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1 Introduction

Modern macroeconometric methods are based on densely parameterized models such as vec-

tor autoregressive models (VAR) or dynamic factor models (DFM). Densely parameterized

models deliver a better in-sample fit. It is well-know, however, that such models can de-

liver erratic predictions and poor out-of-sample forecasts due to parameter uncertainty. To

address this issue, Sims (1980) suggested to use priors to constrain parameter estimates by

”shrinking” them toward a specific point in the parameter space. Provided that the direction

of shrinkage is chosen accurately, it has been shown that densely parameterized models are

extremely successful in forecasting. This explains the popularity of largely parameterized

models in the literature (Stock and Watson, 2002 , Forni, Hallin, Lippi, and Reichlin, 2003,

Koop and Porter 2004, Korobilis, forthcoming, Banbura, Giannone, and Reichlin, 2010 and

Koop, 2011).

The direction of shrinkage is often determined by maximizing the marginal likelihood of

the data (see Carriero, Kapetanios and Marcellino, 2010 and Giannone el al., 2010), also

called marginal data density (MDD). The marginal data density is defined as the integral

of the likelihood function with respect to the prior density of the parameters. In few cases,

the MDD has an analytical representation. When an analytical solution for this density is

not available, we need to rely on computational methods, such as the Chib’s method (Chib,

1995), estimators based on Reciprocal Importance Sampling principle (Gelfand and Dey,

1994), or the Bridge Sampling estimator (Meng and Wong, 2006). Since all these methods

rely on computational methods to integrate the model parameters out of the posterior den-

sity, their accuracy quickly deteriorates as the dimensionality of the parameter space grows

large. Hence, there is a tension between the need for using broadly parameterized models

for forecasting and the accuracy in estimating the MDD which influences the direction of

shrinkage.

This paper aims at mitigating this tension by introducing two MDD estimators (hence-

forth, Method 1 and Method 2) that exploit the information about models’ analytical struc-

ture. While Method 1 follows the approach proposed by Chib (1995), Method 2 is based upon

the Reciprocal Importance Sampling principle. Conversely to fully computational methods,

Method 1 and Method 2 rely on analytical integration of some parameter blocks1.

We provide a guide on how to apply the estimators to a wide range of time series

models, such as Vector AutoRegressive Models (VARs), Reduced Rank Regression Models

1Fiorentini, Planas, and Rossi (2011) show how to integrate scale parameters out of the likelihood using
kalman filtering and Gaussian quadrature for dynamic mixture models.
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such as Vector Equilibrium Correction Models (VECMs), Markov-Switching VAR models

(MS VARs), Time-Varying Parameter VAR models (TVP VARs), Dynamic Factor Models

(DFMs), and Factor Augmented VAR models (FAVARs). We show that all these models

satisfy the two conditions that are needed for applying our estimators. The first condition

(henceforth, sampling condition) requires that the posterior density can be approximated

via the Gibbs sampler. The second condition (henceforth, analytical tractability condition)

states that there exists an integer i ≥ 2 such that it is possible to analytically integrate out

(i− 1) parameter blocks {θ1, ..., θi−1} from the conditional posterior densities θi| (Θ−i, Y,D)

for i ∈ {1, ...,m}, where Θ−i ≡ {θ1, ..., θi−1, θi+1, , ..., θm}, Y is the sample data, and D is a

set of unobservable model variables.

By means of a Monte Carlo experiment, we show that exploiting the analytical tractabil-

ity condition leads to sizeable gains in accuracy and computational burden which quickly

grow with the dimensionality of the parameter space of the model. We consider VAR(p)

models, in the form studied by Villani (2009) and Del Negro and Schorfheide (2010) (i.e.,

the so-called mean-adjusted VAR models), from one up to four lags, p = 1, . . . , 4. We fit

these four VAR models, under a single-unit-root prior2, to six data sets where the number of

observable variables ranges from one to six. It is compelling to focus on mean-adjusted VAR

models because the true conditional predictive density Y | (θi+1, ..., θm), with i ≥ 2,3 can be

analytically derived in closed form4. We can compare the performance of our estimators with

that of the estimator proposed by Chib (1995). In particular, for mean-adjusted VAR mod-

els, Method 1 and Chib’s method only differ in the computation of the conditional predictive

density. While Method 1 evaluates the analytical expression for the conditional predictive

density, Chib’s method approximates this density computationally via Monte Carlo integra-

tion. Therefore, we can quantify the accuracy gains associated with exploiting the analytical

tractability condition by comparing the conditional predictive density estimated by Chib’s

method with its true value. This assessment would have not been possible, if we had used

2For a thorough description of such a prior, see Del Negro and Schorfheide (2010), section 2.2.
3Note that the conditional predictive density is a component of the MDD, p (Y ). One can see this by

decomposing the MDD as follows:

p (Y ) =
∫
p (Y |θ1, ..., θm) p (θ1, ..., θm) dθ1...dθm

=
∫ (∫

p (Y |θ1, ..., θm) p (θ1, ..., θi|θi+1, ..., θm) dθ1...dθi

)
p (θi+1, ..., θm) dθi+1...dθm

where p (Y |θ1, ..., θm) is the likelihood function and p (θ1, ..., θi|θi+1, ..., θm) p (θi+1, ..., θm) is the prior. The
conditional predictive density Y | (θi+1, ..., θm) is defined as the integral within brackets.

4This result requires that no data augmentation be needed to approximate the posterior density.

2



models that require data augmentation to approximate the posterior (e.g., MS VARs, TVP

VARs, DFMs, or FAVARs) or other estimators than Chib’s method, such as the Bridge

Sampling.

The main findings of the experiment are: (i) a fully-computational approach that neglects

the analytical tractability condition leads to an estimation bias that severely distorts the

model ranking when the number of observables is larger than five; (ii) both our methods

deliver very similar results in terms of posterior model rankings, suggesting that the accuracy

of our two methods is of the same order of magnitude in the experiment; (iii) exploiting the

analytical tractability condition prevents our estimators from being affected by the ”curse

of dimensionality” (i.e., computing time growing at faster pace as the number of lags and

observables in the model increases). In relation to this last finding, we argue that Method

2 is suitable for performing model selection and model averaging across a large number of

models.

The paper is organized as follows. Section 2 introduces the conditions that a model has

to satisfy in order to apply our two estimators. In this section, we describe the two methods

proposed in this paper for computing the MDD. Section 3 discusses the application of our

methods to several econometric models. Section 4 performs the Monte Carlo application.

Section 5 concludes.

2 Methods for Computing the Marginal Data Density

The marginal data density (MDD), also known as the marginal likelihood of the data, is

defined as the integral taken over the likelihood with respect to the prior distribution of the

parameters. Let Θ be the parameter set of an econometric model and Y be the sample data.

Then, the marginal data density is defined as

p (Y ) =

∫
p(Y |Θ)p(Θ)dΘ (1)

where p(Y |Θ) and p(Θ) denote the likelihood and the prior density, respectively.

In this section, we describe the modeling framework for which we have developed new

estimators for the MDD. In particular, we focus on models in which the joint posterior

density for parameters can be approximated through the Gibbs sampler. We describe the

two methods proposed in this paper in section 2.2.
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2.1 The modeling framework

Let us denote a set of observable variables as Y . Let us consider a model whose set of

parameters and latent variables is denoted by ΘD = {D,Θ} where D stands for the latent

variables and Θ for the parameters of the model. We denote the prior for model’s parameters

as p (Θ) and it is assumed to have a known analytical representation. Furthermore, the

likelihood function, p (Y |Θ), is assumed to be easy to evaluate. We define blocks in the

parameter vector as θ1, θ2, ..., θm, such that Θ ≡ {θ1, ..., θm}. We focus on models whose

parameter set, Θ, can be partitioned into at least three parameter blocks (i.e., m > 2)5 and

that satisfy the following two conditions:

(i) It is possible to draw from the conditional posterior distributions θi| (Θ−i, D, Y ), where

Θ−i ≡ {θ1, .., θi−1, θi+1, ..., θm}, for any i ∈ {1, . . .m} and from the posterior predictive

density, D| (Θ, Y ).

(ii) The conditional posterior distributions Θ≤τ | (Θ>τ , D, Y ), where Θ≤τ ≡ {θ1, ..., θτ} and

Θ>τ ≡ {θτ+1, ..., θm}, are analytically tractable, for some τ ∈ {2, . . . ,m− 1}.

Condition (i) implies that we can approximate the joint posterior Θ|Y and the predictive

density D|Y through the Gibbs sampler. We label this condition as the sampling condition.

Condition (ii) applies when there exists an integer τ > 1 such that the parameter block Θ<i

can be integrated out analytically from the conditional posterior densities Θ≤i| (Θ−i, D, Y )

for any i ∈ {2, ..., τ}. This condition is most likely to be satisfied through a wise partitioning

of the parameter set and the specification of a conjugate prior. We refer to this condition

as the analytical tractability condition. We show that these two conditions are satisfied by a

set of models that are widely used in time series and financial econometrics, such as VARs

models, Reduced Rank Regression Models, Markov-Switching (MS) VAR models, Time-

Varying Parameters (TVP) VARs, Dynamic Factor Models (DFMs), and Factor-augmented

VAR models (FAVARs).

2.2 Our Methods

In this section, we present two new methods for computing the marginal data density from

the Gibbs output. Method 1 and Method 2 apply to models satisfying both the sampling

5In most of the models where m = 2, the integrating constants of the MDD are available analytically
under conjugate priors. Therefore, computimg the MDD for these models does not raise any computational
issue.
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condition and the analytical tractability condition.

2.2.1 Method 1

Method 1 is based on interpreting the MDD as the normalizing constant of the joint posterior

distribution6

p (Y ) =
p (Y |Θ) p (Θ)∏m
j=1 p (θj|Θ>j, Y )

(2)

where the numerator is the kernel of the joint posterior and the denominator is the joint

posterior distribution. In particular, we focus on settings in which the joint posterior,

p (Y |Θ) p (Θ), is easy to evaluate.

