, however, delivers tractable expressions for the economy’s aggregate quantities. This is due to
three properties of our theory. First of all, the distributional assumption on individual skills implies that
individual income yi is Frechet distributed. Secondly, Proposition 1 showed that individuals’ expenditure
policy functions are linear in income yi and hence also Frechet distributed. Finally, individual spending
shares ϑA (e,P) are a power function of expenditure and can therefore be calculated explicitly.This allows
us to solve for the aggregate demand system explicitly as a function of equilibrium wages.

Proposition 3. Let S Y
r and S O

r be the set of young and old consumers in region r. The aggregate

expenditure share on agricultural good of the set of consumers S g
r is given by

ϑA
(
[ei]i∈S g

r
,P
)
≡

PCA
S g

r

ES g
r

= φ + ν̃

(
pA

pM

)γ

E−η

S g
r
, (14)

where ES g
r

is mean spending at time t and given by

ES Y
r
= ψ (rt+1)Γζ wrt and ES Y

r
= (1+ rt)(1−ψ (rt))Γζ wrt−1,

and ν̃ = νΓ ζ

1−η

/Γ
1−η

ζ
is a constant. The aggregate share of agriculture in value added is given by

ϑ
A
t ≡

PCA
t +φ It
PYt

= φ + ν̃

(
pA

pM

)γ ∑
R
r=1

(
E1−η

S Y
r

Lrt +E1−η

S O
r

Lrt−1

)
PYt

. (15)

Proof. See Section B.3 in the Appendix.

Proposition 3 is an “almost-aggregation” result. Even though the PIGL preferences fall outside of the
Gorman class, equation (14) shows that the aggregate demand of a given set of consumers resembles that
of a representative consumer with mean spending ES and an adjusted preference parameter ν̃ . Because
the linearity of individuals’ policy functions allows to express aggregate spending directly as a function
of equilibrium spatial wages, aggregate sectoral spending PCA

t is then simply the spatial aggregate over
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the respective consumer groups and the aggregate value added share of the agricultural sector takes the
form in equation (15). Note that ϑ A

t can be directly calculated from current and past wages {wrt ,wrt−1}r

and the spatial allocation of factors {Lrt ,Lrt−1}r. We exploit this “almost-aggregation” property intensely
in computing the model. Finally, note that these equations highlight the usual demand side forces of the
structural transformation: to the extent that η > 0, i.e. preferences are non-homothetic, the agricultural
value added share, ϑ A

t will decline as income rises. Similarly, changes in relative technological progress
(and therefore in sectoral prices) will affect agricultural spending as long as γ 6= 0.

Equilibrium Conditions

As highlighted above, the key properties of our model are that (i) individual moving decisions are static
and (ii) that our economy generates an aggregate demand system as a function of regional wages. This
implies that, for a given path of interest rates {rt}t , we can calculate the equilibrium by simply solving a
sequence of static equilibrium conditions. Consider first the goods market. The market clearing condition
for agricultural products is given by

LrtΓζ wrtsrAt = (1−α)πrAtϑ
A
t PYt , (16)

where srAt is the agricultural employment share in region r at time t.17 Hence, total agricultural labor
earnings in region r are equal to a share 1−α of total agricultural revenue in region r. This in turn is
equal to region r’s share, πrAt , in aggregate spending on agricultural goods ϑ A

t PYt . The CES structure of
consumers’ preferences implies that regional trade shares, πrAt , are given by

πrAt =

(
PrAt

PAt

)1−σ

=

(
QrAtwα−1

rt
)σ−1

∑
R
j=1

(
Q jAtwα−1

jt

)σ−1 , (17)

i.e. they neither depend on the identity of the sourcing region, nor the equilibrium capital rental rate
Rt or the common component of productivity Zst . Rather, a region r’s agricultural competitiveness only
depends on its productivity QrAt and the equilibrium price of labor. An analogous expression holds for
the non-agricultural sector.

To characterize the equilibrium, we find it useful to express the sectoral market clearing conditions in
equation (16), as

LrtΓζ wrt = (1−α)
(

πrAtϑ
A
t +πrAt

(
1−ϑ

A
t

))
PYt (18)

srAt

1− srAt
=

πrAt

πrNAt

ϑ A
t

1−ϑ A
t
. (19)

17Because efficiency units are fully substitutable, the equilibrium only determines the allocation of efficiency units. Once
we explicitly introduce sector-specific human capital in Section 3.3, this indeterminacy will be resolved. It is this latter model
that we take to the data.
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Equation (18) shows that local labor earnings are a demand-weighted average of regional sectoral trade
shares and hence highlights the urban bias of the structural transformation: a decline of the aggregate
agricultural spending share ϑ A

t tends to reduce regional earnings in locations who have a comparative
advantage, in the agricultural sector. Moreover, equation (19) illustrates the spatial co-movement of
sectoral employment shares. Because regional (scaled) agricultural shares srAt

1−srAt
are proportional to the

aggregate (scaled) agricultural expenditure share ϑ A
t

1−ϑ A
t

, a decline in the aggregate spending share ϑ A
t

tends to reduce agricultural employment shares in all locations.

These equations highlight how the spatial distribution of economic activity is fully determined from static

equilibrium conditions. Note first that GDP is proportional to aggregate labor earnings, i.e. (1−α)PYt =

Γζ ∑r Lrtwrt (see equation (18)) and that the spatial labor supply function is only a function of the the
spatial distribution of wages (see Proposition (2)). Likewise the agricultural value added share ϑ A

t only
depends on the vector of current and past wages and population. Together these equilibrium conditions
fully determine the equilibrium wages and labor allocations across space.

Finally, since the future capital stock is simply given by the savings of the young generation, we get that
capital accumulates according to

Kt+1 = (1−ψ (rt+1))∑
r

Γζ wrtLrt = (1−ψ (rt+1))(1−α)PYt , (20)

i.e. future capital is simply a fraction 1−ψ (rt+1) of aggregate labor earnings. This proportionality
between the aggregate capital stock and aggregate GDP is a consequence of the linearity of agents’ con-
sumption policy rules. Note that our model retains many features of the baseline neoclassical growth
model. In particular, for given initial conditions {K0,{Lr,−1}r,{wr−1}r} and a path of interest rates {rt}t
, the equilibrium evolution of wages and people are solutions to the static equilibrium conditions high-
lighted above. Given these allocations, the model predicts the evolution of the capital stock according to
equation (20). A dynamic equilibrium then requires that the set of interest rates {rt}t is consistent with
the implied evolution of the capital stock. In practice, it is straightforward to calculate this dynamic equi-
librium even for a realistic economic geography of hundreds of locations. More formally, a competitive
equilibrium in our economy is defined in the following way.

Definition 4. Consider the economy described above. Let the initial capital stock K0, the initial spa-

tial allocation of people {Lr,−1}r and the vector of wages {wr,−1}r be given. A dynamic competitive

equilibrium is a set of prices {Prst}rst , wages {wrt}rt , capital rental rates {Rt}t , labor and capital alloca-

tions {Lrst ,Krst}rst , consumption and saving decisions {eY
rt ,e

O
rt ,srt}rt , and demands for regional varieties

{crst}rst such that consumers’ choices {eY
rt ,e

O
rt ,srt}rt maximize utility, i.e. are given by equations (9) and

(10), the demand for regional varieties follows equation (17), firms’ factor demands maximize firms’

profits, markets clear, the capital stock evolved according to equation (20) and the allocation of people

across space {LY
r,t} is consistent with individuals’ migration choices in equation (7).

One implication of our theory is that the spatial structure of the model naturally generates an explanation
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for an “agricultural productivity gap”, i.e. why value added per worker in the agricultural sector is
relatively low (see e.g. Gollin et al. (2014)). In our model value added per worker in agriculture relative

to average value added per worker is given by

VAAg
t /LA

t
VAt/Lt

=
ϑ A

t
sAt

=
∑r sAr

wrLr
∑r wrLr

∑r sAr
Lr

∑r Lr

.

Hence, there is an agricultural productivity gap, i.e. VAAg
t

LA
t

< VAt
Lt

, whenever the spatial correlation between
wages and agricultural employment share is negative. Differences in regional efficiency combined with
frictions to spatial mobility are therefore one potential mechanism to explain why agricultural productiv-
ity low. Frictions to labor mobility are crucial to generate these patterns - if wages were equalized across
locations, value added per worker would be equalized across sectors and our economy would essentially
be aggregative. To see this more clearly, it is useful to consider two special cases, where there is no
distinct role for space.

Special Case 1: The Spaceless Economy The special case of our theory with just a single location
shows that our model is essentially a standard, macroeconomic model of the structural transformation
augmented by a spatial layer. With a single region, it is easy to show that GDP is given by

PYt = ZtKα
t L1−α ,

where Zt ≡ Γ
1−α

ζ
Zφ

AtZ
1−φ

NAt . Moreover, capital still accumulates according to equation (20). Even tough
consumers’ savings rates 1−ψt+1 depend on future interest rates (and hence on the future capital stock
Kt+1), it can be shown that - given some initial condition K0 and processes for productivity {ZAt ,ZNAt}t
- there exists a unique dynamic equilibrium path of capital {Kt}t . Section B.4 in the Appendix provides
a formal proof.

Furthermore, as in the baseline macroeconomic model of the structural transformation, this equilibrium
path can be characterized independently of the sectoral labor allocation (see e.g. Herrendorf et al. (2014)).
To see this, suppose that the economy is on a balanced growth path where aggregate income, capital and
wages grow at rate g and the interest rate is constant. In Section B.4 in the Appendix we characterize this
path and show that the agricultural share in value added ϑ A

t is given by

ϑ
A
t = φ + ν̃χ

(
ZNAt

ZAt

)γ

w−η

t ,

where χ is a constant, which is a simple function of exogenous parameters. This relative demand system
again resembles a representative household with PIGL preferences. Finally, note that in the single region
case, sectoral employment shares are equal to sectoral value added shares, i.e. sAt =ϑ A

t (see (19)). Hence,
as in most frictionless models of the structural transformation, value added per worker is equalized across
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sectors.

Special Case 2: Frictionless labor mobility Another polar case of our model is the case of frictionless
labor mobility. In this parametrization, there are no moving costs and individuals have no locational
preferences.18 This implies that equilibrium wages (and individual welfare) are equalized across space
at each point in time. The equilibrium trade shares, πrst are therefore given by πrst = Qσ−1

rst , i.e. are
fully exogenous and only depend on regional productivity (see equation (17)). Moreover, equation (18)
implies that the size of the local population is a demand-weighted average of the exogenous local sectoral
productivities. The change in the local population is therefore given by

dLrt =
(
Qσ−1

rAt −Qσ−1
rNAt

)
dϑt︸ ︷︷ ︸

Urban Bias

+ ∑
s

ϑ
s
t dQσ−1

rst︸ ︷︷ ︸
Local Produtivity Growth

. (21)

The first term on the right is what we refer to as the urban bias: A decline in the spending share on
agricultural goods reduces population in region r if and only if region r has a comparative advantage
in the agricultural sector.19 In particular, if it was not for local productivity shocks, regional population
growth and the initial agricultural employment share would be perfectly negatively aligned and spatial
reallocation would account for a sizable share of the decline in agricultural employment.

This already suggests that local productivity shocks, dQrst play an important role to explain why spa-
tial reallocation plays a minor role for the decline in the agricultural employment share. In our full,
quantitative model, three additional channels affecting incentives to spatially reallocation are at work.
First, costly spatial mobility prevent wages from being equalized and tends to keep individuals in their
location. Second, local amenities are an additional determinant of moving flows. Finally, idiosyncratic
shocks reduce the sensitivity of moving flows to wage differentials and generate gross mobility flows,
which exceed the extent of net reallocation.

3.3 Selection, Human Capital and Labor Supply

So far we assumed that human capital is perfectly substitutable across sectors and that all individuals are
ex-ante identical. In preparation for the quantitative exercise, we now extend it to allow for imperfect
substitutability of efficiency units across industries and for systematic differences in skill-supply.

