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Abstract

The parameters of Poisson Integer AutoRegressive, or PoINAR, models can be esti-
mated by maximum likelihood where the prediction error decomposition, together with
convolution methods, is used to write down the likelihood function. When a moving
average component is introduced this is not the case. In this paper we consider the use
of techniques of e¢ cient method of moment techniques as a means of obtaining prac-
tical estimators of relevant parameters using simulation methods. Under certain reg-
ularity conditions, the resultant estimators are consistent, asymptotically normal and
achieve the Cramér-Rao bound. Simulation evidence on the e¢ cacy of the approach
is provided and it is seen that the method can yield serviceable estimates, even with
relatively small samples. Estimated standard errors for parameters are obtained using
subsampling methods. Applications are in short supply with these models, though
the range is increasing. We provide two examples using real life data: one data set is
adequately modelled using a pure integer moving average speci�cation; and the other,
a well known data set in the branching process literature that has hitherto proved
di¢ cult to model satisfactorily, uses a mixed speci�cation with special features.



1 Introduction

Time series models for counts have been an active area of research for quite a time.

Some of those most frequently encountered are integer autoregressive (INAR) mod-

els where the integer nature of the data is preserved by using the binomial thinning

operator of Steutel and van Harn (1979). Three of the early papers investigating the

�rst order INAR model are those by Al-Osh and Alzaid (1987) and McKenzie (1985,

1988). There then followed a steady stream of papers relating to estimation and fore-

casting with the �rst order model, including Brännäs (1994) and Freeland and McCabe

(2004a,b). Subsequently, higher order INAR models have been investigated, but the

extension from the �rst order case is not unique. The paper by Du and Li (1991)

provides one such speci�cation and is still based on independent binomial thinning

operators. Other authors have considered higher order speci�cations, including Alzaid

and Al-Osh (1990) and Bu, Hadri and McCabe (2008). That the general topic re-

mains of interest today is evidenced by the important recent contributions of, inter

alia, Drost, van den Akker and Wekker (2009) and McCabe, Martin and Harris (2011).

An interesting review paper is provided by McKenzie (2003).

Most of these papers, and others in the �eld not cited here, when they are concerned

with parameter estimation, focus solely on autoregressive speci�cations. A number of

methods are available, ranging from moment-based estimators, through least squares

procedures to maximum likelihood, be it fully parametric or semi-parametric. There

are various reasons for restricting to this type of model, one of which is the intractabil-

ity of writing down, in a compact manner, the conditional distributions needed to

permit likelihood-based procedures when models with moving average components are

entertained, a feature which would also complicate forecasting. Indeed, one important

reason for seeking models that preserve integer status is that one of the goals of mod-

elling may be forecasting or prediction. The matter of coherent forecasting has also

been the subject of attention in the literature, see, inter alia, the work of McCabe and

Martin (2005) and Jung and Tremayne (2006a).

Few papers consider moving average models based upon binomial thinning, al-

though mention should be made of the early contributions of Al-Osh and Alzaid (1988)

and McKenzie (1988) and also more recent work in Brännäs and Hall (2001) and Brän-

näs and Shahiduzzaman Quoreshi (2010). Feasible parameter estimators in such models

include (generalized) methods of moments and conditional least squares procedures.

The purpose of this paper is to advance the use of the e¢ cient method of moments

estimator (EMM) of Gallant and Tauchen (1996) and the corresponding indirect infer-
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ence methods of Gouriéroux, Monfort and Renault (2003). Integer autoregressive spec-

i�cations are considered, speci�cally of �rst and second order types, because there is

extant literature available to which the performance of EMM relative to maximum like-

lihood can be assessed. We also examine the behaviour of EMM in integer time series

models featuring moving average components using Monte Carlo methods. Standard

errors for the resultant estimators are obtained using subsampling methods. Finally, we

use EMM to �t models for two real life data sets, each of which may plausibly regarded

as exhibiting moving average behaviour. Diagnostic testing of the adequacy of each

speci�cation for the relevant data set suggest that the method works satisfactorily.

The remainder of the paper proceeds as follows. A brief introduction to binomial

thinning models and some other basic ideas are introduced in Section 2; both au-

toregressive and moving average representations are discussed. There then follows in

Section 3 a discussion of the EMM estimator for binomial thinning models, with the

estimation of standard errors being treated in Section 3.2. The �nite sample properties

of this estimator are examined in Section 3.3, which is then applied in Section 4 to

the modelling of two real life integer time series data sets. Concluding comments are

provided in Section 5.

2 Integer Models Based on Binomial Thinning

The binomial thinning operator ���introduced by Steutel and van Harn (1979) preserves
the status of an integer random variableW when operated on by a parameter � 2 [0; 1)
via R = ��W =

PW
s=1 es, where the es; s = 1; :::;W are iid Bernoulli counting sequence

random variables P (es = 1) = � and P (es = 0) = 1 � �. The operator is a random
operator and the random variable R has a binomial distribution with parameters W

and � and counts the number of �survivors�from the countW remaining after thinning.

Notice that the thinning operator confers greater dispersion on the number of sur-

vivors than does the ordinary multiplication operator. For instance, in integer time

series models, W may often be an equi-dispersed Poisson random variable with equal

mean and variance �, say. Suppose Wt�1 is an integer random variable arising at time

t�1 and subjected to binomial thinning to produce the number of survivors in the next
period, Rt; then, conditional on Wt�1; Rt is an integer random variable with variance

�(1 � �)Wt�1, whereas St = �Wt�1 has zero conditional variance (the unconditional

counterparts are �� and �2�). In this paper, we shall assume that all thinnings at

any given period are performed independently of one another and that each thinning

is performed independently at each time period with constant probability of �success�,
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�. These conditions are standard, see, e.g. Du and Li (1991, p.129). Although other

random operators are sometimes used in integer time series analysis (see, for example,

Alzaid and Al-Osh, 1990, who use binomial thinning operations in a somewhat di¤erent

way and Joe, 1996, who, on occasion, uses a di¤erent operator), the binomial thinning

operator used in this way is by far the most commonly encountered. It is possible to

entertain nonconstancy of thinning parameter(s), but in this paper we shall not do

this.

The prototypical model in the class of binomial thinning models for integer time

series is the �rst order integer autoregressive, or INAR(1), model given by

yt = � � yt�1 + ut (1)

=

yt�1X
s=1

es;t�1 + ut

E [es;t�1] = �;

where ut is an iid random variable with mean �U and variance �
2
U . With an equi-

spaced series it is often convenient to specify that ut � iid Po(�), an independent

Poisson random variable with mean �. In this case it can be shown that the stationary

marginal distribution of yt is Po(�=(1 � �)). The process is Markovian and hence
depends upon its past history, Ft�1, only through yt�1. Moreover, the process can
be shown to be a member of the class of conditionally linear autoregressive models

(CLAR), see Grunwald, Hyndman, Tedesco and Tweedie (2000), with a conditional

mean (regression) function given by

E(ytjFt�1) = �yt�1 + �: (2)

The autocorrelation function (ACF) mirrors that of the continuous AR(1) counterpart

in that the jth autocorrelation is given by �j = �j; j = 1; 2; ::: . Notice that only

positive autocorrelation can be modelled with an INAR(1), and, indeed, any INAR(p)

speci�cation. All these details are discussed in greater depth in Jung, Ronning and

Tremayne (2005) and some of the references to be found there.

Even from this limited discussion, it is clear that method of moments, MM, estima-

tors of the model�s parameters could be obtained in many ways, including being based

on the �rst order sample autocorrelation coe¢ cient together with the sample mean of

the data y1; y2; :::; yT . Conditional least squares (CLS) estimators (Klimko and Nelson,

1978) can be obtained from a minimization of the criterion function

S(�; �) =
TX
t=2

(yt � �yt�1 � �)2;
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and conditional maximum likelihood estimators, MLE, can be based upon maximizing

the function

`(�; �; y1; :::; yT ) /
TX
t=2

log p(ytjyt�1)

=

TX
t=2

log

mX
r=0

pR(rjyt�1)pU(yt � r);

where pR(rjyt�1) is the binomial distribution of the number of survivors from the previ-
ous population count yt�1 that have survived the binomial thinning parameterized by

�; pU(�) denotes the (Poisson) distribution of the innovations and m = min(yt; yt�1).

