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Abstract

We study the formation of a ruling coalition in political environments. Each individual is
endowed with a level of political power. The ruling coalition consists of a subset of the individuals
in the society and decides the distribution of resources. A ruling coalition needs to contain enough
powerful members to win against any alternative coalition that may challenge it, and it needs to
be self-enforcing, in the sense that none of its subcoalitions should be able to secede and become
the new ruling coalition. We first present an axiomatic approach that captures these notions and
determines a unique self-enforcing ruling coalition. We then construct a simple dynamic game that
encompasses these ideas and propose the notion of sequentially weakly dominant equilibrium as an
equilibrium concept. We prove that this dynamic game generically has a unique sequentially weakly
dominant equilibrium, and this equilibrium coincides with a particular type of trembling hand
perfect equilibrium. We then show the equivalence of these equilibria to the self-enforcing ruling
coalition emerging from the axiomatic approach and also to the core of a related non-transferable
utility cooperative game.

The substantive conclusions of our analysis relate to the structure of ruling coalitions. The
nature of the ruling coalition is determined by the power constraint, which requires that the ruling
coalition be powerful enough, and by the enforcement constraint, which imposes that no subcoalition
of the ruling coalition that commands a majority is self-enforcing. The major insight that emerges
from this characterization is that the coalition is made self-enforcing precisely by the failure of
its winning subcoalitions being self-enforcing. This is most simply illustrated by the following
simple finding: with majority rule, while three-person (or larger) coalitions can be self-enforcing,
two-person coalitions are generically not self-enforcing. Therefore, the reasoning in this paper
suggests that three-person juntas or councils should be much more common than two-person ones.
In addition, we provide conditions under which the grand coalition will be the ruling coalition and
conditions under which the most powerful individuals will not be included in the ruling coalition.
We also use this framework to discuss endogenous party formation.



1 Introduction

The central question of political economy is the determination of the collective choices of groups

(e.g., Austen-Smith and Banks, 1999). The celebrated Arrow (im)possibility theorem, however,

implies that there is relatively little that can be said about collective choices in general environ-

ments (Arrow, 1951). This has motivated much of the current political economy literature, which

focuses on collective choices under specific institutions (such as legislative bargaining) or under re-

strictive assumptions on the preferences of individuals making up the group (such as single-peaked

preferences).

An alternative approach to collective decisions over the distribution of scarce resources directly

starts from the conflict between individuals (or groups) and their unequal power in the process

of making collective choices. For example, we may expect individuals with access to guns and

resources to be more influential (“politically more powerful”). In this paper, we investigate col-

lective choices in societies with distributional conflict and different distributions of political power

among individuals. More specifically, we ask: how does the society consisting of individuals with

different degrees of political power decide the allocation of resources? Do more politically-powerful

individuals necessarily receive greater weight in collective choices? What general lessons can we

draw about the structure of ruling coalitions?

We consider a society consisting of a finite number of individuals, each with an exogenously given

level of political power.1 A group’s power is the sum of the power of its members. The society has a

fixed resource, for example a pie of size 1, to be distributed among all individuals. We assume that

a ruling coalition consisting of a subset of the society’s members distributes this resource among its

members according to their political power. A ruling coalition is defined as a group of individuals

that has total power more than α ∈ [1/2, 1) times the power of all the individuals in society

and has no subcoalition that would like to secede and become the new ruling coalition. Loosely

speaking, this implies that the ruling coalition is subject to two constraints; a power constraint

and an enforcement constraint, the first requiring the ruling coalition to be powerful enough, and

the second imposing that the ruling coalition should not contain any self-enforcing subcoalition. A

subcoalition will be self-enforcing, in turn, if its own winning subcoalitions are not self-enforcing.

Intuitively, any subcoalition that is self-enforcing will secede from the original coalition and obtain

more for its members. Subcoalitions that are not self-enforcing will prefer not to secede, because

some of their members will realize that they will be left out of the ultimate ruling coalition at the

1Throughout, we will work with a society consisting of individuals. Groups that have solved their internal collective
action problem and have well-defined preferences can be considered as equivalent to individuals in this game.
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next round of secession (elimination).

One of the simple but interesting implications of these interactions is that generically (in a

sense to be made precise below), two-person coalitions, duumvirates, cannot be ruling coalitions,

but three-person coalitions, triumvirates, can be.2 This result contains many of the key ideas of

the paper, and therefore, we start with a simple example that illustrates it.

Example 1 Consider two agents A and B with powers γA > 0 and γB > 0 and assume that the

decision-making rule requires power-weighted majority (i.e., α = 1/2). If γA > γB, then starting

with a coalition of agents A and B, the agent A will form a majority by himself. Conversely, if

γA < γB, then agent B will form a majority. Thus “generically” (i.e., as long as γA 6= γB), one of

the members of the two-person coalition can secede and form a subcoalition that is powerful enough

within the original coalition. Since each agent will receive a higher share of the scarce resources in

a coalition that consists of only himself than in a two-person coalition, the two-person coalition is

not self-enforcing. We therefore say that a two-person coalition, a duumvirate, is generically not

self-enforcing.

Now, consider a coalition consisting of three agents A, B and C with powers γA, γB and γC ,

and suppose that γB + γC > γA > γB > γC . Clearly no two-person coalition is self-enforcing.

The lack of self-enforcing subcoalitions of (A,B,C), however, implies that (A,B,C) is itself self-

enforcing. To see this, suppose, for example, that a subcoalition of (A,B,C), (B,C) considers

seceding from the original coalition. They can do so since γB + γC > γA. However, we know

from the previous paragraph that the subcoalition (B,C) is itself not self-enforcing, since after this

coalition is established, agent B would secede or “eliminate” C. Anticipating this, agent C would

not support the subcoalition (B,C). A similar argument applies for all subcoalitions. Moreover,

since agent A is not powerful enough to secede from the original coalition by himself, the three-

person coalition (A,B,C) is self-enforcing. Consequently, a triumvirate can be self-enforcing and

become the ruling coalition.

Next, consider a society consisting of four individuals and to illustrate the main ideas, suppose

that we have γA = 3, γB = 4, γC = 5 as well as an additional individual, D, with power γD = 10.

D’s power is insufficient to eliminate the coalition (A,B,C) starting from the initial coalition

(A,B,C,D). Nevertheless, D is stronger than any two of A,B,C. This implies that any three-

person coalition including D would not be self-enforcing. Anticipating this any two of (A,B,C)

would resist D’s offer to secede and eliminate C. However, (A,B,C) is self-enforcing, thus the

2Duumvirate and triumvirate are, respectively, the terms given to two-man and three-man executive bodies in
Ancient Rome.
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Figure 1: The Power Constraint

three agents would be happy to eliminate D. Therefore, in this example, the ruling coalition again

consists of three individuals, but interestingly excludes the most powerful individual D.

Naturally, it is not always the case that the most powerful individual will be eliminated. This

can be seen by considering an alternative society with γA = 2, γB = 4, γC = 7 and γD = 10. In

this case, among the three-person coalitions only (B,C,D) is self-enforcing, thus B,C and D will

eliminate the weakest individual, A, and become the ruling coalition.

This example highlights the central roles of the power and the enforcement constraints. These

two constraints can also be illustrated diagrammatically. Figure 1 depicts the power constraint

for a society with three members, (A,B,C). The two dimensional simplex in the figure represents

the powers of the three players (with their sum normalized to 1 without loss of any generality).

The shaded area is the set of all coalitions where the subcoalition (A,B) is winning. The power

constraint is parallel to the AB facet of the simplex, which is a general feature. Power constraints

are always hyperplanes parallel to a certain facet of the corresponding simplex.

The enforcement constraint (for a subcoalition), on the other hand, defines the area, where, if

other players are eliminated, the subcoalition still remains self-enforcing. Figure 2, for example,

depicts the enforcement constraint for the subcoalition (A,B) when player C is eliminated for a

game with α > 1/2. When N = 3, the enforcement constraint always defines a cone (when N > 3,

it is a quasi-cone, a cone with the vertex being replaced by a facet of the simplex). In the case

where α = 1/2, this cone becomes a straight line perpendicular to the AB facet.

Using this figure, we can see for which distribution of powers the subcoalition (A,B) can emerge

as the ruling coalition within (A,B,C). First, it needs to be powerful enough, i.e., lie in the shaded

area in Figure 1. Second, it needs to be self-enforcing, i.e., lie in the cone of enforcement in Figure

2. Clearly, when α = 1/2, only a segment of the line where the powers of A and B are equal

can satisfy these constraints, which captures the result in Example 1 that a two-person coalition
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Figure 2: The Enforcement Constraint

cannot become a ruling coalition under majority rule. More generally, given an allocation of powers

{γi}, a coalition X can only threaten the stability of the allocation if {γi} if it satisfies the power

constraint for coalition X (that is, X must be winning) and it lies within the enforcement cone

(that is, X must be self-enforcing).

Our first result is that an axiomatic approach to the determination of the ruling coalition using

these two notions is sufficient to determine a unique ruling coalition in generic games. We achieve

this by defining a mapping from the set of coalitions of the society into itself and imposing some

minimal conditions capturing the power and the enforcement constraints (as well as an individual

rationality type condition). The coalition determined by this map applied to the entire set of

players gives the self-enforcing ruling coalition.

That this axiomatic approach and the notion of self-enforcing ruling coalition capture important

aspects of the process of coalition formation in political games is reinforced by our analysis of a

simple dynamic game of coalition formation. In particular, we consider a dynamic game where at

each stage a subset of the agents forms a coalition and “eliminates” those outside the coalition. The

game ends when an ultimate ruling coalition, which does not want to engage in further elimination,

emerges. This ultimate ruling coalition divides the scarce resource among its members according

to their power. The important assumption here is that there is no possibility of commitment to the

division of the resources once the ruling coalition is established. This no-commitment assumption is

natural in political games, since it is impossible to make commitments or write contracts on future

political decisions.3 We then establish the generic existence and uniqueness of a sequentially weakly

3See Acemoglu and Robinson (2006) for a discussion. Browne and Franklin (1973), Browne and Frendreis (1980),
Schoffield and Laver (1985) and Warwick and Druckman (2001) provide empirical evidence consistent with the notion
that ruling coalitions share resources according to the powers of their members. For example these papers find a
linear relationship between parties’ shares of parliamentary seats (a proxy for their political power) and their shares
of cabinet positions (“their share of the pie”). Ansolabehere et al (2005) find a similar relationship between cabinet
positions and voting weights (which are even more closely related to political power in our model) and note that:
“The relationship is so strong and robust that some researchers call it ‘Gamson’s Law’ (after Gamson, 1961, which
was the first to predict such a relationship)”.
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dominant equilibrium and a Markov trembling hand perfect equilibrium of this dynamic game,4

and we show that the equilibrium outcomes coincide with the self-enforcing ruling coalition derived

from the axiomatic approach. Finally, we also show that the same solution emerges when we model

the process of coalition formation as a non-transferable utility cooperative game incorporating the

notion that only self-enforcing coalitions can implement publications that give high payoff to their

members.

All of these approaches give the same solution because they capture the same salient features of

the process of collective decision-making. First, the distribution of power matters for the resolution

of conflict among the members of the society. Second, coalitions between different individuals

emerge in equilibrium. Third, a more powerful individual need not obtain a greater share of

resources in society, since the distribution of resources will be determined in equilibrium, depending

on what types of coalitions form.

Our substantive results relate to the structure of ruling coalitions in this environment. In

particular:

1. There always exists a self-enforcing ruling coalition and can be computed by induction.

2. Despite the simplicity of the environment, the ruling coalition can be of any size relative to the

society, and may include or exclude more powerful individuals in the society. Consequently,

the equilibrium payoff of an individual is not monotone in his power.

3. Self-enforcing coalitions are generally “fragile”. For example, under majority rule, i.e.,

α = 1/2, adding or subtracting one player from a self-enforcing coalition makes it non-

self-enforcing.

4. Nevertheless, self-enforcing ruling coalitions are continuous in the distribution of power across

individuals in the sense that itself-enforcing ruling coalition remains so when the powers of

the players are perturbed by a small amount.

5. Coalitions of certain sizes are more likely to emerge as the ruling coalition. For example, with

majority rule, the ruling coalition cannot (generically) consist of two individuals. Moreover,

again under majority rule, coalitions where members have roughly the same power exist only

when the coalition’s size is 2k − 1 where k is an integer.
4 In fact, we establish the more general result that all agenda-setting games (as defined below) have a sequentially

weakly dominant equilibrium and a Markov trembling hand perfect equilibrium.
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6. The most powerful individual will typically be excluded from the self-enforcing ruling coali-

tion, unless he is powerful enough to win by himself or weak enough so as to be part of smaller

self-enforcing coalitions.

7. Somewhat paradoxically, an increase in α–that is an increase in the degree of supermajority

necessary to make decisions–does not necessarily lead to larger ruling coalitions.

