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We introduce and explore a new class of stationary time series models
for variance matrices based on a constructive definition exploiting inverse
Wishart distribution theory. The main class of models explored is a novel
class of stationary, first-order autoregressive (AR) processes on the cone of
positive semi-definite matrices. Aspects of the theory and structure of these
new models for multivariate “volatility” processes are described in detail
and exemplified. We then develop approaches to model fitting via Bayesian
simulation-based computations, creating a custom filtering method that relies
on an efficient innovations sampler. An example is then provided in analy-
sis of a multivariate electroencephalogram (EEG) time series in neurological
studies. We conclude by discussing potential further developments of higher-
order AR models and a number of connections with prior approaches.

1. Introduction. Modeling the temporal dependence structure in a sequence
of variance matrices is of increasing interest in multi- and matrix-variate time series
analysis, with motivating applications in fields as diverse as econometrics, neu-
roscience, epidemiology and spatial-temporal modeling. Some key interests and
needs are in defining: (i) classes of stationary stochastic process models on the
cone of symmetric, non-negative definite matrices that offer flexibility to model
differing degrees of dependence structures as well as short-term predictive ability;
(ii) models that are open to theoretical study and interpretation; and (iii) models
generating some degree of analytic and computational tractability for model fitting
and exploitation in applied work.

The context is a sequence of q × q variance matrices (i.e., symmetric, non-
negative definite matrices) Σt in discrete time t = 0, 1, . . . , typically the variance
matrices of components of more elaborate state-space models for an observable
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time series. In econometrics and finance, variants of “observation-driven” multi-
variate ARCH (Engle, 2002) models and state-space or “parameter-driven” multi-
variate stochastic volatility models (Harvey et al., 1994; Quintana and West, 1987)
are widely used. While the former directly specify “volatility” matrices Σt as func-
tions of lagged values and past data, state-space approaches use formal stochas-
tic process models that offer cleaner interpretation, access to theoretical under-
standing as well as potential to scale more easily with dimension; see Chib et al.
(2009) for a survey of such approaches. The class of state-space models based on
Bayesian discount methods (Quintana and West, 1987; Quintana, 1992; Quintana
et al., 2003, 2010; Uhlig, 1994; West and Harrison, 1997), are also widely used in
financial applications for local volatility estimation and smoothing. These methods
are, however, restricted to local estimation due to the underlying non-stationary
random-walk style model for Σt; see Prado and West (2010) for recent review and
additional developments.

Two recent contributions explore constructions of AR(1) style models based
on conditional Wishart transition distributions (Gouriéroux et al., 2009; Philipov
and Glickman, 2006a,b). These aim to provide flexibility in modeling one-step de-
pendencies balanced with parsimony in parameterization through properties of the
Wishart distribution. These models tend to be rather intractable theoretically, hence
somewhat difficult to understand and interpret, while model fitting is challenging
and there are open questions of how useful potential higher-order variants might
be. We discuss these approaches and issues further in Section 8.

The centrality of inverse Wishart theory to current Bayesian state-space ap-
proaches underlies the ideas for new model classes explored in this paper. We in-
troduce a class of stationary, non-linear autoregressive (AR) models for variance
matrices by exploiting the structure of conditional and marginal distributions in
the inverse Wishart family. We denote the resulting models by AR or IW-AR for
definiteness, and use AR(1) or IW-AR(1) to be more specific about first-order mod-
els when needed; most of the development of this paper is for first-order models.
The new IW-AR models are open to some useful theoretical analysis of margins,
stationarity, reversibility, and conditional moments, among other properties. Ex-
ploiting the state-space nature of the IW-AR(1) process, we develop an MCMC
sampler based on forward filtering backward sampling (FFBS) proposals that re-
sults in tractable Bayesian computations. This operates locally on a matrix innova-
tions process to ameliorate issues arising from global accept-rejects of the variance
matrix process (e.g., exponential decrease in acceptance rates with increasing se-
quence length) albeit at increased computational cost.

Section 2 introduces the new models and some aspects of the theoretical struc-
ture are explored in Section 3. Posterior computations are developed in Section 5,
building on a data augmentation idea discussed in Section 4. An example in EEG
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time series analysis is given in Section 6 and Section 7 discusses extensions to
higher-order AR dependencies. Section 8 discusses connections with other ap-
proaches, Section 9 provides summary comments and supporting technical ma-
terial is appended.

For time ranges we use the concise notation s : t to denote the sequence of time
indices s, s+ 1, . . . , t; e.g., Σ0:T = {Σ0, . . . ,ΣT } and Σt−1:t = {Σt−1,Σt}.

2. First-Order Inverse Wishart Autoregressive Processes.

2.1. Construction. As context, suppose we are to observe a series of q × 1
vector observations xt with

xt|Σt ∼ N(0,Σt), t = 1 : T,(2.1)

where xt is independent of {xs,Σs; s < t} conditional on Σt. We aim to cap-
ture the volatility dynamics with a stationary, first-order Markov model for the Σt

sequence. The joint density for matrices over an arbitrary time period t = 0 : T is

p(Σ0:T ) =

∏T
t=1 p(Σt−1,Σt)∏T
t=2 p(Σt−1)

(2.2)

for some time invariant joint density p(Σt−1,Σt) for consecutive matrices in the
numerator terms; this joint density has common margins given by the time invariant
p(Σt) appearing in the denominator terms.

We take the defining joint density p(Σt−1,Σt) as arising from an inverse Wishart
on an augmented state-space. Specifically, introduce random matrices φt such that(

Σt−1 φ′t
φt Σt

)
∼ IW2q

(
n+ 2, n

(
S SF ′

FS S

))
(2.3)

for some degree of freedom parameter n > 0, a q× q variance matrix parameter S
and a q×q matrix parameter F such that the 2q×2q parameter matrix parameter of
the distribution above is non-negative definite. This inverse Wishart has common
margin for the diagonal blocks; for each t,

Σt ∼ IWq(n+ 2, nS)(2.4)

with E[Σt] = S. It is now clear that eqn. (2.2) defines stationary first-order process
with eqn. (2.4) as the stationary (marginal) distribution. Transitions are governed
by the conditional density p(Σt|Σt−1) implicitly defined by eqn. (2.3). This has no
closed analytic form but is now explored theoretically.
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2.2. Innovations Process. The joint distribution of {Σt−1,Σt, φt} defined in
eqn. (2.3) can be reformulated in terms of {Σt−1,Υt,Ψt} where {Υt,Ψt} are
marginally matrix normal, inverse Wishart distributed and independent of Σt−1.
Specifically, standard inverse Wishart theory (e.g. Carvalho et al., 2007) implies
that

Σt = Ψt + ΥtΣt−1Υ′t.(2.5)

and φt = ΥtΣt−1 where the q × q matrices {Υt,Ψt} follow

(2.6)
Ψt ∼ IWq(n+ q + 2, nV )

Υt | Ψt ∼ N(F,Ψt, (nS)−1)

with V = S−FSF ′ and where {Υt,Ψt} are conditionally independent of Σt−1 ∼
IWq(n + 2, nS). Eqn. (2.5) is an explicit AR(1) equation in which Υt acts as a
random autoregressive coefficient matrix and Ψt an additive random disturbance.
Since {Υt,Ψt} are independent at each t and drive the dynamics of this IW-AR
process, we refer to them as latent innovations.

