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SUMMARY 20

Composite likelihood has been widely used in applications. Asymptotic distribution of the
composite likelihood ratio statistic at the boundary of the parameter space is a complicated mix-
ture of weighted χ2 distributions. In this paper, we propose a conditional test with data-dependent
degrees of freedom. We consider a modification of composite likelihood, which achieves the
second-order Bartlett identity. We show that the modified composite likelihood ratio statistic 25

given the number of estimated parameters lying on the boundary converges to a simple χ2 dis-
tribution. This conditional testing procedure is validated through simulation studies.

Some key words: Boundary problem; composite likelihood; likelihood ratio test; non-standard condition.

1. INTRODUCTION

Composite likelihood (Besag, 1974; Lindsay, 1988) is an inference function constructed by 30

the product of a set of conditional and/or marginal density functions. Composite likelihoods
have been widely used in longitudinal studies, analysis of panel data, spatial modelling, missing
data, and other areas. When a working independence assumption is adopted, the composite like-
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lihood is sometimes called independence likelihood (Chandler & Bate, 2007). Varin et al. (2011)
reviewed composite likelihood methods.35

Although Wald-based inference has been established, likelihood based inference is sometimes
preferred for better finite sample performance. The composite likelihood ratio statistic is gen-
erally distributed as a linear combination of independent χ2

1 distributions (Molenberghs & Ver-
beke, 2005). This is mainly due to the failure of the second-order Bartlett identity. Recall that
the second-order Bartlett identity refers to the equality between the expected value of negative40

Hessian of log likelihood and the covariance of score function. To deal with such complication,
several adjustments have been proposed (Chandler & Bate, 2007; Pace et al., 2011), and the
adjusted composite likelihood ratio statistic converges weakly to a simple χ2 distribution. For
example, Chandler & Bate (2007) proposed a vertical scaling approach to stretch the compos-
ite likelihood to restore the second-order Bartlett identity. Pace et al. (2011) proposed another45

modification based on the composite score function.
A regularity condition underlying these adjustments of composite likelihood is that the param-

eter θ0 under the null hypothesis H0 : θ = θ0 is interior to its parameter space, so the composite
score function is zero at the maximum composite likelihood estimate. However, when the param-
eter θ0 lies on the boundary of the parameter space, which is common for variance component50

models, this first-order condition is not satisfied. Consequently, the existing adjustments for com-
posite likelihoods may not yield an asymptotic χ2 distribution. Another challenge for boundary
problems is that the asymptotic distribution is often a mixture of χ2 distributions (Self & Liang,
1987; Chen & Liang, 2010; Chen et al., 2017), where calculation of the mixing proportions re-
lies on a partition of the parameter space. Such a partition often depends on the geometry of the55

tangent cone at the null hypothesis as well as the decomposition of Fisher information, and has
to be worked out case by case. This limits the use of these asymptotic results.

The primary purpose of this paper is to propose a modified composite likelihood ratio statistic
with a simple limiting distribution for hypothesis testing when the parameter of interest lies on
the boundary of its space. Specifically, to recover the second-order Bartlett identity, we propose60

a novel modification of composite likelihood, adapting a new approximation through a quadratic
function of a linear combination of the composite score function and maximum composite like-
lihood estimator. To avoid the calculation of mixing proportions, we adopt a conditional test-
ing procedure recently proposed by Susko (2013), originated from Bartholomew (1961). Susko
showed that the standard likelihood ratio statitics given the number of parameters lying on the65

boundary converges weakly to a simple χ2 distribution with data-dependent degrees of free-
dom. A crucial assumption made in the argument of Bartholomew (1961) and Susko (2013) is
the second-order Bartlett identity, which does not hold for composite likelihoods. The purposes
of this work are twofold. First, we extend Chandler & Bate (2007)’s adjustment to boundary
problems. Second, we generalize Susko’s result to more generally defined likelihoods where70

the second-order Bartlett identity does not hold. We provide a general theorem on the asymp-
totic distribution of the modified composite likelihood ratio statistic, and show empirically that
the modified composite likelihood ratio statistic performs better than the naive test that ignores
boundary problems.

