Prelim Examination Friday August 11, 2017. Time limit: 150 minutes

Instructions:

- (i) The exam consists of two parts. The total number of points for each part is 40. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Part I

Question 1: Concepts (9 Points).

- (i) (3 Points) What does it mean for an estimator to be *admissible*?
- (ii) (3 Points) What is Neyman-Pearson lemma?
- (iii) (3 Points) What is the Cramer-Rao lower bound?

Question 2: Asymptotics in a Location-Shift Model (12 Points).

Consider the following location-shift model

$$Y_i = \theta_0 + U_i, \quad U_i \sim (0, 1), \quad \mathbb{E}[|U_i|^4] < \infty, \quad i = 1, \dots, n$$
 (1)

- (i) (2 Points) Derive a quasi-maximum likelihood estimate (QMLE) of θ_0 under the assumption that the U_i 's are normally distributed. Denote the quasilikelihood function by $p(Y_{1:n}|\theta)$ (Note: It's called a "quasi" MLE because according to the DGP in (1) the U_i 's do not have to be normally distributed.)
- (ii) (2 Points) Derive the probability limit and the asymptotic distribution of the QMLE $\hat{\theta}$.
- (iii) (3 Points) Now derive a posterior distribution $p(\theta|Y_{1:n})$ for θ under the assumption that the U_i 's are normally distributed. Use the prior $\theta \sim N(0, 1)$.
- (iv) (5 Points) Show that the posterior distribution is consistent in the following sense: for any $\delta > 0$

$$\mathbb{P}\left[\left|\theta - \theta_0\right| > \delta \mid Y_{1:n}\right] \longrightarrow 0$$

as $n \longrightarrow \infty$. In plain English, what does this result imply?

Question 3: Stopping Rules (19 Points)

Suppose that $\{Y_i\}_{i=1}^3$ is a sequence of $iidN(\theta, 1)$ random variables. Define the sample mean for a sample of n observations as $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$. Here the sample size n is either 1, 2, or 3. For the Bayesian calculations below, use the improper prior $p(\theta) \propto 1$.

- (i) (1 Point) Consider the following experiment, \mathcal{E}_1 . Generate a draw of Y_1 and Y_2 . The realizations are $y_1 = 1$ and $y_2 = -1.5$. What is the likelihood function for θ based on this experiment?
- (ii) (3 Points) Derive a 95% Bayesian credible interval and a 95% frequentist confidence interval based on the outcome of \mathcal{E}_1 .
- (iii) (6 Points) Now consider the following alternative experiment, \mathcal{E}_2 : sample sequentially, starting with Y_1 , and terminate either if $\bar{Y}_n < 0$ or if n = 3. Thus, depending on the y_i values, the sample size is either n(Y) = 1, n(Y) = 2, or n(Y) = 3. What is the likelihood function for θ based on this experiment? (Hint: use $\phi(x)$ and $\Phi(x)$ to denote the pdf and cdf of a N(0,1) random variable.
- (iv) (2 Points) Assume that you observe $y_1 = 1$ and $y_2 = -1.5$ in \mathcal{E}_2 . Compare the likelihood functions conditional on these two observations from experiment \mathcal{E}_2 and \mathcal{E}_1 . What is the 95% Bayesian credible interval for θ in \mathcal{E}_2 . Does the stopping rule matter?
- (v) (7 Points) Compute the frequentist coverage probability for the following interval:

$$Y_1 \stackrel{-}{-} 1.96 \qquad \text{if } n = 1$$

(Y_1 + Y_2)/2 $\stackrel{+}{-} 1.96/\sqrt{2} \qquad \text{if } n = 2$
(Y_1 + Y_2 + Y_3)/3 $\stackrel{+}{-} 1.96/\sqrt{3} \quad \text{if } n = 3$

From a pre-experimental perspective, does the Bayesian credible interval in (iv) have the correct frequentist coverage probability? (Hint: some parts of the coverage probability formula are difficult to evaluate. Feel free to use graphical illustrations.)

Part II

Question 4: (12') Asymptotic Covariance Estimation

Take a regression model with i.i.d. data $\{(Y_i, X_i) : i = 1, ..., n\}$ and scalar X_i ,

$$Y_i = X_i\theta + U_i,$$

$$E(U_i|X_i) = 0,$$

$$\Omega = E(X_i^2U_i^2).$$

Let $\widehat{\theta}$ be the OLS estimator of θ with residual

$$\widehat{U}_i = Y_i - X_i \widehat{\theta}.$$

(i) (6') Provide an estimator of Ω , denoted by $\widehat{\Omega}$, and show its consistency.

(ii) (6') Derive the asymptotic distribution of $\sqrt{n}(\widehat{\Omega} - \Omega)$.

Question 5: (28') GMM

Take the model

$$Y_i = X'_i \theta + U_i,$$
$$E(Z_i U_i) = 0,$$

where $Y_i \in R$, $X_i \in R^k$, and $Z_i \in R^l$, with $l \ge k$. Assume the observations are i.i.d. Consider the following statistic

$$J_n(\theta) = n\overline{m}_n(\theta)'W_n\overline{m}_n(\theta)$$

$$\overline{m}_n(\theta) = n^{-1}\sum_{i=1}^n Z_i(Y_i - X'_i\theta)$$

for some weighting matrix $W_n \rightarrow_p W$.

(i) (4') Consider the hypothesis

$$H_0: \theta = \theta_0.$$

Derive the asymptotic distribution of $J_n(\theta_0)$ under H_0 as $n \to \infty$.

- (ii) (2') Write down an appropriate weighting matrix W_n which takes advantage of H_0 and yields a known asymptotic distribution in part (i).
- (iii) (2) What is the asymptotic limit of $J_n(\theta_0)$ under the alternative $H_1: \theta \neq \theta_0$?
- (iv) (2) Describe a test of H_0 against H_1 based on this statistic at the significance level α .
- (v) (2') Use the result in part (iv) to construct a confidence set for θ . The asymptotic coverage of this confidence set is 1α .
- (vi) (4') Define an estimator of θ and derive its asymptotic distribution.
- (vii) (2') What is the optimal choice of W_n for the estimation of θ ?
- (viii) (4') How do you define the exogeneity condition and the relevance condition of the instruments in this problem?
- (ix) (4') If the relationship between Y_i and X_i is nonlinear, i.e., $Y_i = g(X_i, \theta) + U_i$ for some known nonlinear function $g(x, \theta)$. How to define $J_n(\theta)$ and W_n for the estimation of θ ? Suppose you have instruments Z_i that satisfy all requirements.
- (x) (2') How to define the relevance condition with this nonlinear specification?

END OF EXAM