2.3. Special Case of q = 1. When q = 1, Σt ≡ σt > 0 and the IW-AR
process reduces to an inverse gamma autoregressive process. Now S ≡ s > 0 and
F ≡ f ∈ (−1, 1) and the joint density of eqn. (2.3) is(

σt−1 φt
φt σt

)
∼ IW2

(
n+ 2, ns

(
1 f
f 1

))
,(2.7)

such that

σt ∼ IG
(
n+ 2

2
,
ns

2

)
.(2.8)

Equivalently, with scalar innovations {Υt,Ψt} ≡ {υt, ψt},

σt = ψt + υ2
t σt−1(2.9)

where

(2.10) ψt ∼ IG
(
n+ 3

2
,
ns(1− f2)

2

)
and υt | ψt ∼ N

(
f,
ψt
ns

)
.

We can see immediate analogies with the standard linear, Gaussian AR(1) process
with a random AR coefficient. The marginal mean of υ2

t is (nf2+1)/(n+1) which
plays the role of an average linear autoregressive coefficient. For |f | close to 1, the
model approaches the stationary/non-stationary boundary, and when n is large, the
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mean AR(1) coefficient is close to f2. Also, E[ψt] = ns(1 − f2)/(n + 1) so that
for fixed n and s the additive innovation noise tends to be smaller as |f | approaches
unity. Parameters (n, f) also control dispersion of the additive innovations through,
for example, V (ψt) = 2[ns(1−f2)]2/[(n+1)2(n−1)]. Section 3 further explores
this in the general multivariate setting as well as this special case of q = 1.

This inverse gamma autoregressive process is related to the formulation of Pitt
et al. (2002). In that work, the authors construct a stationary autoregressive pro-
cess {σt} with inverse gamma marginals by harnessing a conditionally gamma
distributed latent process {zt}. The sequence {σt, zt} obtained by generating σt |
zt−1 and zt | σt from the respective closed form conditional distributions leads
to a marginal process {σt} with the desired autoregressive structure. Extensions
to Bayesian nonparametric transition kernels is considered in Mena and Walker
(2005) and to state-space volatility processes in Pitt and Walker (2005). Although
related in spirit to this work, the proposed IW-AR process represents a novel con-
struction. One attribute of the IW-AR approach, as explored in Section 3, is that our
process need not be reversible depending upon the parameterization specified by
f and s. Furthermore, our formulation allows straightforward higher-order exten-
sions, discussed in Section 7. Additional discussion and other related approaches
appears in Section 8.

3. Theoretical Properties.

3.1. Marginal Processes for Submatrices and Univariate Elements. Consider
any partition of Σt into blocks Σt,ij , (i = 1 : I, j = 1 : J), where i, j represent
consecutive blocks of consecutive sets of row and column indices, respectively.
As a special case this also defines scalar elements. Then the evolution of each
submatrix Σt,ij depends upon every element of Σt−1 as follows:

Σt,ij = Ψt,ij +
[
Υt,i1 . . . Υt,iJ

]
Σt−1

Υ′t,1j
...

Υ′t,Ij

 .(3.1)

Here Ψt,ij ∼ IW(n+q+2, nVij) and
[
Υt,i1 . . . Υt,iJ

]
has a conditional matrix

normal distribution induced from the joint distribution of eqn. (2.6).

3.2. Stationarity.

THEOREM 3.1. The process defined via eqn. (2.3) is strictly stationary when
the parameterization of the inverse Wishart of yields a valid distribution: that is,
when S and S − FSF ′ are positive definite.
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PROOF. This follows directly from the constructive definition using eqn. (2.3).
For a valid model, the scale matrix must be positive definite. Equivalently, via
Sylvester’s criterion and the Schur complement, S and S−FSF ′ must be positive
definite.

We note extensions to non-negative definite cases when the resulting Σt matri-
ces are singular with singular inverse Wishart distributions, although these are of
limited practical interest so we focus on non-singular cases throughout.

In simple cases of F = ρIq the stationarity condition reduces to |S| > 0 and
|ρ| < 1. Other special cases are those in which F, S share eigenvectors with eigen-
decompositions F = ERE′ and S = EQE′. Stationarity is assured when ||Q||0 >
0 and ||R||0 < 1.

3.3. Reversibility.

THEOREM 3.2. The process is time-reversible if and only if FS = SF ′.

PROOF. The reverse-time process on the Σt is as follows. Eqn. (2.3) implies
that (

Σt φ̃′t
φ̃t Σt−1

)
∼ IW2q

(
n+ 2, n

(
S FS
SF ′ S

))
,(3.2)

for some latent process φ̃t. Then, as in Section 2, we have

Σt−1 = Ψ̃t + Υ̃tΣtΥ̃
′
t(3.3)

where

(3.4) Ψ̃t ∼ IWq(n+ q + 2, nṼ ) and Υ̃t | Ψ̃t ∼ N(F̃ , Ψ̃t, (nS)−1)

with Ṽ = S − SF ′S−1FS and F̃ = SF ′S−1. If FS = SF ′, then Ṽ = V and
F̃ = F and the reverse-time process follows the same model as the forward-time
process. Conversely, assume a reversible process (i.e., F̃ = F and Ṽ = V ) with
FS 6= SF ′. Since F̃ = SF ′S−1, a contradiction immediately arises.

Examples of reversible IW-AR processes include cases when F = ρIq or when
F = ERE′ and S = EQE′. Note, however, that the process is irreversible when
F = diag(ρ1, . . . , ρq) with distinct elements and S is non-diagonal.
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3.4. Conditional Mean. The IW-AR yields a simple form for the conditional
expectation of Σt given Σt−1.

THEOREM 3.3.

E[Σt | Σt−1] = FΣt−1F
′ + cn,q

[
1 + tr{Σt−1(nS)−1}

]
V(3.5)

with cn,q = n/(n+ q).

PROOF. See Appendix.

Theorem 3.3 illuminates the inherent matrix linearity of the model and the in-
terpretation of F as a “square root” AR parameter matrix. The conditional mean
regression form is FΣt−1F

′ corrected by a term that reflects the skewness of the
conditional distribution. For large n, the underlying inverse Wishart distributions
are less skewed and this latter term is small; indeed

lim
n→∞

E[Σt | Σt−1] = S + F (Σt−1 − S)F ′.(3.6)

3.5. Principal Component IW-AR Processes. Assume thatF and S share eigen-
vectors so that the IW-AR model is reversible. There exists a principal component
IW-AR process, as follows.