2. MODIFIED COMPOSITE LIKELIHOOD UNDER BOUNDARY CONSTRAINTS75

Let g(x; θ) be the probability density function of a multidimensional random vector X , in-
dexed by a p-dimensional parameter θ = (θ1, . . . , θp)

T, where θ belongs to the parameter space
Ω. We assume that distinct values of θ correspond to distinct probability distributions. Let
{A1, . . . ,AK} denote a set of marginal or conditional events associated with log likelihoods
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`k{θ; Ak(x)} = log
∫
x∈Ak

g(x; θ)dx, where k = 1, . . . ,K and K is the total number of events.
Suppose N independent random variables X1, . . . , XN are observed from the model g(x; θ).
Following Lindsay (1988), a composite log likelihood can be constructed as

`c(θ) =
N∑
i=1

K∑
k=1

ωik`k{θ; Ak(xi)},

where ωik is a nonnegative deterministic weight associated with the log likelihood
`k{θ; Ak(xi)}. Let θ̂c = arg maxθ∈Ω `c(θ) be the maximum composite likelihood estimator, and

Uc(θ) =
∂`c(θ)

∂θ
, H = lim

N→∞
− 1

N
E

{
∂2`c(θ)

∂θT∂θ

}
, V = lim

N→∞

1

N
E

{
∂`c(θ)

∂θ

}{
∂`c(θ)

∂θ

}T

be the composite score function, sensitivity matrix and variability matrix, respectively. The cor-
responding estimators of H and V are denoted by Ĥ and V̂ evaluated at θ̂c. The second-order
Bartlett identity generally does not hold for `c(θ), since H 6= V . To circumvent this problem,
Chandler & Bate (2007) proposed an adjusted composite likelihood through a vertical scaling as

`A(θ) = `c(θ̂c)+
{

(θ − θ̂c)TĤA(θ − θ̂c)
} `c(θ)− `c(θ̂c)

(θ − θ̂c)TĤ(θ − θ̂c)
, (1)

where ĤA is the inverse of robust variance estimator ĤV̂ −1Ĥ , and (θ − θ̂)TĤA(θ − θ̂)/(θ − 80

θ̂)TĤ(θ − θ̂) is the scaling factor. Pace et al. (2011) proposed another adjustment based on the
composite score function.

However, when the parameter θ0 of the null hypothesis lies on the boundary of its parameter
space, the above adjustments are not sufficient to enforce the second-order Bartlett identity at θ0,
because both are based on approximation of `c(θ̂c) around θ0 by a quadratic form of (θ̂c − θ0) 85

(Chandler & Bate, 2007) or a quadratic form of Uc(θ0) (Pace et al., 2011), which relies on the
asymptotic equivalence of N1/2(θ̂c − θ0) and N−1/2Ĥ−1Uc(θ0). Such an equivalence is true
only under the first-order condition, i.e., Uc(θ̂c) = 0. Under boundary constraints, θ̂c may not
solve this composite score equation, so the asymptotic equivalence does not hold. We therefore
adapt the quadratic approximation in Lemma 1 of Self & Liang (1987) to composite likelihood, 90

and obtain the following approximation around θ̂c,

2
{
`c(θ)− `c(θ̂c)

}
= −T (θ)TĤT (θ)+N−1Uc(θ̂c)

TĤ−1Uc(θ̂c) + Op

(
N
∥∥∥θ − θ̂c∥∥∥3

)
,(2)

where T (θ) = N−1/2Ĥ−1Uc(θ̂c)−N1/2(θ − θ̂c). Under boundary constraints, the composite
likelihood `c(θ) is approximated by a quadratic form of a linear combination of Uc(θ̂c) and
(θ − θ̂c).

In a similar spirit as in Chandler & Bate (2007) and Pace et al. (2011), we propose the follow- 95

ing modified composite likelihood under boundary constraints

`M (θ) = `c(θ̂c)−
{
T (θ)TĤAT (θ)

}
φ(θ) (3)

where T (θ) = N−1/2Ĥ−1Uc(θ̂c)−N1/2(θ − θ̂c) and

φ(θ) =
`c(θ)− `c(θ̂c)

−T (θ)TĤT (θ) +N−1Uc(θ̂c)TĤ−1Uc(θ̂c)
.
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In equation (3), the modified composite likelihood `M (θ) is approximated by a quadratic form
with a finite sample adjustment φ(θ). The quadratic term vertically scales the likelihood to en-
force the second-order Bartlett identity. The proposed modification uses a second-order expan-
sion based on both Uc(θ̂c) and (θ − θ̂c) to deal with boundary constraints. When there is no100

boundary constraint, the proposed modified composite likelihood reduces to Chandler & Bate’s
adjustment in equation (1) by noting Uc(θ̂c) = 0.