Our paper is related to a number of different literatures. The first is the social choice literature

(e.g., Austen-Smith and Banks, 1999). The difficulty of determining the social welfare function of a

society highlighted by Arrow’s theorem is related to the fact that the core of the game defined over

the allocation of resources is empty. As we establish below, our approach is equivalent to looking

at a weaker notion than the core, whereby only “self-enforcing” coalitions are allowed form. Our

paper therefore contributes to the collective choice literature by considering a different notion of

aggregating individual preferences and establishes that such aggregation is possible.

Our work is also related to models of bargaining over resources, both generally and in the

context of political decision-making. In political economy (collective choice) context, two different

approaches are worth noting. The first is given by the legislative bargaining models (e.g., Baron

and Ferejohn, 1989, Calvert and Dietz, 1996, Jackson and Boaz, 2002), which characterize the

bargaining outcomes among a set of players by assuming specific game-forms approximating the

legislative bargaining process in practice. Our approach differs from this strand of the literature,

since we do not impose any specific bargaining structure. The second strand includes Shapley and

Shunik (1954) on power struggles in committees and the paper by Aumann and Kurz (1977), which

looks at the Shapley value of a bargaining game in order to determine the distribution of resources in

the society. Our approach is different since we focus on the endogenously-emerging ruling coalition

rather than bargaining among the entire set of agents in a society or in an exogenously-formed

committee.

At a more abstract level, our approach is a contribution to the literature on equilibrium coalition

formation, which combines elements from both cooperative and noncooperative game theory (e.g.,

Hart and Kurz, 1983, Aumann and Myerson, 1988, Greenberg and Weber, 1993, Chwe, 1994, Bloch,

1996, Ray and Vohra, 1999, Konishi and Ray, 2001, Maskin, 2003).5 The most important difference

between our approach and the previous literature on coalition formation is that, motivated by

political settings, we assume that the majority (or supermajority) of the members of the society

5Like some of these papers, our approach can be situated within the “Nash program” since our axiomatic approach
is supported by an explicit extensive form game (Nash, 1953). See Serrano (2004) for a recent survey of work on the
Nash program.
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can impose their will on those players who are not a part of the majority.6 This feature both

changes the nature of the game and also introduces “negative externalities” as opposed to the

positive externalities and free-rider problems on which the previous literature focuses (see, for

example, Ray and Vohra, 1999, Maskin, 2003). A second important difference is that most of these

works assume the possibility of binding commitments (see again Ray and Vohra, 1999), while we

suppose that players have no commitment power. In addition, many previous approaches have

proposed equilibrium concepts for cooperative games by restricting the set of coalitions that can

block an allocation. Osborne and Rubinstein (1994, chapter 14) gives a comprehensive discussion

of many of these approaches. Our paper is also a contribution to this literature, since we propose a

different axiomatic solution concept. To the best of our knowledge, neither the axiomatic approach

nor the specific cooperative game form nor the dynamic game we analyze in this paper have been

considered in the previous literatures on cooperative game theory or coalition formation.

The rest of the paper is organized as follows. Section 2 introduces the basic political game

and contains a brief discussion of why it captures the salient features of political decision-making.

Section 3 provides our axiomatic treatment of this game. It introduces the concept of self-enforcing

ruling coalition and proves its generic uniqueness. Section 4 considers a dynamic game of coalition

formation and a number of equilibrium concepts for this type of extensive-form games. It then

establishes the equivalence between the self-enforcing ruling coalition of Section 3 and the equi-

libria of this extensive-form game. Section 5 introduces the cooperative game and establishes the

equivalence between the unique core allocation of this game and the self-enforcing ruling coalition.

Section 6 contains our main results on the nature and structure of ruling coalitions in political

games. Section 7 considers a number of extensions such as endogenous party formation and volun-

tary redistribution of power within a coalition. Section 8 concludes and the Appendix contains all

the proofs not provided in the text as well as a number of examples to further motivate some of

our equilibrium concepts.

2 The Political Game

We now describe the environment for collective decision-making. Consider a society consisting of

a finite set of individuals N = {1, 2, ..., |N |}. The society has a resource of size 1 to be distributed

among these individuals. Each individual has strictly increasing preferences over his share of the

resource and does not care about how the rest of the resource is distributed. The distribution of this
6This is a distinctive and general feature of political games. In presidential systems, the political contest is winner-

take-all by design, while in parliamentary systems, parties left out of the governing coalition typically have limited
say over political decisions. The same is a fortiori true in dictatorships.
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scarce resource is the key political/collective decision. This abstract formulation is general enough

to nest collective decisions over taxes, transfers, public goods or any other collective decisions.

Our focus is how differences in the powers of individuals (or groups) map into political decisions.

For this reason, we assume that each individual i ∈ N is endowed with political power γi ∈ R++
(where R++ = R+\ {0}). For every set X denote the set of its subsets by P (X). Any element

X ∈ P (N) is called a coalition. The value

γX =
X
i∈X

γi (1)

is called the power of coalition X

We assume that collective decisions require a (super)majority. In particular, let α ∈ [1/2, 1)

be a number characterizing the degree of supermajority necessary for a coalition to implement

any decision. The link between α and supermajority or majority rules is based on the following

definition.

Definition 1 Suppose X ∈ P (N) and Y ∈ P (N). The coalition Y is winning within X if

γY > αγX .

Coalition Y ⊂ N is called winning if it is winning within N .

Clearly, γY > αγX is equivalent to γY > αγX\Y / (1− α). This illustrates that when α = 1/2

a winning coalition Y within X needs to have a majority (within X) and when α > 1/2, it needs

to have a supermajority. Trivially, if Y1 and Y2 are winning within X then Y1 ∩ Y2 6= ∅.

Given this description, we define an abstract political game as Γ =
¡
N, {γi}i∈N , α

¢
. We refer

to Γ as an abstract game to distinguish it from the extensive-form and cooperative games to be

introduced below. In particular, for game Γ, we do not specify a specific extensive form, but proceed

axiomatically.

We assume that in any political game, the decision regarding the division of the resource will

be made by some ruling coalition. In particular, we assume that if X is a ruling coalition, then

it distributes the scarce resource among its members according to their power. In particular, if

X ⊂ N is a ruling coalition, then the share of the resource received by any player i ∈ N is given by

wi (X) =
γX∩{i}
γX

=

½ γi
γX

if i ∈ X

0 if i /∈ X
. (2)

Evidently, for any X ⊂ N , X
i∈N

wi (X) = 1.

8



The assumption that a ruling coalition decides the distribution of resources is without any loss

of generality. The assumption that resources are distributed according to the power of the members

of the ruling coalition is also not very restrictive; we will focus on pure strategies and all players

have strictly increasing preferences over their share, thus any sharing rule within the ruling coalition

that gives weakly greater shares to more powerful members will lead to similar results.

The more important assumption introduced so far is that a coalition cannot commit to a

distribution of resources among its members. For example, a coalition consisting of two individuals

with powers 1 and 10 cannot commit to giving the entire resource to the first individual if it becomes

the ruling coalition. This assumption will play an important role in our analysis. We view this as

the essence of political-economic decision-making processes; political decisions are made whichever

group has political power at the time, and ex ante commitments to future political decisions are

generally not possible (see the discussion and references in footnote 3).

Since equation (2) uniquely defines the division of the resource given the ruling coalition, the

outcome of any game can be represented by its ruling coalition alone. More formally, let G be the

set of all possible games of the form Γ =
¡
N, {γi}i∈N , α

¢
. The outcome function determines a

subset of N as the ruling coalition for any game
¡
N, {γi}i∈N , α

¢
, i.e.,

Φa : G → P (N) .

In this paper, we are interested with the properties of this outcome function. In particular, we

wish to understand what types of ruling coalitions will emerge from different games, what the size

of the ruling coalition will be, when it will include the more powerful agents, when it will be large

relative to the size of the society (i.e., inclusive).

In the text, we focus on games that satisfy the following genericity assumption (see Appendix

B for generalizations).

Assumption 1 Numbers {γi}i∈N are generic in the sense that there does not exist coalitions X

and Y of N such that X 6= Y , γX = γY or αγX = (1− α) γY .

Intuitively, this assumption rules out distributions of powers among individuals such that two

different coalitions will have exactly the same total power or a ratio α/ (1− α) of each other’s power

(these two conditions are clearly the same when α = 1/2). The reason for ruling out such coalitions

is that, when they exist, they will lead to a type of non-uniqueness, which leads to uninteresting

technical problems. Notice that this assumption is without much loss of generality since for any

society N the set of vectors of (γ1, ..., γN ) ∈ R
|N |
++ that fail to satisfy Assumption 1 are of Lebesgue
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measure 0 in R|N |++ (in fact, it has Lebesgue measure 0 in any subset of R
|N |
++ with nonempty interior).

For this reason, when a property holds under Assumption 1, we will say that it holds generically.

3 Axiomatic Analysis

We begin with an axiomatic analysis. Our focus is to determine some general features of the

outcome function Φa defined above when we impose certain natural axioms. Our analysis and

axioms are motivated by the discussion in the Introduction, which suggested two constraints; the

power constraint and the enforcement constraint. In particular, we would like the outcome function

to pick a winning coalition (according to Definition 1) and to be able to withstand challenges from

coalitions that satisfy the enforcement constraint (i.e., from coalitions that are self-enforcing). We

will call such a coalition a self-enforcing ruling coalition.

The basis of our axiomatic treatment is to fix a game Γ =
¡
N, {γi}i∈N , α

¢
with α ∈ [1/2, 1)

and define a selection mapping φΓ, which selects a subcoalition Y of any coalition X of N as a

“self-enforcing” winning coalition within X. To simplify notation, we drop the dependence on

Γ and refer to this mapping as φ whenever this will cause no confusion. Formally, for a given

Γ =
¡
N, {γi}i∈N , α

¢
, we have

φ : P (N)→ P (N) .

In the spirit of the power and the enforcement constraints, we adopt the following axioms on φ.

Fix a game Γ =
¡
N, {γi}i∈N , α

¢
. Then we impose:

Axiom 1 (Power) For any X ∈ P (N) and Y ∈ P (X), φ (X) = Y implies that γY ≥ αγX .

Axiom 2 (Enforcement) For any X ∈ P (N) and Y ∈ P (X), φ (X) = Y implies that φ (Y ) =

Y .

Axiom 3 (Individual Rationality) For any X ∈ P (N) and Y ∈ P (X), φ (X) = Y implies that

γY ≤ γZ for all Z ∈ P (X) such that γZ ≥ αγX and φ (Z) = Z.

We say that a coalition X ∈ P (N) is a self-enforcing ruling coalition if φ (N) = X.

All three axioms are natural. The first one, the power axiom, requires that the winning coalition

has sufficient power according to Definition 1. The second axiom, the enforcement axiom, simply

states that a self-enforcing winning coalition should be self-enforcing, i.e., it should select itself.

The final axiom requires that if there are multiple self-enforcing winning coalitions, the one with

the minimal power should be selected. This is an individual rationality type axiom. To see this,

10



note that since α ≥ 1/2, if there exist two self-enforcing winning coalitions Y and Z, they cannot be

disjoint, i.e., Y ∩Z 6= ∅. Given the division rule in (2), the common members of these two coalition

would be better off with whichever coalition has less total power, and thus individual rationality

dictates that they should join the least powerful self-enforcing winning) coalition. Axiom 3 imposes

this requirement.

The main result of the axiomatic analysis is the following theorem.

Theorem 1 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
with α ∈ [1/2, 1) and suppose that Assumption

1 holds. Then there exists a unique mapping φ that satisfies Axioms 1-3. Moreover, φ is single-

valued.

Proof. The proof is by induction. Start with a singleton {i}. Clearly φ ({i}) = {i} satisfies Axioms

1-3, and φ ({i}) = ∅ fails to do so. Thus the mapping φ is uniquely defined and single-valued for

X such that |X| = 1. Next suppose that φ is uniquely determined for all Z such that |Z| ≤ n and

consider X, where |X| = n+1. Consider all Y ⊂ X such that γY ≥ αγX , and denote the set of all

such Y ’s by XY . By definition, φ (Y ) is determined for all Y ∈ XY . If there exists Y1, ..., Yk ∈ XY

such that φ (Yj) = Yj for j = 1, ..., k, then by Axioms 1-3 and Assumption 1 φ (X) is uniquely

determined as φ (X) = Yk0 such that γYk0 < γYj for all j = 1, ..., k, j 6= k0 (since by Assumption 1,

that cannot exist two subsets of XY with the same power). Suppose that XY is empty. Then from

Axioms 1-2, φ (X) = X. This implies that φ is uniquely defined and single-value for all sets X with

|X| = n+ 1. This completes the proof of the induction step and thus the proof of the theorem.

At first, Axioms 1-3 may appear relatively mild. Nevertheless, they are strong enough to pin

down a unique mapping φ, which is also single-valued. The more substantive part of Theorem 1 is

the existence and uniqueness of the mapping φ. That it is single-valued follows in view of Axiom

3 and Assumption 1.

Motivated by Axioms 1-3 and Theorem 1, throughout we refer to coalitionsX such that φ (X) =

X as self-enforcing coalitions.