We add these ingredients for two reasons. First, the extent of skill substitutability across sectors is an
important determinant of the costs of the regional transformation. While moving costs are a hurdle for

18Formally, this parametrization is nested in our full model by assuming that MC jr = 0, Ar = 0 and κ → 0.
19In fact, it is easy to show that sgn

(
Qσ−1

rAt −Qσ−1
rNAt

)
= sgn(srAt − sAt). To see this, note that sAt = ϑ A

t and

Qσ−1
rAt −Qσ−1

rNAt = πrAt −πrNAt =
srAtLrt

ϑ A
t
− srNAtLrt

1−ϑ A
t

=
srNAt

1−ϑ A
t

(
srAt/ϑ A

t

(1− srAt)/
(
1−ϑ A

t
) −1

)
Lrt
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spatial reallocation, an upward sloping relative sectoral supply function within locations makes it costly
to reallocate agricultural workers to factories. Second, systematic differences in skills are important in
that they generate spatial sorting. If skilled workers have a comparative advantage in manufacturing jobs,
they are more likely to move to locations which are productive in the manufacturing sector. This spatial
sorting captures a distinct role for the supply of agricultural labor. A shift of people towards urban areas
will, for example, reduce the relative supply of agricultural goods at given prices.20

Our model can easily be extended along these lines. In particular, we assume that individuals draw a
two-dimensional vector of skill-specific efficiency units zi =

(
zi

A,z
i
NA

)
and sort across industries based on

their comparative advantage. We also assume that individuals can be of two types - high skilled and low
skilled. Their skill type h∈ {L,H} determines the distribution of zi. As before, we assume that zi

s is drawn
independently from a Frechet distribution Fh

s (z) = e−Ψh
s z−ζ

, where Ψh
s parametrizes the average level of

human capital of individuals of skill type h in sector s. Without loss of generality we parameterize Ψh
s as

ΨL
A = ΨL

NA = 1 , ΨH
NA = µq and ΨH

A = q. Here, q measures the absolute advantage of skilled individuals
and µ governs the comparative advantage of skilled workers in the non-agricultural sector. We denote
the share of the aggregate labor force that is skilled by λ and assume that it is constant.21 In contrast,
the spatial allocation of human capital, i.e. the share of skilled workers in region r at time t, λrt , is
endogenous and determined by workers’ migration decisions.

Because of the properties of the Frechet distribution, these additional ingredients leave the rest of the
theoretical analysis almost unchanged.22 As we show in detail in Section B.5 of the Appendix, the key
endogenous object is no longer the vector of regional wages wrt , but average earnings of individuals in
skill group h, which are given by Eh [yi

r
]
= Γζ Θh

r , where

Θ
h
rt =

(
Ψ

h
Awζ

rAt +Ψ
h
NAwζ

rNAt

)1/ζ

. (22)

While Θh
rt , differs across skill-types, it is equalized across sectors within locations and can be directly

calculated from regional wages (wrA,wrNA), which are no longer equalized across industries within lo-
cations. Moreover, the regional attractiveness in Proposition 2 is skill-specific and given by W h

rt =
Γη/ζ

η
ψ (rt+1)

η−1 (
Θh

rt
)η

+Art , i.e. high skilled individuals put a higher relative weight on non-agricultural
wages wrNAt and hence consider locations with a strong manufacturing sector particularly attractive. Fi-
nally, the law of motion of the population is now skill-specific and given by Lrtλ

h
rt = ∑

R
j=1 ρh

jrtλ
h
rt−1L jt−1,

where ρh
jrt is given in Proposition 2. The addition of imperfect skill substitutability, while begetting extra

notation, leaves the tractability of our framework untouched and it is this version of the model that we
take to the data in the next section.

20Spatial mobility costs are therefore one example of cohort-specific “sectoral moving costs” highlighted by Hobijn et al.
(2018) and Porzio and Santangelo (2017).

21Hence, we abstract from human capital accumulation and simply assume that skills are fully inherited between parents
and children. Our timing assumption therefore implies that individuals know their skill h ∈ {L,H} prior to migrating but not
the realization of their zi.

22The key property is the fact that the Frechet distribution is max-stable.
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4 Spatial Structural Change in the US: 1880 - 2000

We now apply this theory to the experience of the United States over the last 120 years. To do so we
construct a novel panel data set on the regional development of the United States between 1880 and
2000. We describe the data in Section 4.1. One of the main features of our data collection effort is that
we compile measures of average labor earnings at the regional level. In Section 4.2 we use this data to
provide direct empirical evidence on the urban bias of the structural transformation. Finally, we calibrate
the model in Section 4.3. Our quantitative analysis is contained in Section 5.

4.1 Data

To compose our panel we draw on various data sets published by the US Census Bureau. In particular,
we use information from the Census of Manufacturing for 1880 and 1910, the Population Census for
1880-2000 and the County and City Data Books for 1940-2000. From these sources we construct a panel
data set of total workers {Lrt}rt , average manufacturing earnings {wrt}rt , and sectoral employment shares
{srAt}rt for all US counties at 30 year intervals between 1880 and 2000.23 We define the agricultural sec-
tor to comprise agriculture, fishing and mining industries following the 1950 Census Bureau industrial
classification system. All remaining employed workers are assigned to the non-agricultural sector. We
construct average manufacturing wages from county level total manufacturing payroll data and manufac-
turing head counts obtained from the same source. Table 17 in Appendix E contains a comprehensive list
of all data sources and more details on the construction of the data set.

We aggregate this county-level data to the level of commuting zones, which we take as our definition of
a regional labor market (see Tolbert and Sizer (1996)).24 We do so for two reasons. First, we need stable
regional boundaries over time. Second, labor markets should be large enough such that they contain both
an agricultural and a non-agricultural sector. Commuting zones partition the territory of the United States
into 741 polygons, all of which exhibited non-zero non-agricultural employment shares in 1880. This
procedure leaves us with a panel data set, which features sectoral employment shares, total employment
and average manufacturing earnings for all continental commuting zones from 1880 to 2000. For the
main calibration of the model we employ the cross-sections 1880, 1910, 1940, 1970 and 2000 only and
normalize the size of the total US workforce to unity in each period.

23Twelve states have not obtained statehood in 1880. We list them here and give the year of their accession to the Union:
North Dakota (1889), South Dakota (1889), Montana (1889), Washington (1889), Idaho (1890), Wyoming (1890), Utah
(1896), Oklahoma (1907), New Mexico (1912), Arizona (1912), Alaska (1959) and Hawaii (1959). We exclude Alaska,
Hawaii and Washington D.C. The 1880 Census does report data for counties in all states, even those that had not yet officially
obtained statehood in 1880, with two exceptions: Oklahoma and Hawaii. We impute 1880 data for Oklahoma’s counties using
a procedure described in Appendix (E).

24To do so, we construct a crosswalk between counties and 1990 commuting zones for every decade between 1880 and
2000. Using this we re-aggregate the county level data for the various years to commuting zones, employing area weights
to allocate workers wherever counties are split. A detailed description of the construction of the county to commuting zone
cross-walk for 1790-2000 as well as a panel of the populations of US commuting zones for that period is made available on
the authors’ website (Eckert et al. (2018)).
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In Figure ?? we depict the geography of the US at the commuting zone level. In the left panel, we show
the regional agricultural employment shares in 1880. While some regions (in particular, commuting zones
in Northeastern states like Massachusetts or New York) already have agricultural employment shares of
less than 10%, many commuting zones in the South have more than 75% of their population employed in
the agricultural sector. On the right we show local population growth rates between 1880 and 1910. The
absence of a strong correlation between population growth and agricultural specialization is apparent. In
particular, most population growth is observed in western commuting zones, which - in 1880 - tend to
have intermediate agricultural shares. In contrast, consideration other than the structural transformation
seemed to have caused the observed migration patterns and we will use our model as a way to measures
these alternative mechanisms.

In addition, we rely heavily on the 1940 edition of the decennial Micro Census by the US Census Bureau.
This is the most recent Census which contains individual identifiers for all US counties and it is the first
Census for which earnings and education variables are available. We use this information to calibrate the
spatial distribution of skilled workers.

To estimate the moving cost parameters we exploit the information in the Population Census. In the
model, individuals move once in their lifetime to access their preferred labor market. In the data we
therefore look at patterns of lifetime mobility. All censuses between 1880 and 2000 contain information
on the state of residence and the state of birth.

Finally, we use micro-data on expenditure patterns from the 1930s to estimate consumer preferences.
The Consumer Expenditure Survey in 1936 (“Study of Consumer Purchases in the United States, 1935-
1936”) contains detailed information on individual expenditure and allows us to calculate the expenditure
share of food. We exploit this cross-sectional information on expenditure shares and total expenditure
to estimate the extent of non-homotheticities in demand. Our information for the time-series of relative
prices it taken from Alder et al. (2018).

4.2 Earnings, Agricultural Employment and the Spatial Bias of Structural Change

The spatial bias of the structural transformation and the extent to which individuals respond to such
changing demand condition through migration is a central aspect of our analysis. In this section we
provide some direct evidence on this mechanism, without relying on the calibrated model.

The key implication of the spatial bias is a negative relationship between initial agricultural specialization
and subsequent economic performance. In particular, if spatial moving costs are important, the process of
structural change will reduce factor prices relatively more in agricultural areas. To test this relationship,
we consider the regression

lnwM
rt+1 = δt,State +α lnsrAt +β lnsrAt×∆sAt+1 + γ lnwM

rt +urt+1,

where wM
rt denotes average manufacturing earnings in region r at time t (which are directly observed
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in the data), δt,State contains year and state fixed effects, lnsrAt is the agricultural employment share in
region r and ∆sAt+1 denotes the change in the aggregate agricultural employment share between t and
t+1. The coefficient α captures the direct effect of agricultural specialization on manufacturing earnings
growth. The coefficient β captures the urban bias. In particular, we expect β to be positive: the larger
the decline in the agricultural share, the more adversely will regions with a comparative advantage in
agriculture be affected.

Dep. variable: ln Manufacturing Earnings
1880-1910 Full Sample

lnsrAt−1 -0.040∗∗∗ -0.106∗∗∗ -0.087∗∗∗ -0.063∗∗∗

(0.015) (0.006) (0.007) (0.008)
lnsrAt−1×∆sAt 0.243∗∗∗ 0.247∗∗

(0.094) (0.099)
lagged ln man earnings 0.118∗∗∗ 0.120∗∗∗ 0.117∗∗∗ 0.154∗∗∗

(0.022) (0.018) (0.018) (0.021)
Year FE X X X
State FE X X X X
State × Year FE X
Observations 717 2868 2868 2868
R2 0.594 0.983 0.983 0.985

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels.

Table 1: The Urban Bias of the Structural Transformation

The results are reported in Table 1. In the first column we focus on the time period from 1880 to 1910.
In this time period, the aggregate agricultural employment share declined from 50% to around 35%.
Cross-sectionally, column one shows that regions with a higher agricultural share in 1880 experienced
significantly lower earnings growth in the subsequent 30 years. Column two shows that this relationship
is not confined to the 1880-1910 period, but holds true in the entire sample. In the last two columns we
directly exploit the panel structure of our data, to estimate the coefficient β from the interaction between
the initial regional agricultural share and the change in aggregate agricultural share. Consistent with an
urban bias, a faster decline in agricultural employment is particularly harmful for regions, which have a
larger agricultural share.

The results in Table 1 highlight why the weak correlation between agricultural employment shares and
subsequent population outflows is surprising: the structural transformation does indeed reduce relative
wages in agricultural locations. The quantitative impact is, however, limited. To see this, consider Figure
2, where we depict the cross-sectional correlation between agricultural employment shares in 1880 and
average manufacturing earnings in 1910. While there is a strong negative relationship, there is also
ample variation in future wages holding the agricultural employment share fixed. This residual variation
is important for the correlation between agricultural employment shares and population outflows. In our
theory, individuals do not have particular preferences for non-agricultural locations - they care about the
sectoral composition of a location only in as far as it offers higher life-time utility through favorable

22



5.5

6

6.5

7

lo
g 

M
an

uf
ac

tu
rin

g 
Ea

rn
in

gs
 1

91
0

0 .2 .4 .6 .8 1
Agricultural Employment Share 1880
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of the markers in the right panel indicates the size of commuting zones as measured by their population in 1880.

Figure 2: Agricultural Employment and Future Earnings in 1880

factor prices. And Figure 2 suggests that the cohort born in 1880 does not necessarily have to move
towards non-agricultural places to increase their life-time earnings.

4.3 Calibration

In this section we describe the calibration of our model. First we discuss our calibration strategy, then
the fit of our model with respect to both targeted and non-targeted moments.

4.3.1 Calibration Strategy

In this section, we outline the general features of our calibration strategy. In Section D in the Online
Appendix we provide considerably more detail. Even though our parameters are calibrated jointly, we
organize the discussion of our calibration strategy around the structural parameters and the respective
moments, which are most informative.

The evolution of aggregate productivity: {ZAt ,ZNAt}t We calibrate the model such that aggregate in-
come per capita grows at a constant rate and that the capital-output ratio is constant. In Section B.6 in the
Appendix, we show that this implies that interest rates are constant and have a closed-form expression.25

We then calibrate the time series of aggregate sectoral productivities, {ZAt ,ZNAt}t , to match the evolution
of relative prices and a GDP growth rate of 2%.