3. THEORETICAL RESULTS

We decompose the p-dimensional parameter θ as θT = (ζT, ηT), where the null hypothesis
H0 : ζ = 0 and η = η0 constrains the s-dimensional parameter ζ to the boundary of the param-
eter space and sets the remaining (p− s)-dimensional parameter η to a value in the interior of
the parameter space. The composite likelihood ratio statistic based on the proposed modification
is

W = −2
{
`M (0, η0)− `M (θ̂M )

}
.

Using the quadratic expansion for boundary parameters in equation (2) and the projections of
normal random vectors onto cones in Shapiro (1985), we can obtain our main results as follows.105

THEOREM 1. Under the conditions in Section 3.1 and the regularity conditions R1-R5 in Sup-
plementary Material, we have the following results.

1. The second-order Bartlett identity holds asymptotically for `M (θ) at θ0, i.e.
N−1var {∂`M (θ0)/∂θ} = −N−1E

{
∂2`M (θ0)/∂θT∂θ

}
+ Op

(
N−1/2

)
;

2. With probability tending to 1, as N →∞, there exists a sequence of points in the parameter110

space Ω, θ̂M , at which local maxima of `M (θ) occur, and that converges to θ0 in probability.
Moreover, N1/2(θ̂M − θ0) = Op

(
1
)
;

3. Let V denote the number of null hypothesis parameters that are estimated to be in the interior
of the parameter space and let v denote its observed value. We have

pr(W ≤ w | V = v)→ pr(χ2
v ≤ w), N →∞,

where χ2
v is a chi-squared variable with v degrees of freedom.

This theorem shows that, given V = v, the modified composite likelihood ratio statistic con-
verges weakly to χ2

v, which extends the results in Susko (2013). Without the modification of115

composite likelihood, one could conduct a standard composite likelihood ratio test. The cal-
culation of the asymptotic distribution of test statistic under boundary constraints follows an
argument similar to Chen & Liang (2010) where pseudolikelihood (Gong & Samaniego, 1981)
is considered and the second-order Bartlett identity also does not hold. However, the calculation
involves projection onto the tangent cone at the null hypothesis, as well as the decomposition120

of Fisher information, and must be worked out case by case. Another alternative is to calculate
the composite likelihood ratio statistic and compare it to the χ2

p distribution. This is a naive im-
plementation of the composite likelihood ratio test, since the boundary constraints are ignored
and the second-order Bartlett identity is pretended to be valid. Unlike in standard likelihood in-
ference, the naive test using composite likelihood is not necessarily conservative, because the125

distribution of the composite likelihood ratio statistic converges to a mixture of distributions,
some of which may have heavier tails than χ2 (Chen & Liang, 2010). The proposed modified
composite likelihood ratio test is a good compromise, whose calculation is straightforward and
easy to implement.



A conditional composite likelihood ratio test with boundary constraints 5

4. SIMULATION 130

To validate the theoretical results empirically, we conducted simulations. Our illustrative ex-
ample is a hypothesis testing problem in stratified case-control studies (Liang, 1987).

In a stratified case-control study, let xi1, . . . , xiki denote the p× 1 vectors of potential risk fac-
tors for ki cases, and let xiki+1, . . . , xiKi denote the potential risk factors of Ki − ki controls in
the ith stratum (i = 1, . . . , N ). A logistic regression model allowing for stratum-specific effects 135

is

logit pr(yij = 1 | xij) = αi + βTxij , i = 1, . . . , N, (4)

where the coefficients β quantify the effects of risk factors xij on the disease status yij .
To draw valid inference on β, Liang (1987) proposed a composite likelihood method where

the nuisance parameters αi are eliminated by conditioning. For the (j, l) case-control pair of
subjects of the ith stratum (j = 1, . . . , ki; l = ki + 1, . . . ,Ki), the conditional probability that
xij is from the case given that xij and xil are observed is

pr(yij = 1, yil = 0 | yij + yil = 1, xij , xil;αi, β) =
eβ

Txij

eβ
Txij + eβTxil

.

Thus, a composite log likelihood combining all possible pairs from N strata with weight wijl is

`c(β) =
N∑
i=1

ki∑
j=1

Ki∑
l=ki+1

wijl log

(
eβ

Txij

eβ
Txij + eβTxil

)
.