The fact that φ is single-valued implies the following corollary.

Corollary 1 Under the assumptions of Theorem 1, there exists a unique self-enforcing ruling coali-

tion.

Proof. This immediately follows since φ (N) exists and is unique.

Theorem 1 and Corollary 1 are stated under Assumption 1. The mapping φ is still well defined

when this assumption is relaxed, but it is no longer single-valued. Theorem 6 in Appendix C deals
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with this case. To simplify the exposition, throughout the text we focus on generic games where

Assumption 1 holds.

To illustrate the results of Theorem 1 and Corollary 1, let us return to Example 1 from the

Introduction.

Example 1 (continued) For continuity with that example, let the players be denoted by

A, B and C (rather than 1, 2 and 3) and suppose that α = 1/2. For any γA < γB < γC

that satisfy Assumption 1 and γA + γB > γC , φ ({A,B,C}) = {A,B,C}. To see this, it suffices

that under Assumption 1, φ ({A,B}) 6= {A,B}, φ ({A,C}) 6= {A,C} and φ ({B,C}) 6= {B,C}.

Therefore, φ ({A,B,C}) cannot be a doubleton, since there exists no two-person coalition X that

can satisfy Axiom 2. Moreover, φ ({A,B,C}) could not be a singleton, since, in view of the fact that

γA+γB > γC , no singleton could satisfy Axiom 1. Since φ ({A,B,C}) exists by Theorem 1, it must

be that φ ({A,B,C}) = {A,B,C}. We can also see where this line of argument would go wrong if

Assumption 1 were not satisfied. In that case, we could have γA = γB, and φ ({A,B}) = {A,B}.

As long as γC > γA = γB, φ ({A,B,C}) would still be well-defined and single-valued. However, if

we also had γA = γB = γC , φ ({A,B,C}) could be any two-person coalition, and thus the mapping

φ would no longer be single valued.

We next characterize the φmapping and determine the structure and properties of self-enforcing

ruling coalitions. Before doing this, however, we will present a dynamic game and then a cooperative

game, which will further justify our axiomatic approach. Our analysis of these games will also

provide us with an inductive way of determining φ (X) for any set X.

4 A Dynamic Game of Coalition Formation

In this section, we introduce a dynamic game of coalition formation. We then discuss several

equilibrium concepts for dynamic games of this kind, and show that for reasonable equilibrium

concepts, the unique equilibrium (under Assumption 1) will coincide with the self-enforcing ruling

coalition defined in the previous section.

4.1 The Basic Game Form

Consider a society N consisting of a finite number of individuals, with a distribution of power

{γi}i∈N , and an institutional rule α ∈ [1/2, 1). We will denote the corresponding extensive-form

game by Γ̂ =
¡
N, {γi}i∈N , α

¢
. Note that Γ̂ is different from Γ defined in the previous section, since

it refers to the extensive form game described next.
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Let ε > 0 be a small number. Then the extensive form of the game Γ̂ is as follows.

1. At each stage, j = 0, 1, ..., the game starts with an intermediary coalitions by Nj ⊂ N (with

N0 = N).

2. Nature randomly picks agenda setter ijq ∈ Nj for q = 1 (i.e., a member of the coalition Nj).

3. Agenda setter ijq proposes a coalition Xjq ∈ P (Nj).

4. All players in Xjq vote over this proposal. Let Yes
©
Xjq

ª
be the subset of Xjq voting in favor

of this proposal. Then, if X
i∈Yes{Xjq}

γi > α
X
i∈Nj

γi,

i.e., if Xjq is winning within Nj (according to Definition 1), then we proceed to step 5;

otherwise we proceed to step 6.

5. If Xjq = Nj , then we proceed to step 7 and the game ends. Otherwise players from Nj \Xjq

are eliminated, players from Xjq add −ε to their payoff, and the game proceeds to step 1

with Nj+1 = Xjq (and j increases by 1).

6. If q < |Nj |, then next agenda setter ijq+1 ∈ Nj is randomly picked by nature such that

ijq+1 6= ijr for 1 ≤ r ≤ q (i.e., it is picked among those who have not made a proposal at stage

j) and the game proceeds to step 3 (with q increased by 1). Otherwise, we proceed to step 7.

7. Nj is becomes the ultimate ruling coalition (URC) of this terminal node, and each player

i ∈ Nj adds wi (Nj) to his payoff as given by (2).

In other words, coalitions that emerge during the game form a sequence N0 ⊃ N1 ⊃ . . . ⊃ Nj̄

where j̄ is the number of coalitions (except initial one) that emerges during the game. Summing

over the payoffs at each node, the payoff of each player i in game Γ̂ is given by

Ui = wi (Nj̄)− ε
X
1≤j≤j̄

INj̄ (i) , (3)

where IX (·) is the indicator (characteristic) function of set X. This payoff function captures the

fact that individuals’ overall utility in the game is related to their share wi and to the number of

rounds of elimination in which the individual is involved in (the second term in (3)).

With a slight abuse of terminology, we refer to j above as “the stage of voting,” so that if the

ultimate ruling coalition is reached when j = 0, we say that the game ended in the first stage of

voting.

13



Without loss of any generality, we assume that this is a game of perfect information, in particular

after each time voting takes place each player’s vote become common knowledge.

Throughout, we focus on the case where ε is arbitrarily small. The cost ε can be interpreted

as a cost of eliminating some of the players from the coalition or as an organizational cost that

individuals have to pay each time a new coalition is formed. Its role for us is to rule out some

unintuitive equilibria that arise in dynamic voting games. Example 3 below illustrates the types of

equilibria that arise when ε = 0.

Note that Γ̂ is a finite game; it ends after no more than |N | (|N |+ 1) /2 iterations because

the size of a coalition as a function of the voting stage j defines a non-increasing sequence over a

compact set and necessarily converges, determining an ultimate ruling coalition. Consequently, the

extensive-form game Γ̂ necessarily has a subgame perfect Nash equilibrium (SPNE). However, as

the next example shows, there may be many SPNEs, some of them unintuitive.

Example 2 Consider N = {1, 2, 3, 4}, with γ1 = 2,γ2 = 4, γ3 = 7 and γ4 = 10, and suppose that

α = 1/2. From Theorem 1, it can be seen that φ ({1, 2, 3, 4}) = {1, 2, 3}. Now suppose that nature

picks player 1 as the initial proposer, and this player proposes X1 = {1, 2, 3}. It may appear natural

to imagine that this coalition will receive the majority of the votes. Nevertheless, for reasons that

are familiar from voting games more generally, this may not be the case. For example, all four

players voting against this proposal constitutes a best response for each player, since no single player

can change its vote and affect the voting outcome. Consequently, both {1, 2, 3, 4} and {1, 2, 3} can

emerge as subgame perfect equilibrium URCs, even though the former is not a reasonable outcome,

since 1, 2 and 3 have enough votes to eliminate 4. In voting games, equilibria like the one involving

{1, 2, 3, 4} as the URC are eliminated by focusing on weakly dominant strategies. In particular,

voting in favor ofX1 is a weakly dominant strategy for players 1, 2 and 3. However, it can be verified

that in a multi-stage voting game voting against coalitions like X1 need not be a weakly dominated

strategy (see Example 4 in Appendix A). For this reason, in the next section, we introduce the

concept of sequentially weakly dominant equilibrium.

4.2 Sequentially Weakly Dominant Equilibria

In this subsection, we introduce the notion of Sequential Weakly Dominant Equilibrium inductively

for finite games. To define this solution concept, we first consider a general n person T stage game,

where each individual can take an action at every stage. Let the action profile of each individual

be

ai =
¡
ai1, ..., a

i
T

¢
for i = 1, ..., n,

14



with ait ∈ Ai
t and

ai ∈ Ai ≡
TQ
t=1

Ai
t.

Let ht =
¡
h1, ..., h

t
¢
be the history of play up to stage t, where ht =

¡
a1t , ..., a

n
t

¢
,with ht ∈ Ht. We

denote the set of all potential histories up to date t by

Ht ≡
tQ

s=1
Hs.

Let t-continuation action profiles be

ai,t =
¡
ait, a

i
t+1, ..., a

i
T

¢
for i = 1, ..., n,

with the set of continuation action profiles for player i denoted by Ai,t. Symmetrically, define

t-truncated action profiles as

ai,−t =
¡
ai1, a

i
2, ..., a

i
t−1
¢
for i = 1, ..., n,

with the set of t-truncated action profiles for player i denoted by Ai,−t. We also use the standard

notation ai and a−i to denote the action profiles for player i and the action profiles of all other

players. The payoff functions for the players depend only on actions, i.e.,

ui
¡
a1, ...an

¢
.

We also define the restriction of the payoff function ui to a continuation play
¡
a1,t, ...an,t

¢
as

ui
µ
a1,−t, ...an,−t

... a1t , ...a
n
t

... a1,t+1, ...an,t+1
¶
.

In words, this specifies the utility to player i from having played action profile
¡
a1,−t, ...an,−t

¢
up

to and including time t − 1, playing the action profile
¡
a1t , ...a

n
¢
at time t and being restricted to

the action profile a1,t, ...an,t from t onwards. Symmetrically, this payoff function can also be read

as the utility from continuation action profile
¡
a1,t+1, ...an,t+1

¢
given that up to time t, the play

has consisted of the action profile
µ
a1,−t, ...an,−t

... a1t , ...a
n
t

¶
.

A (possibly mixed) strategy for player i is

σi : HT → ∆
¡
Ai
¢
,

where ∆ (X) denotes the set of probability distributions defined over the set X.

Denote the set of strategies for player i by Σi. A t-truncated strategy for player i (corresponding

to strategy σi) specifies plays only until time t, i.e.,

σi,−t : Ht → ∆
¡
Ai,−t¢ .
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The set of truncated strategies is denoted by Σi,−t. A t-continuation strategy for player i (corre-

sponding to strategy σi) specifies plays only after time t, i.e.,

σi,t : HT\Ht−1 → ∆
¡
Ai,t

¢
,

where HT\Ht−1 denotes all histories starting from time t onwards.

With a slight abuse of notation, we will also use the same utility function defined over strategies

(as actions) and write

ui
¡
σi,t, σ−i,t | ht−1

¢
to denote the continuation payoff to player i after history ht−1 when it uses the continuation strategy

σi,t and other players use σ−i,t. We also use the notation ui
µ
σ1,t, ...σn,t

... σ1,t+1, ...σn,t+1 | ht−1
¶

as the payoff from strategy profile
¡
σ1,t, ...σn,t

¢
at time t restricted to the continuation strategy

profile
¡
σ1,t+1, ...σn,t+1

¢
from t+ 1 onwards, given history ht−1. Similarly, we use the notation

ui
¡
ai,t, a−i,t | ht−1

¢
for the payoff to player i when it chooses the continuation action profile ai,t and others choose a−i,t

given history ht−1. We start by providing the standard definitions of Nash equilibria and subgame

perfect Nash equilibria.

Definition 2 A strategy profile
¡
σ̂1, ..., σ̂n

¢
is a Nash Equilibrium if and only if

ui
¡
σ̂i, σ̂−i

¢
≥ ui

¡
σi, σ̂−i

¢
for all σi ∈ Σi and for all i = 1, ..., n.

Definition 3 A strategy profile
¡
σ̂1, ..., σ̂N

¢
is a Subgame Perfect Nash Equilibrium if and only if

ui
¡
σ̂i,t, σ̂−i,t | ht−1

¢
≥ ui

¡
σi,t, σ̂−i,t | ht−1

¢
for all ht−1 ∈ Ht−1,

for all t, for all σi ∈ Σi and for all i = 1, ..., n.

Towards introducing weakly dominant strategies, let us take a small digression and consider a

one stage game with actions
¡
a1, ..., an

¢
.

Definition 4 We say that
¡
â1, ...ân

¢
is a weakly dominant equilibrium if

ui
¡
âi, a−i

¢
≥ ui

¡
ai, a−i

¢
for all ai ∈ Ai, for all a−i ∈ A−i and for all i = 1, ..., n.

Naturally, such an equilibrium will often fail to exist. However, when it does exist, it is arguably

a more compelling strategy profile than a strategy profile that is only a Nash equilibrium. Let us

now return to the general T -stage game. At weakly dominant strategy equilibrium in this last stage

of the game is defined similar to Definition 4.
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Definition 5 There exists a hT−1-weakly dominant equilibrium if there exists
¡
σ̂1,T , ..., σ̂n,T

¢
such

that

ui
¡
σ̂i,T , σ̂−i,T | hT−1

¢
≥ ui

¡
σi,T , σ̂−i,T | hT−1

¢
for all t,

for all σi,T ∈ Σi,T , for all σ−i,T ∈ Σ−i,T and for all i = 1, ..., n.

Now inductively, we can define sequentially weakly dominant strategy equilibria.

