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1. (25 pts) Suppose a locally nonsatiated utility function u : Rn+ ! R gives rise to a demand
function x(p; y) = (x1(p; y); : : : ; xn(p; y)) de�ned on Rn+1++ (p is the price vector, y is income).
Assume it and any other functions you use to answer this question are twice continuously
di¤erentiable.

(a) (8 pts) State four properties this demand function must satisfy.
Soln:

i. It must be homogeneous of degree zero:

x(tp; ty) = x(p; y) 8t > 0; (p; y) 2 Rn+1++ :

ii. It must satisfy the budget constraint with equality:

p � x(p; y) = y 8(p; y) 2 Rn+1++ :

iii. The Slutsky matrix S = [sij(p; y)] must be negative semide�nite and symmetric at
any (p; y); where

sij(p; y) :=
@xi(p; y)

@pj
+ xj(p; y)

@xi(p; y)

@y
:

(This can count as two properties, NSD and symmetry.)
iv. The kernel (null space) of the Slutsky matrix must contain the price vector, i.e., the

Slutsky matrix maps the price vector into the origin: S(p;y)p = 0:

(b) (17 pts) For each property you listed in (a), sketch a proof of why it must be satis�ed.
Soln:

i. Multiplying all prices and income by the same positive constant does not change the
constraint set in the consumer problem, and even more obviously does not change
its objective function, u. Thus, x is a solution for the budget (p; y) i¤ it is a solution
for the budget (tp; ty) for any t > 0:

ii. Fix (p; y) 2 Rn+1++ ; and let x = x(p; y): Since x solves the consumer problem, it
satis�es its constraint, i.e., p � x � y: Suppose this inequality holds strictly. Then
a neighborhood N of x exists such that p � x0 < y for all x0 2 N: Because u is
locally nonsatiated, x0 2 N \ Rn+ exists such that u(x0) > u(x): Thus, x0 is feasible
and a¤ordable at (p; y); and so the fact that it is strictly preferred to x implies the
contradiction that x does not solve the consumer problem at (p; y).

iii. Recall the expenditure function,

e(p; �u) := min
x�0

p � x such that u(x) � �u:

The solution to this minimization problem is the Hicksian demand function, h(p; �u):
Since e(�; �u) is the lower envelope of a bunch of a¢ ne functions of p, it is a concave
function of p: Hence, since we�ve been told all functions in this problem are C2; the
matrix of cross-partials, �

@2e(p; �u)

@pi@pj

�
;
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exists and is negative semide�nite by the concavity of e in p; and symmetric by
Young�s theorem. By the envelope theorem, @e(p; �u)=@pi = hi(p; �u): Hence,�

@hi(p; �u)

@pj

�
=

�
@2e(p; �u)

@pi@pj

�
;

which tells us that
�
@hi(p; �u)

@pj

�
is negative semide�nite and symmetric at any (p; �u).

Since the Slutsky equation is in fact the equation

sij(p; y) =
@hi(p; u

�)

@pj
;

where u� = u(x(p; y)); we conclude that [sij(p; y)] is indeed negative semide�nite
and symmetric.

iv. Since hi(p; �u) is homogeneous of degree zero in p; it satis�es Euler�s formula. Hence,
for each i we have X

j

sijpj =
X
j

@hi
@pj

pj = 0:

2. (25 pts) Mr. 1 has a complete and transitive preference ordering �1 over monetary lotteries
that is monotone in the following sense: �x �1 �y for all x > y; where �x and �y are the
degenerate lotteries that put probability one on the amounts x and y; respectively. Assume
Mr. 1 is strictly risk averse, and let ~x be a given non-degenerate monetary lottery.

(a) (5 pts) Let c1 be Mr. 1�s certainty equivalent for ~x: What is the relationship between c1
and E~x? Prove your answer.
Soln: E~x > c1:
Proof. By de�nition of strict risk aversion, we have

�E~x �1 ~x: (1)

By de�nition of certainty equivalent, we have

~x �1 �c1 : (2)

The transitivity of �1; together with (1) and (2), implies �E~x �1 �c1 : Hence, by the
monotonicity of �1 we have E~x > c1:

Now assume Mr. 1 satis�es the Expected Utility Hypothesis, and his Bernoulli utility function
is u1:Ms. 2 similarly has a Bernoulli utility function u2: Both functions are twice di¤erentiable,
with u01(x) > 0 and u

0
2(x) > 0 for all x 2 R: Let Ai(x) denote the coe¢ cient of absolute risk

aversion of ui; and assume A1(x) > A2(x) for all x 2 R:

(b) (10 pts) Show that there exists a strictly concave increasing function h : u2(R)! R such
that u1 = h � u2:

3



Soln: An amount x gives utility u2(x) to 2 and utility u1(x) to 1: The function h that
we seek maps the former into the latter:

h(u2(x)) = u1(x): (3)

Now change variables from x to v = u2(x): As u2 is strictly increasing it has a well-de�ned
inverse, u�12 : Hence, this change of variables transforms (3) to

h(v) := u1(u
�1
2 (v));

which is the de�nition of h on the domain u2(R):
To show that h is strictly increasing and strictly concave, �rst di¤erentiate (3) with
respect tox to obtain

h0u02 = u
0
1: (4)

Since u01 > 0 and u
0
2 > 0; this implies h

0 > 0; and so h is strictly increasing. Di¤erenti-
ating again yields

h00(u02)
2 + h0u002 = u

00
1;

which in light of (4) is

h00(u02)
2 +

u01
u02
u002 = u

00
1:

Substitute �Aiu0i for each u00i and rearrange to obtain

h00 =
u01
(u02)

2 (A2 �A1) < 0;

which proves h is strictly concave.