The term after the logarithm on the right hand side is, of course, a convolution and the

complete expression for the conditional distribution p(ytjyt�1) with Poisson innovations
is given by, e.g., Jung, Ronning and Tremayne (2005) in their expression (B.7).

The model can be generalized to a pth order one in a variety of ways. Here we

con�ne attention to the extension proposed by Du and Li (1991)

yt =

pX
i=1

�i � yt�i + ut;

where the p thinnings are applied independently at each time period and the ut are

iid innovations with �nite mean and variance independent of all Bernoulli counting

sequences. The particular case with which we shall be concerned here is p = 2, i.e. the

INAR(2) model. This model does not have the property of closure under convolution

enjoyed by the �rst order counterpart with Poisson innovations; the marginal distrib-

ution of yt is, in fact, overdispersed. But it does have the same ACF as a continuous

Gaussian AR(2) and retains conditional linearity in that the conditional mean function

(Poisson innovations assumed)

E(ytjFt�1) = E(ytjyt�1; yt�2) = �1yt�1 + �2yt�2 + �:

The parameters of the model must satisfy �1; �2 � 0 and �1 + �2 < 1. As before,
a variety of approaches to estimating the model�s parameters is available. Bu, Hadri

and McCabe (2008) provide the MLE for this model and some Monte Carlo evidence

relating to its behaviour. The conditional log-likelihood is of the form

`(�1; �2; �; y1; :::; yT ) /
TX
t=3

log p(ytjyt�1; yt�2)

=
TX
t=3

log
mX
r=0

pR(rjyt�1)
"

nX
s=0

pS(sjyt�2)pU(yt � r � s)
#
;
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where m and pU(�) are as before, pR(rjyt�1) denotes the binomial distribution of the
number of survivors from thinning the count yt�1 at time t using parameter �1,

pS(sjyt�2) is the binomial distribution of the number of survivors from the popu-

lation count yt�2 that survive the binomial thinning parameterized by �2 and n =

min(yt�1; yt�2). The full expression for the conditional distribution p(ytjFt�1) is given
by Bu, Hadri and McCabe (2008) as their (13).

Turning to moving average models based on binomial thinning, the basic INMA(q)

model is given by

yt =

qX
i=1

�i � ut�i + ut; (3)

and was �rst considered by McKenzie (1988) in the context of ut � iid Po(�): Each
�i 2 [0; 1]; i = 1; :::; q. In the most basic model, all thinnings are independent, so that
an individual (birth) entering the system at time t is available until time t+ q but then

exits it. The ACF of the process, which has mean and variance equal to �=(1+
Pq

i=1 �i),

is given by �j =
Pq�j

i=0 �i�i+j=(1 +
Pq

i=1 �i); i = 1; :::; q and zero otherwise. Brännäs

and Hall (2001) discuss a range of other dependent thinning speci�cations that change

the ACF of the basic model.

The special case of the INMA(1) model will be used at a number of junctures in this

paper and this model has some interesting features. For instance, when the innovations,

or births, are Poisson distributed the joint distribution of (yt; yt�1) is the same as that

of the Poisson INAR(1) counterpart. This implies that the conditional mean function

is also given by (2) though, of course, with parameter �=(1 + �) replacing �; see

Al-Osh and Alzaid (1988, eq. 3.10). The ACF has only one non-zero ordinate, �1 =

�=(1+�) � 0:5. Finally, the process is time reversible; see McKenzie (1988, Sec. 3.1) for
more details. However, there remain signi�cant di¤erences between the INAR(1) and

INMA(1) models, even with Poisson innovations. This is because their distributional

properties are dissimilar; the INMA(1), unlike the INAR(1), is not Markovian and

there is no su¢ ciency in the sense of reduction of the data. This makes the obtaining

of maximum likelihood estimators intractable.

In what follows we shall also consider mixed speci�cations, which have received

little attention in the literature. The basic speci�cation to be used is due to McKenzie

(1988, Sec. 4) and, in its simplest INARMA(1,1) form, is given by

xt = � � xt�1 + ut (4)

yt = xt�1 + � � ut;

where yt is the observable process and xt is an unobservable latent process carrying
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the autoregressive dependence. The iid Poisson random variables ut drive the mov-

ing average aspect of the model parameterized by � and use has been made of the

reversibility of the INMA(1) model. Thinnings are performed independently and the

presence of the lagged latent autoregressive component in contributing to yt ensures

the independence of the two birth counts implicit in its determination; if the model

were speci�ed as an INARMA(1,q), xt�q would have entered in the second line of (4).

The model reduces to an INAR(1) if � = 0 and to an INMA(1) if � = 0. The mean

and variance of yt are �[(1� �)�1 + �] and the ACF is given by

�1 =
�� �2 + �
1� �+ �

�j = �j�1�1; j = 2; 3; ::: :

3 The EMM Estimator

Given the di¢ culty of obtaining the maximum likelihood estimator for higher order

INAR models and the intractability of it for INMA and mixed INARMA models in

general, an alternative estimator is adopted based on the e¢ cient method of moments

estimator (EMM) of Gallant and Tauchen (1996). This estimator is also related to the

indirect inference approach of Gouriéroux, Monfort, and Renault (1993), the simulated

method of moments estimator (SMM) of Du¢ e and Singleton (1993), and the simulated

quasi maximum likelihood estimator (SQML) of Smith (1993). In the next subsection

we outline parameter estimation in count models using EMM and follow this with an

account of how estimated asymptotic standard errors can be obtained via subsampling

methods using the proposals described in Politis, Romano and Wolf (1999).

3.1 Parameter Estimation

The approach is to specify an alternative model and corresponding likelihood function,

commonly referred to as the auxiliary model, which has the property that it represents

a good approximation of the true model and hence the true likelihood function, but

nonetheless is simpler to compute than the maximum likelihood estimator of an IN-

ARMAmodel. The estimator of the auxiliary model is also known as a quasi maximum

likelihood estimator (QMLE) as it is based on a likelihood that is an approximation

of the true likelihood. The approach of the EMM estimator stems from the property

that the gradient vector estimator of the auxiliary model is zero when evaluated at

the actual data yt: This suggests that, by choosing parameters of the true INARMA

model, simulated data from the INARMA model, ys;t; can be generated and used to
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evaluate the gradient vector of the auxiliary model. The EMM solution is given by

the set of parameter values of the true model that generate the smallest value of the

gradient vector of the auxiliary model evaluated at the simulated data.

The stipulation that the auxiliary model be a good approximation of the true

model is a requirement that there is a mapping between the parameters of the aux-

iliary model and the INARMA model. This mapping is also known as the binding

function (Gouriéroux, Monfort, and Renault,1993). This condition means that Slut-

sky�s theorem can be used to establish the consistency of the EMM estimator as the

existence of a consistent estimator of the auxiliary model�s parameters also establishes

the existence of a consistent estimator of the parameters of the INARMA model.

In the case where the number of gradients of the auxiliary model matches the

number of unknown parameters in the INARMA model, the model is just identi�ed

and the gradient vector evaluated using the simulated data is zero. If the dimension

of the gradient vector exceeds the number of parameters in the INARMA model, the

model is over-identi�ed and the gradient vector evaluated at the simulated data, in

general, is positive. A natural choice for the auxiliary model is an AR(p) model, which

is motivated by the Klimko and Nelson (1978) conditional least squares estimator,

which yields a consistent estimator of the parameters of INAR models. The quality

of the approximation is then a function of p; the length of the lag structure. The

INMA model can be viewed as an in�nite INAR model in much the same way that,

for continuous time series models, a MA model is represented by an in�nite AR model.

Hence, increasing p in the auxiliary model improves the quality of the approximation

of the model, thereby improving the e¢ ciency of the EMM estimator. In particular, by

allowing p to increase at a certain rate as the sample size increases, the approximating

model approaches the true model resulting in the EMM estimator approaching the

MLE asymptotically.