Definition 6 There exists a ht−1-sequentially weakly dominant equilibrium for t < T if there exists

a ht-sequentially weakly dominant equilibrium given by
¡
σ̂1,t+1, ..., σ̂N,t+1

¢
and

ui
µ
σ̂i,t, σ−i,t

...σ̂1,t+1, ..., σ̂N,t+1 | ht−1
¶
≥ ui

µ
σi,t, σ̂−i,t

...σ̂1,t+1, ..., σ̂N,t+1 | ht−1
¶

for all t, for all σi,t ∈ Σi,t, for all σ−i,t ∈ Σ−i,t and for all i = 1, ...,N.

In words, we first hypothesize that there exists a ht-sequentially weakly dominant equilibrium,

and impose that this will be played from time t+ 1 onwards and then look for a weakly dominant

strategy profile at stage t of the game.

Definition 7 A finite game has a Sequentially Weakly Dominant Equilibrium (SWDE) if it has

a h0-sequentially weakly dominant equilibrium.

We refer to the strategy profile played along the equilibrium path of this sequentially weakly

dominant equilibrium as the sequentially weakly dominant equilibrium strategy profile.

With this terminology, we can also introduce the notion of Markov Trembling Hand Perfect

Equilibria.

Definition 8 A continuation strategy σi,t is Markovian if

σi,t
¡
ht−1

¢
= σi,t

³
h̃t−1

´
for all ht−1, h̃t−1 ∈ Ht−1 such that for any ai,t, ãi,t ∈ Ai,t and any a−i,t ∈ A−i,t we have

ui
¡
ai,t, a−i,t | ht−1

¢
≥ ui

¡
ãi,t, a−i,t | ht−1

¢
implies that

ui
³
ai,t, a−i,t | h̃t−1

´
≥ ui

³
ãi,t, a−i,t | h̃t−1

´
.

Let M be an index set. We also define:
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Definition 9 We say that a strategy profile
¡
σ̂1, ..., σ̂n

¢
is Markov Trembling-Hand Perfect Equi-

librium (MTHPE) if there exists a sequence of totally mixed Markovian strategy profiles in the

agent-normal form
©¡
σ̂1 (m) , ..., σ̂n (m)

¢ª
m∈M such that

¡
σ̂1 (m) , ..., σ̂n (m)

¢
→
¡
σ̂1, ..., σ̂n

¢
and

ui
¡
σ̂i, σ̂−i (m)

¢
≥ ui

¡
σi, σ̂−i (m)

¢
for all σi ∈ Σi, for all m ∈M and for all i = 1, ..., n.

Note that MTHPE is defined directly on the agent-normal form in order to avoid standard

problems that arise when trembling hand perfection is defined on the strategic form (e.g., Selten,

1975, Osborne and Rubinstein, 1994). After characterizing the SWDEs of our game, we will also

characterize the MTHPE for game Γ̂ and show their equivalence.

4.3 Characterization of Sequentially Weakly Dominant Equilibria

In this section, we characterize the SWDE of Γ̂. Before doing this, recall that for any extensive form

game Γ̂ =
¡
N, {γi}i∈N , α

¢
, there is a corresponding abstract game Γ =

¡
N, {γi}i∈N , α

¢
. Recall

that G denotes the set of all such abstract games, and can be interchangeably used to denote the

set of all extensive form games as described in this section. Our axiomatic approach in Section

3 specified a mapping Φa : G → P (N), which determined the self-enforcing ruling coalition for

each game Γ ∈ G. In particular, Theorem 1 shows that this can be represented as φΓ (N) for a

well-defined single-valued mapping φΓ. Similarly, we can think of an outcome mapping φ̂Γ̂, which

determines an ultimate ruling coalition φ̂Γ̂ (N) ∈ P (N) for each extensive form game Γ̂ ∈ G. In

particular, φ̂Γ̂ (N) would designate the URC that arises as the SWDE of this extensive-form game.

Our main result in this section will be the equivalence result that for any Γ̂ =
¡
N, {γi}i∈N , α

¢
and

Γ =
¡
N, {γi}i∈N , α

¢
,

φ̂Γ̂ (N) = φΓ (N) .

The next theorem establishes both the existence of a SWDE and the above equivalence result.

Theorem 2 Any extensive-form game Γ̂ =
¡
N, {γi}i∈N , α

¢
has at least one pure strategy SWDE.

Moreover, suppose that Assumption 1 holds. Then in any pure strategy SWDE, the ultimate ruling

coalition (URC) is reached after one stage of voting, is given by φ (N) as defined in Theorem 1,

and the payoff of each i ∈ N is given by Ui (N) = wi (φ (N))− εI{i∈φ(N)}I{φ(N)6=N}.

Proof. See Appendix B.

This theorem establishes two important results. First, a pure-strategy SWDE exists for any

game Γ̂ =
¡
N, {γi}i∈N , α

¢
and the URC is reached in the first stage of voting. Moreover, this pure-

strategy SWDE is independent of the moves by nature (i.e., of the exact ordering of proposals chosen
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by nature). The existence result for this class of games is a noteworthy fact by itself, since SWDE

is a demanding equilibrium concept and many games will not have such an equilibrium. Second,

the SWDE ultimate ruling coalition coincides with φ (N), that is, with the self-enforcing ruling

coalition of Γ =
¡
N, {γi}i∈N , α

¢
, which was derived axiomatically in Section 3. Moreover,Given this

equivalence, throughout, we use the terms URC and self-enforcing ruling coalition interchangeably.

Neither Theorem 1 nor Theorem 2 provide a characterization of the self-enforcing ruling coali-

tion, φ (N). This ruling coalition can be determined inductively. This is done in the next proposi-

tion.

Proposition 1 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
that satisfies Assumption 1. Then:

1. For any X ⊂ N , if φ (X) = X, then there does not exist Y ⊂ X such that γY > αγX and

φ (Y ) = Y.

2. Denote the set of X ⊂ N such that |X| = k by Nk. The self-enforcing ruling coalition, φ (N),

can be computed inductively as follows. Define the order Â over sets, such that X 0 Â X 00 if and

only if γX0 > γX00 and the min operator over sets according to this order. For k = 1, ..., |N |,

let Xk = Xk ∪
©
Y ∈ P

¡
Xk
¢
: γY > αγXk and φ (Y ) = Y

ª
. Then

φ
³
Xk
´
= min

n
Xs : Xs ∈ Xk

o
.

Part 1 of this proposition follows by definition. Part 2 gives an algorithm that can be used easily

to compute the self-enforcing ruling correlation. The set Xk is defined to include the coalition Xk

itself, so that if the set
©
Y ∈ P

¡
Xk
¢
: γY > αγXk and φ (Y ) = Y

ª
is empty, φ

¡
Xk
¢
= Xk in line

with Part 1 of the proposition. For example, clearly any set X1 in N1 satisfies φ
¡
X1
¢
= X1. Then

consider N2 and find all self-enforcing coalitions of size 2. For example, when α = 1/2, given any

distribution of power that satisfies Assumption 1, φ
¡
X2
¢
6= X2 for any X2 ⊂ N2. Then consider

the subsets of N3. Since there exist no X2 ⊂ N2 with φ
¡
X2
¢
= X2, this implies that φ

¡
X3
¢
= X3

or φ
¡
X3
¢
= {i} for some i ∈ X3 for any X3 ⊂ N3. Proceeding inductively in this manner, we

can compute φ (X) for any X ⊂ N including for X = N , which gives us the self-enforcing ruling

coalition.

Finally, the next example shows that when ε = 0, there may exist some unintuitive SWDEs,

motivating our choice of payoff function with a small positive value of ε.

Example 3 Let α = 1/2, |N | = 4, and let players’ strengths be 2, 4, 7, 10. Assume that some

elimination in which 2 survives has taken place. Then it is straightforward to check that the
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strongest player among those who survive will have enough power to eliminate the rest, and will

certainly do it in equilibrium. We next show that different ultimate ruling coalitions may emerge

in equilibrium when ε = 0.

(i) Suppose 10 is the first to propose and proposes N1 = (10, 2). Suppose also that 10 and 2

vote for the proposal, and after 4 and 7 are eliminated, 10 eliminates 2. If, however, this proposal

is rejected, then 4 and 7 make proposal (4, 7, 10) and these three vote for it; as for 2, it proposes

the grand coalition and this offer is rejected by 4, 7, and 10. It is easy to check that this is an

equilibrium. Indeed, 2 is eliminated sooner or later, and it is a best response for him to vote for

10’s proposal. So, 10 may be the only surviving player.

(ii) Now suppose that 2 and 4 were the first to make proposals, and their proposals (the grand

coalition and (4, 7, 10) were rejected. Then, 7’s proposal (4, 7, 10) may be accepted in equilibrium:

indeed, 10 knows that his proposal of (10, 2) (or any other proposal which will eventually make him

the only surviving player) will be rejected so that the grand coalition will form. Given this, it is

Advest response for 2 to propose the grand coalition and for 4 to propose (4, 7, 10), and for other

players to reject it. Therefore, (4, 7, 10) will emerge in equilibrium.

This example illustrates that ε = 0 may lead to a number of unappealing results. First, the

outcome may depend on the order of proposals. Second, players that will be eliminated (like 2 in this

example) may have a non-trivial effect on the outcome, depending on how they vote when they are

indifferent. Introducing small organizational costs ε > 0 allows us to get rid of these effects and get

equilibria where the ultimate ruling coalition that emerges in equilibrium is uniquely determined.

4.4 Markov Trembling Hand Perfect Equilibria and Agenda-Setting Games

In this section, we show that for our extensive form game the SWDE also coincides with the

MTHPE as defined above. Moreover, we show the existence of a unique MTHPE, which is also an

SWDE, for a more general class of political games, which we refer to as agenda-setting games.7

We will also see that the MTHPEs of our extensive-form game of coalition formation lead to

the same ultimate ruling coalitions as the SWDEs of the same game. This is not a general result,

since these two equilibrium concepts do not coincide. First, a MTHPE always exists, while SWDE

may not. Second, there may exist SWDEs that are not MTHPE (see Appendix A).

Our main result here is the following.

7Another trembling hand refinement used in the literature, truly perfect equilibrium, is stronger than our notion
of MTHPE. It truly perfect equilibrium requires strategies from σ to be best responses to all fully mixed profiles in
some neighborhood of σ rather than to one sequence of profiles. However, this equilibrium concept fails to exist in
many games, including in our extensive-form game of coalition formation (except in some special cases).
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Theorem 3 Any extensive-form game Γ̂ =
¡
N, {γi}i∈N , α

¢
has at least one pure strategy MTHPE.

Moreover, suppose that Assumption 1 holds. Then any pure strategy MTHPE coincides with the

SWDE, and has an ultimate ruling coalition (URC) given by φ (N) as defined in Theorem 1, the

URC is reached after one stage of voting, and the payoff of each i ∈ N is given by Ui (N) =

wi (φ (N))− εI{i∈φ(N)}I{φ(N)6=N}.

Proof. Consider a perturbed game where each player i ∈ N plays a mixed Markovian strategy

assigning probability ηki > 0 to each of its finite number of actions. By the standard fixed theorem

argument, this perturbed game has a Nash equilibrium, and the correspondence determining the

Nash equilibrium has closed graph. Taking the limit as ηki → 0 for all i and k gives an equilibrium

by the closed graph property and is, by definition, a MTHPE. Next take any strategy profile σ

that forms a MTHPE. By Theorem 4 below σ is also a SWDE, and the conclusion follows from

Theorem 2.

We now define general agenda-setting games, which include most voting games as a special case,

and establish the existence of pure strategy MTHPE and SWDE for these games.

Definition 10 A finite perfect-information game Γ in extensive form with a set of players N ∪

{Nature} is called an agenda-setting game if and only if at each stage ξ either

1. only one player (possibly Nature) moves, or

2. there is voting among the players in X ⊂ N . Voting means that

(a) each player i ∈ X has two actions, say ayi (ξ) and ani (ξ);

(b) those in N\X have no action at this stage;

(c) there are only two equivalence classes of subgames following node ξ (where equivalence

classes of subgames include subgames that are continuation payoff identical), say y (ξ)

and n (ξ);

(d) for each player i ∈ X, holding other players’ actions fixed, the action ayi (ξ) does not

decrease the probability of moving into the equivalence classes of subgames y (ξ).

This definition states that any game in which is one of the agents makes a proposal and others

vote in favor or against this proposal is an agenda-setting game. Clearly, our a dynamic game here

is an agenda-setting game.

The following theorem shows that, while MTHPE and SWDE are not subsets of each other in

general, but for agenda-setting games an MTHPE is always a SWDE.
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Theorem 4 1. If Γ is an agenda-setting game, any MTHPE is a SWDE.

2. There exist games where a MTHPE is not a SWDE.

3. There exist agenda-setting games where a SWDE is not a MTHPE.

Proof. See Appendix B.

An immediate corollary of Part 1 of this theorem is that a SWDE always exists in agenda-

setting games (since a MTHPE always exists and is a SWDE). Another direct corollary of Part

1 is Theorem 3, which establishes the equivalence of these two equilibrium concepts in our game,

though Part 3 shows that there existed in the-sitting games where some SWDE are not MTHPE

(thus showing that the latter concept is stronger).