THEOREM 3.4. Suppose that F = ERE′ and S = EQE′ where E is orthog-
onal and R = diag(ρ1, . . . , ρq) and Q = diag(ξ1, . . . , ξq) with positive elements.
Then the sequence of matrices defined by Σ̂t = E′ΣtE follows an IW-AR(1) model
with degrees of freedom n, scale matrix Q and AR matrix R. Specifically,

Σ̂t = Ψ̂t + Υ̂tΣ̂t−1Υ̂′t

where Ψ̂t = E′ΨtE and Υ̂t = E′ΥtE are such that

Ψ̂t ∼ IWq(n+ q + 2, nQ(I −R2)) and Υ̂t | Ψ̂t ∼ N(R, Ψ̂t, (nQ)−1)

and with marginal distribution Σ̂t ∼ IWq(n+ 2, nQ).
The conditional moment is given by

E[Σ̂t | Σ̂t−1] = RΣ̂t−1R+ cn,q

[
1 +

∑
i

(nξi)
−1Σ̂t−1,ii

]
Q(I −R2).(3.7)

eqn. 3.7 implies that there exists a zero-mean noise process vt,j such that

Σ̂t,jj = ρ2
j Σ̂t−1,jj + cn,q

[
1 +

∑
i

(nξi)
−1Σ̂t−1,ii

]
(1− ρ2

j )ξj + vt,j .(3.8)

Autoregressive processes for the other terms of Σ̂t are similarly defined.
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PROOF. See Appendix.

3.6. Exponential Forgetting. It is also interesting to examine properties of the
IW-AR process as a function of the parameters F , S, and n and an initial value
Σ0. The mean of the IW-AR process forgets its initial condition exponentially fast
under a wide range of conditions on the parameterization.

THEOREM 3.5. Assuming that ||S||∞, ||S−1||∞, and ||F ||∞ are each bounded
by some finite λ ∈ R, then

E[Σt | Σ0] = F tΣ0F
′t + cn,q(S − F tSF

′t) +O(n−11 · 1′)(3.9)

where cn,q = n/(n+ q) and 1 denotes a column vector of ones. Further,

lim
n→∞

E[Σt | Σ0] = S + F t(Σ0 − S)F
′t.(3.10)

PROOF. See Appendix.

From eqn. (3.10), based on fixed S and in the limit as n → ∞, we can directly
analyze the effects of the elements of F on the conditional mean.

Unitary Bounded Spectral Radius of F . If we assume that F has spectral radius
ρ(F ) < 1 (i.e., the magnitude of the largest eigenvalue of F is less than 1), The-
orem 3.5 implies that for n → ∞ the conditional mean goes exponentially fast to
the marginal mean S, with a rate proportional ρ(F ).

Univariate Process (q = 1). In the univariate case we can analytically examine
the conditional mean E[σt | σ0] without relying on the limit of n → ∞. Using
the notation of Section 2.3 and recursing on the form of E[σt | σt−1] specified in
Theorem 3.3,

E[σt | σ0] =

(
nf2 + 1

n+ 1

)t
σ0 +

ns(1− f2)

n+ 1

t−1∑
τ=0

(
nf2 + 1

n+ 1

)τ
.(3.11)

Since we assume |f | < 1 this becomes

E[σt | σ0] = s+

(
nf2 + 1

n+ 1

)t
(σ0 − s).(3.12)

This has the form of a linear AR(1) model with AR parameter (nf2 + 1)/(n +
1). Then limt→∞E[σt | σ0] = s when |f | < 1, and does so exponentially fast
regardless of n. However, the overall rate of this exponential forgetting is governed
by the AR parameter (nf2 + 1)/(n+ 1).
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Shared Eigenvectors Between F , S and Σ0. In Theorem 3.4, we examined a prin-
cipal component IW-AR process based on the shared eigenvectors of F and S. If
we further assume that Σ0 shares eigenvectors with F and S, the following the-
orem shows that Σ̂t = E′ΣtE remains diagonal in expectation and has a closed
form mean recursion.

THEOREM 3.6. Under the conditions of Theorem 3.4 assume Σ0 = EΘ0E
′

where Θ0 is diagonal, Θ0 = diag(θ0) for some q−vector θ0 with positive elements.
Let θt|0 denote the q−vector of the eigenvalues of E[Σt | Σ0], ξ = diag(Q) and
ξ−1 = diag

(
Q−1

)
. Then E[Σt | Σ0] has the form of a first-order, non-diagonal

autoregression on θt|0

θt|0 = cn,q(I −R2)ξ +
[
n−1cn,q(I −R2)ξξ′−1 +R2

]
θt−1|0,(3.13)

or

θt|0 = Btθ0 +
t−1∑
τ=0

Bτα(3.14)

where α = cn,q(I − R2)ξ and B = n−1cn,q(I − R2)ξξ′−1 + R2. Assuming a
stationary process such that ||R||0 < 1,

θt|0 = Btθ0 + (I −B)−1(I −Bt)α,(3.15)

and

lim
t→∞

θt|0 = ξ.(3.16)

That is, the eigenvalues of the limiting conditional mean are exactly those of the
marginal mean S.

PROOF. See Appendix.

Recalling that θt|0 fully determines E[Σt | Σ0] in the case of shared eigenvec-
tors, we once again conclude that the conditional mean of the process forgets the
initial condition Σ0 exponentially fast—this occurs irregardless of the value of n.

4. Data Augmentation. Augmentation of the observation model eqn. (2.1)
provides interpretation of the latent innovations process {Υt,Ψt} as well as form-
ing central and critical theoretical development for posterior computations as de-
tailed in Section 5. Conditional on Σ0 and the innovations sequence, the observa-
tion model can be regarded as arising by marginalization over an inherent latent
q−vector process zt, (t = 1, . . .), where

(4.1) xt | zt ∼ N(Υtzt,Ψt) and zt ∼ N(0,Σt−1)
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Σ0 Σ1 Σ2 Σ3

. . .

x1 x2 x3 x4

z1 z2 z3 z4

Υ1 Υ2 Υ3

Ψ3Ψ2Ψ1

FIG 1. Representation of the graphical model of the IW-AR(1) process under augmentation by the
latent zt. Circles indicate random variables, arrows imply probabilistic conditional relationships
while squares represent quantities that are deterministic based on an instantiation of the variables
in their parents nodes.

independently over time. That is, the observations xt are from a conditionally lin-
ear model with latent covariate vectors zt and regression parameters {Υt,Ψt}. The
normal-inverse Wishart prior for {Υt,Ψt} provides a conjugate prior in this stan-
dard multivariate regression framework. See Figure 1 for a graphical model repre-
sentation of this process.

Let yt = [z′t x
′
t]
′ and ∆t = {Σt−1,Υt,Ψt}. Then

(4.2)

p(y1:T | ∆1:T ) =
T∏
t=1

N(xt | Υtzt,Ψt)N(zt | 0,Σt−1)

p(∆1:T ) = p(Σ0 | n, S)
T∏
t=1

NIWq(Υt,Ψt | F, n, S)

where NIW denotes the matrix normal, inverse Wishart prior on {Υt,Ψt} of
eqn. (2.6). We omit the dependency of the left hand side on the hyperparameters n,
F , and S for notational simplicity. Figure 2 displays the resulting graphical model,
clearly illustrating the simplified conditional independence structure that enables
computation as developed below. Note that ∆t plays the role of an augmented state
and the evolution to time t defines Σt as a deterministic function of this state.