Moving costs and idiosyncratic location preferences: MC jr and κ We specify the cost of spatial
reallocation as having both a fixed and a variable component and we allow the latter to depend on the
migration distance in a flexible way. In particular, we assume that

25In the counterfactual analysis, interest rates will of course be free to vary over time.
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MC jr = τ +δ1d jr +δ2d2
jr

whenever j 6= r and zero otherwise. Here, τ > 0 parameterizes the fixed cost of moving and δ1 and δ2

govern how mobility costs vary with distance. We normalize d jr so that the maximum distance in the
US is 1. Because in the theory workers move only once (at the beginning of their working life), for
the remainder of the paper we all mention of migration and reallocation is understood to refer to life-
time migration. Following Molloy et al. (2011) we measure the aggregate lifetime migration rate as the
fraction of people who live in a different location than where they were born.

In the Census data we only observe individuals’ region of birth at the state level. We therefore aggregate
the commuting-zone level migration flows in the model to the level of US states and choose (κ,τ,δ1,δ2)

so as to make the model best fit the observed state level flows. We focus on workers between 26 and 50
years of age and chose τ so as to match their aggregate lifetime interstate migration rate between 1910
and 1940 exactly. We then chose (κ,δ1,δ2) to minimize the distance between spatial mobility rates in
the data and the model.26

Spatial productivities and amenities: {Qrst ,Art}rst We follow the recent quantitative spatial eco-
nomics literature and calibrate local productivities and amenities {Qrst ,Art}rst as structural residuals Red-
ding and Rossi-Hansberg (2017). More specifically, we chose {Qrst ,Art}rst so that the model matches the
spatial data on agricultural employment shares, local employment and average manufacturing earnings
exactly, conditional on all other structural parameters. In Appendix D.1 we formally show that there is a
unique mapping from the observed spatial data on agricultural employment shares, populations and aver-
age manufacturing earnings to the vector of local productivity {Qrst}rst , conditional on a set of calibrated
parameters. Intuitively, local sectoral employment shares contain information on QrAt

QrNAt
while the level of

wages along with the total number of workers informs the level of QrNAt . The vector of amenities {Art}rt

can then be inferred from the observed net population flows.

Preference parameters: η ,γ,φ We estimate the strength of the non-homotheticity in the demand sys-
tem (η) from the cross-sectional relationship between sectoral spending shares and the level of expendi-
ture. To do so, we use historical micro data from the Consumer Expenditure Survey in 1936, the “Study
of Consumer Purchases in the United States, 1935-1936”. As γ determines the price elasticity of de-
mand, we discipline γ with the elasticity of substitution. Comin et al. (2017) estimate this elasticity to
be around 0.7 in post-war data for the US and we calibrate our model to be consistent with this number.
Finally, we use the time-series of the aggregate agricultural employment share to identify the remaining
parameters φ and ν . Given that our model matches the joint distribution of agricultural employment

26More specifically, we chose (κ,δ1,δ2) to minimize ∑i ∑ j 6=i L j,1940

(
logρDATA

i j,1940− logρMODEL
i j,1940 (κ,δ1,δ2)

)2
conditional on

always exactly matching the aggregate interstate migration rate through the choice of τ . As shown in Section D.6 in the
Appendix, the number of stayers in a commuting zone is a monotone function in τ given (κ,δ1,δ2).
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shares and population size perfectly, internal consistency requires us to also match the time series of the
aggregate agricultural employment share exactly. As we discuss in detail in Section C.6 in the Appendix,
the income effects as implied from the cross-sectional spending-food relationship are not strong enough
to explain the entire decline in agricultural employment in the time-series.27 We therefore allow the pa-
rameter φ to be time-specific to fully account for the residual decline in agricultural employment and
choose ν to minimize the required time-variation in φt . Intuitively, ν is chosen for the model to explain
as much of the aggregate process of structural change as possible, given the income and price elasticities
η and γ . Recall that φ does not enter the household’s decision problem directly.

Skill supply: ζ ,µ,q and {λr1880}r To parametrize the skill supply, we need values for the supply elas-
ticity (ζ ), the comparative and absolute advantage of skilled workers (q and µ) and the initial distribution
of skilled workers across space in 1880, {λr1880}r. We define skilled individuals as workers who com-
pleted at least a high school education in 1940 and hold the aggregate share of skilled workers fixed.28

This choice yields an aggregate skilled employment share of about 0.3. We then calibrate {λr1880}r for
the model to exactly replicate the the spatial skill distribution 1940, which is the only year for which
educational attainment at the commuting zone level is directly observable. We calibrate the parameter
ζ , i.e. the dispersion of individual productivity, to match the dispersion of earnings in the 1940 Census
data. The model implies that the variance of log earnings within region-skill cells is given by π2

6 ζ−2.
We therefore identify ζ from ζ = π

61/2 var
(
ûi

rsh

)−1/2
, where var

(
ûi

rsh

)
is the variance of the estimated

residuals from a regression of log earnings on commuting zone, sector and skill-group fixed effects in the
1940 Census Data.

The two parameters q and µ in turn are chosen to match the aggregate skill premium and the aggregate
relative manufacturing employment share of skilled workers in 1940. We calculate the skill premium
as the ratio of average labor earnings of skilled relative to unskilled individuals in the 1940 Census
data. Similarly, we compute the relative manufacturing employment share of skilled workers as the non-
agricultural employment share of skilled workers relative to the one of unskilled workers. Note that these
measures already incorporate the unbalanced spatial sorting of skilled and unskilled individuals, i.e. they
take into account that skilled workers live in high-wage and manufacturing intensive localities.

Other parameters: β ,δ ,σ and α We estimate the rate of time preference β from aggregate macro
relationships. In particular, we chose β to be consistent with the aggregate rate of investment. The capital
share α is set to match an aggregate capital share of 1/3. The elasticity of substitution between regional
varieties, σ , is set to 4. In Section 6 below and in the Online Appendix we provide extensive robustness

27This discrepancy between the cross-section and time-series is not particular to our application. For example, the results
reported in Comin et al. (2017) also imply different estimates for the income elasticity stemming from the cross-section and
the time-series. While reconciling this discrepancy between the cross-section and the time-series is an important open research
question, it is not the main focus or our paper.

28Because we focus on the spatial aspects of the structural transformation, we abstract from skill deepening. The model
could easily be extended to allow for changes in the aggregate supply of human capital.
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Parameter Target Value Moments
Data Model

Skill Supply
ζ Skill heterogeneity Residual Earnings variance in 1940 1.62 0.62 0.62
ξ Share of skilled individuals Share with more than high school degree in 1940 0.3 0.3 0.3
µ Comparative advantage Rel. non-ag. share of skilled workers in 1940 3.41 1.21 1.21
q Absolute advantage Skill premium in 1940 0.68 1.62 1.61

[λr,1880] Initial distribution of skilled individuals Spatial skill distribution in 1940 . {λr,1940} Accounting

Regional Fundamentals
[QrAt ]rst Agricultural productivity

Regional empl. shares and earnings
See Appendix

{eMan
r,t ,sA,rt} Accounting[QrNAt ]rst Non-agricultural productivity

[Art ]rt Amenities Net migration flows {Lh
r,t}

Time Series Implications
[ZNAt ] Non-agricultural productivity Aggregate growth rate of GDP pc See Appendix 2% 2%
[ZAt ] Agricultural productivity Relative price of ag. goods See Appendix {PA,t/PNA,t} Accounting

Preference Parameters
β Discount rate Investment rate along the BGP 0.29 0.15 0.15
φ Ag. share in price index Time series of ag. empl. share See Appendix {sA,t} Accounting
ν PIGL Preference parameter Time series of ag. empl. share 0.017 0.20 0.20
η Non-homotheticity Ag.share - expenditure relationship 0.35 0.04 0.04
γ Price sensitivity Elasticity of substitution in 2000 0.35 0.7 0.7

Moving Costs and Mobility
τ Fixed costs of moving Lifetime interstate migration rate 1.63 0.32 0.32
κ Dispersion of idiosyncratic tastes

Observed state-to-state flows
0.42 Estimated with NLS

[δ1,δ2] Distance elasticity of moving costs [8.44,−6.39] Estimated with NLS
Other parameters

δ Depreciation rate (over 30 years) set exogenously 0.91 (0.08 annually) .
α Capital share in production function set exogenously 1/3 . .
σ Elasticity of substitution set exogenously 4 . .

Notes: The table contains the calibrated parameters. See Section 4.3 for the calibration strategy. In Section D in the Online Appendix we provide additional
details.

Table 2: Calibrated structural parameters

checks for this parameter.29 Finally, the depreciation rate δ is set to a 0.08, which is a central value in the
literature.

4.3.2 Calibration Results and Model Fit

In Table 2 we report the calibrated parameters and the main targeted moment, both in the data and the
model. Naturally, the parameters are calibrated jointly.

The presence of spatial mobility costs is an important component of our theory. To see that our model
matches important features of the lifetime migration data well, we display the distribution of stayers
across states and the relationship between moving flows and distance in Figure 3. In the left panel we
depict the cross-sectional distribution of the share of “stayers”, i.e. ρrr, both in the data and the model.
Because regions differ both in attractiveness, i.e. the utility they provide to their residents, and in their
distance to more attractive places, there is sizable heterogeneity in the extent to which regions are able
to retain workers. Figure 3 shows that the model matches this cross-sectional heterogeneity, even though

29Allen and Arkolakis (2014) use σ = 9 for a model calibrated to US counties, while Monte et al. (2015) use σ = 4 for the
same purpose. Since we calibrate our model to the more aggregated commuting zones, σ would be expected to be lower. We
consider values for σ ∈ [3,9].
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Notes: In the left panel we plot the distribution of the share of people staying in their home state between 1910 and 1940 in the data (grey dotted line) and
model (orange solid line). To construct the right panel, we run a gravity equation of the form log

(
ρ jr/

(
1−ρ jr

))
= α j +βr +u jrwhere ρ jr denote the share

of people moving from j to r and α j and βr denote origin and destination fixed effects. We run the regression both in the model (orange dots) and in the data
(grey diamonds) and then plot the average û jr by distance percentile.

Figure 3: Lifetime state-to-state migration: Model vs Data

it is only calibrated to match the average rate of mobility. The simple correlation between the share of
stayers in the model and in the data is 0.3. In the right panel, we show that the model also matches the
distance gradient of moving flows. In particular, we run a gravity-type regression of moving flows and
compare the model outcomes to those of the data. We consider the specification

log
ρ jr

1−ρ j j
= α j +βr +u jr,

where α j and βr are origin and destination fixed effects. We then plot the estimated residual û jr as a
function of distance for the actual data and the data stemming from the model. The right panel of Figure
3 shows that the model captures this systematic pattern of lifetime migration flows well. In particular,
spatial mobility is very local, i.e. spatial flows are steeply decreasing in distance.

Bivariate correlations
ρ(lnQNA,r, lnQA,r) ρ(lnQNA,r,Ar) ρ(lnQA,r,Ar)

0.225 0.492 0.152

Notes: This table reports the cross-sectional correlation between the spatial fundamentals. We report the average of the correlations for the years 1880, 1910,
1940, 1970 and 2000.

Table 3: Correlation of spatial fundamentals

An integral part of our calibration strategy is that we calibrate the cross-sectional distribution of sectoral
productivities {QrAt ,QrNAt}rt and amenities {Art}rt as structural residuals of the model in line with the
new quantitative spatial economics literature (Redding and Rossi-Hansberg, 2017). In Table 3 we report
the cross-sectional bivariate correlations between these fundamentals. We find that productive regions
have an absolute advantage in both sectors - the cross-sectional correlation between lnQrA and lnQrNA

is about 0.225. Similarly, the correlation or productivity and amenities is also positive, in particular for
non-agricultural productivity. Hence, productive places are also relatively pleasant places to live. This
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is in line with recent direct evidence for developing countries by Gollin et al. (2017). In Section B.8 in
the Appendix, we provide additional details about these estimates of spatial fundamentals. In particular,
we also relate these model-based measures of regional productivity, Qrst , to direct empirical measures of
local productivity growth. More specifically, we use data on changes in regional market access due to
the expansion of the railroad network from Donaldson and Hornbeck (2016) and show these are highly
correlated with changes in {QrA,QrNA}r as inferred from our model. See Section B.9 in the Appendix
for details.
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Figure 4: Expenditure Shares on Food in 1936

Our model of consumer preferences also does a good job at replicating the non-homothetic structure of
consumer demand. Recall that the PIGL demand system implies that expenditure shares at the individual
level are given by ϑA (e, p) = φ + ν

(
pA
pM

)γ

e−η . For φ ≈ 0, this implies that there is a log-linear rela-
tionship between expenditure shares and total expenditure. In the left panel of Figure 4 we depict the
cross-sectional distribution of the expenditure share for food across US households in 1935. It is appar-
ent there is substantial heterogeneity and that a large fraction of households has food shares exceeding
40%. In the right panel we depict the binned scatter plot between (the log of) expenditures and expen-
diture shares after taking out a set of regional fixed effects, to control for relative prices. The slope of
the regression line is exactly the extent of the demand non-homotheticity η . The expenditure share is not
only systematically declining in the level of expenditure but the cross-sectional relationship is essentially
log-linear, as predicted by the theory. The slope coefficient implies that η = 0.32.30

30For our estimate, we of course do not impose the restriction that φ = 0 and estimate the demand function using non-linear
least squares. The parameter η is precisely estimated and - depending on the specification - between 0.3 and 0.34.
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5 Causes and Consequences of Spatial Structural Change

Using our calibrated model we can now turn to the causes and consequences of spatial structural change.
In Section 5.1 we discuss why the urban bias of the structural transformation did not cause more outmi-
gration from agricultural areas. In Section 5.2 we ask whether the observed patterns of spatial mobility
had important implications for aggregate productivity and the spatial distribution of welfare.