The last requirement needed to implement the EMM estimator is that the INARMA

model can be simulated. For the INARMA(p,1) speci�cation

xt =

pX
i=1

�i � xt�i + ut

yt = xt�1 + �1 � ut (5)

ut � Po (�) ;

adopted in the Monte Carlo experiments and the empirical applications, this is indeed

the case when the p+ 1 thinning operations in (5) are all treated independently. The

model is simulated by expressing the thinning operations in terms of independent
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uniform random numbers es;t�j; j = 0; 1; 2; � � � ; p; according to

xs;t =

pX
i=1

xt�iX
s=1

es;t�i + ut

ys;t = xs;t�1 +

utX
s=1

es;t (6)

ut � Po (�) ;

where the uniform random numbers have moments

E [es;t�i] = �i; i = 1; 2; � � � ; p;
E [es;t] = �1:

(7)

Formally, the EMM estimator is based on solving

b� = argmin
�

G0sI
�1Gs = argmin

�
Q(�); (8)

where Gs is a (K � 1) vector of gradients of the speci�ed auxiliary model evaluated
at the simulated data and the QMLE estimates of the auxiliary model, and I is a

(K �K) optimal weighting matrix de�ned below. The auxiliary model speci�cation is
an AR(p) model with a constant

yt = �0 +

pX
i=1

�iyt�i + vt; (9)

where vt is iid N (0; �2v) : The gradient conditions of the auxiliary model at time t use

g1;t =
vt
�2v

gi;t =
vtyt�i+1
�2v

; i = 2; 3; � � � ; p+ 1 (10)

gp+2;t =

�
v2t
�2v
� 1
�

1

2�2v
;

a total of K = p + 2 elements. Stacking these then and averaging across a sample of
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size T; gives

G =
1

T

TX
t=p+1

266666664

g1;t
g2;t
g3;t
...

gp+1;t
gp+2;t

377777775
=
1

T

TX
t=p+1

266666666666666666666664

vt
�2v

vtyt�1
�2v

vtyt�2
�2v

...
vtyt�p
�2v�

v2t
�2v
� 1
�

1

2�2v

377777777777777777777775

: (11)

Evaluating G at the QMLE fb�0; b�1; � � � ; b�p; b�2vg; which is also equivalent to the Klimko
and Nelson (1978) CLS estimator, yields a null vector by construction.

The EMM estimator replaces the actual data (yt) in (11) by the simulated data

(ys;t) ; evaluated at fb�0; b�1; � � � ; b�p; b�2vg: Letting the length of the simulated data be
N = HT where H > 0 is a constant which is chosen large enough to ensure reliable

estimates, the gradient vector in (8) is obtained from (11) according to

Gs =
1

N

NX
t=p+1

266666666666666666666666664

bvs;tb�2v
bvs;tys;t�1b�2v
bvs;tys;t�2b�2v

...bvs;tys;t�pb�2v�bv2s;tb�2v � 1
�

1

2b�2v

377777777777777777777777775

; (12)

where

vs;t = ys;t � �0 �
pX
i=1

�iys;t�1:
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Finally, the weighting matrix in (8) is de�ned as (Gallant and Tauchen, 1996)

I =
1

T

TX
t=p+1

266666664

g21;t g1;tg2;t g1;tg3;t � � � g1;tgp+1;t g1;tgp+2;t
g2;tg1;t g22;t g2;tg3;t � � � g2;tgp+1;t g2;tgp+2;t
g3;tg1;t g3;tg2;t g23;t � � � g3;tgp+1;t g3;tgp+2;t
...

...
...

. . .
...

...
gp+1;tg1;t gp+1;tg2;t gp+1;tg3;t � � � g2p+1;t gp+1;tgp+2;t
gp+2;tg1;t gp+2;tg2;t gp+2;tg3;t � � � gp+2;tgp+1;t g2p+2;t

377777775
: (13)

In applying the EMM estimator, two auxiliary models are used here. The �rst,

Aux.1, uses the �rst p+1 moment conditions in (12), whereas the second, Aux.2, uses

all p + 2 of them. In the case of an INAR(1) model with parameters � = f�1; �g,
the �rst auxiliary model with p = 1 amounts to estimating an AR(1) regression with

an intercept. The parameter vector � = f�1; �g is just identi�ed, with � being iden-
ti�ed by the �rst moment condition in (12) and �1 being identi�ed by the second

moment condition. From the properties of the INAR(1) model and the relationship

between the intercept and the disturbance variance � in particular, the inclusion of

the last moment condition in (12), provides additional information to identify �. For

the INMA(1) model, increasing the number of lags in the auxiliary model is expected

to raise the e¢ ciency of the EMM estimator, asymptotically, as the auxiliary model

provides a better approximation to the true likelihood. However, in �nite samples, the

additional moments from increasing the lag length of the auxiliary model may provide

less information than lower order lags resulting in some e¢ ciency loss. This potential

e¢ ciency loss is investigated in the Monte Carlo experiments.

To implement the EMM algorithm the following steps are followed.

Step 1: Estimate the auxiliary model by least squares and generate the estimates b�i; i =
0; 1; 2; � � � ; p; b�2 = T�1

TX
t=p+1

bv2t ; where bvt = yt � b�0 �Pp
i=1
b�iyt�i; is the least

squares residual.

Step 2: Simulate the true INARMA model for some starting parameter values � = �(0);

see below for speci�c details. Let the simulated values be ys;t:

Step 3: Evaluate the gradient vector in (12) and the weighting matrix in (13).

Step 4: The EMM estimator is given as the solution of (8).

3.2 Estimating Asymptotic Standard Errors

The EMM estimator does not require the speci�cation of a likelihood function, which

would be based on the conditional distribution of an observation, conditional on its
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past. For the models of speci�c interest in this paper, such a likelihood function is

generally not available and so the routine evaluation of appropriate estimated standard

errors is not possible. Since, with any statistical modelling procedure, it is important to

have some device for assessing model and parameter uncertainty, a means of overcoming

this di¢ culty must be found. An attractive approach that is available under fairly mild

conditions is that of subsampling, discussed in detail in the work of Politis, Romano

and Wolf (1999). As pointed out in that book, subsampling is available in certain

situations where a bootstrap approach would be invalid and the requirements that

must be met for it to provide a valid inference tool are mild, often requiring little more

than stationarity of the underlying data generating process. The account presented

here draws heavily on the book, which will henceforth be termed PRW, as will its

authors.

The types of problems to which subsampling can be applied include: variance

estimation; distribution function estimation; bias reduction; interval estimation; and

hypothesis testing methods. Moreover, the methods can be applied in the context

of both dependent and independent data. Suppose, as elsewhere in the paper, that

y1; :::; yT represents a sample of T observations on a stationary time series. Generally,

any statistical quantity calculated will be based on all observations (apart, possibly,

from end e¤ects). Subsampling methods are based on making repeated computations of

similar statistics based on subsamples of length B using the observations yi; :::; yi+B�1.

Let there be j = 1; :::; NB such blocks used and suppose that a (scalar) parameter

� is estimated by b�T using the full sample and by b�T;i;B using the block of length

B beginning at observation i. Suppose further, as applies in the cases used here for

EMM, that we can approximate the distribution of
p
T (b�T � �) by N(�; �21), where

�21 is an unknown long-run variance to be estimated. Provided B ! 1 with T and

B=T ! 0 the distribution of
p
B(b�T;i;B��) is the same Gaussian distribution involving

the unknown long-run variance. Then a suitable estimator of the variance of b�T is given
by

dV arT;B(b�T ) = B

TNB

NBX
j=1

(b�T;B;j � b�T;B;:)2;
where b�T;B;: = N�1

B

PNB
j=1
b�T;B;j, compare PRW, eq. (3.40).

Various di¢ culties still need to be addressed including: what block length B to

use; how many blocks NB to use; and how to appropriately estimate the unknown

long-run variance �21, should it be required (which, as we shall see, it is). The �rst

occurrence of variance estimation using subsampling is due to Carlstein (1986), who
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proposes non-overlapping blocks. Presuming for simplicity that T is an exact multiple

of B, it would follow that NB = T=B. But PRW, Section 3.8.2 show that, in the case

of a sample mean at least, it is preferable to use the maximum available number of

overlapping blocks of size B, viz. NB = T � B + 1. This is because it can be shown
that the variance estimator based upon subsampling using all available blocks is 50%

more e¢ cient, asymptotically, than the Carlstein estimator (see eq. (3.46) in PRW).

We adopt the approach recommended by PRW here.