5 A Cooperative Game

In this section, we present a non-transferable utility cooperative game and establish that the (gener-

ically) unique allocation in the strong core coincides with the results in the previous two sections.8

This exercise is useful since it links our equilibrium concept to those in the cooperative game theory

literature, and also provides another justification for our axiomatic approach.

An non-transferable utility cooperative game is represented by ΓN =
¡
N, {γi}i∈N , α, vN (·)

¢
,

where vN : P (N) → P
³
R|N |+

´
is a mapping from the set of coalitions to the set of allocations

this coalition can enforce. Notice that the range of the mapping is not R|N |+ , but P
³
R|N |+

´
, since

typically a given coalition can enforce more than a single vector of utilities. We first define the

mapping vN inductively. First, define the set of feasible allocations (for any vector x ∈ R|N |+ , denote

its ith component by xi and its projection on components from X by xX).

Definition 11 A vector x ∈ R|N |+ is a feasible allocation if either

1. xi = 0 for all i ∈ N , or

2. xi = γi/γN for all i ∈ N , or

3. there exists a subcoalition Y ⊂ N , Y 6= N , such that xY is the core allocation for ΓY =¡
Y, {γi}i∈Y , α, vY (·)

¢
(determined by induction), while xi = 0 for all i /∈ Y .

8By “strong core,” we referr to an allocation that cannot be strictly improved upon for all members of a blocking
coalition; see Definition 12. To reduce terminology, refer to this as the “core”.
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This definition states that feasible allocations include those where all individuals receive zero

payoff, or those in which all individuals in the society share the resource according to their powers

(which could be referred to as the “status quo” publication), or a coalition Y distributes the resource

among its members. This definition makes reference to core allocations, which will be defined below

(thus the set of feasible allocations and core allocations are determined inductively).

Now define the mapping vN as follows:

vN (X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
x ∈ R|N |+ | x is feasible

o
if γX > αγNn

x ∈ R|N |+ | xi = 0 ∀ i ∈ N
o

or
n
x ∈ R|N |+ | xi = γi/γN ∀ i ∈ N

o if (1− α) γN ≤ γX ≤ αγN

n
x ∈ R|N |+ | xi = 0 ∀ i ∈ N

o
if γX < (1− α) γN

(4)

where notice that vN (X) is a a subset of R
|N |
+ , meaning that it consists of a set of vectors in R|N |+ .

In words, the set of payoff allocations that can be enforced by a coalition X, vN (X), include

any feasible allocation if the coalition is winning within N according to Definition 1 (the first term

in (4)). If, on the other hand, the complement of X, N\X, is winning, then coalition X can only

enforce zero payoff to all (the third term in (4)). When α = 1/2, these two are the only possibilities.

However, for α > 1/2, neither a coalition nor its complement may be winning. The second term in

(4) then states that in this case coalition X can enforce either zero payoff to all or the division of

the resource among all players according to their powers.

This payoff mapping captures the idea that a coalition which is not the majority can at best

block what other coalitions can do and thus implements the division of the scarce resource according

to the power of all individuals in the society. A coalition that forms a majority can implement any

feasible allocation.

We denote the core allocations for a non-transferable utility game ΓN =
¡
N, {γi}i∈N , α, vN (·)

¢
by C (ΓN ) ⊂ R|N |+ and define this in the standard way.

Definition 12 A vector x ∈ R|N |+ is in the (strong) core for the game ΓN =
¡
N, {γi}i∈N , α, vN (·)

¢
,

i.e., x ∈ C (ΓN), if and only if it is a feasible allocation and there exists no Z ∈ P (N) and no

z ∈ vN (Z) with zi > xi for all i ∈ Z.

Notice that Definition 11 rules out arbitrary distributions of the scarce resource as feasible.

For example, in a society consisting of three individuals with powers (5, 9, 11), the resources being

divided between the three individuals which shares (5/25, 9/25, 11/25) is a feasible allocation. To
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check whether this allocation is in the core, we need to see whether there exists another coalition

that implements a feasible allocation improving the payoff to each of its members. Consider, for

example, the coalition (5, 9). Since this coalition has a winning majority within (5, 9, 11), (4)

states that it can implement (5/25, 9/25, 11/25), but this is exactly the same as the candidate core

allocation. In addition, it may be able to implement an allocation that distributes the resource

only between the individuals with powers 5 and 9, with (5/14, 9/14). However it can only do

so if (5/14, 9/14) is a core allocation for the game consisting of these two individuals. It can be

verified, however, that this is not the case, since in this game individual with power 9 is a winning

majority and can allocate all of the resource to himself. By the same argument, no other coalition

can implement a feasible allocation that gives to pay of greater than (5/25, 9/25, 11/25) to its

members. Therefore (5/25, 9/25, 11/25) is in the core. It can also be verified that no other payoff

vector is in the core, so that (5/25, 9/25, 11/25) is the unique core allocation.

Our main result in this section is:

Theorem 5 For any ΓN =
¡
N, {γi}i∈N , α, vN (·)

¢
with vN defined by (4), the core C (ΓN ) is

nonempty. Moreover, suppose that Assumption 1 holds. Then the core C (ΓN ) is a singleton given

by φ (N) as defined in Theorem 1.

Proof. See Appendix B.

This result shows the equivalence between the axiomatic approach in Section 3, the dynamic

game in the previous section and the cooperative game in this section. The main idea underlying

this result is that only self-enforcing and winning coalitions can implement payoff vectors that are

attractive for their own members. This is captured by two features: first, in addition to zero payoffs

and status quo allocation, only payoff vectors that correspond to core allocations for a smaller game

are feasible (recall Definition 11)); second, only winning coalitions can implement feasible pay of

factors (recall Definition 12)). These two features introduce the power and enforcement constraints

that also featured in the axiomatic and the dynamic game approaches. In view of this, the finding

that the set of core allocations here correspond to the self-enforcing ruling coalitions is perhaps not

surprising, though still reassuring.

6 The Structure of Ruling Coalitions

6.1 General Results

In this section, we present several results on the structure of self-enforcing ruling coalitions. Given

the equivalence results in the previous two sections, without loss of any generality we focus on
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self-enforcing ruling coalitions of abstract games Γ =
¡
N, {γi}i∈N , α

¢
. We start with the following

lemma which will be useful for the results that will follow.

Lemma 1 Consider a game Γ =
¡
N ∪M, {γi}i∈N , α

¢
with arbitrary disjoint finite sets M and N

and suppose that Assumption 1 holds. Then exists δ > 0 such that for all M such that γM < δ,

φ (N) = φ (N ∪M).

Proof. The proof is by induction. Let |N | = n. For n = 1 the result follows straightforwardly.

Suppose next that the result is true for n. If δ is small enough, then φ (N) is winning withinM∪N ;

we also know that it is self-enforcing. Thus we only need to verify that there exists no X ⊂ N ∪M

such that φ (X) = X, i.e., X that is self-enforcing, winning in N ∪M and has γX < γφ(N). To

obtain a contradiction, assume the contrary, i.e. that the minimal winning self-enforcing coalition

X ∈ P (M ∪N) does not coincide with φ (N). Consider its part that lies within N , X ∩ N . By

definition, γN ≥ γφ(N) > γX ≥ γX∩N , where the strict inequality follows by hypothesis. This string

of inequalities implies that X ∩ N is a proper subset of N , thus must have fewer elements than

n. Then, by induction, for small enough δ, φ (X ∩N) = φ (X) = X (since X is self-enforcing).

However, φ (X ∩N) ⊂ N , and thus X ⊂ N . Therefore, X is self-enforcing and winning within

N (since it is winning within M ∪N). This implies that γφ(N) ≤ γX (since φ (N) is the minimal

self-enforcing coalition that is winning within N). But this contradicts the inequality γφ(N) > γX

and implies that the hypothesis is true for n+ 1. This completes the proof.

This lemma implies that there is some amount of continuity in the structure of self-enforcing

ruling coalitions, in the sense that the addition of a set of agents with limited powers to the society

does not change the self-enforcing winning coalition.

The next proposition answers some of the central questions related to the types of ruling coali-

tions that can emerge under majority rules. In particular, the first two parts establise that two-

person coalitions cannot emerge as the self-enforcing ruling coalitions, but any other size coalition

can emerge as the ruling coalition in a society of arbitrary size. This result implies that relatively

little can be said about the structure of ruling coalitions without putting some more structure.

Also for future use, the third and the fourth parts of this proposition establish that self-enforcing

coalitions are fragile in the sense that addition or subtraction of a single agent from these coalitions

or a combination of two self-enforcing coalitions leads to a non-self enforcing coalition.

Proposition 2 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
with α = 1/2 and suppose that Assumption

1 holds. Then:
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1. For any n and m such that 1 ≤ m ≤ n, m 6= 2, there exists a set of players N , |N | = n, with

powers {γi} such that |φ (N)| = m. In particular, for any m 6= 2 there exists a self-enforcing

coalition of size m.

2. There is no self-enforcing coalition of size 2.

3. Suppose that two coalitions of N , X and Y are both self-enforcing. Then coalition X ∪ Y is

not.

4. Suppose that X is a self-enforcing coalition. Then X ∪ {i} for i /∈ X and X\ {i} for i ∈ X

are not self-enforcing.

Proof. (Part 1) Given Lemma 1, it is sufficient to show that there is a self-enforcing coalition

M of size m (then adding n −m players with negligible powers to form coalition N would yield

φ (N) = φ (M) = M). Let i ∈ {1, . . . ,m} be the set of players. If m = 1, the statement is

trivial. Fix m > 2 and construct the following sequence recursively: γ1 = 2, γk >
Pk−1

j=1 γj for all

k = 2, 3, . . . ,m− 1, γm =
Pm−1

j=1 γj − 1.

Let us check that no proper winning coalition within M is self-enforcing. Take any proper

winning coalition X; it is straightforward to check that |X| ≥ 2, for no single player forms a

winning coalition. Coalition X either includes γm or not. If it includes γm and is not proper, it

excludes some player k with k < m; his power γk ≥ 2 by construction. Hence, γm =
Pm−1

j=1 γj−1 >Pm−1
j=1 γj − γk ≥ γX\{m}, which means that γm is stronger than the rest, and thus coalition M is

non-self-enforcing. If it does not include γm, then take the strongest player in X; suppose it is k,

k ≤ m− 1. However, by construction he is stronger than all other players in X, and thus X is not

self-enforcing. This proves that M is self-enforcing.

(Part 2) This follows from Example 1 combined with Assumption 1.

(Part 3) Either X is stronger than Y or vice versa. The stronger of the two is a winning

self-enforcing coalition that is not equal to X ∪ Y . This implies that X ∪ Y is not the minimal

winning self-enforcing coalition, and so it is not the self-enforcing ruling coalition in X ∪ Y .

(Part 4) For the case of adding, it follows directly from Part 3, since coalition of one person is

always self-enforcing. For the case of deleting: suppose that it is wrong, and the coalition is self-

enforcing. Then, by Part 3, adding this person back will result in an non-self-enforcing coalition.

This is a contradiction which completes the proof of Part 4.

The first part of Proposition 2 may be generalized for α > 1/2. Moreover, in that case, any size

(including 2) of self-enforcing coalitions is possible.
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Proposition 3 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
with α > 1/2. Then for any n and any

m such that 1 ≤ m ≤ n there exists a set of players N , |N | = n, with powers {γi} such that

|φ (N)| = m. In particular, there exists a self-enforcing coalition of size m.

Proof. The proof is identical to that of Part 1 of Proposition 2. The recursive sequence should be

constructed as follows: γ1 = 2, γk > α
Pk−1

j=1 γj for all k = 2, 3, . . . ,m− 1, γm = α
Pm−1

j=1 γj − 1.

These results show that one can say relatively little about the size and composition of the

equilibrium ruling coalition without taking the specifics of the distribution of powers among the

individuals into consideration. However, again in the case of majority rule, we can provide a range

of additional results.

Proposition 4 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
with α = 1/2. Consider the infinite sequence

γ̄ =

½
2k − 1
2k

¾∞
k=1

, (5)

and let {γ̄i}i∈N be the sequence γ̄ truncated at |N |. Consider the game Γ =
¡
N, {γ̄i}i∈N , α

¢
, then

the unique equilibrium ruling coalition Xe in this game has size m where

m = max
©
z ∈ Z+:z = 2k − 1 for k ∈ Z+ and z ≤ |N |

ª
.

Proof. First note that given the sequence of powers in (5) whenever |X| > |Y |, we have that

coalition X is stronger than coalition Y , given the sequence {γ̄i}.

The rest of the proof is by induction. The claim is trivially true for |N | = 1. Suppose that it

is proved for all sizes smaller than |N |. If |N | = 2k − 1 for some k ∈ Z+, then all smaller winning

coalitions have sizes from 2k−1 to 2k − 2; by induction we know that they are non-self-enforcing.