5.1 Causes: The Urban Bias and the Pattern of Spatial Reallocation

In Section 4.2 we showed that the mechanism of the urban bias has empirical content: the process of
structural change did reduce relative wages in agriculturally specialized labor markets and hence was a
secular force towards spatial reallocation. However, we also showed that agricultural employment shares
and future earnings were only imperfectly correlated. This tends to weaken the link between population
outflows and agricultural specialization as migrants might move towards agricultural localities in their
search for higher wages. Hence, there were important offsetting factors counteracting the urban bias of
the structural transformation.

Our model suggests four main margins that could counteract the force of the urban bias channel for
the process of spatial reallocation. At the individual level, moving costs between labor markets reduce
the level of migration and idiosyncratic motives in individual moving decisions weaken the correlation
between population net flows and regional factor prices. Because agricultural intensive regions have
(on average) low factor prices, both channels reduce the importance of spatial reallocation for the ag-
gregate decline in agricultural employment. At the regional level, both shocks to spatial fundamentals
(i.e. productivities and amenities) and a positive correlation between agricultural comparative advantage
(QrA/QrNA) and the level of productivity (QrNA) will reduce the correlation between population outflows
and agricultural employment, as they counteract the secular decline of labor demand in agricultural areas.

To understand the relative importance of these channels, we compare the reallocation patterns of the cal-
ibrated model, which naturally features all channels, with an economy, where only the the urban bias
channel is present. We refer to this parametrization as the “Urban Bias Economy”. We then quantify the
relative importance of individual counteracting channels by considering various alternative parametriza-
tion which shut them off one at a time.

The Urban Bias Economy We define the Urban Bias Economy as being characterized by (i) the ab-
sence of moving frictions

(
MC jr = 0

)
, (ii) no changes in regional fundamentals (Qrst = Qrs1880), (iii) no

amenities (Art = 0) and (iv) no idiosyncratic preferences for particular locations (κ → 0). Note that this
is the frictionless parametrization of our model introduced in Section 3 with the additional restriction that
there are no changes in regional productivities. This makes the urban bias of the structural transformation
the only driver of spatial mobility. While this model implies the same decline in the aggregate agricul-
tural share as our baseline model, we find that it has strikingly different implications for the link between

29



0

.2

.4

.6

.8

1

Sh
ar

e 
of

 R
eg

io
ns

 w
/ N

et
 O

ufl
ow

s:
 1

91
0-

40

1 2 3 4 5 6 7 8 9 10
Agricultural Employment Share Deciles: 1910 (1: Least Agricultural)

Data Urban Bias Economy

Notes: The figure reports the share of regions within the different deciles of the agricultural employment share in 1910, which experience net population
outflows between 1910 and 1940. The first (last) decile refers the commuting zones with lowest (highest) agricultural employment share. We report the results
for the data (dark grey) and the urban bias economy, which has no moving costs

(
MC jr = 0

)
, (ii) no changes in regional fundamentals (Qrst = Qrs1880), (iii)

no amenities (Art = 0) and (iv) no idiosyncratic preferences for particular locations (κ → 0).

Figure 5: Agricultural specialization and Population Outflows

initial agricultural employment shares and subsequent population flows.

In Figure 5 we depict the share of commuting zones experiencing population outflows between 1910 and
1940 within different deciles of their agricultural employment share in 1910. While the data shows a neg-
ative correlation between outflows and initial agricultural specialization, the relationship is noisy: even
among the set of the regions with lowest agricultural employment shares in 1910, about 50% experience
net population outflows.31 This is very different for the “urban bias” economy, where agricultural spe-
cialization and population outflows are perfectly aligned. In particular, this model implies that the only

regions experiencing population inflows are the 17% of commuting zones with the lowest agricultural
share in 1910.32 Hence, if only the urban bias mechanism had been at play, the structural transformation
would have induced much more population growth in non-agricultural, urban localities.33

As a result, in the Urban Bias Economy, the spatial reallocation of individuals explains about one third
of the aggregate decline in agricultural employment - see Figure 6. Conversely, while the Urban Bias
Economy overestimates the role of spatial reallocation, it underestimates the extent of the structural
transformation at the local level. In particular, there are more regions which remain dominated by the
agricultural sector throughout the 20th century. Consider, for example, the two red densities on the far
left, which corresponds to 1970. In the data (the dashed line), the vast majority of commuting zones have

31Note that Figure 5 reports the share of regions with net outflows, i.e. the extensive margin of population flows. In the
aggregate, net population flows are by construction zero.

32This can be seen in Figure 5: all regions in the first decile and about 70% of the second decile experience net population
outflows, implying 17% of all regions do so.

33Note that this strong form of sorting is implied by (21): only counties with srAt < sAt see their population increase. And
because population size and agricultural employment shares are strongly negatively correlated, far less than half of the regions
are predicted to experience population inflows.
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Figure 6: Spatial Reallocation and the Urban Bias

an agricultural employment share below 20%. In the model, there is a substantial number of regions,
where 30%-40% of the workforce is still employed in the agricultural sector. The reason for this is that
worker mobility and the local structural transformation are substitutes - the easier it is to reallocate people
across space, the more regional specialization can be sustained throughout the structural transformation.

We summarize these differences between the Urban Bias Economy and our baseline calibration in the
first two rows in Table 4. As seen in Figure 6, the spatial reallocation component is equal to 15% and
hence five times as large if only the urban bias is at play. Importantly, the net reallocation rate across
labor markets is not substantially different. If only the urban bias channel had been at play, the net
migration rate would have been 14%, which is almost identical to the one observed in the data. Hence,
in principle, the level of net spatial reallocation seen in the US was sufficient to account for a large share
of the aggregate decline in agricultural employment. This suggests that the presence of moving frictions
cannot be the main counteracting force of the urban bias channel in the data; this is exactly what we find
quantitatively in the next subsection.

One important difference between our baseline model and the Urban Bias Economy is the existence of id-
iosyncratic preference shocks for particular locations. The reason why our model infers that idiosyncratic
shocks are empirically important is the prevalence of bi-directional flows in the data. If idiosyncratic
shocks were absent, all individuals would agree on the ranking of potential destinations and the gross and
net flows between any pair of locations would coincide. The “turnover” rate, i.e. the ratio of the gross
and net migration rate, is therefore a measure of the importance of idiosyncratic migration motives. It
can be interpreted as the number of bodies that have to be moved across space to reallocate one person
“on net” between regions. The last column of Table 4 shows that the turnover rate in the data and in our
baseline model is around 3. This is in sharp contrast to the Urban Bias Economy, where this ration is 1
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Model ingredients Migration patterns
Spatial Idiosync. Spatial

productivity Moving Amenities location Reallocation Net migration Turnover
shocks costs preferences Component rate (gross/net)

The Urban Bias of Structural Change
Urban Bias Economy 7 7 7 7 -15.2% 14% 1
Baseline model X X X X -3.2% 12.9% 2.8

Decomposition: The partial effect of ...
Spatial productivity (Qrst) X 7 7 7 -3.6% 22.0% 1

7 X X X -6.5% 10.7% 3.2
Moving Costs (MC jr) 7 X 7 7 0% 0% 1

X 7 X X -0.6% 41.1% 2.4
Amenities (Art) 7 7 X 7 -7.0% 60.8% 1

X X 7 X 2.6% 6% 6.2

Notes: The table reports three outcomes for various parametrizations of our model The spatial reallocation component is calculated as in (1) , i.e. is given by
∑r srA1880 (lr2000− lr1880). The net migration rate is the average net migration rate across US states for the years 1880 - 2000. The turn over rate is the gross
migration rates relative to the net migration rate. Both rates are measured at the state level. The first two rows contain the results for the Urban Bias Economy
and the baseline model. The Urban Bias Economy abstracts from spatial productivity shocks (Qrst = Qrs1880), moving costs

(
MC jr = 0

)
, regional amenities

(Art = 0) and idiosyncratic taste shocks (i.e. κ → 0). In the remaining rows we measure the partial effect spatial productivity shocks (rows 3 and 4), moving
costs (rows 5 and 6) and regional amenities (rows 7 and 8).

Table 4: Decomposing the Spatial Reallocation Component

as gross and net flows coincide.34

Offsetting Factors To better understand which aspect of our theory was the most important to coun-
teract the force of the urban bias, we now provide a formal, model-based decomposition of the partial
effects of regional productivity shocks, moving frictions and regional amenities. Because these ingredi-
ents interact non-linearly, we quantify the partial effects by calculating both the consequences of adding
the respective ingredient to the Urban Bias Economy and of removing it from our baseline model. The
results are contained in the lower part of Table 4.

Rows three and four show that the evolution of spatial productivity was the main reason for the low cor-
relation between agricultural specialization and population outflows. The frictionless model introduced
in Section 3, which is exactly the Urban Bias Economy augmented by the observed process of spatial
productivity shocks, implies a spatial reallocation component of -3.6%. This is almost exactly the same
number as observed in the data. Conversely, if the structure of regional absolute and comparative advan-
tage, Qrst , had been fixed at its level in 1880, the impact of spatial reallocation would have doubled from
3.2% to 6.5%. The reason is that - as seen in equation (21) - regional productivity shocks introduce noise
in the relationship between earnings growth and initial agricultural specialization and hence weaken the
quantitative importance of the urban bias.

In contrast, moving costs and regional amenities play less of a role. While adding moving costs to the
Urban Bias Economy does reduce the role of spatial reallocation, it does so for the wrong reason: the

34To be precise, in the absence of moving costs, the equilibrium allocation of net flows is unique, but the gross flows are
not determined. This indeterminacy vanishes for an arbitrarily small moving cost. In that case, the net migration rate is equal
to the gross migration rate.
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implied level of migration is very small. More interestingly, row six shows that without moving costs the
spatial reallocation component would be even lower - 0.6% compared to 3.2% in the data. The reason
is that a reduction in moving costs would not only induce people to move towards regions with high
earnings but also trigger more mobility for idiosyncratic reasons. The latter moves are by construction
uncorrelated with agricultural specialization and hence do not contribute to the spatial reallocation com-
ponent of structural change. Similarly, regional amenities cannot explain the quasi-absence of the spatial
reallocation component in the data. In fact, the last row of Table 4 shows that the role of spatial realloca-
tion would have been even smaller in the absence of amenities. Since rural regions have (on average) low
future amenities (see Table 3), the amenity channel provides an additional push factor out of agricultural
labor markets. This is consistent with the direct empirical evidence reported in Gollin et al. (2017) for
developing countries today.

5.2 Consequences: Aggregate Productivity and Spatial Welfare

We now turn to the macroeconomic implications of spatial structural change. We focus on two aggregate
outcomes: aggregate productivity and the spatial distribution of welfare. The urban bias of the structural
transformation systematically changes the marginal product of labor across labor markets. If and how
fast workers reallocate spatially therefore has important implications for allocative efficiency and hence
aggregate productivity of the US economy. Furthermore, in the presence of spatial frictions, this secu-
lar demand shift also has distributional consequence by lowering relative wages in agricultural regions.
Labor mobility therefore tends to both increase allocative efficiency and reduce spatial inequality.

To quantify the importance of spatial mobility, we compare our baseline model with three alternative
parameterizations. First, we consider a model without any labor mobility by making the costs of moving
prohibitively high. Secondly, we consider the frictionless model introduced in Section 3. In that model
spatial sorting is costless and based only on local productivity and aggregate demand conditions. More
specifically, we assume that both moving costs are absent

(
MC jr = 0

)
and agents do not derive utility

from non-pecuniary features of particular locations (Ar = 0 and κ = 0), so that spatial sorting is only
based on expected earnings (see also row 3 in Table 4). Finally, we consider the Urban Bias Economy,
which further abstracts from regional productivity changes, i.e. assumes that Qrst = Qrs1880.