Without loss of generality, we set wijl = K−1
i , so the maximum composite likelihood estimator

reduces to the Mantel–Haenszel estimator when a binary covariate is considered (Liang, 1987).
Suppose the covariates are three-dimensional and are known to be positively associated with the
occurrence of disease, i.e., the null hypothesis is H0 : β = (0, 0, 0), and the alternative is Ha :
any of β1, β2, β3 > 0. For this problem, the standard composite likelihood ratio statistic does not
converge to χ2

3 due to the boundary constraint. Setting CΩ0 = {0} × {0} × {0}, CΩ = [0,∞)×
[0,∞)× [0,∞), the asymptotic distribution of the composite likelihood ratio statistic can be
derived following Chen & Liang (2010), in which the test statistic is asymptotically equivalent
to the difference between two quadratic forms, with

ZTH0Z − inf
β∈CΩ

(Z − β)T H0 (Z − β) , Z ∼ N(0, H−1
0 V0H

−1
0 ).

As β is three-dimensional, the calculations of each individual distribution and the mixing
proportions in the limiting mixture are rather complicated. In this situation, a naive comparison
of the composite likelihood ratio statistic to a χ2

3 distribution is a simple procedure, so we focus 140

on the comparison between the modified composite likelihood ratio test and the naive tests.
We simulate data from several different scenarios and compare the type I error and power

of the modified composite likelihood ratio test to the naive composite likelihood ratio test. The
naive test uses the (1− α)th quantile of χ2

3 as the critical value, where α is the nominal level,
and the modified composite likelihood ratio test uses the (1− α)th quantile of χ2

v, where v is 145

the number of β coefficients that were estimated as positive. For all the scenarios, the number
of cases and number of controls for each stratum are fixed to be 5, whereas the number of strata
varies from 25 to 400. For each stratum, we generate a stratum-specific intercept αi from a
uniform distribution on [−1, 1], and generate covariates x1, x2 and x3 from a standard normal
distribution. We then calculate the individual probability of having disease using equation (4) 150

and generate the binary disease status from the corresponding Bernoulli distribution. Finally, we
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randomly sample 5 cases and 5 controls from each stratum. Box-constrained optimization of the
likelihoods is implemented through the R function optim with the L-BFGS-B method. We use
10−6 as the threshold to determine if the estimated parameter is on the boundary. Sensitivity
analyses show similar results when the threshold is varied from 10−3 to 10−8.155

Table 1. Type I errors of the modified composite likelihood ratio test (mCLRT) and the naive
composite likelihood ratio test (Naive) for H0 : β1 = β2 = β3 = 0 at 0·05 and 0·1 nominal lev-
els, where logit pr(yij = 1 | xij) = αi, and αi ∼ U [−1, 1]. All entries are multiplied by 100.

Number of Strata
Level(%) Empirical/Theoretical 25 50 100 200 400

mCLRT 5 Empirical 5·0 5·3 5·1 6·1 4·9
Theoretical 4·3 4·4 4·4 4·4 4·4

10 Empirical 8·3 10·1 10·1 10·7 9·5
Theoretical 8·7 8·8 8·8 8·8 8·8

Naive 5 Empirical 0·2 0·0 0·1 0·0 0·0
Theoretical 5·0 5·0 5·0 5·0 5·0

10 Empirical 0·2 0·3 0·2 0·4 0·1
Theoretical 10·0 10·0 10·0 10·0 10·0

Empirical, the empirical type I error; Theoretical, the theoretical false positive probability.

Table 1 summarizes the type I errors based on 5,000 simulations. The naive composite likeli-
hood ratio test has empirical type I errors much smaller than the nominal levels, but the modified
composite likelihood ratio test performs reasonably well. Since the modified likelihood ratio test
cannot reject the null hypothesis when all the parameter estimates are on the boundary, the the-
oretical false positive probabilities for the proposed test corresponding to nominal level of α can160

only be attained at α× {1− pr(all β̂ = 0)}, which are listed in the second row in the upper panel
of Table 1.

To compare the power, we let one, two, or three β coefficients vary from 0·0 to 0·5 with 50
strata. For the non-zero β coefficients, we assume equal effect sizes. The first row of Figure 1
shows the power curves at 5% nominal level based on 5, 000 simulations. The second row shows165

the frequencies of V = 0, 1, 2, or 3 as the non-zero effect size increases from 0·0 to 0·5. The
proposed test always has larger power than the naive test. The gain in power can be further
explained by the probability of times that β is estimated as positive. Specifically, when all three
β coefficient estimates are far from the boundary in the data generating model, most of the time
we obtain three positive β estimates. Thus, both the naive test and the proposed test refer to χ2

3170

and perform more similarly, as illustrated in the panels (c) and (f) of Figure 1. On the other hand,
when there are only one or two nonzero βs or three nonzero but small βs, the proposed test
frequently uses one or two degrees of freedom, even as the additional β values get larger; see
panels (a) and (d), (b) and (e), and (c) and (f) of Figure 1. There is a substantial gain in power in
these situations.175

We also investigate the potential power loss due to the conditioning procedure and the modifi-
cation. The critical value of the composite likelihood ratio test is obtained by calculating the 95%
quantile of 5,000 test statistics based on data generated under the null hypothesis. As suggested
in panels (a)-(c) of Figure 1, there is a moderate loss of power. However, theoretical calculation
of the critical value of the composite likelihood ratio test can be tedious and must be done case180

by case. Thus, the modified composite likelihood ratio test serves as an useful alternative at the
price of moderate power loss.