Factorizing (2) yields

p̂M1 (Y ) = p̂
(
Y |Θ̃>τ

)
·
p
(

Θ̃>τ

)
p̂(Θ̃>τ |Y )

(3)

where Θ̃>τ is the parameter set Θ>τ = {θτ+1, ..., θm} evaluated at the joint posterior mode(
θ̃j, j ∈ {1, . . . ,m}

)
and p

(
Y |Θ̃>τ

)
is the conditional predictive density which is defined

as:7

p̂
(
Y |Θ̃>τ

)
=
p
(
Y |Θ̃

)
p
(

Θ̃≤τ |Θ̃>τ

)
p̂
(

Θ̃≤τ |Θ̃>τ , Y
) (4)

Method 1 exploits the analytical tractability condition and computes:

p̂
(

Θ̃≤τ |Θ̃>τ , Y
)

=
1

nr

nr∑
s=1

p
(

Θ̃≤τ |Θ̃>τ , D
(s), Y

)
(5)

where
{
D(s)

}nr
s=1

is the output of the reduced Gibbs step (see Algorithm 2 of Appendix A

with i = τ ) and the conditional posterior Θ≤τ | (Θ>τ , D, Y ) is known because of the analytical

6We adopt the convention that Θ>m = ∅.
7To see that this is a component of the MDD, p (Y ), decompose the MDD as follows:

p (Y ) =
∫
p (Y |θ1, ..., θm) p (θ1, ..., θm) dθ1...dθm

=
∫ (∫

p (Y |θ1, ..., θm) p (θ1, ..., θτ |θτ+1, ..., θm) dθ1...dθτ

)
p (θτ+1, ..., θm) dθτ+1...dθm

where p (Y |θ1, ..., θm) is the likelihood function and p (θ1, ..., θτ |θτ+1, ..., θm) p (θτ+1, ..., θm) is the prior. The
conditional predictive density Y | (θτ+1, ..., θm) is defined in the integral within brackets.
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tractability condition. The conditional posteriors Θ̃>τ |Y in (3) are approximated by running

m− τ − 1 reduced Gibbs steps (see Algorithm 2 of Appendix A for i ∈ {τ + 1,m− 1}) and

using the Rao-Blackwellization technique proposed by Gelfand, Smith, and Lee (1992) to

approximate the marginal posterior density p (Θm).8

In settings where the sampling condition is satisfied, the leading estimator in the literature

is the one proposed by Chib (1995). His estimator is also based on interpreting the MDD

as the integrating constant of the posterior kernel and relies on Monte Carlo integration. In

particular, the only difference with Method 1 is the computation of the conditional density

p̂
(

Θ̃≤τ |Θ̃>τ , Y
)

which is given by

p̂
(

Θ̃≤τ |Θ̃>τ , Y
)

= p̂
(

Θ̃1|Θ̃2, . . . , Θ̃m, Y
)
p̂
(

Θ̃2|Θ̃3, . . . , Θ̃m, Y
)
. . . p̂

(
Θ̃τ |Θ̃>τ , Y

)
where only p̂

(
Θ̃1|Θ̃2, . . . , Θ̃m, Y

)
is known. The remaining conditional densities are compu-

tationally approximated running τ reduced Gibbs steps (i.e., Algorithm 2).

Overall, applying Method 1 requires running m − τ reduced Gibbs steps as opposed to

the m−1 steps performed by Chib’s method. Thus gains from applying Method 1 relative to

Chib’s method are expected to become more and more substantial as the number of blocks

τ that can be integrated out increases.

If no data augmentation is required by the posterior simulator (i.e., D = ∅), the sampling

condition and analytical tractability condition imply that a closed-form analytical solution

for the conditional predictive density, p
(
Y |Θ̃>τ

)
, in (4) is available. Therefore, Method 1

does not require performing the Monte Carlo integrations in (5) and we only need to run

(m− τ − 1) reduced-Gibbs steps in addition to the Gibbs sampler posterior simulator. In this

case, while Chib’s method computationally approximates the conditional predictive density

Y |Θ̃>τ in (4) via (m− 2) reduced Gibbs steps, Method 1 exactly calculates this density

using its analytical expression. Therefore, in this setting, Method 1 is, by construction,

more accurate and computationally efficient than Chib’s method.

8This technique relies on draws from the Gibbs sampler posterior simulator (see Algorithm 1 in Appendix
A).
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2.2.2 Method 2

Method 2 is based on the principle of Reciprocal Importance Sampling (RIS), proposed by

Gelfand and Dey (1994), and stems from observing that

1

p (Y )
= Ep(D,Θ>τ |Y )

[
f (Θ>τ )

p (Θ≤τ |Θ>τ , D, Y )

p (Y |Θ≤τ ,Θ>τ ) p (Θ≤τ |Θ>τ ) p (Θ>τ )

]
where Ep(D,Θ>τ |Y ) (·) denotes the expectations taken with respect to the posterior density

D,Θ>τ |Y .

Method 2 computes the marginal data density, p (Y ), as follows:

p̂M2(Y ) =

 1

nr

nr∑
s=1

p
(

Θ̃≤τ |Θ(s)
>τ , D

(s), Y
)

p
(
Y |Θ̃≤τ ,Θ(s)

>τ

)
p
(

Θ̃≤τ |Θ(s)
>τ

)
p
(

Θ
(s)
>τ

)f (Θ
(s)
>τ

)−1

(6)

where
{

Θ
(s)
>τ , D

(s)
}

are the draws from the Gibbs sampler simulator (Algorithm 1 in Ap-

pendix A), Θ̃≤τ denotes the posterior mode and f (·) is a weighting function, such as∫
f (Θ>τ ) dΘτ = 1. The numerator is the conditional posterior, which is known because

of the analytical tractability condition. In the denominator, we have that the likelihood func-

tion p
(
Y |Θ̃≤τ ,Θ(s)

>τ

)
and the joint prior p

(
Θ̃≤τ |Θ(s)

>τ

)
p
(

Θ
(s)
>τ

)
are evaluated at the posterior

mode for Θ≤τ and at the s-th Gibbs sampler draw for Θ>τ . It should be noticed that, unlike

Method 1 and Chib’s Method, Method 2 is a hybrid estimator that evaluates the densities

in (6) locally for the parameter blocks Θ≤τ and globally for the parameter blocks in Θ>τ

If no data augmentation (i.e., D = ∅) is required, then the analytical tractability condition

implies that the analytical expression of the conditional predictive density p (Y |Θ>τ ) defined

as

p (Y |Θ>τ ) =
p (Y |Θ) p (Θ≤τ |Θ>τ )

p (Θ≤τ |Θ>τ , Y )
(7)

is available. Hence, equation (6) simplifies to:

p̂M2(Y ) =

 1

n

n∑
s=1

f
(

Θ
(s)
>τ

)
p
(
Y |Θ(s)

>τ

)
p(Θ

(s)
>τ )

−1

(8)

where p
(
Y |Θ(s)

>τ

)
is the conditional predictive density defined in (7) and the draws Θ

(s)
>τ

are the draws from the Gibbs sampler simulator. Thus, when data augmentation is not
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necessary, Method 2 becomes a global estimator.

In this paper, we follow Geweke (1999) and define the weighting function f(Θ
(s)
>τ ) as

f(Θ
(s)
>τ ) =

1

τ
(2π)−d/2|V |−1/2exp{−1

2
(Θ

(s)
>τ − Θ̃>τ )

′V −1(Θ
(s)
>τ − Θ̃>τ )}

×I{(Θ(s)
>τ − Θ̃>τ )

′V −1(Θ
(s)
>τ − Θ̃>τ ) ≤ FX 2

d (ν)} (9)

where d is the dimension of the parameter vector vec (Θ>τ ), I{(Θ(s)
>τ−Θ̃>τ )

′V −1(Θ
(s)
>τ−Θ̃>τ ) ≤

FX 2
d (ν)} is an indicator function, and FX 2

d (ν) is the cumulative distribution function of a chi-

square distribution with ν degrees of freedom. The hyperparameter ν has to be chosen so

as to minimize the numerical standard error of the estimator. It is important to emphasize

that fine-tuning this parameter does not require performing again any Gibbs sampler or any

additional evaluations of densities or functions.

To sum up, Method 1 overlaps Chib’s method when performing reduced Gibbs steps for

i ∈ {τ + 1,m− 1}. Note that these simulations are the most computationally cumbersome

among all the reduced Gibbs steps performed by Chib’s method as they are the ones which

integrate out the largest number of parameter blocks . When the total number of parameter

blocks, m, is much larger than the number of blocks τ that can be integrated out, then

Method 1 may be still computationally cumbersome. In these cases and when a large number

of repeated computations of MDDs is required (e.g., Bayesian averaging over a large number

of models), Method 2 provides the fastest approach. It is important to emphasize that

Method 2 only requires performing the Gibbs sampler posterior simulator, regardless of

the number of partitions that can be integrated out, τ , and whether data augmentation is

required.

3 A Guide to Apply Method 1 and Method 2

In this section, we define the set of models, to which our methods are applicable. This set

includes models that are very popular in time series econometrics, such as VAR models,

Reduced Rank Regression (RRR) models, which include, for instance, Vector Equilibrium

Correction models (VECM), Markov-switching VAR models, Time-varying parameters VAR

models, Dynamic Factor Models (DFMs), and Factor Augmented VAR models (FAVARs).
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3.1 Vector Autoregressive Models

Following Villani (2009) and Del Negro and Schorfheide (2010), we parameterize the VAR

model in mean-adjusted form

yt =
l∑

j=0

γjt
j + ỹt (10)

ỹt = φ1ỹt−1 + . . .+ φpỹt−p + εt, εt
iid∼ N (0,Σ) (11)

where γj, j ∈ {0, . . . , l}, and ỹt are n×1 vectors. The sum
∑l

j=0 γjt
j captures the determin-

istic trend and ỹt the stochastic fluctuations around it. This specification is flexible enough

to capture any representation for a VAR model. The mean-adjusted representation not only

encompasses models with any deterministic trend (linear, quadratic, cubic, etc.), but also

models with stochastic-trends9. As pointed out by Villani (2009), parameterizing the VAR

model as in (10)-(11) makes it straightforward to separate beliefs about the deterministic

trend component from beliefs about the persistence of fluctuations around this trend.

We can recast the model (10)-(11) in matrix notation as

Y = DΓ + Ỹ (12)

Ỹ = X̃Φ + ε (13)

where we denote the sample length as T and we define the T ×n matrix Y = (y1, ..., yT )′, the

T×(l + 1) matrix D =
[
1′T , (1, . . . , T )′ , . . . ,

(
1, . . . , T l

)′]
with 1T being a 1×T vector of ones,

the (l + 1)×n matrix Γ = (γ0, . . . , γl)
′, the T ×n matrix Ỹ is defined as Ỹ = (ỹ1, ..., ỹT )′, the

T × np matrix X̃ = (x̃1, . . . , x̃T )′, where we define the np× 1 vectors x̃t =
(
ỹ′t−1, . . . , ỹ

′
t−p
)′

,

the np× n parameter matrix Φ = [φ1, . . . , φp]
′, and the T × n matrix of residuals is denoted

as ε = (ε1, ..., εT )′.

Let us block partition the parameter space into the following three blocks: θ1 = Φ,

θ2 = Σ, and θ3 = Γ. Note that, conditional on the parameter block Γ, the equations (12)-

(13) can be interpreted as a Multivariate Linear Gaussian Regression Model. Therefore,

the posterior distribution (Φ,Σ) |Γ, Y is conjugate and analytically tractable belonging to

the Multivariate-Normal-Inverted-Wishart (MNIW) family. This suffices to guarantee the

9We can obtain a stochastic-trend model by simply setting γj = 0 for j = 1, . . . , l.
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satisfaction of the analytical tractability condition for τ = 2. Moreover, if the prior for Γ is

independent and Gaussian, the conditional posterior Γ| (Φ,Σ, Y ) can be shown to be also

Gaussian (see the Appendix C). Therefore, the sampling condition is satisfied.

For these models, a class of conjugate priors p (Φ,Σ|Γ) of the MNIW family can be

obtained through dummy-observation priors. This class of priors is very broad and include

widely used prior densities: (a) the Minnesota prior proposed by Litterman (1980) which

is based on the assumption that each of the components of yt is best represented by a

random walk process; (b) the sum-of-coefficients prior proposed by Doan, Litterman, and

Sims (1984); (c) the single-unit-root prior proposed by Sims and Zha (1998); and (d) priors

from macroeconomic models introduced by Del Negro and Schorfheide (2004).