5. Model Fitting via MCMC. For model fitting, we develop a Markov chain
Monte Carlo (MCMC) sampler that harnesses the simplified state-space structure
of the augmented model comprised of Gaussian observations with an IW-AR pro-
cess. This structure (Figure 2) immediately suggests a natural MCMC sampler that
iterates between the following steps:
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∆1 ∆2 ∆3 ∆T

y1 y2 y3 yT

. . .

. . .

FIG 2. Representation of the graphical model for the augmented data yt = [z′t x
′
t]
′ and latent states

∆t = {Σt−1,Υt,Ψt}.

Step 1. Impute the latent process by sampling each zt from

p(zt | xt,Υt,Ψt,Σt−1) ∝ N(zt | 0,Σt−1)N(xt | Υtzt,Ψt)

= N(zt | (Σ−1
t−1 + Υ′tΨ

−1
t Υt)

−1Υ′tΨ
−1
t xt, (Σ

−1
t−1 + Υ′tΨ

−1
t Υt)

−1).(5.1)

Step 2. Update the hyperparameters S and F conditioned on x1:T and z1:T by
sampling steps defined in Section 5.2 below.

Step 3. Impute the augmented variance matrix states using a Metropolis-Hastings
approach targeting the conditional posterior

p(∆1:T | x1:T , z1:T , F, S).(5.2)

We do this using an approximate forward filtering, backward sampling (FFBS)
algorithm to define proposal distributions; see Section 5.1 below.

Note that Step 2 and Step 3 comprise a block-sampling of the IW-AR hyperpa-
rameters {F, S} and the augmented process ∆1:T conditioned on x1:T and z1:T .
This greatly improves efficiency relative to a sampler that iterates between (i) sam-
pling ∆1:T given F , S, x1:T . and z1:T and (ii) sampling {F, S} given ∆1:T (which
is then conditionally independent of x1:T . and z1:T ).

5.1. Forward Filtering, Backward Sampling. We utilize the fact that there is a
deterministic mapping from ∆t to the augmented matrix

∆t →
(

Σt−1 Σt−1Υ′t
ΥtΣt−1 Σt

)
,(5.3)

and thus use the two interchangeably. Our goal is to develop an approximate for-
ward filtering algorithm that produces an approximation to p(∆1:T | y1:T ), which
can then be used in backward-sampling a posterior sequence Σ0:T . We examine the
filtering and sampling stages in turn.
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Approximate Forward Filtering. An exact forward filtering would involve recur-
sively updating p(∆t | y1:t−1) to p(∆t | y1:t) and propagating p(∆t | y1:t) to
p(∆t+1 | y1:t). However, as examined in the Appendix, this filter is analytically
intractable for the IW-AR so we use an approximate filtering procedure based on
moment-matching in order to maintain inverse Wishart approximations to each
propagate and update step. Specifically, let gt−1|t−1(∆t−1 | y1:t−1) denote the ap-
proximation to the posterior p(∆t−1 | y1:t−1) at time t − 1. We then approximate
the predictive distribution p(∆t | y1:t−1) by

gt|t−1(∆t | y1:t−1) = IW
(
rt, (rt − 2)Egt−1|t−1

[∆t | y1:t−1]
)
.(5.4)

Here, rt is a specified degree of freedom to use in the approximation at time t.
The subsequent update step of incorporating observation yt is exact based on the
approximations made so far. Namely,

gt|t(∆t | y1:t) = IW
(
rt + 1, (rt − 2)Egt−1|t−1

[∆t | y1:t−1] + yty
′
t

)
.(5.5)

The required expectation here is easily seen to be

(5.6) Egt−1|t−1
[∆t | y1:t−1]

=

(
St−1 St−1F

′

FSt−1 FSt−1F
′ + cn,q(1 + tr(St−1(nS)−1)V )

)
where the St sequence is updated using the identity

(rt − 1)St = (rt − 2)
{
FSt−1F

′ + cn,q(1 + tr(St−1(nS)−1))V
}

+ xtx
′
t(5.7)

as further detailed in the Appendix.
In summary, the approximate forward filtering is defined by a recursion in which

the inverse Wishart distribution for ∆t−1 is converted into a predictive distribu-
tion for ∆t. This predictive distribution is also taken to be inverse Wishart degree
of freedom rt and mean Egt−1|t−1

[∆t | y1:t−1] – i.e., the predictive mean under
the distribution gt−1|t−1 and the dynamics specified by the IW-AR prior. The in-
verse Wishart predictive distribution is then directly updated to the resulting inverse
Wishart distribution for ∆t.

Backward Sampling. Running these forward filtering computations to time t = T
yields gT |T (∆T | y1:T ) approximating the true posterior p(∆T | y1:T ). We use the
sequence of approximations gt|t(∆t | y1:t) in deriving a backwards sampling stage,
which we show is exact based on the approximations made in the forward filtering.
At time t = T , we sample ΣT from the implied approximate posterior margin

ΣT ∼ gT |T (ΣT |y1:T ) = IW(rT + 1, (rT − 2)EgT−1|T−1
[ΣT |y1:T−1] + xTx

′
T ).

(5.8)
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. . .

y1 y2

Σ0 Σ1 Σ2 ΣT

. . .

. . .

ΣT−1

yTyT−1

Ψ̃1 Ψ̃2 Ψ̃TΨ̃T−1

Υ̃T−1 Υ̃TΥ̃2Υ̃1

FIG 3. Graphical model of the reverse time inverse Wishart autoregressive process where Ψ̃t ∼
IW (n + q + 2, nṼ ) and Υ̃t | Ψ̃t ∼ N(F̃ , Ψ̃t, (nS)−1) with F̃ = SF ′S−1 and Ṽ =
S − SF ′S−1FS. The reverse time transitions are defined by Σt−1 = Ψ̃t + Υ̃tΣtΥ̃

′
t. Since one

can deterministically compute {Υt,Ψt} from ∆̃t = {Υ̃t, Ψ̃t,Σt} (see eqn. (5.12)), the augmented
observation yt are conditionally independent given ∆̃1:T .

We then harness the reverse time process, depicted in Figure 3. As we iterate back-
wards in time, we condition on the previously sampled Σt to sample Σt−1 as fol-
lows. We first sample

(5.9)
Ψ̃t ∼ IW(rt + 1 + q,G11

t −G21′
t (G22

t )−1G21
t )

Υ̃t | Ψ̃t ∼ N(G21′
t (G22

t )−1, Ψ̃t, (G
22
t )−1),

and then set

Σt−1 = Ψ̃t + Υ̃tΣtΥ̃
′
t.(5.10)

Here, Gt = (rt − 2)Egt−1|t−1
[∆t|y1:t−1] + yty

′
t, with G11

t , G21
t , G22

t denoting the
three unique q × q sub-blocks (G12

t = G21′
t ). These terms, which can be regarded

as sufficient statistics of the forward filtering procedure, can be written as

(5.11)

G11
t = (rt − 2)St−1 + ztz

′
t

G21
t = (rt − 2)FSt−1 + xtz

′
t

G22
t = (rt − 1)St,

with St recursively defined as in (5.7). In practice, conditioned on {n, S, F}, the
sequence S1:T is precomputed and simply accessed in the backward sampling of
Σ0:T .