A conditional composite likelihood ratio test with boundary constraints 7

●
●

●

●

●

●

●

●

●
● ●

0
0.

2
0.

4
0.

6
0.

8
1

0 0.1 0.2 0.3 0.4 0.5

(a)

1 nonzero β

P
ow

er

●

●

●

●

●

●

●
● ● ● ●

0 0.1 0.2 0.3 0.4 0.5

(b)

2 nonzero βs

●

●

●

●

●

●
● ● ● ● ●

0 0.1 0.2 0.3 0.4 0.5

(c)

3 nonzero βs

●

●

●
● ● ● ● ● ● ● ●0

0.
2

0.
4

0.
6

0.
8

1

0 0.1 0.2 0.3 0.4 0.5

(d)

1 nonzero β

P
ro

po
rt

io
n 

of
 ti

m
es

 V
=

v

●

●

● ● ● ● ● ● ● ● ●

0 0.1 0.2 0.3 0.4 0.5

(e)

2 nonzero βs

●

●
● ● ● ● ● ● ● ● ●

0 0.1 0.2 0.3 0.4 0.5

(f)

3 nonzero βs

Fig. 1. Power comparisons for the matched case-control
study example when one, two or three testing parameters
are positive in the data generating model. (a)-(c): Power
of the modified composite likelihood ratio test (•), the
naive test (4), and the composite likelihood ratio test
(♦) as the non-zero effect size increases from 0 to 0·5
and number of strata equals 50. (d)-(f): The proportion
of times β coefficients were estimated as positive when
V = 0(•), 1(4), 2(�) or 3(�) as the non-zero effect size

increases from 0 to 0·5 and number of strata equals 50.

5. DISCUSSION

The proposed modification also applies to the composite likelihood when nuisance parameters
are present. Assume that γT = (θT, λT), where λ is a finite dimensional nuisance parameter
and θT = (ζT, ηT). Similarly, we test the null hypothesis H0 : ζ = 0 and η = η0, where 0 is on
the boundary of the parameter space for ζ and η0 is in the interior of the parameter space. Let
`pc(θ) = `c(θ, λ̂θ) be the profile composite likelihood for θ, where λ̂θ = arg maxλ `c(θ, λ). Let

Upc(θ) =
∂`pc(θ)

∂θ
, Hp = lim

N→∞
− 1

N
E

{
∂2`pc(θ)

∂θT∂θ

}
, Vp = lim

N→∞

1

N
E

{
∂`pc(θ)

∂θ

}{
∂`pc(θ)

∂θ

}T
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denote the profile composite score function, sensitivity matrix and variability matrix for θ
respectively, and let Ĥp and V̂p denote the corresponding estimates, and ĤpA = ĤpV̂

−1
p Ĥp.

The modified profile composite likelihood is `MP (θ) = `pc(θ̂c)−
{
Tp(θ)

TĤpATp(θ)
}
· φp(θ)

where Tp(θ) = N−1/2Ĥ−1
p Upc(θ̂c)−N1/2(θ − θ̂c), and

φp(θ) =
`pc(θ)− `pc(θ̂c)

−Tp(θ)TĤpTp(θ)+N−1Upc(θ̂c)TĤ−1
p Upc(θ̂c)

.

We define the modified profile composite likelihood ratio statistic as Wp = 2{`MP (θ̂M )−
`MP (0, η0)}, where θ̂M = arg maxθ `MP (θ). Here Ĥp and V̂p can be calculated empirically;185

see the Supplementary Material.
When the parameter is on the boundary of the parameter space, Andrews (2000) established

the inconsistency of the standard nonparametric and parametric bootstrap methods and proposed
subsampling andm out of n bootstrap methods for obtaining consistent estimators of the limiting
distribution. However, both methods require additional tuning parameters. Our proposed method190

is computationally simpler and is free of unknown tuning parameters.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes regularity conditions, proof
of the asymptotic expansion in equation (2), proofs of result in Theorem 1 and a more general
result with nuisance parameters.195
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