There remains the crucial choice of block length B. There is work, particularly

relating to the sample mean, that indicates that B should be O(T 1=3) and that the

asymptotic mean squared error of the estimated variance in this case is T 1=3 times a

complex quantity depending on the long-run variance �21 (see PRW eq. (9.4)). In the

case of a more general statistic, not much is known about the choice of B. However,

in their Remark 10.5.4, PRW provide evidence that a bias-corrected estimator is to be

preferred and that its use �comes with the added bonus of an easy way to estimate the

optimal block size in practice�(PRW, page 240). They suggest using two block lengths,

say b and B, b < B, and associated variance quantities dV arT;b(b�T ) and dV arT;B(b�T ) and
plotting these points with a x-axis B�1 and determining the intercept in the associated

linear relationship obtained by joining the two points as the long-run variance. This

follows from the display equation at the top of page 238 in PRW, and the succeeding

discussion. As a rule of thumb, PRW propose that b should be determined by looking

at the correlogram of the data in question and taking the value of b to be one greater

than the last �signi�cant�ordinate of the sample autocorrelation function with B = 2b.

We experimented with this suggestion and found that it did not work particularly well;

for instance it can be very sensitive to the choice of b and often leads to short block

lengths. Moreover, it can lead to quite di¤ering values of the long-run variance estimate

obtained for minor variations in b

Of course, the long-run variance estimate can be determined by linearly combining

more than two such variance estimates based upon di¤ering block sizes B and estimat-

ing the intercept in a regression of variance estimate on the inverse block size. We found

this suggestion works better in a case where the desired asymptotic result is known.

For instance, one might experiment with a continuous Gaussian AR(1) speci�cation

where the desire is to estimate the true asymptotic variance of b�, the MLE of the true
dependence parameter � for which it is well known that

p
T (b�� �) d! N(0; 1� �2).

To remain within the spirit of integer modelling, we opted to work with a stationary

Poisson INAR(1) data generating process. Evaluation of the MLE of � = (�; �) and

the associated asymptotic variance-covariance matrix is discussed elsewhere, see, for
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example, Al-Osh and Alzaid (1987). Choosing B too small leads to unreliably large

values of the long-run variance, whilst choosing it too big leads to the opposite. We

found, after some experimentation, that B, perhaps not surprisingly, needs to be larger

the stronger is the dependence in any process and that, for T = 100, say, reliable long

-run variance estimators are found by combining estimates based on B in a range kT 1=3

to 8kT 1=3 with some suitable k. Since the count data used in the Applications section

are taken to be stationary without near nonstationary behaviour by reference to the

sample autocorrelation properties of the two data sets involved, we believe that similar

choices made for block length with these applications will provide reliable estimates

for asymptotic standard errors.

As a test of the approach to compute standard errors for the EMM estimates based

on subsampling, a INAR(1) model is simulated for a sample of size T = 100 with

parameter values of �1 = 0:3 and � = 3:5: The maximum likelihood parameter es-

timates are b�1 = 0:217 and b� = 3:768; with respective estimated standard errors

computed as the square root of the diagonal elements of the inverse of the (nega-

tive) Hessian evaluated at the maximum likelihood estimates, given by se (b�1) = 0:086
and se(b�) = 0:454. Using Aux.1 with one lag, the EMM parameter estimates areb�1 = 0:242 and b� = 3:647: The standard errors of the EMM estimates are computed

using 4 block lengths B = f8; 16; 32; 64g : For each block size B the maximum num-

ber of data subsamples is T � B + 1: The EMM estimate of � = f�1; �g is computed
for each subsample using 100 searches, which, in turn, is used to compute an esti-

mate of the variance of b�100;B. In the case of B = 8; this amounts to computing the

EMM estimates 100 � 8 + 1 = 93 times with the EMM objective evaluated in each

case 100 times in performing the search procedure to minimize this objective func-

tion. The long-run variance �21 is estimated as the intercept from a regression of the

estimated variances corresponding to the four block sizes, on a constant and the re-

gressor f1=8; 1=16; 1=32; 1=64g : The standard errors of b�T are computed as b�1=pT
where b�21 is the estimate of �21: The estimated standard errors are: se (b�1) = 0:088;
and se(b�) = 0:489; which agree closely with the MLE standard errors.
3.3 Finite Sample Properties

The �nite sample properties of the EMM parameter estimator are investigated using

a range of Monte Carlo experiments. Where possible, the sampling properties of the

EMM estimator are compared with those obtained from existing estimators, including

MLE and CLS (Klimko and Nelson, 1978).
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3.4 Experimental Design

The Monte Carlo experiments are based on the INARMA(2,1) model with Poisson

innovations

xt = �1 � xt�1 + �2 � xt�2 + ut
yt = xt�1 + �1 � ut
ut � P0 (�) ;

(14)

where the three thinning operators in (14) are assumed to be independent following

the approach of Du and Li (1991). Four broad DGPs are speci�ed; they are given in

Table 1 and all arise from (14) as special cases. The INAR(1) speci�cation serves as

a benchmark model, since it enables the EMM estimator to be compared directly to

the �nite sample properties of the MLE; the results of Jung, Ronning and Tremayne

(2005) are used to facilitate the comparison. Here special attention is given to how the

performance of the EMM estimator varies according to the lag length of the auxiliary

model. A comparison of the sampling performance of the EMM and CLS estimators

of the INMA(1) model determines whether there are any e¢ ciency gains in �nite sam-

ples from adopting the EMM estimator over the CLS one. The INARMA(1,1) model

possibly represents a more interesting DGP, as this experiment determines the ability

of the EMM estimator to unravel the two types of dynamic components of the model

from an auxiliary model that is simply based on an AR(p) regression. The last model

speci�cation entertained is an INAR(2) to determine the properties of the EMM esti-

mator in the case of higher order dynamics and results can be compared with those

presented by Bu, Hadri and McCabe (2008).

The selected parameterizations in Table 1 are based on DGPs that yield relatively

�low�counts, as well as parameterizations adopted in previous studies to aid compar-

isons. In the case of the INAR(1) model the expected count is

E [yt] =
�

1� �1
=

3:5

1� 0:3 = 5:

For the INMA(1) model the expected number is

E [yt] = (1 + �1)� = (1 + 0:3)� 3:5 = 4:55;

whereas for the INARMA(1,1) it is

E [yt] =
(1 + �1 � �1�1)�

1� �1
=
(1 + 0:7� 0:21) 3:5

1� 0:3 = 7:45:

Finally, for the INAR(2) model the expected number of counts is

E [yt] =
1

1� �1 � �2
=

1

1� 0:5� 0:3 = 5:0:
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Table 1:

Choice of DGPs and parameterizations for the Monte Carlo experiments.

Experiment Type Parameterization
�1 �2 � �1

I INAR(1) 0.3 0.0 3.5 0.0
II INMA(1) 0.0 0.0 3.5 0.3
III INARMA(1,1) 0.3 0.0 3.5 0.7
IV INAR(2) 0.5 0.3 1.0 0.0

In implementing the EMM estimator the two auxiliary models mentioned below (13)

are used. Aux.1 involves the �rst p + 1 moment conditions in (12) and the maximum

lag chosen in p = 3: Aux.2 augments Aux.1 with the last element in (12). As the

parameter � is identi�ed by the intercept in both cases and also by the error variance

in Aux.2, a comparison of the EMM simulation results based on the two auxiliary

models will provide insights into the potential �nite sample gains from using both

types of identi�cation mechanism.

The MLE is computed using the gradient algorithm MAXLIK in GAUSS Version

10. A numerical di¤erentiation routine is adopted to compute the gradients and the

Hessian. As there is no analytical expression for the log-likelihood function of integer

models with moving average components, the MLE results are just reported for INAR

speci�cations.

The CLS estimator is computed for the INAR(1) and INMA(1) models, with the

latter estimates computed using the estimates of the INAR(1) model by virtue of the

fact that they have CLAR(1) conditional mean functions given by (2). This estimator

simply involves estimating the AR(1) regression equation

yt = �0 + �1yt�1 + vt;

by least squares with the estimates of � and �1 given by the estimates of �0 and �1
respectively. The corresponding INMA(1) CLS parameter estimators are obtained as

�1= (1� �1) in the case of the moving average parameter �1; and � in the case of the
error variance parameter.