In this context, the estimator for the marginal data density proposed by Chib (1995) is

given by:

p̂CHIB(Y ) =
p(Y |Σ̃, Φ̃, Γ̃)p(Σ̃, Φ̃, Γ̃)

p(Φ̃|Σ̃, Γ̃, Y )p̂(Σ̃|Γ̃, Y )p̂(Γ̃|Y )
(14)

where the triplet
(

Σ̃, Φ̃, Γ̃
)

stands for the mode of the joint posterior density p (Φ,Σ,Γ|Y ).

The numerator of (14) is the posterior kernel conveniently factorized and the denominator

is the joint posterior.

Given that (i) the sampling condition is satisfied, (ii) data augmentation is not required,

and (iii) the likelihood function of the model (12)-(13) is available in closed-form expression,10

we can evaluate all the terms in (14) with the exception of p
(

Σ̃|Γ̃, Y
)

and p
(

Γ̃|Y
)

. Chib

(1995) suggests to evaluate the marginal posterior p
(

Γ̃|Y
)

implementing a Rao-Blackwell

strategy that uses the output from the Gibbs sampler as follows:

p̂
(

Γ̃|Y
)
≈ 1

n

n∑
s=1

p(Γ̃|Σ(s),Φ(s), Y ) (15)

To compute the density p
(

Σ̃|Γ̃, Y
)

, Chib’s method performs one reduced Gibbs step (see

Algorithm 2 with i = 2 in Appendix A) For the sake of clarity, we detail the reduced Gibbs

steps for VAR models below.

Algorithm 3: Reduced-Gibbs Sampler for VAR Models:

Given an initial set of parameter values,
{

Σ(0),Φ(0)
}

set s = 0 and perform the following

steps:

10We consider the conditional likelihood on the first initial observations. We keep this assumption through-
out the paper.
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1. Draw Σ(s+1) from p
(

Σ|Γ̃, Y
)

.

2. Draw Φ(s+1) from p
(

Φ|Σ(s+1), Γ̃, Y
)

.

3. Set s = s+ 1. If s ≤ nr, go to step 1. Otherwise stop.

The output from the reduced Gibbs step can be used to computationally evaluate to

p
(

Σ̃|Γ̃, Y
)

as follows:

p̂(Σ̃|Γ̃, Y ) ≈ 1

m

m∑
s=1

p(Σ̃|Φ(s), Γ̃, Y ) (16)

Method 1 computes:

p̂M1 (Y ) = p
(
Y |Γ̃

)
·
p
(

Γ̃
)

p̂(Γ̃|Y )
(17)

Since the sampling and analytical tractability conditions (with τ = 2) are satisfied, no data

augmentation is required, and the likelihood function of the model (12)-(13) is available in

closed-form expression, the conditional predictive density, p
(
Y |Γ̃

)
, in (17), has an analytical

closed form solution:11

p
(
Y |Γ̃

)
=
π−

(T0+T1−np)n
2

∣∣∣X ′X∣∣∣−n2 |S|−T0+T1−np
2 · Γn

(
T0+T1−np

2

)
π−

(T0−np)n
2 |X∗′X∗|−

n
2 |S∗|−

T0−np
2 · Γn

(
T0−np

2

) (18)

where Y ∗ and X∗ are the dummy observations for the VAR in deviations. T0 is the num-

ber of dummy observations, T1 = T + T0, Y =
[
Y ∗′, Ỹ ′

]′
, X =

[
X∗′, X̃ ′

]′
, Γn (·) is the

multivariate gamma function, S =
(
Y −XΦ̂

)′ (
Y −XΦ̂

)
with Φ̂ =

(
X
′
X
)−1

X
′
Y and

S =
(
Y ∗ −X∗Φ̂∗

)′ (
Y ∗ −X∗Φ̂∗

)
with Φ̂∗ =

(
X
′
X
)−1

X
′
Y . Furthermore, Method 1 esti-

mates the marginalized posterior p̂(Γ̃|Y ) as Chib’s method in (15). A detailed derivation of

the conditional predictive density Y |Γ̃ is provided in the Appendix D.

A näıve application of Chib’s method disregards the formula in (18) and computationally

approximates the conditional predictive density by calculating

p̂CHIB(Y |Γ̃) =
p(Y |Σ̃, Φ̃, Γ̃)p(Σ̃, Φ̃|Γ̃)

p(Φ̃|Σ̃, Γ̃, Y )p(Σ̃|Γ̃, Y )
(19)

11For a derivation of this formula see Zellner (1971).
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where p(Σ̃|Γ̃, Y ) is approximated as in (16) through the output of the reduced-Gibbs step

in Algorithm 3. In contrast, Method 1 takes a fully analytical approach and exactly calcu-

lates the conditional predictive density p
(
Y |Γ̃

)
via its formula in equation (18). Thus, by

construction, Method 1 is more accurate and less computationally burdensome than Chib’s

method in the context of mean-adjusted VARs.

To apply Method 1, we only need the draws from the Gibbs sampler posterior simulator

in order to evaluate the density p(Γ̃|Y ) in (17).

Method 2 computes:

p̂M2(Y ) =

[
1

n

n∑
s=1

f
(
Γ(s)
)

p(Y |Γ(s))p(Γ(s))

]−1

(20)

where the draws Γ(s) are the draws from the Gibbs sampler simulator12. We analytically

evaluate the posterior kernel p(Y |Γ(s))p(Γ(s)) and the weighting function f
(
Γ(s)
)

for each

draw of Γ.

3.2 Reduced Rank Regression Models

Bayesian analysis of reduced rank regression (RRR) models is detailed in Geweke (1996).

The RRR model reads:

Y = XΓ + ZΦ + ut (21)

with ut
iid
v N (0,Σ). X and Z are n × p and n × k matrices of explanatory variables,

respectively. Γ and Φ are matrices of unknown coefficients, whose dimensions are p × L

and k × L, respectively. While the matrix of coefficients, Φ is full-rank, the matrix Γ, is

assumed to have rank q, where q < max {L, p}. Since Γ is a low-rank matrix, we can

reparameterized it as Γ = ΨΩ. It is important to emphasize that the matrices Ψ and Ω

cannot be identified under an improper, flat prior distribution for Ψ and Ω. We need to

resort to some normalization to identify these matrices. Normalization schemes are applied

to either matrix Ψ or Ω. As a result, there are two classes of normalization schemes. First,

schemes that restrict Ω to be Ω∗ (normalization 1). Second, schemes that restrict Ψ to be

Ψ∗ (normalization 2).13 In the remaining of this section, we focus on RRR models where the

12In order to implement this approach, we need the draws {Γ}ns=1 from the marginalized posterior p (Γ|Y ).
It can be shown that these draws are simply the set of draws {Γ}ns=1 that come from the output of the Gibbs
sampler.

13Popular normalizations are discussed in Del Negro and Schorfheide (2010). See also Strachan and Inder
(2004) for a critical viewpoint of ordinal normalization schemes.
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low-rank matrix Γ is identified through normalization 2. It is straightforward to extend the

results to normalization 1.

Geweke (1996) proposes as a reference prior the product of an independent inverted

Wishart distribution for Σ and independent Gaussian shrinkage priors for each of the ele-

ments of Ψ∗ and Ω. Let us partition the parameter space of the RRR model in (21) as follows

θ1 = Φ, θ2 = Σ, θ3 = Ψ∗, and θ4 = Ω. Geweke (1996) shows that the conditional predic-

tive densities Φ| (Σ,Ψ∗,Ω, Y ), Σ| (Ψ∗,Ω, Y ), Ψ∗| (Φ,Σ,Ω, Y ), and Ω| (Φ,Σ,Ψ∗, Y ) belong to

the MNIW family. Therefore, the sampling condition is satisfied. Note that, conditional

on Γ, the RRR model in (21) reduces to a multivariate linear Gaussian regression model.

Given a MNIW prior on (Φ,Σ) |Γ, we conclude that the posterior (Φ,Σ) | (Γ, Y ) is not

only MNIW but also analytically tractable. Hence, the analytical tractability condition is

satisfied for τ = 214.

Chib’s method computes:

p̂CHIB(Y ) =
p(Y |Σ̃, Φ̃, Ψ̃∗, Ω̃)p(Σ̃, Φ̃, Γ̃, Ψ̃∗, Ω̃)

p(Φ̃|Σ̃, Ψ̃∗, Ω̃, Y )p̂(Σ̃|Ψ̃∗, Ω̃, Y )p̂(Ψ̃∗|Ω̃, Y )p̂(Ω̃|Y )
(22)

where
(

Σ̃, Φ̃, Ψ̃∗, Ω̃
)

stands for the mode of the joint posterior density (Φ,Σ,Ψ∗,Ω) |Y .

Chib’s method needs to perform two reduced Gibbs steps in addition to the Gibbs sam-

pler to approximate Σ̃|
(

Ψ̃∗, Ω̃, Y
)

, Ψ̃∗|
(

Ω̃, Y
)

and Ω̃|Y .

Method 1 computes:

p̂M1 (Y ) = p
(
Y |Ψ̃∗, Ω̃

)
·

p
(

Ψ̃∗, Ω̃
)

p̂(Ψ̃∗|Ω̃, Y )p̂(Ω̃|Y )
(23)

where the conditional predictive density, p (Y |Ψ∗,Ω), can be shown to have the following

analytical closed-form expression:

p
(
Y |Ψ̃∗, Ω̃

)
= π−

L(n−k)
2 |Z ′Z|−

L
2 |S|−

n−k
2 π

L(L−1)
4

L∏
i=1

Γ [(n− k + 1− i) /2] (24)

where ΓL
(
n−k

2

)
is the multivariate gamma function and

S ≡
(
Y −XΨ̃∗Ω̃− ZΦ̂

)′ (
Y −XΨ̃∗Ω̃− ZΦ̂

)
14This result still holds if we consider an improper prior, such that p (Φ,Σ,Γ) ∝ |Σ|−(L+1)/2.
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Φ̂ ≡ (Z ′Z)−1 Z ′
(
Y −XΨ̃∗Ω̃

)
.15 The densities Ψ̃∗|

(
Ω̃, Y

)
and Ω̃|Y are estimated exactly

as in Chib’s method. Overall, Method 1 requires performing only one reduced-Gibbs step in

addition to the Gibbs sampler.

Method 2 computes:

p̂M2(Y ) =

[
1

n

n∑
s=1

f
(
Ψ∗(s),Ω(s)

)
p(Y |Ψ∗(s),Ω(s))p(Ψ∗(s),Ω(s))

]−1

(25)

where the draws
(
Ψ∗(s),Ω(s)

)
are the draws from the Gibbs sampler simulator. We an-

alytically evaluate the density p(Y |Ψ∗(s),Ω(s)), the prior p(Ψ∗(s),Ω(s)), and the weighting

function f
(
Ψ∗(s),Ω(s)

)
for each draw

(
Ψ∗(s),Ω(s)

)
. Note that Method 2 does not require any

reduced-Gibbs step to be implemented.

A particular class of RRR models is the Vector Error Correction Model (VECM). These

models have been applied to study a wide range of issues in time series and financial econo-

metrics.16 This is only a particular reparameterization of reduced-form VAR models, usually

undertaken when the observables, Y , have a unit root but there are linear combinations of

observables (i.e., Ω∗yt) that are stationary.

