Cohabitation versus marriage: Marriage matching with peer effects

Ismael Mourife and Aloysius Siow

University of Toronto

1 US trends since the seventies

- The marriage rate has fallen significantly. Starting from a low base, the cohabitation rate has increased significantly.
- Cohabitating unions are more unstable than marriage, often leading to separation and not into marriage.
- Women has over taken men in educational attainment.
- There is evidence of an increase in educational positive assortative matching in marriage.
- Earnings inequality has increased significantly.
- The fraction of children living in a single parent (mother) & poor household has risen significantly.

2 How has changes in marital matching affected family earnings inequality?

The authors below argue that increased earnings inequality and changes in marital matching led to increases in family earnings inequality.

- Burtless (1999).
- Greenwood, Jeremy, Nezih Guner, Georgi Kocharkov, and Cezar Santos (2014).
- Carbone and Cahn (2014). Margaret Wente has a column on the book last Saturday.

The objective of this research agenda is to develop a framework and use it to quantitatively evaluate the determinants of changes in family earnings inequality.

3 The empirical framework:

- We want an empirical framework to study marriage matching which allows for:
 - Peer effects in marriage matching.
 - Changes in population supplies.
 - Choice of partners & relationships: marriage, cohabitation, unmatched.
 - Changes in payoffs to different kinds of relationships & partners.
- Today, we present preliminary results:
 - Returns to scale in marriage matching.
 - Are there peer effects in marriage matching?
 - Do variations in sex ratio affect cohabitation versus marriage?

Consider a marriage market s at time t. There are I, i = 1, ..., I, types of men and J, j = 1, ..., J, types of women. Let m_i and f_j be the population supplies of type i men and type j women respectively. Each individual chooses between three types of relationships, unmatched, marriage or cohabitation, r = [0,m, c], and a partner (by type) of the opposite sex for relationship r. The partner of an unmatched relationship is type 0.

Let M^{st} and F^{st} be the population vectors of men and women respectively. Let θ^{st} be a vector of parameters. A marriage matching function (MMF) is an $2I \times J$ matrix valued function $\mu(M^{st}, F^{st}, \theta^{st})$ whose typical element is μ_{ij}^{rst} , the number of (r, i, j) relationships.

4 The log odds MMF:

$$\ln \frac{\mu_{ij}^{rst}}{(\mu_{i0}^{0st})^{\lambda_r}(\mu_{0j}^{0st})^{\beta_r}} = \gamma_{ij}^{rst} \forall (r, i, j) \qquad (1)$$

$$\lambda_r, \beta_r > 0$$

• This MMF nests several of behavioral MMF.

Empirically, we estimate:

$$\ln \mu_{ij}^{rst} = \lambda_r \ln \mu_{i0}^{0st} + \beta_r \ln \mu_{0j}^{0st} + \hat{\gamma}_{ij}^{rst} + \varepsilon_{ij}^{rst} \gamma_{ij}^{rst} = \hat{\gamma}_{ij}^{rst} + \varepsilon_{ij}^{rst}$$

where $\hat{\gamma}_{ij}^{rst}$ is observable to the analyst.

• Since μ_{i0}^{0st} and μ_{0j}^{0st} are endogenous, we instrument them with m_i and f_j .

- What are the interpretations of λ_r , β_r and γ_{ij}^{rst} ?
- The above model is not a causal model of $\ln \mu_{ij}^{rst}$.
- Kirsten and I are working on studying how individual earnings affect $\hat{\gamma}_{ij}^{rst}$.
- When *i* and *j* are ordered, the local log odds is a measure of positive assortative matching:

$$\ln \frac{\mu_{ij}^{rst} \mu_{i+1,j+1}^{rst}}{\mu_{i+1,j}^{rst} \mu_{i,j+1}^{rst}} = \gamma_{ij}^{rst} + \gamma_{i+1,j+1}^{rst} - \gamma_{i+1,j}^{rst} - \gamma_{i,j+1}^{rst}$$

The local log odds measures the degree of local complementarity of γ_{ij}^{rst} .

5 Marriage matching with peer effects

We dispense with s and t.

For a type i man to match with a type j woman in relationship r, he must transfer to her a part of his utility that he values as τ_{ij}^r . The woman values the transfer as τ_{ij}^r . τ_{ij}^r may be positive or negative.