When computing the EMM estimator, a range of simulation runs were initially

experimented with. A value of H = 500 was settled upon resulting in simulation runs

of length N = 500T in (12) where T is the sample size given by T = f50; 100; 200g : As
the objective function of the EMM estimator Q (�) (see (8) above) is not continuous

with respect to the parameter vector �; a grid search is used to minimize the objective
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function, with the number of searches set equal to 100 for the INAR(1) and INMA(1)

models, and 200 for the INARMA(1,1) and INAR(2) models. There do exist more

sophisticated search algorithms, including the accelerated search method of Appel,

Labarre and Radulovic (2003). In those cases where the results of the EMM estimator

can be compared with the MLE, the results suggest that the simple search procedure

adopted in the Monte Carlo experiments reported here su¢ ces. Starting values for

the EMM algorithm are based on the CLS estimates. In those cases where the CLS

estimator yields parameter estimates that violate the stationarity restriction, the true

parameter values are chosen as the starting parameter estimates instead. Finally, all

Monte Carlo experiments are based on 5000 replications.

3.5 INAR(1) Results

The results of the INAR(1) Monte Carlo experiment are given in Table 2. Sampling

statistics based on the mean and the root mean squared error, RMSE, from the 5000

replications are presented. The EMM estimator is computed for six types of auxiliary

models: the �rst three are based on an AR(p) regression with p = 1; 2; 3 (Aux.1), and

the second three use Aux.2. For comparison the results for MLE and CLS estimator

are also reported.

Inspection of the top block of Table 2 shows that all estimators of the autoregressive

parameter �1 are biased downwards, with the size of the bias decreasing as the sample

size increases. In the case of MLE and CLS the �nite sample results are comparable

to those reported in Jung, Ronning and Tremayne (2005). In general the bias of the

EMM estimator lies between the MLE (smallest) and the CLS estimator (largest). A

consideration of the bias of the EMM estimator for T = 50 shows that it decreases as

the lag length of the auxiliary model increases with nearly the same level of bias being

achieved as the MLE with Aux.2 and p = 3. The EMM estimator does no worse than

the CLS estimator in the case of Aux.2 with p = 1, whereas, for all other auxiliary

model speci�cations, the EMM estimator achieves lower bias than the CLS estimator.

The results in Table 2 demonstrate that the EMM corrects some of the small sample

bias of the CLS estimator, even though the EMM estimator uses the CLS framework

as an auxiliary model. It can be seen that Aux.1 performs better than Aux.2 for p = 1,

but the reduction in bias as the number of lags increases is far greater for Aux.2 than

it is for Aux.1, i.e. the bias quickly becomes relatively lower for Aux.2 when p > 1:

These results remain qualitatively unchanged for samples of size T = 100: However, for

larger samples of T = 200 the EMM and CLS estimators yield similar biases, with the

EMM estimator based on Aux.1 now performing marginally better than it does using
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Aux.2.

A comparison of the performance of the three estimators in terms of RMSE shows

that the EMM estimator nearly achieves the same level of e¢ ciency as the MLE for

a lag of p = 1; and, in fact, matches the �nite sample e¢ ciency of the MLE if Aux.1

is adopted. In contrast to the performance of the EMM estimator in terms of bias,

smaller lags in the auxiliary model produce better results in terms of higher e¢ ciency.

In fact, increasing the number of lags of the auxiliary model produces RMSEs that

are actually higher than the RMSE of the CLS estimator. This trade-o¤ between bias

and e¢ ciency is typical of the �nite sample results of most of the models investigated

here. Moreover, the additional moment condition used in Aux.2 yields slightly higher

RMSEs, suggesting that this moment condition may be partly redundant in terms of

identifying the parameters of the model.

Turning to the bottom block of Table 2 it is seen that all estimators of � are biased

upwards, with the size of the bias decreasing as the sample size increases. This is unsur-

prising given the high negative correlation between estimators of the two parameters.

Again, in the case of the MLE and the CLS estimator, the �nite sample results are very

similar to the results reported in Jung, Ronning and Tremayne (2005). As with the

results for �1; the EMM estimator for T = 50; performs best using an auxiliary model

with p = 3 lags. Interestingly, for Aux.1 and more especially for Aux.2, the EMM

estimator yields a lower �nite sample bias than the MLE. This result is similar to the

�nite sample results reported by Gouriéroux, Monfort and Renault (1993), where their

simulation based estimator, known as indirect inference, also exhibited better �nite

sample properties than the MLE. Gouriéroux and Monfort (1994) show that this result

re�ects the property that the simulation estimator acts as a bootstrap estimator which

corrects the second order bias of the MLE.

The RMSE results for � mirror the RMSE results for �1, with the EMM estimator

yielding relatively lower RMSEs for shorter lag structures in the auxiliary model. In

the case of T = 50; the EMM estimator again yields an even smaller RMSE than the

MLE when p = 1 and either of the two auxiliary models is chosen. Increasing the

sample size to T = 100 and 200 makes little di¤erence in the e¢ ciency of the CLS and

EMM estimators, especially where the latter estimator is computed using an auxiliary

model with p = 1.

3.6 INMA(1) Results

The INMA(1) results given in Table 3 contain just the CLS and EMM results. The

EMM estimator of the moving average parameter �1 exhibits smaller bias than the CLS
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Table 2:

Finite sample properties of alternative estimators of the parameters of the INAR(1)
model. Population parameters are �1 = 0:3 and � = 3:5: The number of draws is

5000:

Estimator Mean (�1) RMSE (�1)
T = 50 100 200 50 100 200

MLE 0.281 0.288 0.295 0.133 0.095 0.063

CLS 0.260 0.280 0.291 0.144 0.098 0.069

EMM Aux.1 Lag = 1 0.265 0.279 0.291 0.133 0.098 0.069
Aux.1 Lag = 2 0.268 0.280 0.293 0.140 0.102 0.070
Aux.1 Lag = 3 0.274 0.283 0.293 0.149 0.106 0.071
Aux.2 Lag = 1 0.260 0.278 0.291 0.135 0.098 0.068
Aux.2 Lag = 2 0.272 0.284 0.291 0.139 0.101 0.070
Aux.2 Lag = 3 0.280 0.287 0.292 0.150 0.107 0.071

Mean (�) RMSE (�)
T = 50 100 200 50 100 200

MLE 3.587 3.559 3.521 0.713 0.500 0.331

CLS 3.693 3.596 3.543 0.766 0.522 0.361

EMM Aux.1 Lag = 1 3.671 3.605 3.544 0.705 0.525 0.362
Aux.1 Lag = 2 3.634 3.589 3.533 0.736 0.532 0.366
Aux.1 Lag = 3 3.584 3.560 3.532 0.772 0.547 0.369
Aux.2 Lag = 1 3.681 3.605 3.543 0.722 0.517 0.359
Aux.2 Lag = 2 3.606 3.564 3.538 0.735 0.530 0.367
Aux.2 Lag = 3 3.518 3.536 3.525 0.774 0.555 0.374
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Table 3:

Finite sample properties of alternative estimators of the parameters of the INMA(1)
model. Population parameters are �1 = 0:3 and � = 3:5: The number of draws is

5000:

Estimator Mean (�1) RMSE (�1)
T = 50 100 200 50 100 200

MLE n.a. n.a. n.a. n.a. n.a. n.a.

CLS 0.278 0.290 0.292 0.226 0.156 0.111

EMM Aux. 1 Lag = 1 0.288 0.288 0.292 0.217 0.175 0.137
Aux. 1 Lag = 2 0.280 0.274 0.288 0.206 0.160 0.126
Aux. 1 Lag = 3 0.283 0.280 0.288 0.204 0.157 0.123

Aux. 2 Lag = 1 0.284 0.290 0.291 0.219 0.174 0.132
Aux. 2 Lag = 2 0.298 0.286 0.288 0.213 0.163 0.123
Aux. 2 Lag = 3 0.301 0.293 0.288 0.215 0.161 0.122

Mean (�) RMSE (�)
T = 50 100 200 50 100 200

MLE n.a. n.a. n.a. n.a. n.a. n.a.

CLS 3.661 3.577 3.547 0.676 0.463 0.327

EMM Aux. 1 Lag = 1 3.609 3.576 3.531 0.621 0.482 0.364
Aux. 1 Lag = 2 3.597 3.585 3.526 0.620 0.472 0.345
Aux. 1 Lag = 3 3.564 3.562 3.516 0.618 0.472 0.344

Aux. 2 Lag = 1 3.609 3.556 3.521 0.633 0.481 0.353
Aux. 2 Lag = 2 3.531 3.541 3.516 0.618 0.479 0.344
Aux. 2 Lag = 3 3.492 3.510 3.498 0.634 0.466 0.342

estimator, with the size of the bias decreasing as the number of lags in the auxiliary

model increases. This is especially true for the smallest sample size investigated, namely

T = 50: For larger samples, the relative bias of the two estimators diminishes. The

EMM estimator also dominates the CLS estimator when T = 50 in terms of RMSE,

but with the roles reversing as T increases.