(c) (10 pts) Show that c1 < c2; where c1 and c2 are their certainty equivalents for ~x.
Soln: We have u1(c1) = Eu1(~x): This and u1 = h � u2 (from (b)) yield

h(u2(c1)) = Eh(u2(~x)):

The strict concavity of h; the non-degeneracy of ~x; the strict monotonicity of u2; and
Jensen�s inequality imply

Eh(u2(~x)) < h(Eu2(~x)):

By the de�nition of c2;
h(Eu2(~x)) = h(u2(c2))

These three displays yield h(u2(c1)) < h(u2(c2)): Hence, as h � u2 is a strictly increasing
function, we have c1 < c2:

3. (25 pts) Three farmers, i = 1; 2; 3, grow corn along a river that is subject to �ooding and is
protected by a dyke that protects the adjacent land from �ooding when the river gets too
high. In the absence of �ooding, each farmer�s crop will be 100 units of corn. There has
been very heavy rain and it is known that the dyke will be breached tomorrow (date t = 1),
�ooding exactly one of the farms and ruining its crop. There are thus three states of the
world tomorrow, s = 1; 2; 3 : in state s the farm of farmer i = s is �ooded. For each farmer
i = 1; 2; 3, let !i denote his initial endowment vector of state-contingent crop, so that

!1 = (0; 100; 100); !2 = (100; 0; 100); !3 = (100:100; 0):
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Today (date t = 0) the farmers arrange for how the the corn that is harvested tomorrow (date
t = 1) will be shared in each state. The utility function of farmer i is

U i(xi) = �3s=1�
i
su
i(xis);

where xis is his consumption of corn in state s; and �
i
s is his belief probability that state s

will occur. Assume ui is continuously di¤erentiable, strictly concave, and strictly increasing.

(a) (8 pts) Suppose the farmers agree that the state probabilities are (�1; �2; �3)� 0. Show
that in any interior Pareto e¢ cient allocation, farmer 1 will consume the same amount
of corn regardless of whose farm is �ooded.
Soln: Let x be any interior allocation. Suppose x1s > x

1
s0 for some s 6= s0. Then, since

the total amount of corn in each state is the same, for some i 6= 1 we have xis < xis0 . The
strict concavity of u1 and ui now implies that

�su
10(x1s)

�s0u10(x1s0)
<
�s
�s0

<
�su

i0(xis)

�s0ui0(xis0)
:

Thus, the marginal rates of substitution of farmers 1 and i between corn in states s and
s0 are not equal. Since they must be equal if x were to be Pareto e¢ cient, this proves x
is not Pareto e¢ cient.

For the remaining parts, assume instead that each farmer is sure that his farm will not be
�ooded, and believes that it is equally likely that the other two farms will be �ooded: �ii = 0
for each i and �is = 1=2 for s 6= i.

(b) (8 pts) Prove that if (x1�; x2�; x3�) is a Pareto e¢ cient allocation, then xi�i = 0 for all i:
Soln: Farmer i is positive that state i will not arise. Hence, reducing his corn consump-
tion in state i does not decrease his utility, but giving it to one of the other two farmers
in state i increases that farmer�s utility since he puts positive probability on state i.
Hence any allocation that gives farmer i corn contingent on state i is Pareto dominated.

(c) (9 pts) Find a competitive equilibrium price vector (p1; p2; p3), where ps is the price at
date 0 for contingent corn to be consumed at date 1 in state s:
Soln: (p1; p2; p3) = (p; p; p) for any p > 0:
Proof. The logic of part (a) and the answer to part (b) indicate that the initial endow-
ment is Pareto e¢ cient. In addition, it is easily shown that there is no other feasible
allocation that does not make at least one farmer worse o¤than the endowment allocation
does. Hence, the endowment is the only possible equilibrium allocation. Assuming it is,
the equilibrium price ratios must be determined by the corresponding MRS�s. For exam-
ple, as farmer 1 consumes his endowment in states 2 and 3; we have x12 = x

1
3 = 100 > 0;

and so
p2
p3
=

1
2u
10(100)

1
2u
10(100)

= 1:

The analogous calculation for farmer 2 and states 1 and 3 shows that p1 = p3: Hence,
(p1; p2; p3) = (p; p; p) for any p > 0. To verify that any such price vector is an equilibrium
price vector, simply note (show) that !i solves farmer i�s consumer problem given these
prices. For example, farmer 1�s problem reduces (since obviously he sets x11 = 0) to

max
x12;x

1
3

1
2u
1(x12) +

1
2u
1(x13) s.t. px

1
2 + px

1
3 � 200p:

5



The solution to this, given that u1 is strictly concave and increasing, is x12 = x
1
3 = 100;

his endowment quantities.

4. (25 points) Walrasian equilibrium with production.

(a) (8 pts) State precisely the de�nition of a Walrasian equilibrium for an economy with
production.

(b) (8 pts) Given standard assumptions on preferences and interior endowments, what con-
ditions on the production technology are su¢ cient for a Walrasian equilibrium with
production to exist? (Little if any credit will be given for trivial conditions such as �the
production set is empty�.)
Soln: The production set Y must be closed, convex, and satisfy Y \ �Y = 0.

(c) (9 pts) Give an example in which one of the conditions on the technology you gave in
(b) is not satis�ed, and a Walrasian equilibrium nonetheless exists. A graphic example
carefully done is su¢ cient.
Soln: The easiest examples would have nonconvex production sets. A simple example
would be to take a two good economy with a Walrasian equilibrium and make the
production set nonconvex in an irrelevant region.
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