Therefore, the equilibrium ruling coalition is the grand coalition. If, however, |N | 6= 2k − 1 for

any k ∈ Z+, then the coalition of strongest (first) m players is both winning (it consists of at least

half of players, and if it is exactly half, it is the strongest possible half) and self-enforcing (by

induction). Therefore, the minimal winning self-enforcing coalition is not N , completing the proof

of the induction step and thus the proof.

The next proposition shows that an increase in the power of an individual can remove him out

of the ruling coalition.

Proposition 5 Consider two games Γ =
¡
N, {γi}i∈N , α

¢
and Γ0 =

¡
N, {γ0i}i∈N , α

¢
such that

γi = γ0i for all i 6= j and γj < γ0j. Then it is possible that j ∈ φΓ (N) and j /∈ φΓ0 (N).

Proof. This follows from the examples in the next subsection.
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In coalition (3, 4, 5, 10), the most powerful individual, 10, is not a part of any ruling coalition.

The next proposition establishes sufficient conditions for the most powerful individual need not be

part of the ultimate ruling coalition.

Proposition 6 Let {γi}i∈N be an increasing sequence such that any its of truncation satisfies

Assumption 1. Denote the most powerful player by n (i.e., γn > γi for all i ∈ N , i 6= n).

Consider the game Γ =
¡
N, {γi}i∈N , α

¢
. Suppose that the grand coalition is not self-enforcing.

If γn ∈
³

α
1−α

Pn−1
i=2 γi,

α
1−α

Pn−1
i=1 γi

´
, then the most powerful individual, n, is not a part of the

self-enforcing ruling coalition.

Proof. Inequality γn > α
1−α

Pn−1
i=2 γi implies that any coalition that includes n, but excludes even

the weakest player will not be self-enforcing. The inequality γn < α
1−α

Pn−1
i=2 γi implies that n is

not a winning coalition by himself. Therefore, either N is self-enforcing or φ (N) does not include

the strongest player. Since N is not self-enforcing by hypothesis, the conclusion follows.

The next question is whether the grand coalition itself could be a self-enforcing coalition. Let

[z] denote the integer part of z. Then we have the following result:

Proposition 7 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
and suppose that Assumption 1 holds. Then,

we have:

1. Let α = 1/2 and suppose that for any two coalitions X,Y ⊂ N such that |X| > |Y | we have

γX > γY (i.e., larger coalitions have greater power). Then φ (N) = N if and only if |N | = km

where km = 2m − 1, m ∈ Z.

2. Rank the strength of the players in ascending order, γ1, γ2, . . . γ|N |. Then a sufficient condition

for |X| > |Y | =⇒ γX > γY is
|N |X
j=1

¯̄̄̄
γj
γ1
− 1
¯̄̄̄
< 1. (6)

3. Suppose α ∈ [1/2, 1) and suppose that for any two coalitions X ⊂ Y ⊂ N such that |X| ≷
α |Y | we have γX ≷ αγY . Then φ (N) = N if and only if |N | = km where k1 = 1 and

km =
h
km−1
α

i
+ 1 for m > 1.

Proof. (Part 1) Let us check that the condition in Part 3 is satisfied. Take any X ⊂ Y ⊂ N .

Obviously, |X| ≷ 1
2 |Y | ⇐⇒ |X| ≷ |Y \X| =⇒ γX ≷ γY \X ⇐⇒ γX ≷ 1

2γY . Now let us check

that km’s in Part 1 and in Part 3 are equal. Indeed, k1 = 21 − 1 = 1 and if km−1 = 2m−1 − 1 then

km = 2
m − 1 = [2km−1] + 1. By induction, we get that Part 1 follows as a special case of Part 3.
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(Part 2) Assume the contrary, i.e., that for some X,Y ⊂ N such that |X| > |Y | we have

γX ≤ γY . Then the same inequalities hold for X
0 = X \ (X ∩ Y ) and Y 0 = Y \ (X ∩ Y ), which do

not intersect. Mathematically, X
j∈X0

γj ≤
X
j∈Y 0

γj .

This implies X
j∈X0

γj
γ1
≤
X
j∈Y 0

γj
γ1

and thus X
j∈X0

µ
γj
γ1
− 1
¶
+
¯̄
X 0¯̄ ≤X

j∈Y 0

µ
γj
γ1
− 1
¶
+
¯̄
Y 0
¯̄
.

Rearranging, we have

1 ≤
¯̄
X 0¯̄− ¯̄Y 0¯̄ ≤X

j∈Y 0

µ
γj
γ1
− 1
¶
−
X
j∈X0

µ
γj
γ1
− 1
¶
≤

X
j∈X0∪Y 0

¯̄̄̄
γj
γ1
− 1
¯̄̄̄
.

However, X 0 and Y 0 do not intersect, and therefore this violates (6). This contradiction completes

the proof of Part 2.

(Part 3) The proof is by induction. The base is trivial: a one-player coalition is self-enforcing,

and |N | = k1 = 1. Now assume the claim has been proved for all q < |N |, let us prove it for

q = |N |. If |N | = km for some m, then any winning (within N) coalition X must have size at

least α
³h

km−1
α

i
+ 1
´
> αkm−1

α = km−1 (if it has smaller size then γX < αγN). By induction, all

such coalitions are not self-enforcing, and this means that the grand coalition is self-enforcing. If

|N | 6= km for any m, then take m such that km−1 < |N | < km. Now take the coalition of the

strongest km−1 individuals. This coalition is self-enforcing by induction. It is also winning (this

follows since km−1 = αkm−1
α ≥ α

h
km−1
α

i
= α (km − 1) ≥ α |N |, which means that this coalition

would have at least α share of power if all individuals had equal power, but since this is the

strongest km−1 individuals, the inequality will be strict). Therefore, there exists a self-enforcing

winning coalition, different from the grand coalition. This implies that the grand coalition is not

self-enforcing, completing the proof.

Proposition 8 Consider a game Γ =
¡
N, {γi}i∈N , α

¢
and suppose that Assumption 1 holds. There

exists δ > 0 such that if maxi,j∈N
n
γi
γj

o
< 1 + δ, then φ (N) = N if and only if |N | = km, where

km =
h
km−1
α

i
+ 1 and k0 = 1.

Proof. The proof is again by induction. The base is trivial: a one-player coalition is self-enforcing,

and |N | = k0 = 1. Now assume this proposition has been proved for all |N | < q, let us prove it
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for |N | = q. Take any distribution of powers {γi}i∈N satisfying Assumption 1 close to (1, 1, . . . , 1)

in the sense that maxi,j∈N
n
γi
γj

o
< 1 + δ. We will now prove that if |N | = km for some m,

then any winning coalition must have size greater than α
³h

km−1
α

i
+ 1
´
> αkm−1

α = km−1. By

induction, all such coalitions are not self-enforcing, and this means that the grand coalition is self-

enforcing. The complete proof, consider the case where |N | 6= km for any m, then take m such that

km−1 < |N | < km. Now take the coalition of the strongest km−1 individuals. This coalition is also

self-enforcing by induction (because it is close to the center (1, 1, . . . , 1) of size km−1). It is also

winning; this follows because km−1 = αkm−1
α ≥ α

h
km−1
α

i
= α (km − 1) ≥ α |N |, which means that

this coalition would have at least α share of power if all individuals had equal power, but since this

is the strongest km−1 individuals, the inequality will be strict. Therefore, there exists a winning

self-enforcing coalition which is not the grand coalition, which implies that the grand coalition is

not self-enforcing. This completes the proof.

The next proposition establishes another continuity result that if powers are ‘close’ in two

different games, then these two games will have the same self-enforcing ruling coalition. The state

and prove this proposition, endow the set of sequences γ, G, with the sup-metric, with distance

given by ρ(γ, γ0) = maxi=1,...,|N | |γi − γ0i|. Define a δ-neighborhood of γ as {γ0 ∈ G : ρ (γ, γ0) < δ}.

Proposition 9 Consider two games Γ =
¡
N, {γi}i∈N , α

¢
and Γ0 =

¡
N, {γ0i}i∈N , α

¢
. There exists

δ > 0 such that if γ0 = {γ0i}i∈N lies within δ-neighborhood of γ then φΓ (N) = φΓ0 (N).

Proof. This theorem follows from openness property in Theorem 6 in Appendix C.

6.2 Self-Enforcing Coalitions When N = 3

In this subection, we illustrate our basic findings about the structure of equilibrium ruling coalitions

for N = 3. We also use this representation to show that even in this most simple environment,

an increase in α might make it less likely that larger coalitions emerge as the self-enforcing ruling

coalition.

We use the geometric representation already introduced in the Introduction. Generally, the

geometric representation of an N player game uses the (N − 1)-dimensional simplex to depict all

potential power allocations, which are represented by points (γ1, ..., γN) with γi ≥ 0 and
P

i γi = 1

(where this last equality is without loss of any generality). As discussed in the Introduction, there

are two kind of constraints that define the set of all self-enforcing coalitions: “power constraints”nP
j∈K γj = α

o
which are always parallel to be respective (K−1)-dimensional edge, and “enforce-

ment constraints,” which correspond to cones.
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Figure 3: α = 1
2 .

Figure 4: α between 1
2 and

2
3

We now show the evolution of the set of self-enforcing coalitions as α changes from 1/2 (simple

majority) to 1 (unanimous voting rule) for the case with N = 3. The set of powers such that the

ground coalition is the self-enforcing ruling coalition is shown in white white. The red area is the

set of configurations which are dominated by a single member. The yellow area is the set of points

where a two-member coalition is both self-enforcing and winning.

Figure 3 corresponds to the case α = 1/2. For any point (γ1, γ2, γ3) outside the white triangle,

there is some member i who has power γi > 1/2. Figure 4 corresponds to the case when α

becomes larger than 1/2; it demonstrate that set of self-enforcing coalition, though still a joint of

a finite number of convex sets, has non-convex connected components. Interestingly, the “central

coalitions”, i.e. those close to (1/3, 1/3, 1/3), which were self-enforcing when α = 1/2, cease to

be self-enforcing when α increases. The reason is that with α > 1/2, there is a range of 2-person

self-enforcing coalitions; the fact that they are self-enforcing makes 3-person coalitions non-self-

enforcing. When α is large enough, but still less than 2/3, the self-enforcing coalition set does

become a joint of a finite number of convex connected components (namely, of three trapezoids).

When α = 2/3, the trapezoids become triangles.
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Figure 5: α > 2
3

When α > 2/3 (and this generalizes straightforwardly to α > (N − 1) /N for an arbitrary

N), there is a new part to the self-enforcing coalition set around. (This demonstrates that the

self-enforcing coalition set is non-monotonic in α : the coalitions close to close to (1/3, 1/3, 1/3)

are self-enforcing again.) This new set of self-enforcing coalitions increases with α and eventually

grows to cover all points when α approaches 1, but for all α, 2/3 < α ≤ 1, it is a joint of four

triangles as on Figure 5. Obviously, points in the “middle” set of self-enforcing coalitions are even

more “stable” than other self-enforcing coalitions: even if there is a random shock that eliminates

some players, the remainder is self-enforcing coalition (in the respective game).

7 Extensions

7.1 Party Formation

If there were no enforcement constraints, the minimal winning coalition would always emerge as

the ruling coalition. However, we have seen that the ultimate ruling coalition is not necessarily

the minimal winning coalition. This is because the minimal winning coalition might not be self-

enforcing (e.g., as is coalition (3, 4) in (3, 4, 5)), and thus cannot form a ruling coalition. What

prevents the formation of this coalition is the fact that its members do not to trust each other. If

somehow they could enter into binding agreements, the minimum winning coalition could emerge

as the ultimate willing coalition. In this subsection, we think of party formation as a way of forming

binding agreements among a subset of agents. In particular, we allow some of the players to form

permanent alliances, effectively merging into a single member with combined power. Another way

is to allow members of a coalition freely transfer (shares of) their power to each other to make the

coalition self-enforcing, which is explored in the next subsection.

More specifically, consider a two-stage game where in the first stage, individuals form a bind-
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ing agreement (a party), and then in the second period, they play the game above. The result

will be that the minimal winning coalition will form a party (entering into a binding agreement)

guaranteeing power for its members.

Proposition 10 In the party-formation game, the unique ultimate ruling coalition X is the min-

imal winning coalition, i.e. X is such that
P

i∈X γi > α
P

i∈N γi and for any Y ∈ P (N) withP
i∈Y γi > α

P
i∈N γi,

P
i∈X γi <

P
i∈Y γi.

Proof. The proof follows the steps of the proof of Theorem 3 and is omitted.

7.2 Power Exchange

We have seen that individuals can be made worse off by having more power. This naturally raises

the question of whether individuals would like to relinquish their power (for example, give up their

guns in the context of fighting preceding political decision-making). The next result investigates

this question.

Proposition 11 Suppose that α = 1/2, Assumption 1 holds and X is a minimal winning coalition

in N that is not self-enforcing. Suppose that under the unique self-enforcing coalition, each j ∈ N

receives wj. Then for any η > 0, there exists a redistribution of power among the members of X

such that for some i /∈ X, X ∪ {i} becomes the self-enforcing ruling coalition, and implements a

payoff ŵj for all j ∈ N , such that ŵj > wj for all j ∈ X and ŵi < η.