Spatial Structural Change and Aggregate Productivity We report the outcomes of these three differ-
ent models in Table 5. In the first row, we verify that all models generate a similar decline in the aggregate
agricultural share. Hence, the aggregate “size” of the structural transformation is constant across specifi-
cations. For convenience we again report the average amount of spatial reallocation (as measured by the
net migration rate) and the spatial reallocation component of the structural transformation in rows two
and three.
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Baseline Counterfactuals
No Spatial Frictionless Urban
Mobility Mobility Bias

Decline in Agricultural Employment Share -48.1% -47.8% -48.2%
Net migration rate 13% 0 22% 14%
Spatial Reallocation Component -3.2% 0 -3.6 -15.2%
Increase in GDP pc (rel. to 1880) 10.78 8.89 11.09

Difference to baseline -17.57% 2.87%
Increase in TFP (rel. to 1880) 4.88 4.27 4.99

Difference to baseline -12.59% 2.22%
Agricultural productivity Gap 0.83 0.73 0.83

Notes: The model with no spatial mobility corresponds to the baseline model except that individuals are not allowed to move (i.e. MC jr → ∞). The model
without spatial frictions corresponds to the baseline model except that moving costs are zero (i.e. MC jr = 0), that there are no amenities (Art = 0) and
no idiosyncratic tastes (i.e. κ = 0). The Urban Bias Economy is like the frictionless model but also assumes the regional technologies are constant, i.e.
Qrst = Qrs1880. The net migration rate is the average migration rate between 1910 and 2000. The spatial reallocation component is calculated as in (1) , i.e. is
given by ∑r srA1880 (lr2000− lr1880). TFP is measured as T FPt = Yt/

(
Kα

t L1−α
t
)
. The “Agricultural Productivity Gap” is measured as aggregate value added

per worker in agriculture relative the rest of the economy, i.e.
(
VAA

t /LA
t
)
/(VAt/Lt), in the year 2000

Table 5: Spatial Reallocation and Aggregate Productivity during the Structural Transformation

In the lower panel, we report the implications for GDP growth and aggregate TFP.35 Spatial mobility
contributed heavily to aggregate productivity growth in the US during the 20th century. Without labor
mobility, income per capita would have been lower by almost 17.5% and this decline is entirely accounted
for by lower TFP, i.e. more misallocation.36 If, on the other hand, spatial mobility was only based on
regional earnings and mobility was free, aggregate productivity and income per capita would have been
higher by about 2.2% and 3% respectively. Moreover, as long as mobility is free, these gains do not
crucially depend on whether we allows for idiosyncratic spatial productivity growth. Compared to the
losses from the absence of spatial mobility, these numbers are relatively small.37

As discussed at the end of Section 3.2, these spatial productivity gains are also reflected in sectoral
productivity gaps. Both the baseline model and the models without spatial frictions, for example, imply
an agricultural productivity gap of around 17% (Gollin et al., 2014). Hence, value added per worker in
agriculture is about 17% lower than for the average worker even though there are no sectoral frictions.
These productivity differences are due to skill-based sorting, whereby high-skilled individuals both work
in the non-agricultural sector within regions and move towards urban locations spatially. Without spatial
mobility this gap would increase to 27% as the structural transformation amplifies wage differences

35We calculate TFP from the perspective of an aggregate production function, i.e. T FPt = Yt/
(
Kα

t L1−α
t
)
.

36Income per capita is not proportional to TFP because of capital accumulation. As the capital-output ratio is essentially
constant in all parametrization, we have that Y ∝ T FP

1
1−α .

37To put these results in perspective, Bryan and Morten (2017), using a static spatial equilibrium model, estimate higher
productivity losses from limited labor mobility for Indonesia. In their specifications without agglomeration and endogenous
amenities, which we for simplicity abstract from in our model, they find that productivity would increase by about 17% if
moving costs were zero and there were no amenity differences. There are two main reasons, why our results are small. First
of all, by explicitly considering capital as a factor of production (which can be traded without frictions) our economy allows
for some factor other than labor to adjust. Secondly, Bryan and Morten (2017) argue that the US economy has lower mobility
costs than Indonesia.
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between agricultural and non-agricultural regions.

The Distributional Effects of Spatial Structural Change We now turn to the evolution of spatial
welfare inequality. We focus on the expected life-time value of being in location r, W h

rt = Eh [Ur]+Art ,
as our measure of regional welfare for skill group h (see (12)). Our model implies that both regional
income Θh

r and regional amenities are negatively correlated with the agricultural employment share so
that welfare is systematically lower in agriculturally intensive places. Moreover, the urban bias of the
structural transformation is an additional inequality-enhancing force. To quantify to the evolution of
spatial welfare inequality during the 20th century, we convert utility differences into “life-time-income”
equivalents. Specifically, let ∆h

t denote the interquartile range of W h
rt at time t. Let T h

rt be the increase of
expected lifetime income, an individual with skill h in region r requires to increase the average utility of
living in region r by ∆h

t , i.e.
W h

rt

(
T h

rt y
)
= W h

rt (y)+∆
h
t .

Our measure of spatial inequality for individuals of skill h is then given as the cross-regional average of
T h

rt , i.e. T h
t = 1

R ∑T h
rt .

In Figure 7, we depict the evolution of spatial welfare inequality, relative to the level in 1910 for both
low skilled and high skilled individuals. The solid lines refer to our baseline calibration, the dashed lines
correspond to the economy without spatial mobility.38 . Figure 7 shows that spatial welfare inequality
decreased substantially during the 20th century. The required increase in lifetime income to raise utility
from the 25% quantile to the 75% quantile of the spatial distribution of welfare decreased by about
35% since 1910. In terms of levels, in 1910 the average region would have required an increase in
average lifetime income by about 160% to increase utility by the interquartile range of regional welfare
differences. In 2000, lifetime income would only have to be doubled.39

38Naturally, we do not display the two specifications without moving costs, as welfare inequality is by construction zero.
39The decline in inequality is not driven by changes in the distribution of regional amenities. The dispersion in amenities is

roughly constant between 1910 and 2000 and spatial welfare differences had declined even in the absence of amenities.
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Notes: The figure shows the average increase in life-time income required to increase utility from the 25% quantile to the 75% quantile of the cross-sectional
welfare distribution at time t relative to 1910. In the left (right) panel we depict the results for low (high) skilled workers. See Section B.10 in the Appendix
for details.

Figure 7: The Evolution of Spatial Welfare Inequality

Figure 7 also shows that spatial mobility was a crucial factor for this decline in welfare inequality. With-
out labor mobility to prevent the regional distribution of income from fanning out, spatial welfare would
have declined much less. This margin was a particularly important adjustment mechanism for low-skilled
workers as these workers have a comparative advantage in the agricultural sector and hence are partic-
ularly exposed to the the structural transformation. Spatial mobility was therefore a crucial adjustment
mechanism for low-skilled workers to weather the first structural transformation away from agriculture.
Without it, spatial welfare inequality would have been substantially higher.

6 Robustness

In this section we demonstrate the robustness of our results to a range of alternative parameterizations of
the model. We focus on the spatial reallocation component of the structural transformation (Table 4) and
the effects of spatial mobility on aggregate GDP (Table 5). In Section D.8 of the Online Appendix we
provide more details.

The results are summarized in Table 6. For the spatial reallocation components we again report the
implications of the Urban Bias Economy and the decomposition into the individual margins by removing
the respective ingredient from our baseline calibration. For the implications for aggregate GDP, we report
the change of GDP in 2000 for the economy without mobility and the frictionless economy relative to
the baseline. For all specifications, we always recalibrate the spatial structural residuals and aggregate
technology series.40

40Specifically, we always match the time series data on relative prices and aggregate GDP and the spatial data on earnings,
population size and agricultural employment shares.
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Baseline Elasticity of Subst. Skill heterogeneity Land Agglomeration Congestion
σ = 3 σ = 8 ζ = 1.4 ζ = 4 ωA =−0.1 ωNA = 0.03 ωNA = ωA = 0.03 ι1 = 0.86 ι2 = 0.19

Spatial Reallocation Component
Calibrated -3.16% -3.16% -3.15% -3.13% -3.20% -3.16% -3.15% -3.15% -3.18%
Urban Bias -15.22% -14.02% -17.21% -15.41% -13.36% -15.17% -15.71% -15.73% -14.13%
Productivity -6.55% -6.34% -6.98% -6.64% -5.50% -6.55% -6.59% -6.59% -6.42%
Moving Costs -0.65% -0.37% -1.58% -0.76% -0.47% -0.64% -0.78% -0.79% 0.132%
Amenities 2.63% 2.05% 3.86% 3.02% 1.97% 2.61% 2.84% 2.85% 2.13%

Change in GDP in 2000
No Mobility -17.56% -21.49% -11.32% -17.62% -17.20% -17.56% -17.56% -17.56% -17.44%
Frictionless 2.86% 2.29% 5.01% 2.69% 3.53% 2.85% 3.20% 3.20% 2.82%

Notes: The table contains various robustness exercises. For all specifications, we always recalibrate our baseline model. For the “congestion” case we follow
Adao et al. (2018) in using a model implied optimal IV approach to estimate ι1 and ι2, using the regional incidence of aggregate trends as an instrument for
local population inflows. See Section D.9 of the Online Appendix for details on this strategy. For more additional robustness results and their discussion in
turn, see Section D.8 of the Online Appendix.

Table 6: Robustness

In the first four columns we focus on the elasticity of substitution σ and the dispersion of individual skills
ζ . These parameters determine the extent to which demand declines if regional prices change (σ ) and the
elasticity of sectoral labor supply within locations (ζ ). While the value of σ is quantitatively important,
in particular for the implications for aggregate productivity, the results are qualitatively similar to our
baseline results. In contrast, our results are essentially insensitive to the precise value of ζ .

In the last four columns, we consider the case of endogenous spatial fundamentals Qrst and Arst . In par-
ticular, we assume that Qrst = Q̃rstL

ωs
rt and Art = Ãrt − ι1Lι2

rt , where Q̃rst and Ãrt are exogenous. As we
discuss more formally in Section D.8 of the Online Appendix, the case of ωs < 0 can be thought of cap-
turing decreasing returns in sector s. This would for example be the case if land was a factor of production
and in fixed supply. Similarly, ωs > 0 captures the existence of agglomeration benefits. Finally, ι > 0
allows for congestion forces in location amenities. In terms of agglomeration, we assume an elasticity of
0.03, which is the preferred value in Bryan and Morten (2017). To estimate the congestion parameters
(ι1, ι2), we follow Adao et al. (2018) and use a model implied optimal IV approach by exploiting the
urban bias as an instrument for local population inflows. See Section D.9 of the Online Appendix for
details on this strategy. The last four columns of Table 6 again show that our results are quantitatively
robust to such considerations.

7 Conclusion

The structural transformation, i.e. the systematic reallocation of employment out of the agricultural
sector, is a key feature of long-run economic growth. This sectoral bias of the growth process naturally
affects the spatial allocation of economic activity. In particular, by shifting expenditure away from the
agricultural sector, the structural transformation benefits urban, non-agricultural labor markets and hurts
rural ones. This urban bias of the structural transformation raised the return to relocate workers spatially.
In this paper, we use a novel theory of spatial structural change and detailed regional data to analyze the
spatial nature of the structural transformation of the US between 1880 and 2000.
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We first document empirically that the process of the spatial reallocation of workers towards non-agricultural
labor markets explained essentially none of the aggregate decline in the agricultural employment share
from 50% to nearly zero over the last 120 years. In contrast, the entire decline is accounted for by within
labor market changes, whereby agricultural employment declines in each locality. While these patterns
seem to contradict the large increase in urbanization over the same time-period, we show that this is not
the case: like the change in agricultural employment, the increase in the share of urban dwellers was also
very local in nature.

To explain this fact and to understand whether this mode of adjustment had important aggregate impli-
cations, we construct a new quantitative theory of the structural transformation that explicitly incorpo-
rates a spatial layer. The model combines the basic features of an economic geography model featuring
costly labor mobility with the canonical ingredients of neoclassical models of structural change, i.e. non-
homothetic preferences, unbalanced technological progress and aggregate capital accumulation. Despite
this richness, we show that the analysis remains highly tractable and can be applied to a realistic geogra-
phy.

