Prelim Examination

Friday August 11, 2017. Time limit: 150 minutes

Instructions:

- (i) The total number of points is 80, the number of points for each problem is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Problem 1: Model Combination (18 Points)

An econometrician is estimating the time series regression model

$$y_t = x_t'\beta + u_t, \quad t = 1, \dots, T,$$
(1)

where $x'_t = [1, t]$. The econometrician is concerned that u_t may be serially correlated and considers the following possibilities:

$$M_1 : u_t | (Y_{1:t-1}, X_{1:t-1}) \sim N(0, 1)$$
 (2)

$$M_2 : u_t = 0.95u_{t-1} + \epsilon_t, \quad \epsilon_t | (Y_{1:t-1}, X_{1:t-1}) \sim N(0, 1/(1 - 0.95^2)).$$
(3)

Note that $(0, 1/(1 - 0.95^2)) \approx 10$.

- (i) (5 Points) Derive the (conditional) likelihood function for model M_2 .
- (ii) (2 Points) Derive the posterior distribution of $p(\beta|Y)$ for model M_2 under the improper prior $p(\beta) \propto 1$.
- (iii) (6 Points) At what rates do the posterior variances of $\beta_1 | Y$ and $\beta_2 | Y$ shrink to zero as $T \longrightarrow \infty$?
- (iv) (5 Points) The econometrician proposes using the estimator

$$\hat{\beta}_3 = \frac{1}{2} \big(\hat{\beta}_1 + \hat{\beta}_2 \big),$$

where $\hat{\beta}_1$ and $\hat{\beta}_2$ are posterior mean estimators derived from specifications M_1 and M_2 .

Discuss in detail the validity of the claim that under a quadratic loss function $\hat{\beta}_3$ is approximately the Bayes estimator for a prior that assigns prior probabilities of 0.5 to M_1 and M_2 , respectively.

Problem 2: A Model with Time-Varying Intercept (37 Points)

Consider the following autoregressive model with time-varying intercept:

$$y_t = \phi_t + 0.95y_{t-1} + u_t, \quad u_t \sim N(0, 1), \quad t = 1, \dots, T.$$
 (4)

We will rewrite the problem slightly. Let $\phi^{(T)}$ be the $T \times 1$ vector of unknown intercepts and $Z^{(T)} = \mathcal{I}_T$ be the $T \times T$ identity matrix. Moreover, $Y^{(T)}$, $Y^{(T)}_{-1}$, and $U^{(T)}$ are the $T \times 1$ vectors with entries y_t , y_{t-1} , and u_t , respectively. Then we can express our model as

$$Y^{(T)} = Z^{(T)}\phi^{(T)} + 0.95Y^{(T)}_{-1} + U^{(T)}.$$
(5)

If no ambiguity arises, we/you can drop the (T) superscripts.

- (i) (2 Points) Derive the likelihood function for the model given by (4), utilizing the matrix notation in (5).
- (ii) (4 Points) Derive the maximum likelihood estimator $\hat{\phi}_{mle}^{(T)}$. What is its frequentist sampling distribution? Can we use it to consistently estimate ϕ_t , $t = 1, \ldots, T$. What would happen if we replace the autocorrelation of 0.95 by an unknown parameter ρ that has to be estimated as well?
- (iii) (4 Points) Now consider the following prior distribution, denoted by $p(\phi^{(T)}|\lambda)$, where λ is a hyperparameter. Define the $T \times T$ matrix R as

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

and let

$$R\phi^{(T)} \sim N(0_{T \times 1}, V(\lambda)), \text{ where } V(\lambda) = \begin{bmatrix} 1 & 0_{1 \times (T-1)} \\ 0_{(T-1) \times 1} & \lambda I_{T-1} \end{bmatrix}.$$

What is the implied prior for $\phi^{(T)}$? What is the interpretation of this prior? What happens as $\lambda \longrightarrow 0$.