3.3 Markov-Switching (MS) VARs

Markov-Switching Vector Autoregressive Models (MS-VAR), popularized by Hamilton (1989),

are used to capture sudden changes in time-series dynamics. In particular, MS-VAR mod-

els are specified such that the coefficients of the reduced form VAR are subject to regime

switching.

y′t = x′tΦ (Kt) + u′t (26)

where yt is a n× 1 vector of observable variables, x′t =
[
y′t−1, . . . y

′
t−p, 1

]
,

Φ (Kt) = [Φ1 (Kt) , . . . ,Φp (Kt) ,Φc (Kt)]
′, and ut v N (0,Σ (Kt)). Kt is a discrete M -state

Markov process with time-invariant transition probabilities:

πlm = P [Kt = l|Kt−1 = m] , l,m ∈ {1, . . . ,M} (27)

15Derivation of expression (87) is straightforward given that, conditional on Γ, the RRR model in (21)
reduces to a multivariate linear Gaussian regression model. So the exact analytical form for the conditional
predictive density Y |Ψ̃∗, Ω̃ can be obtained along the lines of the discussion presented in Appendix D. See
also Zellner (1971).

16A useful survey is provided by Koop, Strachan, van Dijk, and Villani (2006).
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For simplicity, let us assume that M = 2. Let T be the sample length, K = (K1, . . . , KT )

be the history of regimes, [Φ (j) ,Σ (j)]j∈{1,2} = {Φ (1) ,Σ (1) ,Φ (2) ,Σ (2)}, and (πjj)j∈{1,2} =

{π11, π22}. It is convenient to partition the parameter space of the MS-VAR model in (26)-

(27) as follows θ1 = (πjj)j∈{1,2}, θ2 = Φ (1), θ3 = Σ (1), θ4 = Φ (2), θ5 = Σ (2).

Conditional on the history of regimes, K, (i) the model (26)-(27) reduces to a VAR

model with dummy variables that account for known structural breaks and (ii) the tran-

sition probabilities, (πjj)j∈{1,2}, are independent of the data and of the remaining param-

eters of the model, [Φ (j) ,Σ (j)]j∈{1,2}. As a result, if the prior distributions for Φ (l) and

Σ (l), l ∈ {1, 2}, are of the MNIW form and π11 and π22 are independent beta distri-

butions, then conditional posterior distributions of (Φ (l) ,Σ (l)) | (K,Y ), l ∈ {1, 2} and

(πll, l = 1, 2) |
(
Y,K, (Φ (j) ,Σ (j))j∈{1,2}

)
belong to the same family of their corresponding

priors. Therefore, the analytical tractability condition is satisfied for τ = 5.17. Since the draws

from the conditional posterior distribution for the regimesK|
(
Y, (Φ (j) ,Σ (j))j∈{1,2} , (πll, l = 1, 2)

)
can be obtained using a variant of the Carter and Kohn (1994)18, the sampling condition is

also satisfied.

The application of the Chib’s method is straightforward, so we do not discuss it here.

Given that τ = m, equation (3), which characterizes Method 1, reduces to

p̂M1 (Y ) =
p
(
Y |Θ̃

)
p
(

Θ̃
)

p̂
(

Θ̃|Y
) (28)

where Θ̃ ≡
[
(π̃jj)j∈{1,2} ,

(
Φ̃ (j) , Σ̃ (j)

)
j∈{1,2}

]
is the vector of posterior modes. The like-

lihood p
(
Y |Θ̃

)
does not have a closed-form solution but it can be easily evaluated using

the expectation-maximization approach discussed in Kim and Nelson (1999) (chapter 10).

Method 1 approximates the joint posterior density p
(

Θ̃|Y
)

from the output of the Gibbs

sampler as follows:

p̂
(

Θ̃|Y
)

=
1

nr

nr∑
s=1

2∏
j=1

p
(
π̃jj|K(s), Y

)
· p
(

Φ̃ (j) , Σ̃ (j) |K(s), Y
)

(29)

where p
(
π11|K(s), Y

)
v Beta (·), p

(
π22|K(s), Y

)
v Beta (·) and p

(
Φ (j) ,Σ (j) |, K(s), Y

)
v

17These restrictions over priors are only sufficient for satifying the analytical tractability condition. Such
condition can be shown to be also satisfied under an improper flat prior, such as

∏2
j=1 p (Φ (j) ,Σ (j)) =∏2

j=1 |Σ (j)|−(n+1)/2.
18See Del Negro and Schorfheide (2010) and Pitt and Kohn (2010)
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MNIW (·). The exact formula for these three density is shown in the Appendix E.

Method 2 computes:

p̂M2(Y ) =

 1

nr

nr∑
s=1

p
(

Θ̃|K(s), Y
)

p
(
Y |Θ̃

)
p
(

Θ̃
)
−1

where K(s) are the nr posterior draws obtained from the multimove Gibbs sampler proposed

by Carter and Kohn (1994). All the densities on the right-hand side have a known analytical

characterization except for the likelihood p
(
Y |Θ̃

)
.

A naive application of Chib’s method would lead to perform four reduced Gibbs steps in

addition to the Gibbs sampler. Hence, gains in computing time from Method 1 and Method

2 are expected to be large, since these methods only require using the draws from the Gibbs

sampler posterior simulator. It is worthwhile emphasizing that while generating draws from

the Gibbs sampler are necessary for Bayesian inference, draws from the reduced Gibbs step

have much more limited utility in standard applications.

3.4 Time-Varying Parameters (TVP) VAR Models

VAR models with time-varying coefficients have become popular in macroeconometrics since

the papers by Cogley and Sargent (2002, 2005) and Primiceri (2005).

Following the notation in Primiceri (2005), a TVP VAR model is given by

yt = X ′tφt + ut (30)

where the n×1 vector yt includes the observable variables at time t, the (np+ 1)×1 vectors

xt =
(
1, y′t−1, . . . , y

′
t−p
)′

, the T × (np+ 1) matrix Xt = In ⊗ xt, and the n × 1 vector ut

includes the shocks at time t. The vector of parameters, φt, is assumed to evolve according

to a random walk process

φt = φt−1 + νt, νt v N (0, Q) (31)

It is standard to restrict the covariance matrix Q to be diagonal and the parameter inno-

vations, vt, to be uncorrelated with the VAR innovations, ut. Furthermore, we assume that
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the ut innovations are Gaussian with heteroskedastic variance:

ut v N (0,Σt) , Σt = B−1
t HtB

−1
t (32)

In the decomposition of Σt, the matrix Bt is a lower-triangular matrix with unitary diagonal

elements. The vector collecting the non-zero and off-diagonal elements of the matrix Bt

evolves as a random walk

αt = αt−1 + ζt, ζt v N (0, S) (33)

Finally, the time-varying matrix Ht is diagonal with elements h2
i,t, i ∈ {1, ..., n}, following

the geometric random walk:

lnht = lnht−1 + ηt, ηt v N (0,W ) (34)

where the n × 1 vector ht = (h1,t, ..., hn,t)
′. Matrices Q, S, and W are positive-definite

matrices.

The latent variables of the TVP VAR model (30)-(34) are D0:t = (φ0:t, α0:t, lnh0:t) and

its parameter set is Θ = (φ0, α0, lnh0, Q, S,W ), where the first three elements are the initial

values for the latent variables.

We partition the parameter space Θ as follows θ1 = φ0, θ2 = α0, θ3 = lnh0, θ4 = vec(Q),

θ5 = vec (S) , θ6 = vec (W ). Following Primiceri (2005), we use conjugate priors. In par-

ticular, we consider independent Gaussian priors for the initial conditions and independent

inverted Wishart priors for the covariance matrices. It directly follows that the joint posterior

can be written as

p (Θ|D0:t, Y ) = p (φ0|φ0:T ) p (α0|α0:T ) p (lnh0| lnh0:T ) p (Q|φ0:T ) p (S|α0:T ) p (W | lnh0:T )

(35)

where all the densities on the right-hand side are known. This implies that the analyti-

cal tractability condition is satisfied for τ = 6. Primiceri (2005) shows that the sampling

condition is also satisfied.

The application of the Chib’s method is pretty straightforward requiring five reduced-

Gibbs steps. Method 1 is performed according to the formula in (28). The likelihood p
(
Y |Θ̃

)
does not have a closed-form solution but it can be evaluated through the Kalman filter, as

shown by Primiceri (2005). Method 1 approximates the joint posterior density p
(

Θ̃|Y
)

from
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the output of the Gibbs sampler as follows:

p̂
(

Θ̃|Y
)

=
1

nr

nr∑
s=1

p
(

Θ̃|D0:t, Y
)

(36)

where p
(

Θ̃|D0:t, Y
)

is defined in (35) and the draws D0:t are the draws obtained from the

Gibbs sampler posterior simulator (for details, see Primiceri (2005)).

Method 2 computes:

p̂M2(Y ) =

 1

nr

nr∑
s=1

p
(

Θ̃|D0:t, Y
)

p
(
Y |Θ̃

)
p
(

Θ̃
)
−1

All the densities on the right-hand side have a known analytical characterization, except for

the likelihood, which can be evaluated through the Kalman filter.

The inaccuracy and the computational burden associated with naively applying fully

computational estimators, such as Chib’s estimator, is expected to be large. Our methods

are a step forward in trying to reduce the burden since they only require draws from the

Gibbs sampler.

3.5 Dynamic Factor Models

Over the last decades, empirical macroeconomists have relied on factor models to analyze

the dynamics of time series separating common components from idiosyncratic ones. Factor

models in macroeconomics were first studied by Geweke (1977) and Sargent and Sims (1977),

but popularized by Stock and Watson (1989). The rising popularity of dynamic factor models

(DFM) has been linked to their ability to summarize efficiently large data sets.19

DFMs decompose the behavior of n observable variables yi,t, i = 1, . . . n, into the sum of

two unobservable components: for any t = 1, . . . , T ,

yi,t = ai + λift + ξi,t, ξi,t
iid
v N

(
0, σ2

i

)
(37)

19Among the multiple applications of DFMs, we can highlight their use in the construction of coincident
and leading indicators by Stock and Watson (1989); in forecasting time series by Stock and Watson (1999,
2002a, 2002b) , Forni, Halllin, Lippi, and Reichlin (2003), and Boivin and Ng (2005); in real-time monitoring
by Giannone, Reichlin, and Small (2008) and Aruoba, Diebold, and Scotti (2009); and in the study of
international business cycles by Kose, Otrok, and Whiteman (2003, 2008).
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where ai is a constant; ft is a k× 1 vector of factors which are common to all observables, λi

is a 1×k vector of loadings that links the observables to the factors, and ξi,t is an innovation

specific to each observable variable. The factors evolve according to a vector autoregressive

process:

ft = Φ0,1ft−1 + . . .+ Φ0,qft−q + u0,t, u0,t
iid
v N (0,Σ0) (38)

where u0,t is a k × 1 vector and the matrices Φ0,j∈{1,...,p} and Σ0 are k × k matrices. The

stochastic vector of innovations, ut, has dimension of k × 1.

The key assumption is that, at all leads and lags, the ξi,t innovations are independent

across i and independent of the innovations to the factors, u0,t. This assumption helps

identifying the factor model in (38) by implying that all co-movements in the data arise

through the factors. Nonetheless, the factors and the coefficients matrices of the factor model

in (38) cannot be identified unless further restrictions are imposed. A popular approach is

to impose restrictions upon the variance-covariance matrix of the factor model, Σ0, and on

the first k loadings, λ1, . . . , λk. See, for instance, Geweke and Zhou (1996) and Del Negro

and Schorfheide (2010). We denote the restricted matrix Σ0 as Σ∗0 and the restricted matrix

of factor loadings as λ∗ = (λ∗′1 , ..., λ
∗′
k , ..., λ

′
n)′.