The EMM estimator of � generally exhibits smaller bias than the CLS estimator.

The EMM estimator also exhibits superior �nite sample e¢ ciency than the CLS esti-

mator for samples of size T = 50: As with the �1 RMSE results, the CLS estimator of

� exhibits slightly better e¢ ciency than the EMM estimator for larger sample sizes.
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3.7 INARMA(1,1) Results

The �nite sample results of the EMM estimator for the INARMA(1,1) model are re-

ported in Table 4. The auxiliary model of the EMM estimator must be based on a

minimum of p = 2 lags for identi�cation. Inspection of the results shows that choosing

Aux.2 with p = 3 lags tends to perform the best for all sample sizes in terms of smaller

bias and lower RMSE. The percentage bias of b�1 for this model for samples of size
T = 50; is just 100 � 0:006=0:3 = 2%: Similar results occur for b� where the percent-
age bias is just �0:429%: The EMM estimator of the moving average parameter �1
is biased downwards, with a percentage bias of �11:429%; which reduces to �7:0%;
for T = 200. Given the fairly large bias in estimating the moving average parameter

with a sample size as small as 50, it may not be advisable to use the procedure with

samples as small as this, though increasing sample size, quite plausibly, attenuates the

problem.

A comparison of the RMSE for the alternative auxiliary models used to calculate

the EMM estimator suggests that, for smaller samples of size T = 50; choosing a

shorter lag length in the auxiliary model yields marginally more e¢ cient parameter

estimates, whereas the opposite is true for larger samples of size T = 200:

3.8 INAR(2) Results

The results of the EMM estimator for the INAR(2) model are reported in Table 5. The

parameter constellation (�1; �2) = (0:5; 0:3) was chosen on the basis of the evidence

in Bu, Hadri and McCabe (2008, Table 1) that the asymptotic relative e¢ ciency of

CLS to MLE is only 0:7, which means that the former is some 30% less e¢ cient,

asymptotically, than the latter and thus there may be discernible di¤erences, perhaps

between all three types of estimators. To enable these EMM results to be compared

to the MLE and CLS Monte Carlo results reported in Bu, Hadri and McCabe (2008),

the experiments are based on a sample of size T = 100 only. The EMM estimator is

based on Aux.1 with p = 2 lags, the minimum required for identi�cation.

The simulation results for �1 in Table 5 show that the bias is marginally smaller for

the CLS estimator than it is for the EMM estimator, whereas EMM displays slightly

smaller RMSE. In the case of �2; EMM yields lower bias and smaller RMSE than CLS.

In fact, EMM as well as CLS actually display slightly better �nite sample e¢ ciency

than MLE, whilst the bias of the MLE of �2 is marginally smaller than it is for EMM.

For the parameter �;MLE dominates all estimators in terms of bias and RMSE whilst,

in turn, EMM dominates CLS.
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Table 4:

Finite sample properties of alternative estimators of the parameters of the
INARMA(1,1) model. Population parameters are �1 = 0:3; � = 3:5 and �1 = 0:7:

The number of draws is 5000:

Estimator Mean (�1) RMSE (�1)
T = 50 100 200 50 100 200

MLE n.a. n.a. n.a. n.a. n.a. n.a.

CLS n.a. n.a. n.a. n.a. n.a. n.a.

EMM Aux.1 Lag = 2 0.271 0.285 0.288 0.185 0.165 0.145
Aux.1 Lag = 3 0.287 0.298 0.303 0.187 0.162 0.142
Aux.2 Lag = 2 0.280 0.287 0.290 0.183 0.162 0.145
Aux.2 Lag = 3 0.306 0.309 0.306 0.190 0.162 0.140

Mean (�) RMSE (�)
T = 50 100 200 50 100 200

MLE n.a. n.a. n.a. n.a. n.a. n.a.

CLS n.a. n.a. n.a. n.a. n.a. n.a.

EMM Aux.1 Lag = 2 3.706 3.618 3.565 0.766 0.581 0.456
Aux.1 Lag = 3 3.669 3.597 3.541 0.813 0.596 0.470
Aux.2 Lag = 2 3.561 3.537 3.519 0.673 0.508 0.405
Aux.2 Lag = 3 3.485 3.487 3.483 0.744 0.545 0.417

Mean (�1) RMSE (�1)
T = 50 100 200 50 100 200

MLE n.a. n.a. n.a. n.a. n.a. n.a.

CLS n.a. n.a. n.a. n.a. n.a. n.a.

EMM Aux. 1 Lag = 2 0.603 0.625 0.658 0.302 0.272 0.223
Aux. 1 Lag = 3 0.579 0.604 0.636 0.301 0.270 0.228
Aux. 2 Lag = 2 0.642 0.653 0.663 0.276 0.254 0.232
Aux. 2 Lag = 3 0.620 0.629 0.651 0.278 0.260 0.218
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Table 5:

Finite sample properties of alternative estimators of the parameters of the INAR(2)
model, T = 100 in all cases. Population parameters are �1 = 0:5; �2 = 0:3; and
� = 1:0: The number of draws used in the computation of the EMM estimator is
5000: Monte Carlo results for the MLE and CLS estimator are obtained from Bu,

Hadri and McCabe (2008) which are based on 1000 replications. The EMM estimator
is based on Aux.1 with p = 2 .

Estimator Mean (�1) RMSE (�1)
MLE 0.498 0.092

CLS 0.481 0.109

EMM 0.477 0.106

Mean (�2) RMSE (�2)
MLE 0.271 0.111

CLS 0.263 0.109

EMM 0.266 0.106

Mean (�) RMSE (�)
MLE 1.142 0.401

CLS 1.270 0.549

EMM 1.262 0.515
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4 Applications

The EMM estimator is now applied to estimating INARMA models for two data sets.

The �rst stems from the work of Fürth (1918). This is a set of observations of counts

taken every 5 seconds of the number of pedestrians present on a city block; these data

have been considered by, inter alia, Mills and Seneta (1989) and Jung and Tremayne

(2006b) but no fully satisfactory time series model seems to have been unearthed

because of the complex nature of the autocorrelation structure of these data. The

second consists of observations of internet download counts every 2 minutes introduced

by Weiß(2007, 2008). For comparison, MLE and CLS estimation results are also

reported, where available. For both data sets, the innovation term is envisioned as

being Poisson, thereby implying that they are equi-dispersed and this condition is

exploited in Aux.2.

4.1 Fürth Data

The Fürth data are depicted in Figure 1. The total number of observations is T = 505,

with a minimum of 0 and a maximum of 7 pedestrians observed in each 5 second time

period. The mean is 1:592 and the variance is 1:508; suggesting equi-dispersion and

conforming with the assumption of Poisson innovations. Inspection of the sample ACF

and PACF of the Fürth data in Figure 2 suggests that there are higher order dynamics

that will not be captured by either an INAR(1) model or an INMA(1) speci�cation.

The PACF displays spikes at lags 1 and 2 with positive and negative values respectively,

with the ACF displaying a cyclical pattern for higher order lags with a 30 second cycle

with peaks at lag 6 (30 seconds), lag 12 (1 minute) etc.