Note that if we wish to impute {Υt,Ψt}, we can deterministically compute them
based on the sampled {Σt−1,Σt, Υ̃t, Ψ̃t}; that is,

(5.12) Υt = ΣtΥ̃
′
tΣ
−1
t−1 and Ψt = Σt −ΥtΣt−1Υ′t.
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Accept-Reject Calculation. We use the proposed approximate FFBS scheme as
a proposal distribution for a Metropolis Hastings stage. Let q(· | ·) represent the
proposal distribution for {ΣT , Υ̃1:T , Ψ̃1:T } implied by the sequence of forward
filtering approximations gt|t(∆t | y1:t). For every proposed ∆∗1:T , we compare the
ratio

r(∆∗1:T ) =
p(Σ∗T , Υ̃

∗
1:T , Ψ̃

∗
1:T | y1:T )

q(Σ∗T , Υ̃
∗
1:T , Ψ̃

∗
1:T | y1:T )

(5.13)

to r(∆1:T ), where ∆1:T is the previous sample of the augmented sequence. If
r(∆∗1:T ) > r(∆1:T ), we accept the proposed sequence. Otherwise, we accept the
sequence with probability r(∆∗1:T )/r(∆1:T ).

The accept-reject ratio is calculated as follows. Noting that there is a one-to-one
mapping between {ΣT , Υ̃1:T , Ψ̃1:T } and {Σ0,Υ1:T ,Ψ1:T },

p(ΣT , Υ̃1:T , Ψ̃1:T | y1:T )

q(ΣT , Υ̃1:T , Ψ̃1:T | y1:T )
∝ p(y1:T | Σ0,Υ1:T ,Ψ1:T )p(ΣT , Υ̃1:T , Ψ̃1:T )

q(ΣT , Υ̃1:T , Ψ̃1:T | y1:T )
.(5.14)

The augmented data likelihood is given by

p(y1:T | Σ0,Υ1:T ,Ψ1:T ) =
T∏
t=1

N(xt | Υtzt,Ψt)N(zt | 0,Σt−1).(5.15)

As specified in eqn. (3.4), the prior of the reverse time process is given by

(5.16) p(ΣT , Υ̃1:T , Ψ̃1:T ) = IW(ΣT | n+ 2, nS)

×
T∏
t=1

IW(Ψ̃t | n+ q + 2, nṼ )N(Υ̃t | F̃ , Ψ̃t, (nS)−1).

Similarly, the proposal density decomposes as

(5.17) q(ΣT , Υ̃1:T , Ψ̃1:T | y1:T ) = IW(ΣT | rT + 1, G22
T )

T∏
t=1

ft(Υ̃t)ht(Ψ̃t | Υ̃t)

where
ft(Υ̃t) = IW(Ψ̃t | rt + q + 1, G11

t −G21′
t (G22

t )−1G21
t )

and
ht(Ψ̃t | Υ̃t) = N(Υ̃t | G21′

t (G22
t )−1, Ψ̃t, (G

22
t )−1).
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FFBS Computations. One important note is that the acceptance rate decreases
exponentially fast with the length of the time series, as with all Metropolis-based
samplers for sequences of states in hidden Markov models. Recall that the proposed
Σ∗0:T sequence is based on a sample Σ∗T from gT |T and a collection of T indepen-
dent samples {Υ̃∗t , Ψ̃∗t } from distributions based on gt|t. If the final approximate
filtered distribution gT |T is a poor approximation to the true distribution, then the
collection of T independent proposed innovations {Υ̃∗t , Ψ̃∗t } are unlikely to re-
sult in a Σ∗0:T that explains the data well. The accuracy of the approximation gT |T
decreases with T . Furthermore, even if gT |T is a good approximation to the true
posterior, a single poor innovations sample {Υ̃∗t , Ψ̃∗t } can be detrimental since the
effects propagate in defining Σ∗0:t−1. The chance of obtaining an unlikely sample
{Υ̃∗t , Ψ̃∗t } for some t increases with T .

Since the distributions contributing to the accept-reject ratio r(∆1:T ) factor over
t, one can sequentially compute and monitor this ratio based on the samples of
Σ∗T and {Υ̃∗t:T , Ψ̃∗t:T }. One can then imagine harnessing ideas from randomness
recycling (Fill and Huber, 2001) to improve efficiency by rejecting locally in-
stead of rejecting an entire sample path from t = 0, . . . , T . Additionally, one
could develop adaptive methods in which samples {Υ̃∗t , Ψ̃∗t } leading to drastic
declines in the acceptance-ratio-to-t were rejected and {Υ̃∗t , Ψ̃∗t } was then resam-
pled, but only for some finite period of adaptation. These ideas all focus on the
ability to accept or reject entire sub-sequences {Σ∗T , Υ̃∗t:T , Ψ̃∗t:T }, and require the-
oretical analysis to justify convergence to the correct stationary distribution. Al-
ternatively, we develop below an innovations-based sampling approach in which
we fix {ΣT , Υ̃1:t−1,t+1:T , Ψ̃1:t−1,t+1:T } and simply consider accepting or rejecting
{Υ̃∗t , Ψ̃∗t } at a single time step t.

An Innovations-Based Sampler. We propose an innovations sampler that accepts
or rejects {Υ̃∗t , Ψ̃∗t } for every t instead of accepting or rejecting the entire chain
Σ∗0:T induced from the collection of these backwards innovations samples (and
Σ∗T ). Specifically, let θt = {Υ̃t, Ψ̃t} and St = {θ1, θ2, . . . , θT ,ΣT }. For each t we
propose

S∗t = {θ1, θ2, . . . , θt−1, θ
∗
t , θt+1, . . . , θT ,ΣT },(5.18)

with θ∗t = {Υ̃∗t , Ψ̃∗t }. The accept-reject ratio based on eqn. (5.13) simplifies to

(5.19)

r(∆∗1:T )

r(∆1:T )
=
p(S∗t | y1:T )

q(S∗t | y1:T )

q(St | y1:T )

p(St | y1:T )

=
p(y1:T | Σ∗0,Υ∗1:t,Ψ

∗
1:t,Υt+1:T ,Ψt+1:T )

p(y1:T | Σ0,Υ1:T ,Ψ1:T )

p(S∗t )

p(St)
q(St | y1:T )

q(S∗t | y1:T )

=

∏t
τ=1N(xτ | Υ∗τzτ ,Ψ∗τ )N(zτ | Σ∗τ−1)∏t
τ=1N(xτ | Υτzτ ,Ψτ )N(zτ | Στ−1)

pt(θ
∗
t )

pt(θt)

qt(θt | y1:T )

qt(θ∗t | y1:T )
.
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Here pt(θt) denotes the matrix normal, inverse Wishart prior on the backwards
innovations θt = {Υ̃t, Ψ̃t} and qt(θt | y1:T ) the corresponding distribution under
the forward-filtering based proposal. That is, pt(·) and qt(· | y1:T ) represent the
time t components of eqns. (5.16) and (5.17), respectively. We utilize the fact that
the prior, proposal and likelihood terms all factor over t. For the prior and proposal,
the only terms that differ between the proposed sequence S∗t and the previous St
are the backwards innovations at time t (i.e, θt). For the likelihood, the effects of
the change in backwards innovations at time t propagate to the forward parameters
{Σ∗0,Υ∗1:t,Ψ

∗
1:t} while leaving {Υt+1:T ,Ψt+1:T } unchanged. See Figure 3.

