A NORMALIZED VALUE FOR INFORMATION PURCHASES

Antonio Cabrales

University College London Olivier Gossner École Polytechnique and LSE Math Dept Roberto Serrano Brown University

http://www.econ.brown.edu/faculty/serrano

Preliminaries

- When can one say that a new piece of information is more valuable to a d.m. than another?
- Difficulties:
- (i) The agent's priors matter
- (ii) The agent's preferences and/or wealth matter
- And (iii) the decision problem in which information will be applied matters

Blackwell (1953)

- Blackwell's (1953) ordering: an information structure (i.s.) α is more informative than β whenever β is a garbling of α .
- Or a d.m. with any utility function would prefer to use α over β in any decision problem.
- Can one complete this partial ordering on the basis of similar decision-theoretic considerations? E.g., can one find classes of preferences and problems such that " $\alpha \succeq_I$ β in terms of β being rejected at some price whenever α is" gives a complete ordering of i.s.'s?

Basic Notation

- Agent's initial wealth w,
- increasing and concave monetary and twice differentiable utility function $u: \mathbb{I} \to \mathbb{I}$.
- Coefficient of absolute risk aversion at wealth z:

$$\rho(z) = -\frac{u''(z)}{u'(z)}$$

• Coefficient of relative risk aversion at wealth z:

$$\rho_R(z) = -\frac{u''(z)z}{u'(z)}$$

Investments in Assets

- Let K be the finite set of states of nature.
- Agent's prior belief p with full support.
- Investment opportunity or asset: $x \in \mathbb{R}^{K}$, yielding wealth $w + x_{k}$ in state k.
- Opting out: $0_K \in B$.
- No-arbitrage asset $x \in \mathbb{R}^k$ (given p): $\sum_k p(k)x_k \leq 0.$
- B^* : set of all no-arbitrage assets.

Information Structures

- An i. s. α : finite set of signals $s \in S_{\alpha}$, and transition prob. $\alpha_k \in \Delta(S_{\alpha})$ for every $k \in K$.
- $\alpha_k(s)$: prob. of signal s in state k.
- Repres. by a stochastic matrix: rows (states k), columns (signals s).
- Non-redundant signals:

$$\forall s, \exists k \quad \text{s.t.} \quad \alpha_k(s) > 0.$$

I.s. as a distribution over posteriors

• Total prob. of s:

$$p_{\alpha}(s) = \sum_{k} p(k) \alpha_{k}(s),$$

• posterior prob. on K given s: q_{α}^{s} , derived from Bayes' rule:

$$q_{\alpha}^{s}(k) = \frac{p(k)\alpha_{k}(s)}{p_{\alpha}(s)}$$

Examples of I.S.'s

 Most informative i. s. (according to Blackwell) α:

for any s, there exists a unique k such that $q_{\overline{\alpha}}^{s}(k) = 1$.

• Excluding i. s. α :

for any s, there exists a k such that $q_{\alpha}^{s}(k) = 0$.

• The least informative i.s. $\underline{\alpha}$:

for any s and k, $q_{\underline{\alpha}}^{s}(k) = p(k) > 0$.

Valuable Information

• Given u, w, B and $q \in \Delta(K)$, the maximal expected utility that can be reached by choosing a $x \in B$:

$$v(u, w, B, q) = \sup_{x \in B} \sum_{k} q(k)u(w + x_k).$$

 The ex-ante expected payoff before receiving signal s from α:

$$\pi(\alpha, u, w, B) = \sum_{s} p_{\alpha}(s) v(u, w, B, q_{\alpha}^{s}).$$

Opting out assures that both are at least u(w).

Ruin-Averse Utility

- Ruin averse utility function u: $u(0) = -\infty$
- equivalent to $\rho_R(z) \ge 1$ for every z > 0.
- Let \mathcal{U}^* be the set of ruin averse u.

Information Purchasing and Informativeness Ordering

The agent with utility function u and wealth w purchases information α at price μ given an investment set B when:

$$\pi(\alpha, u, w - \mu, B) \ge u(w).$$

Otherwise, he rejects α at price μ .

Definition 0: Information structure α ruin-avoiding investment dominates information structure β whenever, for every wealth w and price $\mu < w$ such that α is rejected by all agents with utility $u \in \mathcal{U}^*$ at wealth w for every opportunity set $B \subseteq B^*$, so is β .

A Key Lemma

Lemma 0: Given an information structure α , price μ and wealth level $w > \mu$, α is rejected by all agents with utility $u \in \mathcal{U}^*$ at wealth level wgiven every opportunity set $B \subseteq B^*$ if and only if α is rejected by an agent with ln utility at wealth w for the opportunity set B^* .

Intuition: the In function majorizes all u in the class (the least risk averse, values information the most).

Entropy ordering

Following Shannon (1948), entropy of a prob. distribution $q \in \Delta(K)$:

$$H(q) = -\sum_{k \in K} q(k) \log_2 q(k)$$

where $0 \log_2(0) = 0$ by convention.

- *H*(*p*): measure of the level of uncertainty of the investor with belief *p*.
- Always \geq 0, and is equal to 0 only with certainty.
- Concave: distributions closer to the extreme points in $\Delta(K)$ have lower uncertainty; global maximum at the uniform.

Entropy Informativeness and the First Main Result

Recall: following α ,

- prob. of s: $p_{\alpha}(s)$,
- posterior on K following s: q_{α}^s .

The entropy informativeness of i. s. α :

$$I^{E}(\alpha) = H(p) - \sum_{s} p_{\alpha}(s) H(q_{\alpha}^{s}).$$

Minimal at $\underline{\alpha}$; maximal at $\overline{\alpha}$; complete ordering.