The prima facie di¢ culty of specifying an INMA(1) model is highlighted by the

fact that the �rst sample autocorrelation coe¢ cient is r1 = 0:665 from Figure 2, which

violates the restriction �1 < 0:5 needed for both continuous MA(1) and INMA(1)

speci�cations to be appropriate. Even allowing for a higher order lag by way of an

INAR(2) speci�cation still incurs problems as the �rst two ordinates of the ACF are

r1 = 0:665 and r2 = 0:323, thereby failing to satisfy the restriction r2 � r21 > 0 that is
needed for estimated AR parameters (based on autocorrelations, at any rate) to satisfyb�i 2 [0; 1) (see Jung and Tremayne, 2006b, eq. 4.5 for more details).
To circumvent the problems inherent in specifying either pure INAR or INMAmod-

els, Table 6 gives the EMM parameter estimates for a range of INARMAmodels for the

Fürth data. The most general speci�cation is based on the following INARMA(12,1)
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Figure 1: Fürth data representing the number of pedestrians on a city block observed
every 5 seconds, T = 505:

Figure 2: Sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the Fürth data. Lags expressed in 5-second intervals.
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model

xt = �1 � xt�1 + �6 � xt�6 + �12 � xt�12 + ut
yt = xt�1 + �1 � ut (15)

ut � Po (�) :

The choice of lags at 6 and 12 is based on the higher order lags observed in the ACF

and PACF given in Figure 2, although the t-statistic associated with the 12th lag

reported in Table 6 is statistically insigni�cant. Some intermediate lags at 2 and 5,

where also tried but ultimately discarded, as they did not contribute signi�cantly to

the estimated model. For comparison, the results from estimating lower order models

based on the INARMA(1,1), INAR(1) and INMA(1) models are also given; in the case

of the INAR(1) model, the MLE and CLS estimates are also presented. The CLS

estimates are not reported for the INMA(1) model as the estimates do not satisfy the

restriction 0 � �1 � 1. Following the approach outlined in Section 3.2, in computing
the estimated asymptotic standard errors of the EMMparameter estimates, the number

of searches used to compute the EMM estimates for each block size is set at 100: The

block sizes used for all model speci�cations are B = f32; 64; 128g which yield three
estimates of the variance corresponding to each of the EMM parameter estimates for

each model speci�cation. A regression of the three estimated variances on a constant

and the regressor f1=32; 1=64; 1=128g; produces an estimate of the long-run variance
�21 based on the intercept. Dividing the long-run estimate by the sample size T and

taking the square root of this expression yields the pertinent estimated asymptotic

standard error.

An important feature of the parameter estimates of the INARMA(12,1) model, as

well as the INARMA(1,1) and INMA(1) models, is that the estimate of the moving

average parameter, �1; is always above 0:9; with estimates that are often larger than

0:95. For the most general model the estimate equals the upper bound of unity. In

point of fact, this may not be surprising as a careful read of the original paper of Fürth

(1918, p.422) shows. In his syntax �Das Intervall [5 sec.] war so gewählt, daßein in

einem bestimmten Intervall eintretender Mensch mit grosser Wahrscheinlichkeit auch

im nächsten Intervall sich noch in dem Beobachtungsraum aufhielt�he indicates that

observations were made at intervals of length 5 seconds so that a person entering the

observation site in a given interval will, with high probability, remain there in the next

interval. Hence, a new arrival (birth, or innovation) entering the count at time t has

very little chance of being thinned at time t+ 1, thereby suggesting a moving average

parameter value of �1 = 1.
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The parameter estimates in Table 6 also show the gains from estimating the general

speci�cation of the INARMA(12,1) model as it yields the smallest estimate of the

residual variance of b� = 0:395; across all models. Excluding the higher order lags by
setting �6 = �12 = 0 in (15), results in an INARMA(1,1) model which yields higher

estimates of the residual variance, with values at around 0:473 in general. Imposing the

additional restriction of �1 = 0 and �tting an INAR(1) results in even higher estimates

of �; with the smallest estimate, based on MLE, being 0:5.

To gauge the ability of the alternative models to capture the dynamics in the data,

the ACF and PACF corresponding to the estimated models are given in Tables 7 and

8 respectively based on EMM parameter estimates in Table 6. The autocorrelations

and partial autocorrelations of each model are computed by simulating that model

for 1; 000; 000 observations and computing the ACF and PACF of the simulated data.

For the simple model speci�cations, such as the INAR(1) and INMA(1) models where

analytical expressions of the ACF and PACF are easily derived, the simulated estimates

are consistent with the theoretical values.

The INARMA(12,1) model captures the dynamics well for the short lags as well

as longer lags corresponding to the 30 second cycle. These statistics also demonstrate

the failure of the INAR(1) and the INMA(1) models to capture the dynamic structure

of the Fürth data. The INAR(1) model does a relatively poor job of capturing lags of

the ACF after the �rst. Unsurprisingly, it models the �rst lag of the PACF but not

the second and higher order lags of the PACF, while the INMA(1) yields the opposite

results. By comparison, the advantages in combining the autoregressive and moving

average structures in the case of the INARMA(1,1) model are evident as this model is

able to model the �rst few lags of both the ACF and PACF reasonably successfully.

The preferred model is the one with parameter estimates given in the top row

of Table 6 and estimated SACF and SPACF in the third columns of Tables 7 and 8,

respectively. The adequacy of this model is further investigated by using the parametric

resampling method suggested by Tsay (1992), who argues that a model may be deemed

adequate if it can successfully reproduce important features of the data; we opt to use

the �rst 20 observed SACF and SPACF ordinates of the Fürth data series given in

the leftmost columns of Tables 7 and 8, or, alternatively, in Figure 2. To implement

the idea, we generate 5000 arti�cial data sets of length T = 505 using the preferred

�tted model and iid Poisson innovations to yield 5000 SACFs and SPACFs. For each

ordinate of these the 100(1 � �=2)% and 100�=2% quantiles are used as acceptance

bounds. The model is adjudged to �t any particular feature adequately if the actual

value lies within the acceptance bounds. The results of this exercise for the Fürth data
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Figure 3: Estimated sample ACF and PACF of the INARMA(12,1) model with �1 = 1;
for the Fürth data. The 95% con�dence bounds are based on a parametric bootstrap
with 5000 replications.

are presented in Figure 3 using � = 0:05. It is seen that the �tted model faithfully

reproduces the main features of the sample autocorrelation properties of the data well.

4.2 Downloads

Figure 4 gives the number of downloads of IP addresses registered every 2 minutes

during a working day, 10am to 6pm, on the 29 of November 2005, at a computer at the

University of Würzburg, Germany. The total number of observations is T = 241, with

a range from 0 to a maximum of 8 downloads every 2 minutes. The sample mean and

variance are 1:315 and 1:392, respectively, suggesting little evidence of overdispersion.

The ACF and PACF given in Figure 5 both display spikes at lag 1, suggesting the

possibility of an INAR(1) model, though the ACF has no signi�cant higher order ACF

ordinates, or, perhaps, an INMA(1) though the PACF has no discernible higher order

ordinates. One might also consider an INARMA(1,1) model and even, possibly, higher

order lag e¤ects in a mixed model.

Parameter estimates of various INARMA models of the downloads data are pre-

sented in Table 9. The standard errors of the EMM parameter estimates are computed

in the same way that they are for the Fürth data with the exception that the number
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Table 6:

Estimates of INARMA models for the Fürth data. Standard errors in parentheses.

Model Estimator �1 �6 �12 � �1
INARMA(12,1) EMM Aux.1 0.575 0.073 0.043 0.395 1.000

(0.080) (0.042) (0.031) (0.085)
INARMA(1,1) EMM Aux.1 Lag = 2 0.504 0.473 0.955

(0.085) (0.098) (0.134)
Lag = 3 0.354 0.642 0.987

(0.086) (0.105) (0.120)
Aux.2 Lag = 2 0.504 0.473 0.955

(0.061) (0.067) (0.104)
Lag = 3 0.504 0.473 0.955

(0.058) (0.058) (0.149)

INAR(1) EMM Aux.1 Lag = 1 0.672 0.543
(0.061) (0.179)

Lag = 2 0.688 0.533
(0.030) (0.050)

Lag = 3 0.699 0.534
(0.036) (0.061)

Aux.2 Lag = 1 0.628 0.540
(0.016) (0.035)

Lag = 2 0.689 0.484
(0.020) (0.040)

Lag = 3 0.670 0.516
(0.021) (0.044)

INAR(1) MLE 0.688 0.500
(0.023) (0.041)

INAR(1) CLS 0.665 0.536
INMA(1) EMM Aux.1 Lag = 1 0.636 0.992

(0.156) (0.072)
Lag = 2 0.600 0.951

(0.174) (0.075)
Lag = 3 0.631 0.910

(0.226) (0.109)

Aux.2 Lag = 1 0.585 0.988
(0.156) (0.055)

Lag = 2 0.646 0.999
(0.214) (0.159)

Lag = 3 0.662 0.916
(0.198) (0.156)

28



Table 7:

Estimated ACF of alternative models for the Fürth data, based on EMM parameter
estimates in Table 6. The autocorrelations are computed by simulating each model

for 1; 000; 000 observations and computing the ACF of the simulated data.