Our analysis yields two main results. First, we show that the evolution of spatial productivity was the
main reason for the insignificance of the spatial reallocation channel. Because local productivity is sub-
ject to shocks and regional absolute and comparative advantage are imperfectly correlated, the relation-
ship between agricultural specialization and future earnings (and hence net population outflows) is only
weakly negative - despite the urban bias of the structural transformation. Secondly, we show that the pos-
sibility of spatial reallocation had important macroeconomic consequences. On the one hand, the process
of spatial arbitrage was an important contributor of aggregate productivity growth in the US. Without
labor mobility, aggregate income would have been 17% smaller. On the other hand, it played a crucial
role for the evolution of regional welfare inequality during the structural transformation of the US. In
the absence of migration across labor markets, welfare inequality would have been markedly higher, in
particular among unskilled workers, which were especially exposed to the secular demand shift away
from agriculture.
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A Spatial Reallocation: Additional Results

In Section 2 we showed that the spatial reallocation of individuals across commuting zones cannot ac-
count for the observed decline of the agricultural employment share in the US. In this section we provide
additional details for this empirical result.

Robustness to Labor Market Definition We first consider definitions of labor markets other than that
of a commuting zone, which we use throughout the main body of the paper. Figure 8 replicates Figure 1
on the county and state level. For comparison, we also display the results at the commuting zone level.
We use the same underlying data and simply aggregate it differently. Figure 8 shows that the reallocation
component is quantitatively unimportant regardless which of these three labor market definitions we
chose. Note that the reallocation component is zero by construction if we consider the entire US as one
region. The ordering of the lines is indicative of that: for most years the reallocation component is largest
for counties (the smallest level of aggregation we consider) and smallest for state (the largest level of
aggregation we consider). All in all Figure 8 reinforces our result of spatial reallocation as a highly local
phenomenon, which operates predominantly at the intra-county level.

Reallocation Component

Decline in Ag. Empl. Share

0

-.2

-.4

-.6
1880 1910 1940 1970 2000

Year

Commuting Zone
County
State

Spatial Reallocation

Notes: We show the aggregate agricultural employment share (light grey line) and the predicted agricultural share holding
regional agricultural shares at their 1880 level, i.e. ∑r srA1880(lr1880− lrt), where srAt and lrt are the agricultural employment
share and the population share of region r at time t(dark grey line). We do this for three different definitions of r: state, com-
muting zone or county. The underlying data is the same as described in the data appendix and simply aggregated differently
for each of the three scenarios.

Figure 8: Spatial Reallocation Across States, Commuting Zones and Counties

Direct Evidence for Agricultural Specialization and Population Growth The patterns in Figure
reflect the low correlation between agricultural specialization and population growth. We can test this
relationship directly in a regression format. In particular, we consider a regression of the form

g1880−2000
rL = α +β s1880

rA +ur,
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Figure 9: Agricultural Specialization in 1880 and Population growth 1880-2000

where g1880−2000
rL denotes regional population growth between 1880 and 2000 and s1880

rA denotes the agri-
cultural employment share in 1880. The results are contained in Table 7.

Dep. variable: Population growth 1880 - 2000
Agricultural share 1880 -26.241 -3.702∗

(40.829) (1.917)
log Agricultural share 1880 -0.548

(0.658)
Ag quantile FE No No No Yes
Weights No Yes Yes Yes
Observations 717 717 717 717
R2 0.000 0.002 0.000 0.014

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels. Column 4 contains a whole
set of 20 fixed effects for the different quantiles of agricultural employment shares in 1880.

Table 7: Agricultural Specialization in 1880 and Population growth 1880-2000

Columns 1 to 3 show that there is no significant relationship between agricultural specialization in 1880
and population growth between 1880 and 2000. Columns 2 and 3 weigh each regression by their initial
population in 1880. In column 4 we include a full set of twenty fixed effects of the initial agricultural
share quantiles. While these fixed effects are jointly statistically significant, their explanatory power
is still very small. Figure 9 shows this relationship graphically. More specifically, we report average
population growth between 1880 and 2000 for twenty quantiles of the agricultural employment share.
While population growth tends to be slightly smaller in regions with a high agricultural employment
share in 1880, the relationship is not particularly strong and certainly not monotone.

Spatial Structural Change and Urbanization The absence of the spatial reallocation channel seems
to be inconsistent with sharp increase in the rate of urbanization from 20% to almost 80% shown in Figure
10. We now show that this is not the case. In particular, we show that (like the the secular decrease in
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Figure 10: Fraction of US population living in urban environment

agricultural employment) the increase in urbanization is also a very local phenomenon. The share of
people living in urban areas (i.e. cities with more than 2500 inhabitants) increases from just shy of 20%
in 1850 to more than 50% of the population in 1940. In Figure 11, we again decompose this time-series
into a within and across commuting zone component. In particular, we decompose the increase in the
rate of urbanization into a spatial reallocation and a regional transformation component as in Equation 1
above, as follows:

ut−u1880 = ∑
r

ur1880(lrt− lr1880)︸ ︷︷ ︸
Spatial Reallocation

+ ∑
r
(urt−ur1880)lrt︸ ︷︷ ︸

Regional Transformation

, (23)

where ur1880 is the urbanization rate in commuting zone r in 1880.41 If the increase in urbanization re-
sulted from individuals migrating into highly-urbanized commuting zones, the spatial reallocation com-
ponent would be close to the actual time series.

41Note that this is strictly speaking the negative of Equation 1, this is more convenient here, since, unlike for the aggregate
agricultural employment share, the aggregate urbanization share follows a secular positive trend.
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Notes: In the left panel, we again show the absolute increase in the share of people living in urban areas and its reallocation
component calculated according to Equation 23 as ∑r ur1880(lrt − lr1880). In the right panel we show the cross-sectional
distribution of the share of the urban population across commuting zones. This figure is based on US Micro Census data from
Ruggles et al. (2015). County-level data is only publicly available for the 1880-1940 period and restricting the computation
of the counterfactual urbanization share to this period. Figure 10 shows the full time series of the aggregate urban share.

Figure 11: Urbanization within commuting zones

The left panel of Figure 11 shows that this is not the case: as for the agricultural employment share, the
cross-commuting zone population flows explain only a minor share of actual increase observed in the
data. Similarly to the right panel of 1, the right panel of Figure 11 shows the distribution of the share
of the urban population across commuting zones conditional on this share being positive. As for the
patterns of agricultural employment depicted in Figure 1 these densities shift to the right, indicating that
urbanization takes place within all counties in the US.

Spatial Reallocation and Structural Change around the World Finally, we ask whether the insignif-
icance of the across labor market reallocation component of structural change is particular to the United
States or a more general feature of the structural transformation. Indeed a look at other countries around
the world suggests that the highly localized nature of reallocation and urbanization is a feature of the
structural transformation in many countries around the world. To see this, we used data from IPUMS
(see Ruggles et al. (2015)) to compute the reallocation component of the decline in the aggregate agri-
cultural share for seven additional countries. The labor market regions available for these countries are
generally larger than commuting zones in the United States, but smaller than US states. The results are re-
ported in Table 8. In general we find that the spatial reallocation component is very small. Together with
Figure 8 for the United States, we view this quasi-absence of the reallocation component at the sub-state
resolution as suggestive evidence for the local nature of the structural transformation more generally.
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Country USA Argentina China India Mali Mexico Spain Venezuela
Time Period 1880-2000 1970-2001 1982-2000 1987-2009 1987-2009 1970-2010 1991-2011 1981-2001
Number of Regions 712 312 198 413 47 2316 52 157
∆Ag. Empl. Share -0.48 -.076 -.10 -.09 -.12 -.29 -.12 -.02
∆ implied by reallocation -0.03 0 0 -0.01 -0.05 -0.03 -0.01 0.01

Notes: These regions are in general larger than counties in the United States. All numbers rounded to two decimal places. The US numbers are based only
on continental commuting zones. Source: for all countries except the US we use IPUMS international as a data source. Sources for the US data are discussed
in detail below.

Table 8: The Reallocation Component of the Structural Transformation: International Evidence

B Theory: Proofs and Derivations

B.1 Trade Costs and Land as a Factor of Production

For our main analysis we abstract from land as an explicit factor of production and from trade costs. In
this section, we discuss the importance of these restriction. Consider first the absence of land as a fixed
factor in the production function. For expositional simplicity we abstract from capital. Suppose that the
production function in region r and sector s was given by Yrs = ZrsL

1−γs
rs T γs

rs , where Trs is the amount of
land employed in sector s. Suppose that γA > γNA = 0, i.e. land is only employed in the agricultural sector.
Let Vr be the land rental rate in region r. Cost minimization requires that VrTrs =

γs
1−γs

wrLrs. Hence, the
production function is given by

Yrs = ZrsL
1−γs
rs

(
γs

1− γs

wr

Vr
Lrs

)γs

= Z̃rsLrs,

where Z̃rs = Zrs

(
γs

1−γs

wr
Vr

)γs
. Similarly, the price of sector s goods in region r is given by

Psr =
1

Zrs

(
wr

1− γs

)1−γs
(

Vr

γs

)γs

=
1

Z̃rs

wr

1− γs
.

The equilibrium conditions in (16) are then given by

LrtΓζ wrtsrst = (1− γs)πrstϑ
s
t PYt

where πrst =
P1−σ

sr

(∑ j P1−σ

s j )
1/(1−σ) =

Z̃σ−1
sr w1−σ

sr

(∑ j Z̃σ−1
s j w1−σ

s j )
1/(1−σ) . Given Z̃rs, this is the same set of equations as in

our baseline economy. Given Lrt , let (w∗rt ,s
∗
rst) be the equilibrium allocation. Equilibrium land prices,

V ∗r , are then given by V ∗r
w∗r

= γA
1−γA

L∗rA
Tr
. Hence, the endogenous productivity Z̃rs is related to the actual

productivity Zrs by Z̃rs = Zrs (L∗rA/Tr)
−γs . Because we infer Zrs as structural residuals, our calibrated

model is isomorphic to a model with land in the production function.

To make this model consistent with individuals’ spatial labor supply, note also that we require assump-
tions on land-ownership, i.e. who will receive the returns to land. To map this economy to our baseline
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economy, we follow Redding and Rossi-Hansberg (2017) and assume that the return to land is received
by all workers in region r as a proportional subsidy to their wage income. In particular, suppose worker i

receives income yi
r = (1+ v)wrzi

r, where vis the proportional subsidy. We then require that

wrν

∫
zrsdi = νLrtΓζ wrt =VrTr =

γA

1− γA
LrtΓζ wrtsrAt .

Hence, ν = γA
1−γA

srst . Letting w̃rt ≡
(

1+ γA
1−γA

srAt

)
wrt , the spatial labor supply function still takes the

same form as characterized in Proposition 2, except that w̃r takes the role of wr. Intuitively, the agricul-
tural share now determines the attractiveness of a location conditional on the wage as it encapsulates the
effect on land prices. However, given that regional amenities Art are also determined as structural resid-
uals, we can always find Art for the implied choice probabilities to coincide with the initial equilibrium.
Note that the spatial equilibrium can still be calculated as a function of static equilibrium variables, i.e.
allows for land as a fixed factor does not increase the computational complexity.

While the absence of land is inconsequential for the calibrated economy, our counterfactual exercise will,
of course, depend on this restriction. By keeping fundamental productivity Ars constant but say changing
trade costs, the equilibrium population L∗rA will change. With land in the production function, this will
tend to reduce (increase) productivity in growing (declining) regions.

The assumed absence of trade costs is more substantial. Because trade costs in general imply that goods
prices vary across space, consumers’ spatial choice problem will no longer be static. In particular, the
spatial choice probabilities are given by (see Propositions 1 and 2 and equation (7))

ρ jrt =
exp
( 1

κ

(
Wrt +Λr,t,t+1−MC jr

))
∑

R
l=1 exp

( 1
κ

(
Wlt +Λl,t,t+1−MC jl

)) , (24)

where Λr,t,t+1 = −ν

γ

((
pr

At
pr

NAt

)γ

+β

(
pr

At+1
pr

NAt+1

)γ)
+ (1+β )

(
ν

γ
− 1

η

)
and pr

st =
(

∑ j
(
τ jr p jst

)1−σ
)1/(1−σ)

and τ jr denotes the costs to ship goods from region j to region r. Crucially, the terms Λr,t,t+1 now
depend on r and hence no longer drop out of expression (24). This implies that moving flows at time t,
depend on the distribution of future regional prices. And as future prices depend on future equilibrium
allocations, computing the equilibrium becomes more involved. While in our baseline model, we only
need to guess the time path of interest rates, we would now guess and iterate over the entire sequence of
future distributions of regional factor prices.

Note however, that there are some special case of moving costs, which are covered in our baseline model.
In particular, suppose that the final consumption good in (2) is the output of a national retailer, who sells
to consumers irrespective of their location of residences. For the retailer to procure sector s goods from
region r, however, is subject to trade costs. i.e. τsr ≥ 1 units have to be shipped for a single unit to reach
the retailer. This model is isomorphic to our baseline economy, where effective regional productivity
Qrst is given by Qrst = Q̃rstτ

−1
sr , i.e. lower trade costs are isomorphic to higher productivity. In Section

B.9 below we show that the implied productivities from our model are systematically correlated with
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measures of market access from Donaldson and Hornbeck (2016).