Note that the proposed innovations sampler is quite computationally intensive
since the accept-reject ratio calculation for each proposed {Υ̃∗t , Ψ̃∗t } requires re-
computing Σ∗0:t−1. In practice, we employ an approximate sampler that harnesses
the fact that the effects of a given {Υ̃∗t , Ψ̃∗t } on Σ∗t−τ decreases in expectation as
τ increases. That is, {Υ̃∗t , Ψ̃∗t } represents a stochastic input whose effect is prop-
agated through a stable dynamical system (assuming the F has spectral norm less
than 1). In particular, we only calculate Σ∗t−τ for τ increasing until the Frobenius
norm ||Σ∗t−τ − Σt−τ ||2 < ε for some pre-specified, small value ε > 0. That is, we
propagate the effects of {Υ̃∗t , Ψ̃∗t } until the value of Σ∗t−τ becomes nearly indistin-
guishable numerically from the previous Σt−τ . Alternatively, in order to maintain
a constant per-sample computational complexity, one can specify a fixed lag τ
based on F and n since these hyperparameters determine (in expectation) the rate
at which the effects of the proposed {Υ̃∗t , Ψ̃∗t } decay.

In contrast to sequential sampling of {Υ̃t, Ψ̃t} for t = T, . . . , 1, one can imagine
focusing on regions where the current Σt is “poor”, where “poor” is determined by
some specified metric (e.g., the likelihood functionN(xt | 0,Σt)). As long as there
is still positive probability of considering any t ∈ {1, . . . , T}, the resulting sampler
will converge to the correct stationary distribution.

Finally, instead of always running an approximate forward filter and performing
backward sampling (where the “backward sampling” can occur in any order based
on the innovations representation), one could run a backward filter and perform
forward sampling (BFFS), exploiting the theory of the reverse-time IW-AR pro-
cess. By interchanging FFBS with BFFS, the errors aggregated during filtering and
the uncertainty inherent at the filter’s starting point alternate from t = 0 to t = T ,
thus producing samples closer to the values that would be obtained if smoothing
were analytically feasible.

5.2. Hyperparameters. In sampling the IW-AR hyperparameters F and S, we
need to ensure that V = S −FSF ′ remains positive definite. Section 3.2 explored
two cases in which simple constraints on F imply V positive definite for S positive
definite: (i) F = ρIq or (ii) F = ERE′ with E the eigenvectors of S. A simple
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framework for sampling the hyperparameters in this case is to propose S from a
Wishart distribution, thus ensuring its positive-definiteness, and the eigenvalues of
F from a beta proposal, thus ensuring spectral radius bounded by 1. The induced
V will then be positive definite. One can also assume Wishart and beta priors.

Both of the above specifications of F and S lead to reversible IW-AR processes.
For a non-reversible IW-AR process (assuming S non-diagonal), we can take F =
diag(ρ), implying V = (1 · 1′− ρ · ρ′) ◦S where ◦ denotes the Hadamard product.
Note that even with |ρi| < 1 and S positive definite, V need not be positive definite.
However, for V positive definite and |ρi| < 1, S will be positive definite and
has elements simply defined by Sij = Vij/(1 − ρiρj). Thus, in the case of F
diagonal we sample F and V and then compute S from these values. Once again,
we employ a beta prior on ρi and a Wishart prior now on V . The details of the
posterior computations for the case of F diagonal are outlined below. The case of
F = ERE′ and S = EQE′ follows similarly.

Let W(v0, V0) denote a Wishart prior for V and Beta(cρ0,i, c(1 − ρ0,i)) a beta
prior for ρi. We use an independence chain sampler in which V ∗ is proposed from
a Wishart proposal W(v1, V1) and ρ∗i from a beta proposal Beta(dρ1,i, d(1−ρ1,i)).
The accept-reject ratio is then calculated based on the ratio
(5.20)
r(V ∗, F ∗)

r(V, F )
=
p(x1:T | z1:T , F

∗, V ∗)p(z1:T | F ∗, V ∗)p(V ∗)p(F ∗)q(V )q(F )

p(x1:T | z1:T , F, V )p(z1:T | F, V )p(V )p(F )q(V ∗)q(F ∗)
.

Here, p(·) and q(·) denote the prior and proposal for the specified argument, re-
spectively. The conditional likelihood p(x1:T | z1:T , F, V ) and marginal likelihood
p(z1:T | F, V ) are derived below. We interchange {F, V } and {F, S} since there is
a bijective mapping between the two when F is diagonal.

Conditional Likelihood p(x1:T | z1:T , F, S). Since xt ∼ N(Υtzt,Ψt) with Υt |
Ψt ∼ N(F,Ψt, (nS)−1) and Ψt ∼ IW (n+ q + 2, nV ), marginalizing Υt and Ψt

yields a multivariate t distribution as detailed in the Appendix. This results in

p(x1:T | z1:T , F, S) =
T∏
t=1

tn+q+2

(
xt | Fzt, cn,q+2{1 + z′t(nS)−1zt}V

)
.(5.21)

Marginal Likelihood p(z1:T | F, S). Computing the marginal likelihood requires
the evaluation of the analytically intractable integral

p(z1:T | F, S) =

∫ ∏
t

p(zt | Σt−1)p(Σ0:T | F, S)dΣ0:T .(5.22)

However, we can approximate the marginal likelihood by employing an approxi-
mate filter in a manner analogous to that of Section 5.1. In particular, if we had
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an exact filter that produced the predicted distribution p(Σt−1 | z1:t−1) and the
updated distribution p(Σt−1 | z1:t), we could recursively compute the marginal
likelihood as

p(z1:t) =
p(zt | Σt−1)p(Σt−1 | z1:t−1)

p(Σt−1 | z1:t)
p(z1:t−1)(5.23)