Lag Actual INARMA(12,1) INARMA(12,1) INARMA(1,1) INAR(1) INMA(1)
(5 sec :) (0 < �1 < 1) (�1 = 1)
1 0.665 0.666 0.684 0.663 0.671 0.479
2 0.323 0.396 0.404 0.334 0.449 0.001
3 0.170 0.244 0.249 0.167 0.302 0.000
4 0.147 0.165 0.167 0.083 0.202 -0.001
5 0.141 0.135 0.134 0.040 0.135 -0.003
6 0.152 0.144 0.139 0.019 0.090 -0.003
7 0.114 0.138 0.135 0.010 0.061 -0.002
8 0.052 0.116 0.113 0.007 0.041 -0.001
9 0.073 0.094 0.093 0.005 0.028 0.001
10 0.138 0.081 0.079 0.004 0.019 0.004
11 0.168 0.079 0.076 0.003 0.013 0.003
12 0.194 0.091 0.087 0.002 0.010 0.001
13 0.157 0.092 0.089 0.001 0.008 0.000
14 0.076 0.079 0.076 0.001 0.006 0.000
15 0.028 0.063 0.061 0.001 0.005 0.000
16 0.061 0.049 0.049 0.002 0.004 0.000
17 0.095 0.040 0.040 0.002 0.003 0.001
18 0.079 0.037 0.036 0.003 0.004 0.002
19 0.038 0.035 0.034 0.004 0.005 0.002
20 0.016 0.033 0.031 0.004 0.005 0.003
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Table 8:

Estimated PACF of alternative models for the Fürth data, based on EMM parameter
estimates in Table 6. The partial autocorrelations are computed by simulating each
model for 1; 000; 000 observations and computing the PACF of the simulated data.

Lag Actual INARMA(12,1) INARMA(12,1) INARMA(1,1) INAR(1) INMA(1)
(5 sec :) (0 < �1 < 1) (�1 = 1)
1 0.665 0.666 0.684 0.663 0.671 0.479
2 -0.213 -0.087 -0.118 -0.189 -0.001 -0.296
3 0.099 0.027 0.040 0.055 0.001 0.201
4 0.066 0.021 0.016 -0.018 -0.001 -0.145
5 0.017 0.040 0.037 0.003 -0.001 0.101
6 0.079 0.065 0.061 -0.001 0.001 -0.076
7 -0.054 0.010 0.012 0.002 0.001 0.055
8 -0.018 0.002 -0.001 0.001 0.000 -0.041
9 0.111 0.009 0.011 0.001 0.000 0.033
10 0.061 0.015 0.013 0.001 0.000 -0.020
11 0.033 0.021 0.021 -0.001 0.001 0.016
12 0.097 0.037 0.034 0.000 0.001 -0.011
13 -0.053 0.004 0.004 0.000 0.001 0.008
14 -0.040 -0.001 -0.003 0.000 0.000 -0.006
15 0.006 0.001 0.003 0.000 0.001 0.003
16 0.053 0.000 0.000 0.001 -0.001 -0.003
17 0.019 0.002 0.002 0.000 0.002 0.004
18 -0.025 0.003 0.003 0.002 0.001 -0.001
19 -0.024 0.002 0.001 0.001 0.002 0.002
20 0.016 0.001 0.001 0.001 0.000 0.001
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Figure 4: The number of downloads of web addresses every 2 minutes during a work-
ing day, on the 29 of November 2005, at a computer at the University of Würzburg,
Germany, T = 241: We thank Christian Weißfor providing us the data.

Figure 5: Sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) of downloads data. Lags expressed in 2 minute intervals.
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Table 9:

Estimates of INARMA models for the downloads data. Standard errors in
parentheses.

Model Estimator �1 � �1
INAR(1) MLE 0.236 1.009

(0.063) (0.100)

INAR(1) CLS 0.221 1.029
INMA(1) CLS 1.029 0.283

INAR(1) EMM Aux.1 Lag = 1 0.264 1.030
(0.073) (0.148)

Lag = 2 0.198 1.134
(0.085) (0.166)

Lag = 3 0.222 1.008
(0.112) (0.211)

Aux.2 Lag = 1 0.247 1.012
(0.082) (0.161)

Lag = 2 0.153 1.052
(0.092) (0.165)

Lag = 3 0.191 1.015
(0.109) (0.202)

INMA(1) EMM Aux.1 Lag = 1 1.009 0.297
(0.119) (0.128)

Lag = 2 1.085 0.234
(0.123) (0.098)

Lag = 3 1.033 0.306
(0.168) (0.153)

Aux.2 Lag = 1 1.026 0.319
(0.122) (0.135)

Lag = 2 1.092 0.258
(0.107) (0.101)

Lag = 3 1.131 0.170
(0.145) (0.127)

INARMA(1,1) EMM Aux.1 Lag = 1 n.a. n.a. n.a.
Lag = 2 0.007 1.056 0.282

(0.070 ) (0.134) (0.116)
Lag = 3 0.007 1.056 0.282

(0.085) (0.157) (0.140)
Aux.2 Lag = 1 n.a. n.a. n.a.

Lag = 2 0.007 1.056 0.282
(0.066) (0.124) (0.121)

Lag = 3 0.007 1.056 0.282
(0.095) (0.164) (0.137)
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Table 10:

Estimated ACF and PACF of alternative models for the downloads data, based on
EMM parameter estimates in Table 9 using Aux.1 with 3 lags. The autocorrelations
and partial autocorrelations are computed by simulating each model for 1; 000; 000

observations and computing the ACF and the PACF of the simulated data.

Lag ACF
(2min :) Actual INAR(1) INMA(1) INARMA(1,1)
1 0.221 0.223 0.236 0.223
2 0.036 0.049 0.000 0.000
3 -0.003 0.011 -0.001 0.000
4 0.059 0.002 -0.001 -0.001
5 0.063 0.001 -0.001 0.000
Lag PACF

(2min :) Actual INAR(1) INMA(1) INARMA(1,1)
1 0.221 0.223 0.236 0.223
2 -0.012 -0.001 -0.059 -0.052
3 -0.009 0.000 0.014 0.013
4 0.067 0.000 -0.004 -0.004
5 0.037 0.000 0.001 0.001

of blocks chosen is now B = f16; 32; 64; 128g ; with the smallest block size of 16 chosen
as of result of the relatively simple correlation structure of the downloads data.

The �rst set of results in Table 9 is for the INAR(1) model advocated by Weiß

(2007, 2008), who compiled the data; MLE, CLS and EMM generally yield similar

inferences. Using an INMA(1) speci�cation instead yields CLS and EMM estimators

of the moving average parameter, �1; around 0:3: The EMM results from extending

the model to an INARMA(1,1) speci�cation provide strong support for the INMA(1),

as the moving average estimate (0:282) dominates the autoregressive estimate (0:007)

with the latter being statistically insigni�cant. This �nding is further supported by the

sample ACF and PACF of the alternative estimated models given in Table 10, where

EMM parameter estimates from Table 9 are used. Finally, a parametric bootstrap

exercise similar to that reported in the previous sub-section for the Fürth data is also

conducted for these downloads data; the results are portrayed in Figure 6 and indicate

the adequacy of the �tted INMA(1) speci�cation. The strong evidence in favour of

the INMA(1) model for the downloads data contrasts with the INAR(1) speci�cation

discussed by Weiß.
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Figure 6: Estimated sample ACF and PACF of the INMA(1) model for the downloads
data. The 95% con�dence bounds are based on a parametric bootstrap with 5000
replications.

5 Conclusions

This paper advocates the use of E¢ cient Method of Moments estimators in binomial

thinning models for count time series. The methods are easy to implement and espe-

cially useful when moving average components are speci�ed. Where comparison with

other estimators, such as CLS and MLE, is feasible the EMM procedure is generally

superior to the former and rarely noticeably inferior to the latter on the basis of bias

and mean squared error computations from Monte Carlo experimentation. In the last

substantive section of the paper, we apply the foregoing ideas to two data sets for which

satisfactory data generating mechanisms do not seem to have been provided hitherto.

Each proves to have a signi�cant moving average component, thereby exemplifying the

usefulness of the EMM approach, since such speci�cations cannot be readily �tted by

maximum likelihood methods.
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