B.2 Proof of Proposition 1

Suppose that the indirect utility function falls in the PIGL class, i.e. V (e,P) = 1
η

(
e

B(p)

)η

+C (P)− 1
η

.
The maximization problem is

U i
r = max

[et ,et+1,s]
{V (et ,Pt)+βV (et+1,Pt+1)} ,

subject to

et + st pI,t = yi
rt

et+1 = (1+ rt+1)st pI,t+1.

Substituting for et+1 yields

U i
r = max

et

{
V (et ,Pt)+βV

(
(1+ rt+1)

(
yi

rt− et
) pI,t+1

pI,t
,Pt+1

)}
.

The optimal allocation of spending is determined from the Euler equation

∂V (et ,Pt)

∂e
= β (1+ rt+1)

pI,t+1

pI,t

∂V (et+1,Pt+1)

∂e
.

From above (37) we get that this equation is

eη−1
t B(pt)

−η = β

(
(1+ rt+1)

pI,t+1

pI,t

)η ((
yi

rt− et
))η−1

B(pt+1)
−η .

This yields

yi
rt− et

et
=

((
1

1+ rt+1

B(pt+1)/B(pt)

pI,t+1/pI,t

)η 1
β

) 1
η−1

,

so that

et =
1

1+
(

φ
η

t,t+1
1
β

) 1
η−1

yi
rt

et+1 =
(1+ rt+1) pI,t+1

pI,t

(
φ

η

t,t+1
1
β

) 1
η−1

1+
(

φ
η

t,t+1
1
β

) 1
η−1

yi
rt
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where φt,t+1 ≡ 1
1+rt+1

B(pt+1)/B(pt)
pI,t+1/pI,t

. Hence, (6) implies that

U jr = Vjr (et ,Pt)+βVjr (et+1,Pt+1)

= A jr
1
η

wη

rt

B(pt)
−η

(
1+
(

1
β

φ
η

t,t+1

) 1
η−1
)1−η

+C (Pt)+βC (Pt+1)−
1+β

η
.

This can be written as U jr = A jrw
η

rtΦt,t+1 +Λt,t+1, where

Φt,t+1 =
1
η

B(pt)
−η

(
1+
(

1
β

φ
η

t,t+1

) 1
η−1
)1−η

Λt,t+1 = C (Pt)+βC (Pt+1)−
1+β

η
.

For our specification we have that B(pt) = pφ

A,t p1−φ

NA,t = 1. Hence,

φt,t+1 ≡
B(pt+1)

B(pt)(1+ rt+1)
=

1
1+ rt+1

= φt+1

and

Φt,t+1 =
1
η

1+
(

1
β

(
1

1+ rt+1

)η) 1
η−1

1−η

=
1
η

(
1+β

1
1−η (1+ rt+1)

η

1−η

)1−η

.

Note also that
et =

1

1+
(

φ
η

t,t+1
1
β

) 1
η−1

wt =
1

1+β
1

1−η (1+ rt+1)
η

1−η

wt .

This proves the results for Proposition 1.

B.3 Earning, Expected Earnings and Aggregate Demand

Consider individual i in region r. Given her optimal occupational choice, the earnings of individual i

are given by yi = maxs
{

wrszi
s
}
. We assumed that individual productivities are Frechet Distributed, i.e.

Fh
s (z) = e−Ψh

s z−ζ

, where Ψh
s parametrizes the average level of productivity of individuals of skill h in

region r in sector s and ζ the dispersion of skills. Hence, the distribution of sectoral earning yi
sr ≡ ws,rzi

s

is also Frechet and given by Fyrs (y) = P
(

z≤ y
wrs

)
= e−Ψh

s wζ
rsy−ζ

. Using standard arguments about the
max stability of the Frechet, the distribution of total earnings yi is also Frechet and given by

Fh
yr
(y) = e−(Θh

r)
ζ

y−ζ

= e
−
(

y
Θh

r

)−ζ

(25)
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where Θh
r =

(
∑s Ψh

s wζ
rs

)1/ζ

=
(

Ψh
Awζ

rA +Ψh
NAwζ

rNA

)1/ζ

. Hence, average earnings of individual i with

skill type h in region r are given by E
[
yi

r,h

]
= Γ

(
1− 1

ζ

)
Θh

r . From (25) we can derive the distribution of

y1−η . As η < 1, we have that

Fy1−η (q) = P
(
y1−η ≤ q

)
= P

(
y≤ q1/(1−η)

)
= e

−Θζ

(
q

1
1−η

)−ζ

= e−
(

q
Θ1−η

)− ζ

1−η

.

Hence, y1−η is still Frechet. Therefore

∫
i
y1−η

i di = Lh
r E
[
y1−η

i

]
= Lh

r Γ

(
1− 1−η

ζ

)
×
(

Θ
h
r

)
= Lh

r Γ

(
1+

η−1
ζ

)(
Θ

h
r

)1−η

.

To derive the aggregate value added share ϑ A
t , note that

PY A
t =

R

∑
r=1

(
ϑA

(
ES Y

r
,P
)

ES Y
r

Lrt +ϑA

(
ES O

r
,P
)

ES O
r

Lrt−1

)
+φ It

= φ

[
It +

R

∑
r=1

(
ES Y

r
Lrt +ES O

r
Lrt−1

)]
+ ν̃

(
pA

pM

)γ R

∑
r=1

(
E1−η

S Y
r

Lrt +E1−η

S O
r

Lrt−1

)
.

Now note that total spending of the old equals the capital return plus the non-depreciated stock of capital,
i.e.

R

∑
r=1

ES O
r

Lrt−1 = RtKt +(1−δ )Kt = αPYt +(1−δ )Kt .

And because the future capital stock is given by the savings of the young generation (see (20)), we get
that

It +
R

∑
r=1

(
ES Y

r
Lrt +ES O

r
Lrt−1

)
= Kt+1 +

R

∑
r=1

(
ES Y

r
Lrt

)
+αPYt = PYt .

This yields (15).

B.4 The Spaceless Economy: Equilibrium Existence and Uniqueness

Consider the economy with single location and let Kt be given. The choice of numeraire implies that

1 = Pφ

AtP
1−φ

NAt =

(
1

ZAt

)φ ( 1
ZNAt

)1−φ (PYt

Kt

)α
(

PYt

LΓζ

)1−α

.
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Hence, PYt = ZtKα
t L1−α where Zt = Γα

ζ
Zφ

AtZ
1−φ

NAt . Using that Kt+1 = (1−ψt+1)(1−α)PYt , the expres-
sion for ψt+1, rt = Rt−δ and kt = Kt/L, we get that

kt+1×

((
1
β

) 1
1−η (

1+αZt+1k−(1−α)
t+1 −δ

)− η

1−η

+1

)
= (1−α)Ztkα

t .

Note that the LHS is increasing and continuous in kt+1 and satisfies limkt+1→∞ LHS=∞ and limkt+1→0 LHS=

0. Hence, there is a unique mapping kt+1 = m(kt ,Zt ,Zt+1) . Furthermore, m(.) is increasing in all argu-
ments.

B.5 The Equilibrium with Heterogeneous Skills

The equilibrium characterization for the case of heterogenous skills is very similar to our baseline case.
In that case, the spatial equilibrium, i.e. the set of equilibrium wages and population levels {wrt ,Lrt}r, is
determined from labor market clearing condition (18)

LrtΓζ wrt = (1−α)
(

πrAtϑ
A
t +πrAt

(
1−ϑ

A
t

))
PYt

and the spatial labor supply condition Lrt = ∑
R
j=1 ρ jrtL jt−1, where ρ jrt , ϑ A

t and πrst are given in (13), (15)
and (17) and also only depend on {wrt ,Lrt}r. Given {wrt ,Lrt}r, the future capital stock is then determined
from (20) and the regional agricultural employment shares from (19).

In the case with sector-specific skills and imperfect substitutability, the spatial equilibrium consists of
sector-specific wages {wrAt ,wrNAt}r and skill-specific populations

{
LL

rt ,L
H
rt
}

r. The corresponding equi-
librium conditions are as follows. The regional labor market clearing condition is given by

LrtΓζ

(
λrtΘ

H
rt +(1−λrt)Θ

L
rt
)
= (1−α)

(
πrAtϑ

A
t +πrAt

(
1−ϑ

A
t

))
PYt ,

where Θh
r , given in (22), denotes regional income for skill group h and λrt is the share of skilled indi-

viduals.42 The labor supply equations are now skill-specific and given by Lh
rt = ∑

R
j=1 ρh

jrtL
h
jt−1, where

ρh
jrt is still given in (13) with W h

rt =
Γη/ζ

η
ψ (rt+1)

η−1 (
Θh

r
)η

+Art . Finally, the within-region allocation
of factors across sectors, i.e. the counterpart to (19), is given by

πrAt

πrNAt

ϑ A
t

1−ϑ A
t
=

wrA
(
HL

rA +HH
rA
)

wrNA
(
HL

rNA +HH
rNA

) = ( wrAt

wrNAt

)ζ (1−λr)ΨL
A
(
Θh

r
)1−ζ

+λrΨ
H
A
(
ΘH

r
)1−ζ

(1−λr)ΨL
NA

(
Θh

r
)1−ζ

+λrΨ
H
NA (Θ

H
r )

1−ζ
. (26)

These equations determine
{

wrAt ,wrNAt ,LL
rt ,L

H
rt
}

r. The skill specific employment shares can then be

42To see that, note that labor earnings in region r, for skill group h in sector s are given by wrstHh
rst = LrtΓζ λ h

r sh
rsΘ

h
r .

Summing over sectors s and skill groups h yields the expression above.
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calculated as sh
rst = Ψh

s
(
wrs/Θh

r
)ζ

. The capital accumulation is still given by (20), i.e.

Kt+1 = (1−ψ (rt+1))∑
r

LrtΓζ

(
λrtΘ

H
rt +(1−λrt)Θ

L
rt
)
= (1−ψ (rt+1))(1−α)PYt .

The main difference to the case with substitutable skills is the within-region sectoral supply equation
(26). In the baseline model, srAt is determined residually from (19). With an upward sloping supply
curve, the relative wages have to be consistent with sectoral labor supplies.

B.6 Balanced Growth Path Relationships

Consider a dynamic allocation where GDP grows at a constant rate g and the capital output ratio is
constant. Static optimality requires that Rt =

αPYt
Kt

. Hence, a constant capital output ratio directly implies
that the return to capital Rt has to be constant. Hence, the real interest on saving is also constant and
given by r = R−δ . This also implies that the consumption rate in (11) is constant and given by

ψ =
(

1+β
1

1−η (1+ r)
η

1−η

)−1
. (27)

To solve for the interest rate, note that capital grows at rate g, so that (20) implies that

Kt+1

Kt
=

(1−ψ)(1−α)PYt

αPYt/R
= (1−ψ)

(1−α)

α
(r+δ ) = 1+g.

Hence,

1+g = (1−ψ)
(1−α)

α
(r+δ ) =

(
β

1
1−η (1+ r)

η

1−η

1+β
1

1−η (1+ r)
η

1−η

)
(1−α)

α
(r+δ ) . (28)

This equation determines r as a function of parameters. Along the BGP the consumption and investment
rate is equal to

PCt = ψ (1−α)PYt +αPYt +(1−δ )
α

R
PYt =

[
ψ (1−α)+α +(1−δ )

α

R

]
PYt

PIt = (1−ψ)(1−α)PYt− (1−δ )
α

R
PYt =

[
(1−ψ)(1−α)− (1−δ )

α

R

]
PYt

Using (28) yields PIt
PYt

= (g+δ ) α

R and PCt
PYt

= 1− (g+δ ) α

R . From (28) we also get that ψ = 1− α

1−α

1+g
R .
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B.7 Regularity conditions for PIGL preferences

In our model, expenditure share on the two goods are given by

ϑA (e, p) = φ +ν

(
pA

pM

)γ

e−η

ϑNA (e, p) = 1−φ −ν

(
pA

pM

)γ

e−η .

For these expenditure shares to be positive, we need that

ϑA (e, p)≥ 0⇒ eη ≥−ν

φ

(
pA

pM

)γ

, (29)

and ϑNA (e, p) ≥ 0⇒ eη ≥ ν

1−φ

(
pA
pM

)γ

. Note first that (29) is trivially satisfied as long as ν > 0. Also
note that satisfying both of these restrictions automatically implies that ϑs (e, p) ≤ 1. In addition, as we
show in Section C.3 in the Online Appendix, for the Slutsky matrix to be negative semi definite, we need
that

ν (1−η)

(
pA

pM

)γ

− (1−φ)φ

ν

(
pA

pM

)−γ

e2η ≤ (1−2φ − γ)eη .