(here F and S are omitted for notational simplicity). Recall that p(zt | Σt−1) =
N(zt | 0,Σt−1). Since exact filtering is not possible, we propose an approximate
moment-matched filter using ideas parallel to those used for the FFBS approxima-
tion to p(∆t | y1:t). Specifically,

gt|t(Σt | z1:t) = IW
(
rt, (rt − 2)Σ̄t|t

)
(5.24)

gt|t+1(Σt | z1:t+1) = IW
(
rt + 1, (rt − 2)Σ̄t|t + zt+1z

′
t+1

)
,(5.25)

with Σ̄t|t = Egt−1|t [Σt | z1:t]. The matched-means are recursively computed using

(rt−1 − 1)Σ̄t−1|t = (rt−1 − 2)Σ̄t−1|t−1 + ztz
′
t(5.26)

Σ̄t|t = F Σ̄t−1|tF
′ + cn,q

[
1 + tr{Σ̄t−1|t(nS)−1}

]
,(5.27)

with initial condition Σ̄0|0 = S.
Using this approximate filter in eqn. (5.23) for the marginal likelihood and can-

celing terms yields

p(z1:t | F, S) =
1

πTq/2

T∏
t=1

|(rt−1 − 2)Σ̄t−1|t−1|(rt−1+q−1)/2

|(rt−1 − 2)Σ̄t−1|t−1 + ztz′t|(rt−1+q)/2

Γ
(
rt−1+q

2

)
Γ
( rt−1

2

) .

(5.28)

Note that we could have employed our filter for ∆t based on observations yt =
[z′t x

′
t]
′ to produce an approximation to p(x1:T , z1:T | F, S). However, since we

have an exact form for p(x1:T | z1:T , F, S) we choose to reduce the impact of our
approximation by simply using it to compute p(z1:T | F, S).

We note further that it is straightforward to analyze p(F, S | Σ0,Υ1:T ,Ψ1:T ),
suggesting that the MCMC use Gibbs sampler components for F, S that would
avoid approximations. However, in practice we found use of this leads to extremely
slow mixing rates relative to our proposed strategy above.

6. Stochastic Volatility in Time Series. In this section, we consider a full
analysis in which actual observations ξt are from a VAR(r) model whose innova-
tions xt have IW-AR(1) volatility matrices. That is, we observe q−vector data ξt
such that

ξt =

r∑
i=1

Aiξt−i + xt, xt ∼ N(0,Σt),(6.1)
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where Ai is the q × q autoregressive parameter matrix at lag i and we now assume
that Σt is an IW-AR(1) process. Define A =

[
A1 · · · Ar

]
.

We modify the MCMC of Section 5 as follows. In place of Step 1 that previously
sampled z1:T given ∆1:T and x1:T , we now block sample {A, z1:T } given ∆1:T and
ξ1−r:T . That is, we first sample A given ∆1:T and ξ1−r:T and then z1:T given A,
∆1:T and ξ1−r:T . Noting that x1:T is a deterministic function of ξ1−r:T and the
autoregressive matrix A, the latter step follows exactly as before. Step 2 and Step 3
remain unchanged. Thus, the only modification to the sampler is the insertion of a
Step 0 to sample A given ∆1:T and ξ1−r:T . See the Appendix for further details.

6.1. Example in Analysis of EEG Time Series. In multi-channel electroen-
cephalogram (EEG) studies, multiple probes on the scalp of a patient undergo-
ing an induced brain seizure generate electrical potential fluctuation signals that
represent the spatially localized read-outs of the underlying signal (Krystal et al.,
1999a). Much of prior work with clinically relevant data sets has been on the eval-
uation of time:frequency structure in such series (Freyermuth et al., 2010; Krystal
et al., 2000; Ombao et al., 2005) and time-varying parameter vector autoregressions
are key tools in this applied context, as in others (Prado and West, 1997, 2010;
West et al., 1999). Existing models represent some aspects of cross-series structure
in this inherently spatially distributed multiple time series context (Krystal et al.,
1999b; Prado et al., 2001), but past studies have shown substantial residual depen-
dencies among estimated innovations processes across EEG probe locations and
the implications for estimation of such structure in models that ignore significant
patterns of time-varying cross-series correlations are largely unexplored. Hence it
is of interest to explore models that use IW-AR models for multivariate volatility
processes of innovations driving vector autoregressions as an obvious first-step.

We explore one initial example using the model of eqn. (6.1). Define νt =

Σ
−1/2
t ξt so that

νt =

r∑
i=1

At,iνt−i + wt, wt ∼ N(0, I)(6.2)

where the At,i = Σ
−1/2
t AiΣt−i are structured, time-varying AR parameter ma-

trices for the transformed process. We can fit this model in the original form of
eqn. (6.1) and this transformed series is then of interest as defining underlying in-
dependent component series.

An example data analysis uses q = 10 channels of a sub-sampled series of 1000
time points, taken from the larger data set of West et al. (1999). The original series
were collected at a rate of 256/second and these are down-sampled by a factor of
2 here to yield T = 1000 observations over roughly 8 seconds. The data were first
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standardized over a significantly longer time window, and the selected 8 second
section of data corresponds to a recording period containing abnormal neuronal
activity and thus increased changes in volatility. The example sets r = 8 and uses
underlying diagonal autoregressive matrices Ai = diag(ai) with independent and
relatively diffuse priors ai ∼ N(0, 10Iq).

For the IW-AR model component, we assume the rather general, irreversible
IW-AR process with a diagonal F = diag(ρ) and set n = 6. We specify priors on
ρ and S based on an exploratory analysis of an earlier held-out section of the time
series, ξ0

1:T , also of length 1000. Specifically, this was based on estimating innova-
tions x0

1:T from q separate, univariate TVAR models as in Krystal et al. (1999b).
Treating these constructed zero-mean series as raw data, the standard variance ma-
trix discounting method (Prado and West, 2010) was applied using an initial 20
degrees of freedom and a discount factor β = 0.95 to generate 100 independent
posterior samples of the series of q × q variance matrices, say U0:T , across this
prior, hold-out period. We then applied individual univariate IW-AR(1) models –
the inverse gamma processes of Section 2.3 – to each of the diagonal data sets Uii,t.
From these, we extracted summary information on which to base the priors for the
real data analysis, as follows. First, we take ρi ∼ Beta(100ρ0,i, 100(1 − ρ0,i)),
independently, where ρ2

0,i = (ai(n+ 1)−1)/n and ai is the approximate posterior
mean of the IW-AR autoregressive parameter from the hold-out data analysis of
Uii,t; second, we set ν0 = q + 2 and V0 = (1 · 1′ − ρ0 · ρ′0) ◦ S0, where S0 is the
sample mean of all of the the U1:T .

Although centered around a held-out-data-informed mean, the chosen Wishart
prior for S is quite diffuse and the beta priors for the ρi are weakly informative
relative to the number of observations T = 1000. Our use of initial hold-out
data to specify priors is coherent and consistent with common practice in other
areas of Bayesian forecasting and dynamic modeling such as in using factor mod-
els; Aguilar and West (2000), for example, adopt such an approach and give useful
discussion of the importance of centering hyperprior support around “reasonable”
values for these types of dynamic models.