Let the utility of male g of type i who matches a female of type j in a relationship r be:

$$U_{ijg}^r = \tilde{u}_{ij}^r + \phi^r \ln \mu_{ij}^r - \tau_{ij}^r + \epsilon_{ijg}^r, \text{ where }$$
(2)

 $\tilde{u}_{ij}^r + \phi^r \ln \mu_{ij}^r$: Systematic gross return to a male of type i matching to a female of type j in relationship r.

 $\phi^r\colon$ Coefficient of peer effect for relationship $r.\ 1\geq \phi^r\geq$ 0.

 μ_{ij}^r : Equilibrium number of (r, i, j) relationships.

 τ_{ij}^r : Equilibrium transfer made by a male of type i to a female of type j in relationship r.

 $\epsilon^r_{ijm}\!\!:$ i.i.d. random variable distributed according to the Gumbel distribution.

Due to the peer effect, the net systematic return is increased when more type i men are in the same relationships. It is reduced when the equilibrium transfer τ_{ij}^r is increased.

The above empirical model for multinomial choice with peer effects is standard. See Brock Durlauf.

And $\tilde{u}_{i0} + \phi^0 \ln \mu_{i0}^0$ is the systematic payoff that type *i* men get from remaining unmatched.

Individual g will choose according to:

$$U_{ig} = \max_{j,r} \{U_{i0g}^{0}, U_{i1g}^{m}, ..., U_{ijg}^{c}, ..., U_{iJg}^{c}\}$$

Let $(\mu_{ij}^r)^d$ be the number of (r, i, j) matches demanded by *i* type men and $(\mu_{i0})^d$ be the number of unmatched *i* type men. Following the well known McFadden result, we have:

$$ln\frac{(\mu_{ij}^r)^d}{(\mu_{i0})^d} = \tilde{u}_{ij}^r - \tilde{u}_{i0} + \phi^r \ln \mu_{ij}^r - \phi^0 \mu_{i0} - \tau_{ij}^r, \quad (3)$$

The above equation is a quasi-demand equation by type i men for (r, i, j) relationships.

The random utility function for women is similar to that for men except that in matching with a type imen in an (r, i, j) relationship, a type j women receives the transfer, τ_{ij}^r .

The quasi-supply equation of type j women for (r, i, j) relationships is given by:

$$\ln \frac{(\mu_{ij}^r)^s}{(\mu_{0j})^s} = \tilde{v}_{ij}^r - \tilde{v}_{0j} + \Phi^r \ln \mu_{ij}^r - \Phi^0 \ln \mu_{0j} + \tau_{ij}^r.$$
(4)

The matching market clears when, given equilibrium transfers τ^r_{ij} ,

$$(\mu_{ij}^r)^d = (\mu_{ij}^r)^s = \mu_{ij}^r.$$
 (5)

Then we get a MMF with peer effects:

$$\ln \mu_{ij}^{r} = \frac{1 - \phi^{0}}{2 - \phi^{r} - \Phi^{r}} \ln \mu_{i0} + \frac{1 - \Phi^{0}}{2 - \phi^{r} - \Phi^{r}} \ln \mu_{0j} + \frac{\pi_{ij}^{r}}{2 - \phi^{r}} \ln \mu_{0j} + \frac{\pi_{ij$$

The presence of peer effects in marriage markets do not imply that $\lambda^r + \beta^r > 1$.

You cannot distinguish ϕ^r from Φ^r . On the other hand, you can test whether $\phi^0 = \Phi^0$.

When there is no peer effect or all the peer effect coefficients are the same,

$$\phi^0 = \Phi^0 = \phi^r = \Phi^r$$

we recover the CS MMF:

$$\ln \mu_{ij}^r = \frac{1}{2} \ln \mu_{i0} + \frac{1}{2} \ln \mu_{0j} + \frac{\pi_{ij}^r}{2}$$

When

$$rac{1-\phi^0}{2-\phi^r-\Phi^r} = rac{1-\Phi^0}{2-\phi^r-\Phi^r} = 1$$

we recover the Dagsvik Manziel MMF which is a nontransferable utility model of the marriage market:

$$\ln \mu_{ij}^{r} = \ln \mu_{i0} + \ln \mu_{0j} + \pi_{ij}^{r}$$

DM has increasing returns. In this case, we want the peer effect on relationships to be significantly more powerful than that for remaining unmatched. Also, when

$$\phi^0 + \Phi^0 = \phi^r + \Phi^r = \phi^{r'} + \Phi^{r'},$$

Chiappori, Salanie and Weiss MMF obtains:

$$\ln \mu_{ij}^r = \frac{1 - \phi^0}{2 - \phi^0 - \Phi^0} \ln \mu_{i0} + \frac{\Phi^0}{2 - \phi^0 - \Phi^0} \ln \mu_{0j} + \frac{\pi_{ij}^r}{2 - \phi^0 - \Phi^0}$$