Let us define the n×1 vectors yt = (y1,t, ..., yn,t)
′, a = (a1, ..., an)′, λ∗ = (λ∗′1 , ..., λ

∗′
k , ..., λ

′
n)′,

ξt = (ξ1,t, ..., ξn,t)
′, and, for any j ∈ {1, . . . , p}, the n×n diagonal matrix Φj, whose diagonal

elements are (φ1,j, . . . , φn,j). It is convenient to recast the DFM (37)-(38) in matrix form as

follows:

Y = XΦ1 + ε (39)

F = F̃Φ0 + ε0 (40)

where we define the T × n matrix Y = (y1, ..., yT )′, the T × (k + 1) matrix X = [1′T , F ],

with 1T being a 1× T vector of ones and F = (f1, . . . , fT )′ is a T × k matrix of factors, the

(k + 1)×n matrix Φ1 = [a, λ∗]′ and the T×n matrix of residuals is denoted as ε = (ξ1, ..., ξT )′,

where ε v N (0,Σ1). We define the T × kq matrix F̃ =
(
f̃1, , ..., , f̃T

)′
with the kq × 1

vectors f̃t =
(
f ′t−1, . . . , f

′
t−q
)′

, the kq × k matrix Φ0 = [Φ0,1, ...,Φ0,q]
′, and the T × k matrix

ε0 = (u0,1, ..., u0,T )′.

Let us partition the parameter space Θ as θ1 = Φ1, θ2 = Σ1, θ3 = Φ0, and θ4 = Σ∗0. The

prior for the constant terms and the factor loadings Φ1is usually selected to be normal, while
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the prior for the Σ1 is chosen to be an Inverted-Wishart. Furthermore, the priors for the

parameters of the factor model (40) (i.e., Φ0 and Σ0) are chosen to belong to the MNIW
family. See for instance Otrok and Whiteman (1998).

Conditional on the factors, F , the system in (39) boils down to a multivariate linear Gaus-

sian regression model. Hence, it simple to see that the posterior density (Φ1,Σ1) | (Φ0,Σ
∗
0, F, Y ) =

(Φ1,Σ1) | (F, Y ) belongs to the MNIW family. Note that conditional on the factors,

F , the likelihood function, p (Y |Θ) is not affected by the parameters Φ0 and Σ∗0, that is,

p (Y |Φ0, ε0,Φ1,Σ1, F ) = p (Y |Φ1,Σ1, F ). Therefore the posterior densities, Φ0| (Φ1,Σ1, F, Y ) =

Φ0|Σ0 and Σ∗0| (Φ1,Σ1, F, Y ) = Σ∗0, equal their priors and hence are analytically tractable.20

Hence it follows that the analytical tractability condition is satisfied for τ = 4.

In order to have that the sampling condition is satisfied, we need to show that it is possible

to draw from the conditional posterior of factors F | (Φ1,Σ1,Φ0,Σ
∗
0, Y ). As discussed in Del

Negro and Schorfheide (2010), one can draw from this density by using a variant of the Carter

and Kohn (1994) approach applied to the state-space model (39)-(40) which is described in

detail in Pitt and Kohn (2010).21

The application of the Chib’s method to DFMs is straightforward. This method requires

performing three reduced-Gibbs steps in addition to the Gibbs sampler. Method 1 follows

equation (28). The likelihood p
(
Y |Θ̃

)
does not have a closed-form solution but it can

be easily evaluated through the Kalman filter. Method 1 approximates the joint posterior

density p̂
(

Θ̃|Y
)

from the output of Gibbs sampler as follows:

p̂
(

Θ̃|Y
)

=
1

nr

nr∑
s=1

p
(

Φ̃1, Σ̃1|F (s), Y
)
p
(

Φ̃0, Σ̃0|F (s)
)

(41)

where the two densities on the right-hand side are known MNIW densities.

Method 2 computes:

p̂M2(Y ) =

 1

nr

nr∑
s=1

p
(

Θ̃|F (s), Y
)

p
(
Y |Θ̃

)
p
(

Θ̃
)
−1

20See Appendix F.
21See also Otrok and Whiteman (1998) for an alternative way of obtaining draws form the posterior

distribution of factors. These scholars, first, derive an analytical expression for the joint Normal distribution
of the observation Y and the factors, F : p

(
Y, F |Φ,Σ,Φ0,Σ0

)
. Then, they use the formula for conditional

means and covariance matrices to obtain the analytical expression for the conditional posterior distribution
F |Φ,Σ,Φ0,Σ0, Y .
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where the draws F (s) are obtained from the Gibbs sampler. All the densities on the right-

hand side have a known analytical characterization, except for the likelihood, which can be

evaluated through the Kalman filter.

3.6 Factor-Augmented Vector Autoregressive Models (FAVARs)

Bernanke, Boivin, and Eliasz (2005) propose a hybrid model between a standard structural

VAR model and a DFM model that has been called Factor-Augmented Vector Autoregression

(henceforth FAVAR). This extension of the DFM paradigm allows for additional observations

f yt in the measurement equation (37) such that

yi,t = ai + λyi f
y
t + λfi f

c
t + ξi,t, t = 1, . . . , T (42)

where λyi is a 1×m vector and f yt is an m× 1 vector, where f ct are the unobserved factors.

For example, f yt might include the federal funds rate (as in Bernanke, Bovin and Eliasz,

2005) or other policy instruments, such as monetary aggregates (as in Ahmadi and Ritschl,

2009).

The joint dynamics of the perfectly observable vector, f yt , and the unobserved factors,

f ct , are described by the following state equation[
f ct

f yt

]
= Φ0,1

[
f ct−1

f yt−1

]
+ . . .+ Φ0,q

[
f ct−q

f yt−q

]
+ u0,t, u0,t

iid
v N (0,Σ0) (43)

which is a VAR(q) for
(
f c′t , f

y′
t

)
. Comparing equation (43) with equation (38), we have that

now the matrices Φ0,j have dimension (k +m)× (k +m).

The model described by equations (42)-(43) is unidentified and cannot be estimated.

Identification is achieved by imposing restrictions on factors and their coefficients in equa-

tion (42). In particular, to avoid indeterminacy of the model, Bernanke, Boivin, and Eliasz

(2005) impose the following normalization scheme: (i) the upper k × k block of the n × k
matrix of factor loadings is an identity matrix and (ii) the upper k ×m block of the n×m
matrix of coefficients for the observed vector is composed of zeros.

Let us recast equation (42) as follows:

Xt = A+ λft + et et
iid
v N (0, R)
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where A = (a1, . . . , an,0m×1)′, Xt =
(
y′t, f

y′
t

)′
, ft =

(
f c′t , f

y′
t

)′
, et = (ξ1,t, . . . , ξn,t,0m×1)′,

R =

[
Σ 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

]
, Σ is an n× n matrix

and

λ =

[
λf λy

0m×k Im

]

with λf = (λf1 , . . . , λ
f
k)
′ and λy = (λy1, . . . , λ

y
m)′. Therefore, λf is an n × k matrix and λy is

an n×m matrix.

Given equations (42)-(43), we can recast the FAVAR model in matrix form as we did

for DFM models in equations (39)-(40) where now the matrix of observables is given by the

T × (n + m) matrix X instead of just the T × n matrix Y . Therefore, it directly follows

that both the sampling and analytical tractability conditions are satisfied. Application of

the estimators discussed in the paper is straightforward.

4 Empirical Application

In this section, we assess the gains in accuracy and computational burden of the two methods

proposed in the paper by means of fitting the VAR model in (12)-(13) with l = 1 (i.e.,

linear time trend model ) to macroeconomic times series. We focus on this type of models

because the true conditional predictive density Y |Γ̃, defined in (18), is known in closed-

form. Therefore, comparing the true conditional predictive density with the one estimated

by Chib’s method provides a natural way to shed light on the gains linked to our estimators.

In particular, we are interested in assessing the gains in accuracy and computational

burden as the dimensionality of the model varies. To do so, we fit four VAR models to six

encompassing data sets. In particular, we fit autoregressive models with lags p = 1, . . . , 4 to

data sets containing from one up to six variables. Let us enumerate all series under analysis:

Real Gross Domestic Product (source: Bureau of Economic Analysis, GDPC96 ), Implicit

Price Deflator (source: Bureau of Economic Analysis, GDPDEF ), Personal Consumption

Expenditures (source: Bureau of Economic Analysis, PCEC ), Fixed Private Investment

(source: Bureau of Economic Analysis, FPI ), Effective Federal Funds Rate (source: Board

of Governors of the Federal Reserve System, FEDFUNDS ), and Average Weekly Hours

Duration in the Non-farm Business (source: U.S. Department of Labor, PRS85006023 ). All
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data are quarterly22. The data set ranges from 1954:1 to 2008:4. Table 1 describes the data

series contained in each data set.

We elicit the prior density for the parameters of the VAR in deviations, (Φ,Σ), by using

the single-unit-root prior, suggested by Sims and Zha (1998). To pin down this prior, we

need to choose the value of five hyperparameters23. We follow Del Negro and Schorfheide

(2004), Giannone, Lenza, and Primiceri (2010), and Carriero, Kapetanios, and Marcellino

(2010) setting these hyperparameters so as to maximize the conditional predictive density,

p(Y |Γ̃). To this end, we perform a stochastic search based on simulated annealing (Judd,

1998) with 1,000 stochastic draws24. Furthermore, the prior density depends on the first

and second moments of some pre-sample data. We use the moments of a pre-sample ranging

from 1947:1 to 1953:4.

We run ten chains of m number of draws in the Gibbs sampler and in the reduced-Gibbs

sampler, where m = {100, 1, 000, 10, 000, 100, 000}. We also run one chain with one million

draws.

4.1 Gains in Accuracy from Method 1

Our estimators rely on the insight that exploiting the analytical tractability condition in-

creases the accuracy of MDD estimators. In this empirical application, we assess the inac-

curacy associated with neglecting the analytical tractability condition. Consider the VAR

model of the form (12)-(13). In this framework, Method 1 differs from Chib’s method only

on the computation of the conditional predictive density, p(Y |Γ̃) defined in (18). The an-

alytical tractability condition implies that this predictive density has a known analytical

characterization. Method 1 exactly calculates the conditional predictive density p(Y |Γ̃) via

its analytical expression, given in equation (18). Chib’s method, conversely, approximates

such conditional predictive density computationally via equation (19) that requires perform-

ing the reduced Gibbs step described in Algorithm 3. Thus, the inaccuracy deriving from

neglecting the analytical tractability condition can be quantified by the gap between the esti-

mated conditional predictive density using Chib’s approach, p̂CHIB(Y |Γ̃), and its true value,

22Data on the Effective Federal Funds Rate are obtained as average of daily figures.
23The first hyperparameter sets the overall tightness of the prior. The second hyperparameter controls the

variance for the coefficients of the lagged variables. The third hyperparameter establishes the weight for the
prior for the variance and covariance matrix of residuals. Finally, the other two hyperparameters affect the
persistence of the prior-dummy observations. See Del Negro and Schorfheide (2010), Section 2.2, for more
details.