Proof. Without loss of generality, assume that
P

i∈N wi = 1. If |X| = 1 or |X| = 2, the statement

is trivial since the minimal winning coalition is always self-enforcing. Suppose that |X| ≥ 3.

Let k be the strongest member of X, i.e., wk ≥ maxi∈X wi. Consider the parametrized family

(wβ
i )i∈X of distributions of power in coalition X : wβ

k = wk +
³P

i∈N\X wi

´
β and wβ

i = wi +³P
i∈N\X wi

´
(1− β) . When β = 1, k alone forms a winning coalition, since wk +

P
i∈N\X wi ≥P

i∈X\{k}wi. (Otherwise, coalition X\k is winning which contradicts the minimality of X.) We

claim that there exists some β such that
³
wβ
i

´
i∈X

is a self-enforcing coalition.

Let β0 be determined by wk+
³P

i∈N\X wi

´
β0 =

P
i∈X\{k}wi+

³P
i∈N\X wi

´
(1− β0). (Such

β0 exists since wk <
P

i∈N\{k}wi by assumption). Since 0 < β0 < 1, w
β0
i > wi for any i ∈ X. Thus,

the remaining task is to ensure that XThere are two possibilities: either coalition (wβ0
i )i∈X\{k} is

not self-enforcing, or it is not.

Suppose that coalition (wβ0
i )i∈X\{k} is not self-enforcing. We claim that there exists δ > 0 such

that coalition
µ
w
β0
k − δ,

³
w
β0
i + δ

|X|−1

´
i∈X\{k}

¶
is self-enforcing (we leave player m with wβ0

m = 0).
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Take δ small enough so that the ordering of every two subcoalitions of the set X\{k} does not

change. (we could do this because of Assumption 1). We could also assume that δ is small enough

so that for any j ∈ X\{k}, wβ0
k − δ >

P
i∈X\{k,j}

³
w
β0
i + δ

|X|−1

´
. This implies that w

β0
k − δ

cannot be a member of any proper self-enforcing subcoalition in X. We also have w
β0
k − δ <P

i∈X\{k}

³
w
β0
i + δ

|X|−1

´
, since wβ0

k =
P

i∈X\{k}w
β0
i . Since k cannot be a member of any proper

subcoalition of X, and cannot be eliminated by the rest, coalition X is self-enforcing. Now let

ŵk = w
β0
k − δ, ŵi = w

β0
i + δ

|X|−1 , i ∈ X\ {k} , and ŵm = 0 and the proof is complete.

Now suppose that coalition (wβ0
i )i∈X is self-enforcing. We claim that in this case coalition³

w
β0
1 − δ

3 , (w
β0
i − δ

4(|X|−1))i∈X\{k}, w
β0
m = 5

12δ
´
is self-enforcing for any sufficiently small δ > 0. In-

deed, we have wβ0
k − δ

3 <
P

i∈X\{k}

³
w
β0
i − δ

4(|X|−1)

´
=
P

i∈X\{k}w
β0
i − δ

4 , and therefore k would

not support eliminating m, while m clearly would not support eliminating either of players in X.

Thus,
³
w
β0
1 − δ

3 , (w
β0
i − δ

4(|X|−1))i∈X\{k}, w
β0
m = 5

12δ
´
is self-enforcing. By construction, δ might be

taken to satisfy δ < η. Let ŵk = w
β0
k − δ

3 , ŵi = w
β0
i − δ

4(|X|−1) , i ∈ X\ {k} , and ŵm =
5
12δ and the

proof is again complete.

The two following conjectures are natural and remain to be proved. First, Proposition 11 should

hold for any α > 1/2. Second, there exists a redistribution of power that makes X rather than

X ∪ {i} self-enforcing.

8 Conclusion

The central question of political economy is how collective choices are made among a group of indi-

viduals with conflicting preferences. We study this question in the context of a game of endogenous

coalition formation. We assume that each individual is endowed with a level of political power,

which may be derived from his or her specific skills or access to resources (guns, money etc.). The

ruling coalition consists of a subset of the individuals in the society and decides the distribution

of resources. The main innovation of our approach is that we also require ruling coalitions to be

self-enforcing, in the sense that none of the subcoalitions of this ruling coalition should be able to

secede and become the new ruling coalition.

We first model these issues using an axiomatic approach based on three axioms: first, that the

ruling coalition should be powerful enough (the power constraint); second, that the ruling coalition

should be self-enforcing (the enforcement constraint); and third, that individuals should always

choose the coalition that gives them higher returns (individual rationality). We show that there

exists a unique mapping, which is also single-valued, that satisfies these three axioms. This provides

an axiomatic way of characterizing the self-enforcing ruling coalitions for any game.
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We support this notion by showing that the result of our axiomatic analysis also follows as

“reasonable equilibria” of a dynamic game of coalition formation and also as the unique core

allocation of a related non-transferable cooporative game. In particular, we construct a simple

dynamic game that encompasses the same notions that a ruling coalition should have as certain

amount of power and should be self-enforcing. As with other dynamic voting games, this game

possesses many subgame perfect equilibria. We propose the notion of sequentially weakly dominant

equilibrium as an equilibrium concept for this and related games (which referred to as agenda-

setting games). We prove that agenda-setting games always have sequentially weakly dominant

equilibria and Markov trembling and perfect equilibria. Moreover, in our dynamic game, both

concepts generically yield a unique equilibrium allocation.

After establishing these results on the existence of equilibria and ruling coalitions in related

axiomatic, non-cooperative and cooperative games, we present a series of results on the structure

of self-enforcing ruling coalitions. In particular, we show the following results:

1. There always exists a self-enforcing ruling coalition and can be computed by induction.

2. Despite the simplicity of the environment, the ruling coalition can be of any size relative to the

society, and may include or exclude more powerful individuals in the society. Consequently,

the equilibrium payoff of an individual is not monotone in his power.

3. Self-enforcing coalitions are generally “fragile,” especially under majority rule. For example,

under majority rule, adding or subtracting one player from a self-enforcing coalition makes it

non-self-enforcing.

4. Coalitions of certain sizes are more likely to emerge as the ruling coalition. For example, with

majority rule, i.e., α = 1/2, the ruling coalition cannot (generically) consist of two individuals.

Moreover, again when α = 1/2, coalitions where members have roughly the same power exist

only when the coalition’s size is 2k − 1 where k is an integer.

5. The most powerful individual will typically be excluded from the self-enforcing ruling coali-

tion, unless he is powerful enough to win by himself or weak enough so as to be part of smaller

self-enforcing coalitions.

6. Somewhat paradoxically, an increase in α–that is an increase in the degree of supermajority

necessary to make decisions–does not necessarily lead to larger ruling coalitions.
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There are a number of natural areas for future study. A similar approach blending axiomatic

foundations and dynamic games can be adopted to analyze the structure of self-enforcing ruling

coalitions in a more general class of political games, where there are multiple resources to be

distributed (or multiple policies over which individuals disagree). The results on general agenda-

setting games suggest that the approach here might be extended to this more general setting.

Another interesting area for future research would be to investigate what types of coalitions will

form when there is some randomness in the environment, for example, if the powers or preferences

of different individuals may change by a small amount after the coalition is formed. Such an

approach would allow us to talk of more or less “robust” coalitions and also quantify what “price”

the coalition is willing to pay for robustness by including individuals that may not be necessary for

obtaining a majority.
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Appendix A: Examples

8.1 SPNE and MPE in the Main Game

Example 4 Let n = 4, α = 1/2, (γ1, γ2, γ3, γ4) = (4, 5, 6, 8). Let X be any 3-member subset

of N . Define strategies as follows. Before any player is eliminated, members from X propose

coalition X and the player from N \ X proposes coalition N ; if any coalition other than X is

proposed, everyone votes ‘against’, while if X is proposed, members from X vote for it. After some

coalition Y is eliminated, the remaining players play some MTHPE of the corresponding game.

The equilibrium we described is subgame perfect: indeed, after elimination a subgame perfect

equilibrium is played by definition of MTHPE. Before elimination, no player has an incentive to

deviate. Indeed, by one-shot deviation principle we may consider one-shot deviations only. At the

voting stage, nobody has an incentive to switch from voting ‘against’ to voting ‘for’ some coalition

other than X, because he does not form a winning coalition by himself and thus will not affect the

voting outcome. If some player deviates from voting for X to voting against it, he will either change

nothing or will make N the URC. However, as established in the text„ if X is accepted, it will be

the URC, and this is preferrable to any of its members than as compared to N . Therefore, such

deviation is not payoff-improving. As for agenda-setters, any of them knows that any suggestion

other than X will not be accepted. Hence, a member of X will either change nothing or make

N the URC by his deviation; as before, this deviation will not make him better off. Finally, the

agenda-setter who is not a part of X makes an offer which is not accepted in equilibrium, and if he

offers something different then either it will not be accepted, or it will be X which will be accepted.

Clearly, the only case where his deviation will have a non-trivial effect is where he is the last person

to make a proposal and he deviates to proposing X. However, this changes the URC from N to

X, which makes him worse off. We have proved that this is a SPNE. Strategies are Markovian (by

definition of MTHPE and by construction), and thus it is a MPE. However, in our reasoning X

may be different, as we have thus constructed as much as 6 different MPEs with different coalitions

as the URC.

8.2 THPE vs. MTHPE

Example 5 Consider a game of three players with extensive form and payoffs as shown on Fig-

ure 6. The first two players vote, and if both vote for the ‘right’, all three players receive first-

best; if one of them votes for the ‘left’ then the third player chooses between ‘moderate’ and

‘bad’. All players receive the same in all terminal nodes, so there is no strategic conflict between
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Figure 6: A Game With Herding in Trembling-Hand Perfect Equilibrium.

them.Equilibrium (R, r, (a1, a2, a3)) is trembling-hand perfect, but so is (L, l, (a1, a2, a3)) where ef-

ficiency is not achieved because of ‘herding’ in voting (note that neither L not l are dominated

strategies: for instance, L is best response to second player playing l and third player playing

(a1, b2, b3)). Indeed, take some η and consider

σn =
¡¡
1− η3

¢
L+ η3R,

¡
1− η3

¢
l + η3r,

¡¡
1− η2

¢
a1 + η2b1, (1− η) a2 + ηb2, (1− η) a3 + ηb3

¢¢
.

Evidently, player 3 (and all his agents in agent-strategic form) are better off choosing a1 over b1,

a2 over b2, and a3 over b3. Now consider payoffs of player 1 choosing L or R. If he chooses L,

he gets uL = 5
¡¡
1− η3

¢ ¡
1− η2

¢
+ η3 (1− η)

¢
= 5 − 5η2 − 5η4 + 5η5. If he chooses R, he gets

uR = 5
¡¡
1− η3

¢
(1− η)

¢
+ 7η3 = 5− 5η + 2η3 + 5η4. Hence, For small η, player 1 should put all

weight to L, and a similar argument would show that player 2 should put all weight to l. This

proves that (L, l, (a1, a2, a3)) is also a trembling-hand perfect equilibrium.

The effect that Example 5 emphasizes would not be the case if fully mixed profiles σn were

required to be Markovian, which is what our definition of MTHPE imposes. Indeed, it is a natural

restriction to require that in the three subgames where player 3 moves and payoffs are identical,

his mixed action profile σn should lead to identical place. In that case, the increase of utility of

player 1 due to the possibility of player 2 playing r instead of l would be not be offset by worse

development in the subgame if he still plays l.

8.3 SWDE and MTHPE

Example 6 Consider a game of two players with extensive form depicted on Figure 7. This is

an agenda-setting game, because at each stage only one player has a (non-trivial) move. It game

has exactly one MTHPE (R, r). However, there are two SWDEs: (R, r) and (L, r). The latter is

not MTHPE, because if there is a non-zero chance that player 2 will play l, player 1 is better off

putting all weight to R.
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Figure 7: A Game With SWDE which is not MTHPE

Appendix B: Omitted Proofs

Proof of Theorem 2: (sketch) Let us first remember the notation in Proposition 1. In particular,

let the order Â over sets be such that X 0 Â X 00 if and only if γX0 > γX00 and the min operator

over sets according to this order. For k = 1, ..., |N |, let Xk = Xk ∪ S
¡
Xk
¢
, where S

¡
Xk
¢
≡©

Y ∈ P
¡
Xk
¢
: γY > αγXk and φ (Y ) = Y

ª
. Then the operator φ (N) satisfies

φ (N) = min
X∈S(N)∪{N}

X.

Define also the set of self-enforcing coalitions that are winning within N and include individual i

as:

Si (N) ≡ S (N) ∩ {X ∈ P (N) | i ∈ X}

and thus

φi (N) = min
X∈Si(N)∪{N}

X.

Now for any coalition X ∈ P (X) define

φX (N) = min

X∈
i∈X

Si(N) ∪{N}

X ≡ min
i∈X

φi (N) .