And from
$$(6)$$
,

$$\ln rac{\mu^{\mathsf{m}}_{ij}}{\mu^{c}_{ij}} = \Omega(1-\phi^0) \ln \mu_{i0} - \Omega(1-\Phi^0) \ln \mu_{0j} + \Delta \pi_{ij}$$

As long as $\phi^c + \Phi^c \neq \phi^m + \Phi^m$, the log odds of the number of m to c relationships will not be independent of the sex ratio.

Note also

$$\ln \frac{\mu_{ij}^r \mu_{i+1,j+1}^r}{\mu_{i+1,j}^r \mu_{i,j+1}^r} = \frac{\pi_{ij}^r + \pi_{i+1,j+1}^r \pi_{i+1,j}^r - \pi_{i,j+1}^r}{2 - \phi^r - \Phi^r}$$
(7)

If the marital output function, $\pi_{ij}^r = \tilde{u}_{ij}^r + \tilde{v}_{ij}^r$, is supermodular in *i* and *j*, then the local log odds, l(r, i, j), are positive for all (i, j), or totally positive of order 2 (TP2). So even in the presence of peer effects, we can learn about complementarity of the marital surplus function. CSPE MMF is a special case of the Log Odds MMF.

It convenient to summarize the different models and some of their properties.

$$\ln \mu_{ij}^{rst} = \lambda_r \ln \mu_{i0}^{0st} + \beta_r \ln \mu_{0j}^{0st} + \gamma_{ij}^{rst}$$

Models and restrictions on λ^r and eta^r						
Model	λ^r	β^r	γ_{ij}^r	Restrictions		
Log Odds MMF	λ^r	β^r	γ_{ij}^{r}	$\lambda^r \geq 0, eta^r \geq 0$		
CS	$\frac{1}{2}$	$\frac{1}{2}$	π^r_{ij}	$\lambda^r = \beta^r = \frac{1}{2}$		
DM	1	1	π_{ij}^{r}	$\lambda^r = eta^r = 1$		
CSW	λ^r	1- λ^r	$k\pi^r_{ij}$	$k > 0; \lambda^r = \lambda^{r'} > 0$		
CSPE	$\frac{1{-}\phi^{0}}{k^r}$	$\frac{1-\Phi^0}{k^r}$	$rac{\pi^r_{ij}}{k^r}$	$\lambda^r, eta^r \geq 0, rac{\lambda^a}{\lambda^b} = rac{eta^a}{eta^b}$		

- **Theorem** [Existence and Uniqueness of the Equilibrium matching] For every fixed matrix of relationship gains and coefficients β_r ; $\lambda_r > 0$ i.e. $\theta \in \Gamma \times (0, \infty)^2$, the equilibrium matching of the log Odds MMF model exists and is unique.
- **Proposition (constant returns to scale)** The equilibrium matching distribution of the log Odds MMF model satisfies the Constant return to scale property if $\beta_r + \lambda_r = 1$ i.e.

$$\beta_r + \lambda_r = 1 \text{ for } r \in \{a, b\} \Rightarrow \sum_{i=1}^I \frac{\partial \mu}{\partial m_i} m_i + \sum_{j=1}^J \frac{\partial \mu}{\partial f_j} f_j = \mu.$$

- **Theorem** Let μ be the equilibrium matching distribution of the log Odds MMF model. If the coefficients β_r and λ_r respect the restrictions
 - 1. $0 < \beta_r; \lambda_r \le 1$ for $r \in \{a, b\};$

2.
$$\max(\beta_b - \lambda_b, \beta_a - \lambda_a) < \min_{i \in I} \left(\frac{1 - \rho_i^m}{\rho_i^m}\right);$$

3.
$$\min(\beta_b - \lambda_b, \beta_a - \lambda_a) > -\max_{j \in J} \left(\frac{1 - \rho_j^f}{\rho_j^f}\right);$$

where ρ_i^m is the rate of matched men of type i and ρ_j^f is the rate of matched women of type j, then:

 Type-specific elasticities of unmatched.
 The following inequalities hold in the neighbourhood of µ^{eq}:

$$\begin{split} & \frac{m_i}{\mu_{k0}} \frac{\partial \mu_{k0}}{\partial m_i} \geq \begin{cases} \frac{1}{m_i^*} \frac{m_k}{m_k^*} \sum_{j=1}^J \frac{[\lambda_a \mu_{kj}^a + \lambda_b \mu_{kj}^b] [\beta_a \mu_{kj}^a + \beta_b \mu_{kj}^b]}{f_j^*} > 0\\ & \frac{m_i}{m_i^*} [1 + \frac{1}{m_i^*} \sum_{j=1}^J \frac{[\lambda_a \mu_{ij}^a + \lambda_b \mu_{ij}^b] [\beta_a \mu_{ij}^a + \beta_b \mu_{ij}^b]}{f_j^*}] > 1\\ & 1 \leq k \leq I. \end{cases} \\ & \frac{f_j}{\mu_{0k}} \frac{\partial \mu_{0k}}{\partial f_j} \geq \begin{cases} \frac{1}{f_j^*} \frac{f_k}{f_k^*} \sum_{i=1}^I \frac{[\lambda_a \mu_{ik}^a + \lambda_b \mu_{ik}^b] [\beta_a \mu_{ik}^a + \beta_b \mu_{ik}^b]}{m_i^*} > 0\\ & \frac{f_j}{f_j^*} [1 + \frac{1}{f_j^*} \sum_{i=1}^I \frac{[\lambda_a \mu_{ij}^a + \lambda_b \mu_{ij}^b] [\beta_a \mu_{ij}^a + \beta_b \mu_{ij}^b]}{m_i^*}] > 1 \end{cases} \end{split}$$

$$1\leq k\leq J$$
 ,

$$\frac{m_i}{\mu_{0j}} \frac{\partial \mu_{0j}}{\partial m_i} \leq -\frac{[\lambda_a \mu_{ij}^a + \lambda_b \mu_{ij}^b]}{m_i^* f_j^*} m_i < 0, \text{ for } 1 \leq i \leq I \text{ and}$$

$$\frac{f_j}{\mu_{i0}}\frac{\partial\mu_{i0}}{\partial f_j} \leq -\frac{[\beta_a\mu^a_{ij} + \beta_b\mu^b_{ij}]}{m^*_i f^*_j}f_j < 0, \text{ for } 1 \leq i \leq I \text{ and } 1$$

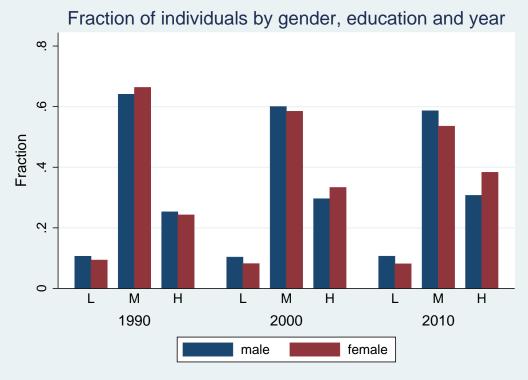
where

$$m_i^* \equiv m_i - \sum_{j=1}^J [(1-\lambda_a)\mu_{ij}^a + (1-\lambda_b)\mu_{ij}^b], \text{ for } 1 \le i \le I,$$

$$f_j^* \equiv f_j - \sum_{i=1}^{I} [(1 - \beta_a) \mu_{ij}^a + (1 - \beta_b) \mu_{ij}^b], \text{ for } 1 \le j \le J.$$

6 Preliminary empirical evidence

- 1990, 2000 US census; 3 years of ACS around 2010?
- Each state year is a separate marriage market.
- Males are between ages 28-32. females 26-30.
- 3 categories of educational attainment:
 - L: Less that high school graduation.
 - M: High school graduate but not university graduate.
 - H: University graduate and or more.
- Cohabitation: response of "unmarried partner" to relationship to household head.