24During the search, we apply Method 1 to evaluate the analytical part of the MDD.
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p(Y |Γ̃). Note that, as the number of draws in the reduced Gibbs step, nr, goes to infinity, the

size of the gap goes to zero, that is, limnr→∞ p̂CHIB

(
Y |Γ̃

)
= p

(
Y |Γ̃

)
. In this application,

we assess the convergence of Chib’s method to the true conditional predictive density by

computing ∣∣∣log
(
p̂CHIB(Y |Γ̃)

)
− log

(
p(Y |Γ̃)

)∣∣∣ (44)

We refer to this difference as the estimation bias for the conditional predictive density.

We set the value of the parameter block Γ̃ to be equal to the OLS estimator25. Given

this restriction, we perform the reduced Gibbs step and compute the conditional predictive

density p̂CHIB(Y |Γ̃). We compute the absolute difference in (44) for every chain, VAR model

(p = 1, ..., 4), and data set.

Figure 1 reports the (across-chain mean of the) estimation bias for the conditional pre-

dictive density for the 24 models of interest when performing 1,000,000 draws in both the

Gibbs sampler and the reduced Gibbs step26. We find worth emphasizing the following two

results. First, for a given number of lags p, the estimation bias grows at an increasing rate as

the number of observable variables increases. Second, for a given number of observables, the

estimation bias grows at an increasing rate as the number of lags p increases. For example,

the size of the gap for a six-variate VAR(4) is about 9 times the size of the bias for the

VAR(1) model.

We document in Table 2 how the estimation bias varies as one increases the number of

draws in the reduced-Gibbs step performed by Chib’s method for six-variate VARs models.

We conclude that for a given data set and a given model, the bias is quite stable despite the

increase in the number of posterior draws in the reduced-Gibbs step. This suggests that the

MC integration in (16) exhibits a rather slow convergence.

4.2 Model Selection

In this section, we turn our attention to the crucial issue of the effect of inaccurate estimates

when performing Bayesian model selection. Given a loss function that reflects the preferences

of the econometrician and a set of candidate models, the optimal decision is to select the

model that minimizes the posterior expected loss function (Schorfheide, 2000). Under a 0-1

loss function, selecting the model with the largest posterior probability can be easily shown

25This restriction will be relaxed in the experiment conducted in the next section.
26Results for n = {100; 1, 000; 10, 000; 100, 000; 1, 000, 000}, where n is the number of draws, are available

upon request.
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to be the optimal decision. Let us define the model set to be formed by the four VAR models ,

that is, {V AR(p), 1 ≤ p ≤ 4}27. Furthermore, we assume that the prior model probabilities,

{πp,0, 1 ≤ p ≤ 4}, are the same across the four candidate models. The posterior probability

of the VAR(p), with 0 ≤ p ≤ 4, Mp, is given by:

πp,T =
πp,0 · p (Y |Mp)∑4
i=1 πi,0 · p (Y |Mi)

(45)

where πp,T (πp,0) stands for the posterior (prior) probability of the VAR(p) and p (Y |Mp)

denotes the MDD of the VAR(p).

For every estimator, we permute MDDs estimated at each chain across the four VAR

models which delivers 10, 000 quadruplets of posterior probabilities computed using (45).

Figure 2 reports the distributions for these 10, 000 posterior probabilities computed by the

three estimators. The distributions of the posterior probabilities associated with the VAR(1)

and the VAR(2) are a mass point at zero, suggesting that all methods strongly disfavor the

VAR(1) and the VAR(2). Furthermore, while both Method 1 and Method 2 strongly favor

the VAR(4), the distribution related to Chib’s method peaks at 20%. Conversely, Chib’s

method strongly favors the VAR(3) model with a median posterior probability of about 80%.

This shows that the estimation bias due to a fully computational approach may significantly

distort model rankings.

Two important remarks about Figure 2 are in order. First, since Method 1 and Chib’s

estimator differ only in how they calculate the conditional posterior Σ|Γ, Y , the bias in

model ranking must be due to the inaccuracy in the MC integration (16), based on the

reduced Gibbs step. Second, although Method 1 and 2 estimate the MDD through different

approaches28, these two methods deliver posterior model rankings that are remarkably sim-

ilar. Hence, the accuracy of the two methods proposed in the paper is of the same order of

magnitude.

Let us analyze the stability of the three estimators under analysis. Tables 3-6 report the

across-chain means and standard deviations of the log MDD for each of estimators, models,

and data sets. We can conclude that at 10,000 draws, the stability of all the three estimators

is quite good already. This result suggests that increasing the number of draws is unlikely to

27We have extended the exercise to include VAR(5) and VAR(6). The results of this extended exercise are
available upon request. We have decided to not present them in the paper because all the three estimators
deliver very small MDDs for these two models. Hence, all the results discussed in this section are unchanged.

28Recall that Method 1 exploits the fact that the MDD can be expressed as the normalizing constant of
the joint posterior density for model parameters. In contrast, Method 2 relies on the principle of reciprocal
importance sampling.
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change the predictions about which model attains the largest posterior probability. In other

words, no sizeable corrections have to be expected from increasing the number of draws in

the reduced-Gibbs sampler. This last finding is in line with the slow convergence of the MC

integration based on the reduced-Gibbs step draws, discussed in Section 4.1.

4.3 Computation Time

Figures 3-5 show how the computation time (in seconds) associated with the three estima-

tors under analysis varies as the number of observable variables and the number of lags,

p increases. Comparing these figures, we observe that Method 2 is computationally more

convenient than Method 1 and Chib’s method for any model specification and any data set.

In Figure 5, we observe that for Method 2 (i) the computing time is almost invariant to the

number of lags included in the model and (ii) the increases in computing time due to the

inclusion of additional observable variables are quite small. Quite remarkably, estimating

the MDD associated with a six-variate VAR(4) with the Method 2 and 100,000 posterior

draws,29 takes less that 1/10 seconds. This result is striking but not surprising since Method

2 only requires performing the Gibbs Sampler regardless the number of partition that can

be integrated out.

Furthermore, if one compares Figures 3-5, one would note that the computing time

associated with our estimators (i.e., Method 1 and Method 2) is not growing exponentially

as one increases the number of observables or the number of lags of the VAR. Moreover,

we report in Figure 6 the difference in computing time between Chib’s method and Method

1. Recall that the these two estimators only differ in how they calculate the conditional

posterior Σ|Γ, Y . Hence, Figure 6 shows how the computing time to perform the reduced-

Gibbs step changes as the number of lags or observables in the VAR model varies. One can

see that the reduced-Gibbs step is the culprit for the computing time associated with the

Chib’ method to grow exponentially with respect to the number of observables and lags.

In contrast, it follows that exploiting the analytical tractability condition prevents our two

estimators from being affected by such a curse of dimensionality.

29100, 000 draws ensure very reliable estimates as the small size of the across-chain standard deviation for
the MC experiment, reported in Table 6, suggests.
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5 Concluding Remarks

The paper develops two new estimators for the marginal likelihood of the data. These

estimators are shown to apply to a broad set of popular models in time series economet-

rics: Vector AutoRegressive Models (VARs), Reduced Rank Regression Models such as Vec-

tor Equilibrium Correction Models (VECMs), Markov-Switching VAR models (MS VARs),

Time-Varying Parameter VAR models (TVP VARs), Dynamic Factor Models (DFMs), and

Factor Augmented VAR models (FAVARs). Our estimators rely on the fact that it is pos-

sible to analytically integrate out one or more parameter blocks from the block-conditional

posterior densities implied by those models.

An empirical application based on a standard macro data set reveals that our estimators

translate into significant gains in accuracy and computational burden when compared to

a very popular fully-computational approach. We find that the estimation bias associated

with the fully-computational estimator may severely distort model rankings. Furthermore,

our estimators do not suffer the curse of dimensionality that affects the fully-computational

method. In particular, Method 2 is fast enough to be well-suited for applications where

the marginal likelihood of VAR models has to be computed several times (e.g., Bayesian

selection or average across a large set of models).

To sum up, the paper favors the idea that estimators that are tailored to the specific

features of a model at hand are likely to dominate universal estimators, which are virtually

applicable to a broader set of models but have to rely on brute-force computational methods.

Using estimators that exploit the specific features of a model at hand is very rewarding,

especially when the models in question are quite densely parameterized
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Figures and Tables

Figure 1: Estimation bias for the conditional predictive density (1,000,000
draws in the reduced-Gibbs step)
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Figure 3: Computing time (in seconds): Chib’s Method
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Notes: We use 100,000 draws in both the Gibbs sampler and the reduced-Gibbs step
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Figure 4: Computing time (in seconds): Method 1
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Notes: We use 100,000 draws in both the Gibbs sampler
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Figure 5: Computing time (in seconds): Method 2
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Notes: We use 100,000 draws in both the Gibbs sampler
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Figure 6: Across-Chain Average of Computing Time (in Seconds) for Chib’s
Method Relative to Method 1
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Appendix

Appendix A provides the standard samplers used in the estimation. In Appendix B, we

provide a detailed derivation of the Method 2. Appendix C shows that the posterior for the

mean and the trend Γ of mean-adjusted VARs, discussed in Section 3.1, is conjugate to a

Gaussian prior. In Appendix D we derive the analytical expression for conditional predictive

density p (Y |Γ), which is used to apply our estimators to mean-adjusted VARs of the form

discussed in Section. 3.1. Appendix E shows how to derive a close-form analytical expression

for the conditional posteriors π11| (K,Y ), π22| (K,Y ) and Φ (j) ,Σ (j) |, K, Y , j ∈ {1, 2} for

Markov-Switching VARs in equation (29). In Appendix F, we prove that, conditional on

factors, the posterior density for the parameter blocks in the factor model (40) equals their

prior. This very last result has been used to show that the analytical tractability condition

holds for Dynamic Factor Models in Section 37.

A Posterior samplers

Algorithm 1: Gibbs Sampler

Given an initial set of parameter values, Θ(0), set s = 0 and perform the following steps

1. Draw D(s+1) from the conditional predictive density, p
(
D|Θ(s), Y

)
2. Draw θ

(s+1)
1 from the conditional posterior, p

(
θ1|Θ(s)

>1, D
(s+1), Y

)
3. Draw θ

(s+1)
2 from the conditional posterior, p

(
θ2|θ(s+1)

1 ,Θ
(s)
>2, D

(s+1), Y
)

4. ...

5. Draw θ
(s+1)
m from the conditional posterior, p

(
θm|θ(s+1)

1 , . . . , θ
(s+1)
m−1 , D

(s+1), Y
)

6. Set s = s+ 1. If s ≤ nr, go to step 1. Otherwise stop.

Algorithm 2: Reduced-Gibbs Sampler:

Given an initial set of parameter values, Θ
(0)
<i . Set s = 0 and perform the following steps

1. Draw D(s+1) from the conditional predictive density, p
(
D|Θ(s)

≤i , Θ̃>i, Y
)
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2. If i = 1, then go to step 6. Else, draw θ
(s+1)
1 from p

(
θ1|Θ(s)

1<θ≤i, Θ̃>i, D
(s+1), Y

)
, where

Θ
(s)
1<θ≤i ≡ {θ1, ..., θi}.

3. If i = 2, then go to step 6. Else, draw θ
(s+1)
2 from p

(
θ2|θ(s+1)

1 Θ
(s)
2<θ≤i, Θ̃>i, D

(s+1), Y
)

.

4. ...

5. If i = (m− 1), then go to step 6. Else, draw θ
(s+1)
i from p

(
θi|Θ(s+1)

1≤θ≤m−1, Θ̃>i, D
(s+1), Y

)
.