Hence, for our preferences to be well-defined, we require that

eη ≥ ν

1−φ

(
pA

pM

)γ

(30)

(1−2φ − γ)eη +
(1−φ)φ

ν

(
pA

pM

)−γ

e2η ≥ ν (1−η)

(
pA

pM

)γ

. (31)

Lemma 5. A sufficient condition for (30) to be satisfied is that (31) holds and that

γ > (1−φ)η . (32)

Proof. Equation (31) can be written as eη

ν

1−φ

(
pA
pM

)γ −1

+φ
eη

ν

1−φ

(
pA
pM

)γ

eη

ν

1−φ

(
pA
pM

)γ ≥ [(1−φ)(1−η)−1]+ (2φ + γ)
eη

ν

1−φ

(
pA
pM

)γ .

Letting x = eη

ν

1−φ

(
pA
pM

)γ , this yields

(x−1)+(φx− (2φ + γ))x≥−(1− (1−φ)(1−η)) .
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Now let h(x) = (x−1)+(φx− (2φ + γ))x. For (31) to be satisfied we need that

h(x)≥−(1− (1−φ)(1−η)) .

Note that h is strictly concave with a minimum at

h′ (x∗) = 1+φx∗− (2φ + γ)+φx∗ = 0.

Hence,
x∗ = 1− 1− γ

2φ
< 1.

Also note that
h(0) =−1 <−(1− (1−φ)(1−η)) .

Hence, for (31) to be satisfied, it has to be the case that x > x∗ = 1− 1−γ

2φ
as h(x∗) < h(0). Hence,

condition (31) implies (30) if

h(1) = φ −2φ − γ <−(1− (1−φ)(1−η)) .

Rearranging terms yields (1−φ)η < γ , which is (32).

Hence, the preferences are well defined as long (31) is satisfied and (32) holds. Because the RHS of (31)
is increasing in e in the relevant range, i.e. as long as (31) is satisfied, this implies that the preferences
are well defined as long as e is high enough.

Now note that eit = ψt+1yit , where yit denotes total earnings of individual i. From (25) we know that

P(eit ≤ κ) = P
(

yit ≤
κ

ψt+1

)
= e−(Θh

r ψt+1)
ζ

κ−ζ

,

where

(
Θ

h
rtψt+1

)ζ

=
(

Ψ
h
Awζ

rAt +Ψ
h
NAwζ

rNAt

)
ψ

ζ

t+1 >
(

Ψ
h
Awζ

rAt +Ψ
h
NAwζ

rNAt

)( 1
η

(
1+β

1
1−η

)1−η
)ζ

.

Hence, as long as aggregate productivity in 1880 (and hence wrs1880) is high enough, we can make
P(eit ≤ κ) arbitrarily small.

B.8 Additional Properties of the Calibrated Model

In this section we provide additional results for the fit of the calibrated model.
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Notes: To construct the left panel, we run a gravity equation of the form where origin and destination fixed effects are skill specific:lnρ jr/
(
1−ρ j j

)
=

αh
j +αh

r + ûh
jr . The red diamonds line plots the resulting ûH

jr by distance percentile, the blue line does the same for low skill types. The right panel we plot
the distribution of the share of people staying in their home state between 1910 and 1940 for low and high skilled workers.

Figure 12: Lifetime interstate Migration by Skill in 1940 in the Data

Migration by skill type In the model low and high skill workers are subject to the same distance costs,
which yields an elasticity of moving flows to distance that is very similar for both groups. As the left
panel of the below figure shows this is in line with the data. In the model high skill types are slightly more
likely to move but not a lot. In the data low skilled workers are substantially less likely to leave their birth
state. The model can match if we allowed τ to differ by skill type, since as outlined in the calibration
section, the total number of stayers is monotone in τ . We chose to abstract from this for simplicity in the
main part of the paper.

Moving costs To quantify the economic magnitude of our estimated fixed costs, we calculate

∆
h
jt ≡

U h,Mov
jt −U h,Stay

jt

τ
, (33)

i.e. the average increase in utility by moving relative to the fixed cost of moving as a norm for the
economic magnitude of fixed costs. Because utility is not equalized, these gains differ by commuting
zone. In Table 9 we report some statistics of the distribution of ∆h

jt . In the top row we report these
statistics for low skilled individuals, in the bottom row for high skilled individuals. Table 9 shows that
for the median commuting zone the expected value of moving is slightly positive and amounts to roughly
5% (10% for high skilled individuals) of the estimated fixed cost of moving.

Regional Fundamentals In this section, we describe additional details for the estimated spatial pro-
ductivities {QrAt ,QrNAt}r,t and amenities {Art}r,t . First we we study the fundamental determinants of
agricultural specialization by projecting the endogenous agricultural employment share on regional fun-
damentals and the two state variables of the system, namely the distribution of skills and population size
in 1880. We do so in Table 10.
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Expected value of moving relative to fixed costs ∆h
jt

10% 25% 50% 75% 90%
Low Skilled -0.2543 -0.0937 0.0571 0.1900 0.2871
High Skilled -0.2464 -0.0654 0.1065 0.2543 0.3619

Notes: The table reports different quantiles of the distribution of ∆h
jt calculated as (33).

Table 9: The Economic Magnitude of Moving Costs

Dep. variable: lnsArt

Non Ag. Productivity (lnQrNA) -0.331∗∗∗ -0.344∗∗∗

(0.020) (0.007)

Ag. Productivity (lnQrA) 0.404∗∗∗ 0.408∗∗∗

(0.022) (0.006)

Amenities (Ar) -0.430∗∗∗ -0.055∗∗∗

(0.075) (0.013)

Skill share in 1880 (λr1880) 0.139 -1.594∗∗∗ -0.466∗∗ -0.117∗∗∗

(0.123) (0.150) (0.196) (0.032)
ln population 1880 X X X X
Year FE X X X X
N 3225 3225 2580 2580
R2 0.891 0.902 0.810 0.989

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels. All specification control for
the population in 1880 and for year fixed effects.

Table 10: Fundamental Determinants of Agricultural Specialization

In particular, we report the results from the specification

lnsrAt = δt +βNAlnQrNAt +βAlnQrAt + γArt +ζ λr1880 +η lnpopr1880 +urt ,

where δt is a year fixed effect. In columns one to three we report the bivariate partial correlations. Ru-
ral, agricultural regions are regions with low productivity in the non-agricultural sector, a comparative
advantage in the production of agricultural goods and low amenities. The last column reports the respec-
tive partial correlations. In particular, the coefficient on regional amenities and the regional skill share
drops by a factor of ten. This reflects the existing cross-sectional correlation with regional productivity,
in particular non-agricultural productivity QrNA.

In Table 11 we focus directly on the dynamics of spatial productivity and amenities. In particular, we
consider a simple autoregressive specification

xrt = δt +δr +βyr,t−1 +urt

where x denotes either log sectoral productivity, lnQrst , or the level of amenities Art and δt and δr are
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lnQrNA,t lnQrA,t Ar,t

lnQrNA,t−1 0.832∗∗∗ 0.416∗∗∗

(0.011) (0.039)
lnQrA,t−1 0.725∗∗∗ 0.045

(0.050) (0.043)
Ar,t−1 0.897∗∗∗ 0.175

(0.063) (0.133)
Year FE X X X X X X
CZ FE X X X
N 2580 2580 2580 2580 1935 1935
R2 0.907 0.958 0.486 0.789 0.749 0.890

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels.

Table 11: The Process of Spatial Fundamentals

region and year fixed effects. The first four columns show that productivities are mean-reverting and that
there is an important fixed, region-specific component determining spatial productivity between 1880 and
2000. It is also interesting to note that these patterns differ slightly across sectors. In particular, condi-
tional on commuting zone fixed effects, past agricultural productivity is uncorrelated contemporaneous
agricultural productivity.The last two columns show the same result for regional amenities. Amenities
follow a stochastic process, which is similar to agricultural productivity.

B.9 Local Productivities and Market Access

We calibrate the cross-sectional distribution of sectoral productivities {QrAt ,QrNAt}rt and amenities {Art}rt

as structural residuals of the model as is commonly done in the new quantitative spatial economics liter-
ature (see (Redding and Rossi-Hansberg, 2017) for a recent and excellent review of this literature). The
local sectoral productivities calibrated this way, {QrAt ,QrNAt}rt , are residuals necessary to fit the data on
wages and sectoral employment conditional on the calibrated parameters of the model. While they reflect
a variety factors that make one region more productive than another, some measurable others not, there
is one factor that determines the productivity of a location in a very direct way: its integration into the
national transportation network. In this section we use direct measures on the extent of regional “market
access” by Donaldson and Hornbeck (2016) for each county in the US for 1880 and 1910 to corroborate
our model-based measures of regional productivity.

Donaldson and Hornbeck (2016) provide data on county-to-county transport cost for 1880 and 1910. We
use this data to construct a commuting zone level index for market access costs for these time periods. In
particular we average the market access cost across all county-to-county pairs within two given commut-
ing zones to obtain a measure for the ease of transporting goods between these two zones. Then we take
the destination population share weighted sum of market access cost for each origin commuting zone to
obtain our market access index at the commuting zone level.

We now relate this index of market access costs to our measured regional productivity residuals Qrst .
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Letting MACrt be this index of market access costs of county r at time t, we consider a specifications of

lnQrst = δr +β ×MACrt +urst , (34)

where δr denotes a fixed effect at different levels of regional aggregation. We expect β < 0, as higher
transport costs should reduce a county’s earnings potential, i.e. productivity. We estimate 34 separately
for the agricultural and the non-agricultural sector. The results are contained in Table 12.

In the first two columns we show that our model infers low productivity in places that have a high
market access cost. Columns 3 and 4 show that this relationship is if anything stronger within states. In
columns 5 and 6 we exploit the time-variation within commuting zones and show that regions who see
their access costs decrease indeed experience faster productivity growth. Finally, in the last two column,
we estimate 34 in first differences and explicitly include a whole set of state fixed effects, i.e. allowing
for systematic differences in productivity growth across states. Again, we find a significant relationship
between (changes in ) market access costs and (changes in) regional productivity. We take this as evidence
that transportation costs are one of the directly measurable ingredients in regional productivity shifters
that our framework infers as {QrAt ,QrNAt}rt .

lnQNA lnQA lnQNA lnQA lnQNA lnQA ∆ lnQNA ∆ lnQNA
Market Access Costs -1.897∗∗∗ -2.077∗∗∗ -5.205∗∗∗ -4.291∗∗∗ -3.937∗∗∗ -3.760∗∗∗

(0.224) (0.125) (0.290) (0.195) (0.353) (0.309)
Change in Market Access Costs -4.005∗∗∗ -2.395∗∗∗

(0.388) (0.328)
Year FE X X X X
CZ FE X X
State FE X X X X
N 1242 1242 1242 1242 1242 1242 621 621
adj. R2 0.133 0.286 0.538 0.455 0.789 0.576 0.337 0.399

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels. We measure Market Access
Costs using the data from Donaldson and Hornbeck (2016). We use data on the cost of reaching any other county from a given county, take the destination
population weighted sum and aggregate them to the commuting zone level. Our measure of market access costs is the log of this index. The change in market
access costs is the log difference between 1880 and 1910.

Table 12: Spatial Productivity and Market Access Cost from Donaldson and Hornbeck (2016)

B.10 Spatial Welfare Inequality

In Figure 7 in the main text we depict the evolution of spatial inequality. We construct this figure in the
following way. From Proposition 2 we have that expected utility in region r is given by

W h
rt

(
Θ

h
r

)
=

Γη/ζ

η
ψ (rt+1)

η−1
(

Θ
h
r

)η

+Λt,t+1 +Art . (35)
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Let T h
rt (∆) be the increase in average income Θh

r required to increase utility by ∆, i.e. W h
rt
(
Θh

r T h
rt (∆)

)
=

W h
rt
(
Θh

r
)
+∆. (35) implies that

T h
rt (∆) =

1+
∆

Γη/ζ

η
ψ (rt+1)

η−1 (
Θh

r
)η

1/η

.

Let ∆
h,IQR
t be the interquartile range in regional welfare W h

rt at time t, i.e. ∆
h,IQR
t = W h,75

t −W h,25
t ,

where W h,x
t is the x-quantile of the distribution of W h

rt . Figure 7 shows the time series evolution of
T h

t

(
∆

h,IQR
t

)
= 1

R ∑r T h
rt (∆) for both high and low skilled individuals.
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