Theorem 0: Information structure α ruin-avoiding investment dominates information structure β if and only if $I^E(\alpha) \ge I^E(\beta)$.

Information Purchases

- An information purchase (i.p.) is a pair $a = (\mu, \alpha)$, where α is an i.s. and $\mu > 0$ is a price.
- Can one rank "objectively" the value of any i.p., capturing the information-price tradeoff?
- Back to class \mathcal{U} of concave and strictly in creasing, twice differentiable $u: \mathbb{R} \to \mathbb{R}$: ruin is possible for sufficiently high prices μ .
- Recall B^* , the set of all non-arbitrage investments given prior p:

$$\{x \in \mathbb{R}^k : \sum_k p(k)x_k \le 0\}.$$

Ordering Preferences for Information

Whenever agent 2 participates in the market for information, for sure so does agent 1:

Definition 1 Let $u_1, u_2 \in \mathcal{U}$. Agent u_1 uniformly likes (or likes, for short) information better than agent u_2 if for every pair of wealth levels w_1, w_2 , and every information purchase a, if agent u_2 accepts a at wealth w_2 , then so does agent u_1 at wealth w_1 .

Preferences for Information and Risk Aversion

Given $u \in \mathcal{U}$ and wealth $z \in I\!\!R$, recall

$$\rho_u(z) = -\frac{u''(z)}{u'(z)}$$

be the Arrow-Pratt coefficient of absolute risk aversion.

Let $\overline{R}(u) = \sup_{z} \rho_u(z)$, and $\underline{R}(u) = \inf_{z} \rho_u(z)$.

Theorem 1 Given $u_1, u_2 \in \mathcal{U}$, u_1 likes information better than u_2 if and only if $\overline{R}(u_1) \leq \underline{R}(u_2)$.

Ordering Information Purchases

"Duality" of value w.r.t. preferences for information roughly means that, if we are measuring the information/price tradeoff correctly, people who like information more should make more valuable purchases:

Definition 2 Let $a_1 = (\mu, \alpha)$ and $a_2 = (\nu, \beta)$ be two i.p.'s. We say that a_1 is more valuable than a_2 if, given two agents u_1, u_2 such that u_1 uniformly likes information better than u_2 and any two wealth levels w_1, w_2 , whenever agent u_2 accepts a_2 at wealth level w_2 , so does agent u_1 with a_1 at wealth level w_1 .

Relative Entropy or Kullback-Leibler Divergence

Following Kulback and Leibler (1951), for two probability distributions p and q, relative entropy from p to q:

$$d(p||q) = \sum_{k} p_k \ln \frac{p_k}{q_k}.$$

- Always non-negative,
- equals 0 if and only if p = q,
- finite whenever the support of q contains that of p, and infinite otherwise.

Normalized Value of Information Purchases

Normalized value of an i.p. $a = (\mu, \alpha)$:

$$\mathcal{NV}(a) = -\frac{1}{\mu} \ln \left(\sum_{s} p_{\alpha}(s) \exp(-d(p||q_{\alpha}^{s})) \right).$$

- Decreasing in the price μ ,
- increasing in each relative entropy $d(p||q_{\alpha}^{s})$,

• 0 for
$$a = (\mu, \underline{\alpha})$$
,

- $+\infty$ if for every signal *s*, there exists *k* such that $q_{\alpha}^{s}(k) = 0$ (excluding i.p.).
- ignoring μ , free energy or stochastic complexity.

Main Result

Theorem 2 Let a_1 and a_2 be two information purchases. Then, a_1 is more valuable than a_2 if and only if $\mathcal{NV}(a_1) \geq \mathcal{NV}(a_2)$.

CARA Agents

Given r > 0 let $u_C^r(w) = -\exp(-rw)$.

Recall: an i.p. a is excluding if for every signal s there exists a state k such that $q_s(k) = 0$; it is nonexcluding otherwise.

Lemma: If a is nonexcluding, there exists a unique number $\mathcal{NV}(a)$ such that for every w,

1. If $r > \mathcal{NV}(a)$, u_C^r rejects a at wealth w,

2. if $r \leq \mathcal{NV}(a)$, u_C^r accepts a at wealth w.

Sketch of Proof

- unique CARA indifferent between accepting and rejecting *a*,
- optimal investment for CARA with ARA r and belief q:

$$x_k = -\frac{1}{r}(-d(p||q) + \ln \frac{p_k}{q_k}).$$

 The rest of the proof of Theorem 2 uses Theorem 1 to "sandwich" a CARA agent between any two agents that are ordered according to "uniformly liking information."

Demand for Information

Theorem 3 Consider an information purchase a and $u \in \mathcal{U}$.

- 1. If $\underline{R}(u) > \mathcal{NV}(a)$, then agent u rejects a at all wealth levels w.
- 2. If $\overline{R}(u) \leq \mathcal{NV}(a)$, then agent u accepts a at all wealth levels w.

For DARA (decreasing ARA), one can say more:

Theorem 4 Consider an information purchase a and the class of utility functions U_{DA} .

- 1. An agent $u \in U_{DA}$ rejects a at all wealth levels if and only if $\underline{R}(u) > \mathcal{NV}(a)$.
- 2. An agent $u \in U_{DA}$ accepts a at all wealth levels if and only if $\overline{R}(u) \leq \mathcal{NV}(a)$.

Properties of the Normalized Value

- Continuous in all variables.
- Monotonic with respect to the Blackwell ordering.
- Preserves value through mixtures of i.s.'s.
- For a fixed price, coincides with entropy informativeness for small information.