6. Set s = s+ 1. If s ≤ nr, go to step 1. Otherwise stop.

Note that when i = m the reduced Gibbs sampler coincides with the Gibbs sampler

described in Algorithm 1.

B Derivation of Method 2

Gelfand and Dey (1994) propose the Reciprocal Importance Sampling (RIS) estimator to

compute the MDD.

p̂RIS (Y ) =

[
1

N

N∑
s=1

f
(
θ(s)
)

k (θ(s)|Y )

]−1

(46)

where
{
θ(s)
}N
s=1

are the posterior draws from the Gibbs sampler and f (·) stands for a weight-

ing function, such that
∫
f (θ) dθ = 1. The RIS estimator is obtained as follows:

1

p (Y )
=

∫
f (θ)

p (Y )
dθ =

∫
f (θ)

k (θ|Y )
p (θ|Y ) dθ = Ep(θ|Y )

[
f (θ)

k (θ|Y )

]
(47)

where p (θ|Y ) is the posterior density and the second equality stems from the fact that the

the MDD, using Bayes Theorem, can be expressed as p (Y ) = k (θ|Y ) /p (θ|Y ). A weighting

function, f (·), that closely mimics the posterior kernel with thinner tails is desirable for

the efficiency and the accuracy of the RIS estimator. Several weighting functions have been

proposed in the literature. For example, Newton and Raftery (1999) use the prior as the

weighting function. Gelfand and Dey (1994) propose a multivariate Student-t or Gaussian

density with first and second moments estimated from the sample of posterior draws. Geweke

(1999) suggests to use a truncated multivariate Gaussian density. We follow Geweke (1999)

to construct one of our estimators. See Section 2.2.2.
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We can exploit the result in (47) to write

1

p (Y )
=

∫
f (Θ>τ )

(
p (Θ|Y )

p (Y |Θ) p (Θ)

)
dΘ>τ

where the weighting function f (Θ>τ ) is known and such that
∫
f (Θ>τ ) dΘ>τ = 1. We can

rewrite the ratio within the bracket as follows:

1

p (Y )
=

∫
f (Θ>τ )

(
p (Θ≤τ |Θ>τ , Y )

p (Y |Θ≤τ ,Θ>τ ) p (Θ≤τ |Θ>τ )

p (Θ>τ |Y )

p (Θ>τ )

)
dΘ>τ (48)

The analytical expression of the conditional posterior density Θ≤τ | (Θ>τ , Y ) is not available.

The analytical tractability condition, however, ensures that we know the analytical form of

the density (Θ≤τ ) | (Θ>τ , D, Y ). Note that

p (Θ≤τ |Θ>τ , Y ) =

∫
p (Θ≤τ |Θ>τ , D, Y ) p (D|Θ>τ , Y ) dD (49)

By substituting the result in (49) into (48) we obtain

1

p (Y )
=

∫
f (Θ>τ )

(∫
p (Θ≤τ |Θ>τ , D, Y ) p (D|Θ>τ , Y ) dD

p (Y |Θ≤τ ,Θ>τ ) p (Θ≤τ |Θ>τ )

p (Θ>τ |Y )

p (Θ>τ )

)
dΘ>τ

One can observe that the densities outside the inner integral do not depend on D. Hence,

we can re-write the equation above as

1

p (Y )
=

∫
D

∫
Θ>τ

f (Θ>τ )

(
p (Θ≤τ | (Θ>τ , D, Y )) p (D|Θ>τ , Y )

p (Y |Θ≤τ ,Θ>τ ) p (Θ≤τ |Θ>τ )

p (Θ>τ |Y )

p (Θ>τ )

)
d (D,Θ>τ ) (50)

where we have also reversed the order of integration.

Note that p (D|Θ>τ , Y ) p (Θ>τ |Y ) = p (D,Θ>τ |Y ). Thus, we can write the equation in

the main text.

1

p (Y )
=

∫
f (Θ>τ )

p (Θ≤τ |Θ>τ , D, Y )

p (Y |Θ≤τ ,Θ>τ ) p (Θ≤τ |Θ>τ ) p (Θ>τ )
p (D,Θ>τ |Y ) d (D,Θ>τ )

By using this result we can write:

1

p (Y )
= Ep(D,Θ>τ |Y )

[
f (Θ>τ )

p (Θ≤τ |Θ>τ , D, Y )

p (Y |Θ≤τ ,Θ>τ ) p (Θ≤τ |Θ>τ ) p (Θ>τ )

]
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The analytical tractability condition implies that the analytical expression of the condi-

tional predictive density, p (Θ≤τ |Θ>τ , D, Y ), is known. Hence, we can estimate the marginal

data density, p (Y ), through Method 2 as follows:

p̂M2(Y ) =

 1

n

n∑
s=1

p
(

Θ̃≤τ |Θ(s)
>τ , D

(s), Y
)

p
(
Y |Θ̃≤τ ,Θ(s)

>τ

)
p
(

Θ̃≤τ |Θ(s)
>τ

)
p
(

Θ
(s)
>τ

)f (Θ
(s)
>τ

)−1

where the draws
{

Θ
(s)
>τ , D

(s)
}

are the draws from the Gibbs sampler simulator (Algorithm

1) and Θ̃≤τ is the posterior mode.

C Conditional Posterior p(Γ|Φ,Σ, Y )

Note that

yt = Γ1 + Γ2t+ ỹt

yt −
p∑
j=1

{Φ}j ỹt−j = Γ1 + Γ2t+ εt

yt −
p∑
j=1

{Φ}j (yt−j − Γ1 − Γ2 (t− j)) = Γ1 + Γ2t+ εt

yt −
p∑
j=1

{Φ}jyt−j =

(
I −

p∑
j=1

{Φ}j

)
Γ1

+

(
I · t−

p∑
j=1

{Φ}j (t− j)

)
Γ2 + εt

y̆ (Φ) = AtΓ + εt

where y̆ ≡ yt −
∑p

j=1{Φ}jyt−j, At ≡
[(
I −

∑p
j=1{Φ}j

)
,
(
I · t−

∑p
j=1{Φ}j (t− j)

)]
, Γ ≡

vec (Γ′).

Thus the kernel of the likelihood function is given by

−1

2

T∑
t=1

(y̆ − AtΓ)′Σ−1 (y̆ − AtΓ)
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= −1

2

[
T∑
t=1

y̆′Σ−1y̆ − 2

(
T∑
t=1

y̆′Σ−1At

)
Γ + Γ′

(
T∑
t=1

A′tΣ
−1At

)
Γ′

]

= −1

2

Γ−

(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)′( T∑
t=1

A′tΣ
−1At

)
Γ−

(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)
−

(
T∑
t=1

y̆′Σ−1At

)(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)
+

T∑
t=1

y̆′Σ−1y̆

= −1

2

Γ−

(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)′( T∑
t=1

A′tΣ
−1At

)
Γ−

(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)+ stuff not depending on θ3

This suffices to conclude that the likelihood is Gaussian. We have to combine this likelihood

with the prior p (Γ), which is set to be:

p (Γ) ∝ |VΓ|−
1
2 exp

{
−1

2
(Γ− µΓ)′ (VΓ)−1 (Γ− µΓ)

}
(51)

Hence the kernel of the posterior p
(
Γ|,Φ,Σ, Y T

)
will be

= −1

2
{

Γ−

(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)′( T∑
t=1

A′tΣ
−1At

)
·

·

Γ−

(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)+ (Γ− µΓ)′ (VΓ)−1 (Γ− µΓ)}
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= −1

2
{Γ′
(

(VΓ)−1 +
T∑
t=1

A′tΣ
−1At

)
Γ− 2

[
(µΓ)′ (VΓ)−1 +

(
T∑
t=1

y̆′Σ−1At

)]
Γ

+

(
T∑
t=1

y̆′Σ−1At

)(
T∑
t=1

A′tΣ
−1At

)−1( T∑
t=1

A′tΣ
−1y̆

)
+ (µΓ)′ (VΓ)−1 µΓ}

= −1

2
{Γ′
(

(VΓ)−1 +
T∑
t=1

A′tΣ
−1At

)
Γ− 2

[
(µΓ)′ (VΓ)−1 +

(
T∑
t=1

y̆′Σ−1At

)]
Γ

+stuff not depending on Γ}

= −1

2

Γ−

(
(VΓ)−1 +

T∑
t=1

A′tΣ
−1At

)−1 [
(VΓ)−1 (µΓ) +

(
T ′∑
t=1

A′tΣ
−1y̆

)]′ ·
·

(
(VΓ)−1 +

T∑
t=1

A′tΣ
−1At

)
·

·

Γ−

(
(VΓ)−1 +

T∑
t=1

A′tΣ
−1At

)−1 [
(VΓ)−1 (µΓ) +

(
T ′∑
t=1

A′tΣ
−1y̆

)]
Thus we can write the posterior of Γ as

Γ|Y,Φ,Σ ∼ N
(
µTΓ , V

T
Γ

)
(52)

where

V T
Γ =

[
(VΓ)−1 +

T∑
t=1

A′tΣ
−1At

]−1

µTΓ = V T
Γ

[(
V T

Γ

)−1 (
µTΓ
)

+

(
T ′∑
t=1

A′tΣ
−1y̆

)]

D Deriving the Conditional Predictive Density p (Y |Γ)

In this section, we derive the conditional predictive density p (Y |Γ). Let us consider the VAR

in deviation (13):

Ỹ = ΦX + ε
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where Ỹ≡ [ỹ1, ỹ2, ..., ỹT ]′, X ≡ [x1, x2, ..., xT ]′, xt ≡ [ỹt−1, ..., ỹt−p], and ε ≡ [ε1, ..., εT ]′.

Since this prior is constructed via dummy observations. Then the marginal data density

can be expressed as

p
(
Ỹ|Ỹ∗

)
=

∫
P
(
Ỹ, Ỹ∗|Φ,Σ

)
p (Φ,Σ) dΣdΦ∫

P
(
Ỹ∗|Φ,Σ

)
p (Φ,Σ) dΣdΦ

(53)

Then we need to compute ∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (54)

where the vector
˜̃
Y =

(
Ỹ, Ỹ∗

)
.