\mathbf{n}	I C

	Ln c	Ln m	Ln c	Ln m	Ln c	Ln m
Lu_male	0.453 (0.036)**	0.423 (0.046)**	0.371 (0.076)**	0.198 (0.052)**	0.603 (0.079)**	0.542 (0.033)**
Lu_female	0.564 (0.037)**	0.652 (0.047)**	0.623 (0.077)**	0.649 (0.050)**	0.858 (0.082)**	0.887 (0.035)**
HM			-1.085 (0.079)**	-1.208 (0.054)**	-1.206 (0.074)**	-1.353 (0.035)**
MH			-0.759 (0.084)**	-0.948 (0.070)**	-0.923 (0.076)**	-1.220 (0.045)**
MM			0.446 (0.055)**	0.337 (0.049)**	0.138 (0.072)	-0.099 (0.043)*
ML			-0.730 (0.171)**	-1.386 (0.107)**	-0.657 (0.154)**	-1.443 (0.054)**
LM			-0.861 (0.121)**	-1.861 (0.089)**	-0.829 (0.107)**	-1.804 (0.046)**
LL			-0.422 (0.078)**	-1.620 (0.057)**	-0.027 (0.101)	-1.250 (0.049)**
Y00			-0.017 (0.041)	-0.323 (0.029)**	-0.001 (0.036)	-0.332 (0.016)**
Y10			0.620 (0.059)**	-0.856 (0.041)**	1.348 (0.144)**	0.021 (0.068)
State			(0.00))	(0.011)	Y	Y
effects						
_cons	-4.043 (0.365)**	-2.192 (0.425)**	-3.409 (0.219)**	1.158 (0.156)**	-8.426 (0.877)**	-3.849 (0.386)**
R^2	0.68	0.66	0.88	0.95	0.91	0.98
Ν	964	1,034	964	1,034	964	1,034

* *p*<0.05; ** *p*<0.01

	Ln c	Ln m	Ln c	Ln m	Ln c	Ln m
Lu_male	0.452 (0.036)**	0.477 (0.050)**	0.322 (0.082)**	0.131 (0.054)*	0.626 (0.088)**	0.601 (0.036)**
Lu_female	0.576 (0.039)**	0.694 (0.050)**	0.670 (0.083)**	0.751 (0.053)**	0.953 (0.087)**	1.074 (0.037)**
HM			-1.113 (0.079)**	-1.267 (0.057)**	-1.258 (0.074)**	-1.457 (0.038)**
MH			-0.720 (0.086)**	-0.891 (0.075)**	-0.936 (0.080)**	-1.255 (0.048)**
MM			0.456 (0.056)**	0.331 (0.052)**	0.066 (0.073)	-0.251 (0.050)**
ML			-0.646 (0.181)**	-1.230 (0.112)**	-0.579 (0.165)**	-1.299 (0.059)**
LM			-0.921 (0.125)**	-1.962 (0.093)**	-0.868 (0.115)**	-1.871 (0.050)**
LL			-0.408 (0.079)**	-1.567 (0.058)**	0.074 (0.104)	-1.044 (0.054)**
Y00			-0.013 (0.041)	-0.313 (0.031)**	0.004 (0.036)	-0.321 (0.017)**
Y10			0.614 (0.059)**	-0.805 (0.042)**	1.527 (0.150)**	0.392 (0.075)**
State effects			(0.00))	(0.012)	Y	Y
_cons	-4.168 (0.365)**	-3.180 (0.418)**	-3.387 (0.216)**	0.783 (0.167)**	-9.517 (0.897)**	-6.118 (0.427)**
R^2	0.68	0.65	0.88	0.95	0.91	0.98
Ν	964	1,034	964	1,034	964	1,034

IV: instruments are m_i and f_j

* *p*<0.05; ** *p*<0.01

IV with time varying match effects

	Ln c	Ln m	Ln c	Ln m
Lu_male	0.440	0.309	0.608	0.656
	(0.075)**	(0.055)**	(0.076)**	(0.031)**
Lu_female	0.545	0.567	0.756	0.818
	(0.072)**	(0.055)**	(0.077)**	(0.037)**
LL HM	2.28	2.48	2.27	2.47
	(0.138)**	(0.084)**	(0.130)**	(0.033)**
LL ML	1.47	1.89	1.47	1.82
	(0.122)**	(0.110)**	(0.107)**	(0.046)**
LL HM00	0.223 (0.245)	-0.017 (0.184)	0.182 (0.209)	-0.103 (0.089)
LL ML00	0.203 (0.198)	0.144 (0.154)	0.187 (0.175)	0.146 (0.087)
LL HM10	1.43	-0.354	1.95	0.474
	(0.264)**	(0.197)	(0.266)**	(0.115)**
LL ML10	0.842 (0.234)**	0.167 (0.223)	0.828 (0.232)**	0.185 (0.189)
Y00	0.310	-0.007	0.269	-0.090
	(0.095)**	(0.073)	(0.078)**	(0.039)*
Y10	1.185	-0.291	1.710	0.544
	(0.098)**	(0.078)**	(0.147)**	(0.066)**
State effects	()	()	Y	Y
R^2	0.89	0.96	0.92	0.99
N	964	1,034	964	1,034

