1. Search and Human Capital

Consider an economy where workers accumulate human capital over time. A worker with human capital h_t produces a final, nonstorable good y_t with the production function:

$$y_t = e^{z_t} h_t^{\alpha}$$

where $\alpha < 1$ and z_t is a stochastic process that follows $z_t = \rho z_{t-1} + \sigma \varepsilon_t$ where $0 < \rho < 1$ and $\varepsilon_t \sim \mathcal{N}(0, 1)$. Workers are paid their marginal productivity.

Jobs disappear at the end of each period with probability $\delta(z_t)$ where $\delta'(z_t) < 0$. If the job is not terminated, additional human capital is accumulated with law of motion $h_{t+1} = \gamma h_t$ where $\gamma > 1$.

If the worker is unemployed, it will get an offer in period t with probability $\pi(e_t)$ where e_t is the effort devoted to search and it will not get an offer with probability $1 - \pi(e_t)$. The function $\pi(.): [0, 1] \rightarrow [0, 1]$ is monotone, increasing, concave, and differentiable everywhere.

If an offer arrives, it is parameterized by a current productivity level z_t drawn from the ergodic distribution of the process for productivity described above and by a random variable b_t uniformly distributed between 0 and 1 and i.i.d. over time. A worker that accepts an offer in period t to start working in period t + 1 has a new human capital of $h_{t+1} = b_t h_t$ (that is, a share $(1 - b_t)$ of human capital disappears for ever). If the offer does not arrive or if it is rejected, the new level of human capital will be $h_{t+1} = \mu h_t$ where $\mu < 1$. Note that the worker knows z_t (the productivity of the firm today) but not z_{t+1} (the productivity of the firm tomorrow, when it starts to work).

The utility of the worker is:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ c_t - e_t \right\}$$

where c_t is consumption and e_t is the search effort (trivially equal to 0 when the worker is employed).

- 1. Set up the worker's problem as a dynamic programming problem.
- 2. Display the condition that describes the optimal choice of e_t .
- 3. Does the worker have a reservation-wage strategy? If so, show that this is the case and characterize it. If not, show that this is the case and characterize its decision rule.
- 4. Can it happen that a worker will accept an offer with a b_t lower than a b'_t from other offer that it would reject? If so, why? If not, why not?
- 5. How do your previous answers change as the worker unemployment spell becomes longer?
- 6. (Volatility and unemployment) Describe the effects of an increase in σ on the behavior of workers. Interpret the results.
- 7. (Technological depreciation and unemployment) Describe the effects of an increase in μ on the behavior of workers. Interpret the results.