The likelihood can be expressed as

P

( ˜̃
Y|Φ,Σ

)
= (2π)−

Tn
2 |Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1S

]}
(55)

× exp

{
−1

2
tr

[
Σ−1

(
Γ− Φ̂

)′
X̃′X̃

(
Φ− Φ̂

)]}
(56)

where T is the number of rows of
˜̃
Y and n is the number of columns of

˜̃
Y and

Φ̂ =
(
X̃′X̃

)−1

X̃′
˜̃
Y (57)

S =

( ˜̃
Y − X̃Φ̂

)′( ˜̃
Y − X̃Φ̂

)
(58)

The prior we used is an improper one as

p (Φ,Σ) = |Σ|−
n+1

2 (59)

Combining equation (55) and equation (59) yields

P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) = (2π)−

Tn
2 |Σ|−

T+n+1
2 exp

{
−1

2
tr
[
Σ−1S

]}
(60)

× exp

{
−1

2
tr

[
Σ−1

(
Φ− Φ̂

)′
X̃′X̃

(
Φ− Φ̂

)]}
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So if we now we integrate the equation (60) across Σ and Φ we get the marginal data

density as indicated in equation (54):∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (61)

=

∫
(2π)−

Tn
2 |Σ|−

T+n+1
2 exp

{
−1

2
tr
[
Σ−1S

]}
(62)

exp

{
−1

2
tr

[
Σ−1

(
Φ− Φ̂

)′
X̃′X̃

(
Φ− Φ̂

)]}
dΣdΦ (63)

By multiplying and dividing by

∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣ 12 inside the integral to get

∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (64)

= (2π)−
Tn
2

∫
|Σ|−

n+1
2 |Σ|−

T
2

∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣ 12 exp

{
−1

2
tr
[
Σ−1S

]}
·
∣∣∣∣Σ⊗ (X̃′X̃

)−1
∣∣∣∣− 1

2

(65)

exp

{
−1

2
tr

[
Σ−1

(
Φ− Φ̂

)′
X̃′X̃

(
Φ− Φ̂

)]}
dΣdΦ (66)

Note that it can be show that:

tr

[
Σ−1

(
Φ− Φ̂

)′
X̃′X̃

(
Φ− Φ̂

)]
= (ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2) (67)

where ϕ ≡ vec (Φ) and ϕ̂2 ≡ vec
(

Φ̂
)

. Hence we can write

∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (68)

= (2π)−
Tn
2

∫
|Σ|−

n+1
2 |Σ|−

T
2

∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣ 12 exp

{
−1

2
tr
[
Σ−1S

]}
·
∣∣∣∣Σ⊗ (X̃′X̃

)−1
∣∣∣∣− 1

2

(69)

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΣdΦ (70)

Recall that ∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣ 12 = |Σ|

k
2

∣∣∣X̃′X̃∣∣∣−n2 (71)
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where k is equal to the number of columns of X̃. Thus, if there is a constant in the VAR,

then k = np+ 1, Otherwise, k = np. It follows that:∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (72)

= (2π)−
Tn
2

∫
|Σ|−

n+1
2 |Σ|−

T
2 |Σ|

k
2

∣∣∣X̃′X̃∣∣∣−n2 exp

{
−1

2
tr
[
Σ−1S

]}
·
∣∣∣∣Σ⊗ (X̃′X̃

)−1
∣∣∣∣− 1

2

(73)

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΣdΦ (74)

= (2π)−
Tn
2

∣∣∣X̃′X̃∣∣∣−n2 ∫ |Σ|− (T−k)+n+1
2 exp

{
−1

2
tr
[
Σ−1S

]}
·
∣∣∣∣Σ⊗ (X̃′X̃

)−1
∣∣∣∣− 1

2

(75)

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΣdΦ (76)

If we define v ≡ T − k and then multiply and divide by
(
2
vn
2
·Γn
(
v
2

))
|S|

v
2 , we get∫

P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (77)

= (2π)−
Tn
2

∣∣∣X̃′X̃∣∣∣−n2 |S|− v2 · 2 vn
2 Γn

(v
2

)∫ |S| v2 |Σ|− v+n+1
2 exp

{
−1

2
tr [Σ−1S]

}
2
vn
2 Γn

(
v
2

) ·
∣∣∣∣Σ⊗ (X̃′X̃

)−1
∣∣∣∣− 1

2

(78)

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΣdΦ (79)

where Γn
(
v
2

)
is the multivariate gamma function:

Γn

(v
2

)
= π

n(n−1)
4 Πn

j=1Γ

(
v

2
+

(1− j)
2

)
(80)
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Finally, multiply and divide inside the integral operator by (2π)−
kn
2 , we get∫

P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ (81)

= (2π)−
(T−k)n

2

∣∣∣X̃′X̃∣∣∣−n2 |S|− v2 · 2 vn
2 Γn

(v
2

)
(82)∫ |S| v2 |Σ|− v+n+1

2 exp
{
−1

2
tr [Σ−1S]

}
2
vn
2 Γn

(
v
2

) · (2π)−
nk
2

∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣− 1

2

(83)

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΣdΦ (84)

Note that |S|
v
2 |Σỹ|−

v+n+1
2 exp

{
−1

2
tr [ΣS]

}
does not depend on Φ. Hence, we can put it

outside the integral operator taken with respect to Φ and actually get∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ

= (2π)−
(T−k)n

2

∣∣∣X̃′X̃∣∣∣−n2 |S|− v2 2
vn
2 · Γn

(v
2

)∫ |S| v2 |Σ|− v+n+1
2 exp

{
−1

2
tr [Σ−1S]

}
2
vn
2 · Γn

(
v
2

) ·{∫
(2π)−

nk
2

∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣− 1

2

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΦ

}

Since the expression inside the inner integral is a normal we get the following

∫
(2π)−

nk
2

∣∣∣∣Σ⊗ (X̃′X̃
)−1
∣∣∣∣− 1

2

exp

{
−1

2
(ϕ2 − ϕ̂2)′

[
Σ⊗

(
X̃′X̃

)−1
]−1

(ϕ2 − ϕ̂2)

}
dΦ = 1

So we get∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ

= (2π)−
(T−k)n

2

∣∣∣X̃′X̃∣∣∣−n2 |S|− v2 2
vn
2 · Γn

(v
2

)∫ |S| v2 |Σ|− v+n+1
2 exp

{
−1

2
tr [ΣS]

}
2
vn
2 · Γn

(
v
2

) dΣ

Since the argument of the integral is an inverted-wishart distribution, we have that

∫ |S| v2 |Σ|− v+n+1
2 exp

{
−1

2
tr [Σ−1S]

}
2
vn
2 · Γn

(
v
2

) dΣ = 1 (85)
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and then∫
P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ = (2π)−

(T−k)n
2

∣∣∣X̃′X̃∣∣∣−n2 |S|− v2 2
vn
2 ·π

n(n−1)
4 Πn

j=1Γ

(
v

2
+

(1− j)
2

)
(86)

and then by noticing that 2−
(T−k)n

2 2
vn
2 cancels out as v = T − k we, finally, get∫

P

( ˜̃
Y|Φ,Σ

)
p (Φ,Σ) dΣdΦ = π−

(T−k)n
2

∣∣∣X̃′X̃∣∣∣−n2 |S|− v2 ·π n(n−1)
4 Πn

j=1Γ

(
v

2
+

(1− j)
2

)
(87)

where

π
n(n−1)

4 Πn
j=1Γ

(
v

2
+

(1− j)
2

)
= Γn

(v
2

)
Equation (87) is the analytical expression for the conditional predictive density, p (Y|Γ).

E MS VARs

Let tjj be the number of periods the system is in regime j and tij, i 6= j the number of times

the system switches from state i to state j. Let us suppose that the history of regimes K

implies k breaks that happen at t ∈ {T1, . . . , Tk}. Without loss of generality, let us assume

that K1 = 1 and KT = 1.30 Furthermore, we define the following matrices:

Y (1) =
[
y1, . . . , yT1 , yT2+1, . . . , yT3 , yT4+1, . . . , yTk−1+1, . . . , yT

]′
X (1) =

[
x1, . . . , xT1 , xT2+1, . . . , xT3 , xT4+1, . . . , xTk−1+1, . . . , xT

]′
Y (2) =

[
yT1+1, . . . , yT2 , yT3+1, . . . , yT4 , yT5+1, . . . , yTk−2+1, . . . , yTk−1

]′
X (2) =

[
xT1+1, . . . , xT2 , xT3+1, . . . , xT4 , xT5+1, . . . , xTk−2+1, . . . , xTk−1

]′
with xt =

[
1, y′t−1, . . . , y

′
t−p
]′

. Let T0 (j) be the number of dummy observations, T (j) be

the total number of periods the system is in regime j in the history K, and Y (j) =[
Y ∗ (j)′ , Y (j)′

]′
, X =

[
X∗ (j)′ , X (j)′

]′
.

Given that τ = m, equation (3), which characterizes Method 1, reduces to

p̂M1 (Y ) =
p
(
Y |Θ̃

)
p
(

Θ̃
)

p
(

Θ̃|Y
) (88)

30Having that KT = 2, for instance, would only cause the definition of matrices Y (j) and X (j), j ∈ {1, 2}
to change in a straightforward manner.
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where Θ̃ ≡
[
(π̃jj)j∈{1,2} ,

(
Φ̃ (j) , Σ̃ (j)

)
j∈{1,2}

]
is the posterior mode. Method 1 approximates

the joint posterior density p
(

Θ̃|Y
)

from the output of the Gibbs sampler as follows:

p
(

Θ̃|Y
)

=
1

nr

nr∑
s=1

2∏
j=1

p
(
π̃jj|K(s), Y

)
· p
(

Φ̃ (j) , Σ̃ (j) |K(s), Y
)

(89)

where p
(
π11|K(s), Y

)
v Beta (t∗11 + t11, t

∗
12 + t12), p

(
π22|K(s), Y

)
v Beta (t∗22 + t22, t

∗
21 + t21)

and p
(
Φ (j) ,Σ (j) |, K(s), Y

)
v MNIW

(
Φ̂ (j) ,

(
X (j)′X (j)

)−1
, Ŝ (j) , T (j)− k

)
, with T (j) =

T0 (j)+T (j), k = np+1, Φ̂ (j) =
(
X (j)′X (j)

)−1
X (j)′ Y (j), and Ŝ (j) =

(
Y (j)−X (j) Φ̂ (j)

)′(
Y (j)−X (j) Φ̂ (j)

)
.

F Posterior for the Parameter of the Factor Model

We want to show that conditional to the factors the posterior density for the parameter

blocks in the factor model equals their prior. The joint posterior for the four parameter

blocks of the DFM model (39)-(40) is given by

p (Φ0, ε0,Φ1,Σ1|F, Y ) =
p (Y |Φ0, ε0,Φ1,Σ1, F ) · p (Φ0, ε0,Φ1,Σ1|F )∫

p (Y |Φ0, ε0,Φ1,Σ1, F ) · p (Φ0, ε0,Φ1,Σ1|F ) d (Φ0, ε0,Φ1,Σ1)

Note that conditional on the factors F , the likelihood p (Y |Φ0, ε0,Φ1,Σ1, F ) simplifies to

p (Y |Φ1,Σ1, F ). Hence,

p (Φ0, ε0,Φ1,Σ1|F, Y ) =
p (Y |Φ1,Σ1, F ) · p (Φ1,Σ1)∫

p (Y |Φ1,Σ1, F ) · p (Φ1,Σ1) d (Φ1,Σ1)
· p (Φ0, ε0)∫

p (Φ0, ε0) d (Φ0, ε0)

where also we use the assumption made on prior specification made in Section 3.5. Further-

more, note that
∫
p (Φ0, ε0) d (Φ0, ε0) = 1. It follows that

p (Φ0, ε0,Φ1,Σ1|F, Y ) = p (Φ1,Σ1|F, Y ) · p (Φ0, ε0) (90)

Recall that the posterior for the parameters in the factor model in (40) is defined as

p (Φ0, ε0|F, Y ) =

∫
p (Φ0, ε0,Φ1,Σ1|F, Y ) d (Φ1,Σ1)
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Using the result in equation (90), we obtain

p (Φ0, ε0|F, Y ) =

∫
p (Φ1,Σ1|F, Y ) · p (Φ0, ε0) d (Φ1,Σ1)

Since
∫
p (Φ1,Σ1|F, Y ) d (Φ1,Σ1) = 1, then p (Φ0, ε0|F, Y ) = p (Φ0, ε0), which is what we

wanted to show.

55