Evidently, φN (N) ≡ φ (N). For convenience, let φ∅ (N) = N , which clearly agrees with our

previous definition of φX (N). We start with the following lemma, which establishes the most

important part of the proof of the theorem.

Lemma 2 Suppose the game has reached node ξjq where there have been j (0 ≤ j ≤ |N | − 1)

eliminations, the first q (0 ≤ q ≤ |Nj | − 1) proposals have been made by players ij1 , . . . ijq were

rejected, and the Nature as picked player ijq+1 as the next proposer. Let Zjq ≡ Nj \
©
ij1 , . . . ijq

ª
.

Then

1. In any SWDE starting from node ξjq , φZjq (Nj) will be the URC. Moreover, the total number

of eliminations will be j if φZjq (Nj) = Nj and j + 1 otherwise.
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2. There exists a pure strategy SWDE where

(a) player ijq+1 makes proposal Xjq+1 = φijq+1
(Nj) and

(b) following the proposal Xjq+1 by player ijq+1, player i ∈ Xjq+1 votes for this proposal

if wi

¡
φ
¡
Xjq+1

¢¢
> wi

³
φZjq+1

(Nj)
´
(where wi (X) = γi/γX if i ∈ X and wi (X) = 0

if i /∈ X) and against it otherwise, so that proposal Xjq+1 is accepted if and only if

φ
¡
Xjq+1

¢
= φ (N) and Zjq+1 ∩ φ (N) = ∅.

Proof. The proof follows uses double (backward) induction, on j and q. The base for outer

induction is j = |N |− 1. If there were |N |− 1 eliminations, then, obviously, |Nj | = 1 and the only

possible value for q is q = 0. Any play that starts from that node will end up with Nj as the URC,

and the payoffs that all players will get are the same. It is therefore a pure strategy SWDE for the

only player ijq+1 to offer Xjq+1 = φijq+1
(Nj) = Nj (actually, this is the only proposal he can make)

and then to vote against it (because wi (Nj) = wi

¡
φ∅ (Nj)

¢
). Here, φZjq (Nj) = φijq+1

(Nj) = Nj

as well, and thus Part 1 follows (again, no other URC is possible in this subgame). The total

number of eliminations is j = |N |− 1, and this completes the proof of the base of the induction by

j.

Now let us prove the step of the induction. Suppose that the claim in the lemma has been

proved for all j0 > j, let us prove it for j0 = j. To do this, we use induction by q. The base is

q = |Nj | − 1, so suppose that ijq+1 is the last player to make a proposal in the jth round. If his

proposal Xjq+1 (whatever it is) is rejected, then φZjq+1
(Nj) = φ∅ (Nj) = Nj becomes the URC.

If this proposal is accepted, then (unless Xjq+1 = Nj , in which case the game ends with Nj as

the URC) (j + 1)th elimination takes place. By induction, the resulting URC will be φ
¡
Xjq+1

¢
(note that this does not depend on the player i(j+1)1 that the Nature picks as the first proposer in

the next round. Then, voting for the proposal if and only if wi

¡
φ
¡
Xjq+1

¢¢
> wi

³
φZjq+1

(Nj)
´
is

a weakly dominant strategy for player i ∈ Xjq+1 (holding future plays fixed). In particular, only

proposals such that φ
¡
Xjq+1

¢
is a winning coalition other than Nj are accepted; by definition,

φ
¡
Xjq+1

¢
is self-enforcing. Therefore, it is weakly dominant for player ijq+1 to make proposal

Xjq+1 = φijq+1
(Nj). Indeed, if his proposal is rejected, he will get wijq+1

(Nj), while if it is

accepted he will get wijq+1

¡
φ
¡
Xjq+1

¢¢
. As we have just shown, for a proposal X to be accepted in

the subsequent voting it is necessary and sufficient that φ (X) is a winning self-enforcing coalition

(other than Nj). If ijq+1 is not part of any such coalition (so that φijq+1 (Nj) = Nj), then he is

weakly better off from offering φijq+1 (Nj) = Nj : indeed, any other offer X 6= Nj is either rejected

(so Nj becomes the URC) or accepted, in which case φ (X) will be the URC, and this would make

40



player ijq+1 worse off because he is not part of φ (X). The opposite case is where φijq+1 (Nj) 6= Nj .

Player ijq+1 knows that whatever proposal X he makes, if it accepted, then equilibrium future play

will lead to a self-enforcing coalition φ (X), which is also winning within Nj (otherwise proposal

X will not get the majority on the voting). Of all winning self-enforcing coalitions, player ijq+1

prefers φijq+1 (Nj). He can achieve this by proposing Xijq+1
= φijq+1

(Nj); moreover, in this case,

only one extra −ε will be subtracted from his utility. Obviously, he cannot do better than that,

and hence proposing Xijq+1
= φijq+1

(Nj) is a weakly dominant action. The final step is to check

Part 2 of the lemma. Take any SWDE. By induction, we know what would happen if player ijq+1 ’s

proposal is accepted or rejected. If his proposal is some winning coalition Xijq+1
6= Nj , players

from φ
³
Xijq+1

´
will vote for it, while those from Xijq+1

\ φ
³
Xijq+1

´
will vote against it in this

SWDE. Hence, any proposal Xijq+1
6= Nj such that φ

³
Xijq+1

´
is a winning coalition within Nj

will be accepted; other proposals (other than Nj) will be rejected in this SWDE. Given this, player

ijq+1 maximizes his utility if he proposes Xijq+1
= φijq+1

(Nj). This completes the proof of the base

of the inner induction.

Induction by q follows in a similar way and is omitted. To inductions together established the

lemma.

Now we return to the proof of Theorem. The lemma is true for j = 0 and q = 0; moreover, the

URC and the number of eliminations does not depend on the player i01 that the Nature picks as

the first proposer. Since φN0 (N0) = φ (N), the conclusions in the Theorem follow. ¥

Proof of Theorem 4:

(Part 1) This is proved by backward induction by the number of stages in the game. Suppose

that the Lemma has been proved for games with q0 < q stages. Consider an agenda-setting game

with q stages and take any MTHPE in it. By induction, this MTHPE, when truncated to any of

the game’s proper subgames, forms a SWDE. Consider its first stage.

Suppose that only one player i moves at this stage and denote his expected utility (in this

MTHPE) from making action a at first stage by uai . If action a
∗ is an action played with a non-zero

probability in equilibrium then ua
∗
i ≥ uai for any other feasible action a (otherwise there would exist

a payoff-improving deviation). Hence, all actions played in a MTHPE with a non-zero probability

yield the same expected utility for player i, and this utility is maximum possible over the set of

feasible actions. Hence, this MTHPE is a SWDE.
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Now consider the other situation where the first stage is a voting stage. Consider a profile σ0

consisting of fully mixed strategies and suppose that it is η-close to σ for a small η. Depending

on how other players vote, three mutually exclusive situations are possible: proposal is accepted

regardless of how player i votes, it is rejected regardless of how he votes, and player i is pivotal; let

μ+, μ−, and μp be the respective probabilities of these events. By definition, μ+ + μ− + μp = 1,

and by assumption μp > 0. Voting for the proposal yields (μ+ + μp)u+0i + μ−u−0i in expectation,

voting against it yields μ+u+0i + (μ− + μp)u−0i where u+0i and u−0i are i’s utilities from acceptance

and rejection of the proposal if profile σ0 is played. Thus, if u+0i > u−0i then player i’s sole best

response is voting for the proposal, and if u+0i < u−0i it is voting against it. If η is sufficiently small

then u+i > u−i implies u+0i > u−0i , and thus by definition of MTHPE player i must support the

proposal in equilibrium with probability one. Similar reasoning applies to the case u+i < u−i .

Now take any player i who participates in voting. If u+i > u−i , then he votes for the proposal in

this MTHPE. This is a weakly dominant strategy for him (given continuation strategies of himself

and other players). Similarly, if u+i < u−i then the strategy he plays in this MTHPE is weakly

dominant. If, u+i = u−i or the player is never pivotal, any strategy is weakly dominant. Therefore,

for any player, the strategy he plays in this MTHPE is weakly dominant, and thus this MTHPE is

a SWDE. This completes the induction step.

(Part 2) Consider a one-stage game with two players making simultaneous moves with payoff

matrix
l r

L (1, 1) (0, 0)
R (0, 0) (1, 1)

.

This game does not have SWDE, because it is one-stage and in that only stage neither of the

players has a weakly dominant strategy. It is straightforward to check, however, that both (L, l)

and (R, r) are MTHPEs of this game.

(Part 3) This follows from Example 6 in Appendix A. ¥

Proof of Theorem 5: (sketch) Fix an abstract game Γ =
¡
N, {γi}i∈N , α

¢
and construct the

corresponding non-transferable utility cooperative game ΓN =
¡
N, {γi}i∈N , α, vN (·)

¢
. Suppose

that for the mapping φ defined in Theorem 1, φ (N) = X is uniquely determined (in view of

Assumption 1). We first show that the allocation x with wi (X) = γi/γX for i ∈ 0 and wi (X) = 0

for i /∈ X is in the set vN (X). Since φ (N) = X, X must be winning within N according to

Definition 1, thus γX > αγN . Therefore, coalition X can implement any feasible allocation.

Moreover, again since φ (N) = X, X is self-enforcing. Therefore, in the cooperative game ΓX =¡
X, {γi}i∈X , α, vX (·)

¢
, the allocation x is in the core. Therefore, coalition X can implement x. By
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definition, again since φ (N) = X, there is no winning self-enforcing subcoalition of X, thus there

exists no Y that can implement a feasible payoff vector that will give higher utility to its members

than x. This establishes that x is in the core.

To see that there are no other allocation in the core, suppose that there exists some feasible

allocation y in the core implemented by a coalition Y . Since both X and Y are winning, we must

have X ∩ Y 6= ∅. By construction, all i in X\X ∩ Y have higher payoff under x than y. Again

by definition of φ (N) = X and given Assumption 1, all i in X ∩ Y also have higher payoff under

x than y. Moreover, by the same argument as the previous paragraph x he’s a feasible a location

that coalition X can implement. Therefore, coalition x can block y, and thus y is not in the core,

completing the proof. ¥

9 Appendix C: The Structure of Self-Enforcing Coalitions

In this appendix, we generalize the results on the structure of self-enforcing coalitions to situations

in Assumption 1 does not hold. Let us define S (N) as the set of all winning self-enforcing coalitions.

Formally, S : P (N)→ P (N) is a mapping that satisfies Axioms 1 and 2 in Section 3. Recall also

that under Assumption 1 all elements of S (N) have different powers, and hence the winning self-

enforcing coalition with minimal power, φ (N), is unique as proved in Theorem 1. Furthermore,

denote the set of coalitions that satisfy the requirement in Assumption 1, i.e., that are generic, by

G (N), and the set of coalitions that are generic but not self-enforcing by N (N).

Define the joint set of generic and non-generic self-enforcing coalitions by S+ (N)i.e.,

S+ (N) = Rn
+ \

³
Rn
+ \ S (N)

´
,

where A denotes the closure of set A in the standard topology.

We then have:

Theorem 6 1. The set of generic coalitions G (N), the set of self-enforcing coalitions S (N),

and the set of coalitions which are generic but not self-enforcing N (N), are open sets in Rn
+.

The set G (N) is also dense in Rn
+

2. Each connected component of G (N) lies entirely within either S (N) or N (N).

Proof. (Part 1) The set G (N) may be obtained from Rn
+ by subtracting a finite number of

hyperplanes given by equations γX = γY for all X,Y ∈ P (N) such that X 6= Y . These hyperplanes

are closed sets, hence, a small perturbation of powers of a generic point will leave preserve this
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property (genericity). This ensures that G (N) is an open set; it is dense because hyperplanes

have dimension lower than n. The proofs for S (N) and N (N) are by induction. The base is

trivial: indeed, S (N) = R+ and N (N) = ∅ are open sets. Now suppose that we have proved this

Proposition for all n < k. Take any generic coalition N with powers {γi}; it is self-enforcing if

and only if there are no proper winning self-enforcing coalitions within N . Now take some small

(in sup-metric) perturbation of powers {γ0i}. If this perturbation is small, then the set of winning

coalitions is the same, and, by induction, the set of proper self-enforcing coalitions is the same as

well. Therefore, the perturbed coalition {γ0i} is self-enforcing if and only if the initial coalition with

powers {γi} is self-enforcing; which completes the induction step.

(Part 2) Take any connected component A ⊂ G (N). Both S (N)∩A and N (N)∩A are open

in A in the topology induced by G (N) (and, in turn, by Rn) by definition of induced topology.

Also, (S (N) ∩A) ∩ (N (N) ∩A) = ∅ and (S (N) ∩A) ∪ (N (N) ∩A) = A, which, given that A

is connected, implies that either S (N) ∩ A or N (N) ∩ A is empty. Hence, A lies either entirely

within S (N) or N (N). This completes the proof. ¥
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