- (iv) (6 Points) Derive the posterior distribution $p(\phi^{(T)}|Y,\lambda)$.
- (v) (6 Points) For T = 2, compare the posterior mean $\tilde{\phi}(\lambda)$ to the maximum likelihood estimator. What are the limits of $\tilde{\phi}(\lambda)$ as $\lambda \to 0$ and $\lambda \to \infty$. Provide an interpretation of $\tilde{\phi}(0)$.
- (vi) (7 Points) How is this model related to the time-varying coefficient models studied in class, its state-space representation, the Kalman filter, the Kalman smoother, and the Gibbs sampling approach to posterior inference in timevarying coefficient models?

(vii) (8 Points) Now calculate the log marginal data density

$$\ln p(Y|\lambda) = \ln \int p(Y|\phi^{(T)}) p(\phi^{(T)}|\lambda) d\phi^{(T)}$$

as a function of λ . Decompose the log MDD into a goodness-of-fit term and a term that penalize dimensionality / model complexity. For T = 2 provide explicit formulas for these terms and show what happens to these terms as $\lambda \longrightarrow 0$ or $\lambda \longrightarrow \infty$.

Problem 3: VAR Analysis [25 Points]

Consider bivariate VAR of the form

$$y_t = \Phi_1 y_{t-1} + u_t = \Phi_1 y_{t-1} + \Phi_\epsilon \epsilon_t, \quad \epsilon_t \sim iid\mathcal{N}(0, \mathcal{I}).$$
(6)

where y_t is composed of log wages w_t and log hours h_t . The vector of structural shocks is composed of a productivity shock $\epsilon_{a,t}$ and a labor supply shock $\epsilon_{b,t}$.

- (i) (1 Point) What condition does Φ_1 have to satisfy so that y_t is stationary?
- (ii) (4 Points) Suppose y_t is stationary, derive the autocovariances of order zero and one, denoted by $\Gamma_{yy}(0)$ and $\Gamma_{yy}(1)$.
- (iii) (2 Points) Derive the impulse response function of y_{t+h} , h = 0, 1, ... with respect to the vector of structural shocks ϵ_t .
- (iv) (4 Points) Describe the identification problem in the context of this VAR.
- (v) (4 Points) Suppose we are willing to make the following assumptions:
 - The inverse labor demand function $w_t = \varphi_{t-1}^D(h_t, \epsilon_{a,t})$ is contemporaneously affected by the technology shock, but not the labor supply shock.
 - The inverse labor supply function $w_t = \varphi_{t-1}^S(h_t, \epsilon_{a,t}, \epsilon_{b,t})$ is affected both by the technology shock $\epsilon_{a,t}$ and the labor supply shock $\epsilon_{b,t}$.

Since labor supply and demand also depend on predetermined variables the functions φ are indexed by t - 1.

Shocks $\epsilon_{b,t}$ cause shifts along the labor demand schedule (a picture might help). Moreover, suppose that

$$\frac{\partial w_t}{\partial \epsilon_{b,t}} = (\alpha - 1) \frac{\partial h_t}{\partial \epsilon_{b,t}}.$$
(7)

Conditional on α , is it possible to uniquely identify the elements of Φ_{ϵ} ? If yes, show how you can solve for Φ_{ϵ} based on α and the reduced-form VAR parameters.

- (vi) (5 Points) Assume that our prior for α is $\mathcal{N}(0.66, 0.05^2)$ and our beliefs about α are independent of our beliefs about the reduced form VAR parameters. How you implement posterior inference with respect to the impulse response functions? Discuss in detail.
- (vii) (5 Points) Alternatively, consider the following weaker sign restriction: a supply shock $\epsilon_{b,t}$ moves wages and hours in opposite directions upon impact, whereas a demand shock $\epsilon_{a,t}$ moves wages and hours in the same direction. What restrictions does this assumption impose on Φ_{ϵ} ? Does it lead to point identification of the impulse responses?