University of Pennsylvania

Prelim Examination Friday August 12, 2016 Time limit: 150 minutes

Instructions:

- (i) The exam consists of two parts. The total number of points for each part is 50. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Part I

Question 1: Change of Variables (10 Points)

Suppose that $X \sim N(\mu, \sigma^2)$. Let $Y = \exp(X)$.

- (i) (6 Points) Suppose that $X \sim N(\mu, \sigma^2)$. Let $Y = \exp(X)$. Compute the expected value $\mathbb{E}[Y]$ and the variance $\mathbb{V}[Y]$.
- (ii) (4 Points) Suppose that X_1 and X_2 are independent and have N(0, 1) distributions. Define $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$. Use a change-of-variables argument to obtain the joint probability density for (Y_1, Y_2) . Then compute the pdf for the marginal distribution of Y_1 . What is the distribution of X_1+X_2 ?

Question 2: Inference with Two Observations (23 Points)

Consider the following experiment:

$$X_1, X_2 \sim iidN(\theta, 1)$$

- (i) (3 Points) Derive the likelihood function and the maximum likelihood estimator for this experiment. What is the sampling distribution of the maximum likelihood estimator?
- (ii) (3 Points) Derive a likelihood ratio (LR) test for the null hypothesis $\theta = \theta_*$. State the distribution of your test statistic as well as acceptance and rejection regions for your test.
- (iii) (2 Points) Provide a definition of a frequentist confidence interval and derive a 95% confidence interval for the above experiment.
- (iv) (3 Points) Consider the prior $\theta \sim U[-M, M]$ where M is some large number and $U[\cdot]$ is the uniform distribution. Derive the posterior distribution of θ .
- (v) (2 Points) Provide a definition of a Bayesian credible interval and derive a 95% credible interval for the above experiment.
- (vi) (10 Points) How do your answers to (i)-(v) change if we impose $\theta \ge 0$ and change the prior to $\theta \sim U[0, 2M]$?

Question 3: Inference for Variance Parameters (17 Points)

Consider the model $Y_i \sim iidN(0,\theta)$, i = 1, ..., n. The goal is to make inference about θ . We denote the "true" value by θ_0 .

- (i) (2 Points) Derive the maximum likelihood estimator $\hat{\theta}$ for θ .
- (ii) (1 Point) Is the maximum likelihood estimator unbiased? Explain.
- (iii) (1 Point) Is the maximum likelihood estimator consistent? Explain.
- (iv) (2 Points) Derive the score $s(\theta) = \partial \ln p(Y_{1:n}|\theta)/\partial \theta$.
- (v) (4 Points) Assume that the "true" value is θ_0 and derive the limit distribution of the (properly normalized) score evaluated at $\theta = \theta_0$.
- (vi) (3 Points) Construct the Lagrange multiplier/score test for the hypothesis H_0 : $\theta = \theta_0$ and state 95% critical value as well as the acceptance and rejection region.
- (vii) (4 Points) Show that the power of the LM test against any fixed alternative $\theta_1 \neq \theta_0$ converges to one as $n \longrightarrow \infty$.

Part II

Question 4: Inference with Endogeneity (40 Points)

Consider a linear model

$$y_i = x_i'\beta + e_i$$

where $x_i \in R^k$ and $E(x_i e_i) \neq 0$. Suppose you have instrumental variables $z_i \in R^\ell$ with $\ell \geq k$ and $E(z_i e_i) = 0$.

- (i) (3 points) Show why the ordinary least squares estimator is inconsistent.
- (ii) (5 points) Show how to identify β with z_i and specify conditions for identification.
- (iii) (5 points) How to estimate β consistently with z_i ?
- (iv) (5 points) Derive the asymptotic distribution of your consistent estimator in part (iii).
- (v) (5 points) Provide a consistent estimator of the asymptotic covariance in part (iv) and proves its consistency.
- (vi) (5 points) How to test the instrumental variables z_i are exogenenous?
- (vii) (7 points) Prove the asymptotic distribution of the test statistic in part (vi).
- (viii) (5 points) Now suppose you have another instrument $Z_i^* \in R$ and $E(Z_i^*e_i) = 0$. How do you construct your estimator with this additional instrument? Does this additional instrument improve your estimator?

Question 5: Models with Limited Observations (10 Points)

Consider the following model

$$y_i^* = x_i'\beta + u_i, \ u_i | x_i \sim iid \ N(0, \sigma^2),$$

where $x_i \in \mathbb{R}^k$ with k > 1. Moreover, the x_i 's are also independent across *i*. We do not observe y_i^* , instead we observe

$$y_i = \begin{cases} y_i^* \text{ if } y_i^* \ge \lambda \\ \lambda \text{ if } y_i^* < \lambda, \end{cases}$$

where λ is a known constant.

- (i) (5 points) Write down the log-likelihood function for the maximum likelihood estimator $\hat{\beta}$.
- (ii) (3 points) Give the limit distribution of the maximum likelihood estima tor $\hat{\beta}$.
- (iii) (2 points) Estimate the standard error of the maximum likelihood estimator.