From an identical analysis on the batch of test data, we infer values ρ1 and
V1 that are used in specifying the Beta(dρ1,i, d(1 − ρ1,i)) proposal for ρi and
W (v1, V1) proposal for V used in our MCMC algorithm. After some experimenta-
tion, this used tuning parameters d = 750 and v1 = 40. The FFBS proposals also
rely on defining the moment-matched IW degree of freedom parameters r0:T for
which we set r0 = n+ 2, which matches the prior specification, and then discount
as rt = 0.98rt−1 + 1. Also, in employing the approximate innovations-based sam-
pler described in Section 5.1, the analysis monitors based on ||Σ∗t−τ −Σt−τ ||2 < ε
and uses ε = 1e− 4.

Some summaries of analysis are based on running 5 separate MCMC chains for
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5000 iterations, discarding the first 1000 samples of each and thinning by examin-
ing every 10th MCMC iteration. Note that we count one full sweep of side-by-side
innovations based FFBS of Σ0:T as one step in an iteration. The sampler was ini-
tialized with F and S based on the mean of their respective proposal distributions
and the residuals x1:T computed from q separate univariate TVAR analyses. The
sequences Σ0:T , Υ1:T , and Ψ1:T were initialized by directly accepting the first pro-
posal from one step of the FFBS algorithm.

Figure 4 displays volatility trajectories for each of the 10 examined EEG chan-
nels showing clear changes in volatility over the 8 seconds of data, while related
temporal structure in cross-series covariances is evident in Figure 5. These changes
are also captured in Figure 6, which display the time-varying correlations between
the EEG channel AR innovations. For the model parameters, Figure 7 shows clear
evidence of learning via changes from prior to posterior summaries for the ρi
and Sii elements; this figure also highlights the high dependence in the IW-AR(1)
model and heterogeneity across EEG channels.

7. IW-AR(2) and Higher Order Models. The constructive approach for IW-
AR(1) models extends to higher orders. This can be done in a number of ways, as
follows.

7.1. Direct Extension. For any order p ≥ 1, transition distributions of IW-
AR(p) processes can be defined by the conditionals of q × q diagonal blocks of
underlying inverse Wishart distributions for (p + 1)q × (p + 1)q matrices. This
involves a direct extension of the basic idea underlying the IW-AR(1) model con-
struction. We develop this here for the case of p = 2.

With p = 2, begin with

(7.1)
(

∆t−1 ∆t−1Γ′t
Γt∆t−1 Σt

)
=

Σt−2 φ′t−1 γ′t
φt−1 Σt−1 φ′t
γt φt Σt

 ∼ IW3q(n+ 2, nS3),

where

(7.2) S3 =

S G′ H ′

G S G′

H G S

 .

Then, for all t,

∆t ∼ IW2q(n+ 2, nS2) with S2 =

(
S G′

G S

)
,(7.3)

Σt ∼ IWq(n+ 2, nS).(7.4)
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FIG 4. EEG time series from 2 of the 10 channels (first two frames) followed by estimated trajectories
of volatilities Σ

1/2
ii,t for each of i = 1 : 10 time series representing EEG channels 7-16 in the original

data set. The IW-AR posterior mean, computed based on averaging over 5 chains from iterations
[1000 : 10 : 5000], is shown in black. The point-wise 95% highest posterior density intervals are
indicated in blue.
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FIG 5. Estimated trajectories of covariance terms Σij,t for i 6= j for j = 1 (EEG channel 7) colored
as in Figure 4.
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FIG 6. Estimated trajectories of correlations between each of 6 channels and all other channels as
a function of time. The correlations are computed based on posterior means of Σt using MCMC
samples [1000 : 10 : 5000] from 5 chains.

0.975

0.98

0.985

0.99

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10
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samples as in Figure 4. The prior means are marked by green triangles.
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This then constructively defines a stationary order 2 process with common bivariate
and univariate margins. In contrast with the IW-AR(1) construction of Section 2,
{φt, γt} in eqn. (7.1) are not independent over time. Rather, if Γt = [Γ1,t,Γ2,t],
then we have defined an autoregressive process on the augmented variance ele-
ments:

γt = Γt1Σt−2 + Γt2φt−1(7.5)

φt = Γt2Σt−1 + Γt1φ
′
t−1.(7.6)

The “memory” induced by these off-diagonal elements is evident as the full con-
ditional distribution for Σt is p(Σt | ∆t−1), whereas the IW-AR(2) observation
model is p(Σt | Σt−1:t−2) which involves marginalization over the relevant condi-
tional for the off-diagonal matrices.

As in the case of the IW-AR(1), the construction of eqn. (7.1) implies that

(7.7) Σt = Ωt + Γt∆t−1Γ′t,

with time t innovation matrices Γt (q × 2q) and Ωt (q × q) independent of ∆t−1

and distributed as

Ωt ∼ IWq

(
n+ 2 + 2q, n

(
S −

[
H G

]
S−1

2

[
H G

]′))(7.8)

Γt | Ωt ∼ N
([
H G

]
S−1

2 ,Ωt, (nS2)−1
)
.(7.9)

If we assume that H = GS−1G such that
(7.10)

S3 =

 S G′ G′S−1G′

G S G′

GS−1G G S

 =

(
S2 S2

[
0 GS−1

]′[
0 GS−1

]
S2 S

)
,

then

Ωt ∼ IWq

(
n+ 2 + 2q, n

(
S −GS−1G′

))
(7.11)

Γt | Ωt ∼ N
([

0 GS−1
]
,Ωt, (nS2)−1

)
.(7.12)

Furthermore, taking G = FS leads to

(7.13) S3 =

 S SF ′ SF 2′

FS S SF ′

F 2S FS S

 =

(
S2 S2

[
0 F

]′[
0 F

]
S2 S

)
and

Ωt ∼ IWq

(
n+ 2 + 2q, n

(
S − FSF ′

))
(7.14)

Γt | Ωt ∼ N
([

0 F
]
,Ωt, (nS2)−1

)
.(7.15)
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Note that for the specified IW3q to be a valid distribution, we need S3 positive
definite. As before, this is equivalent to S2 and the Schur complement of S3 being
positive definite. Taking G = FS and H = F 2S, the Schur complement is simply
S − FSF ′ and

(7.16) |S3| = |S2||S − FSF ′| = |S||S − FSF ′|2.

So, just as in the IW-AR(1), we require S and V = S − FSF ′ to be positive
definite; the conditions for a valid process and stationarity have not changed in this
extension to the IW-AR(2) process based on the chosen parameterization.

More general IW-AR(p) follow from the obvious extension of this constructive
approach. Note that the ancillary off-diagonal blocks of the extended IW(p+1)q

matrix defining the IW-AR(p) transition distributions are latent variables that will
feature in Bayesian fitting.

7.2. A Second Constructive Approach to Higher-Order Models. A related, al-
ternative and novel approach is defined by coupling AR components to generate
higher order AR structures. Specifically, take Σt = Ψt+ΥtΣt−1Υ′t with p(Υt,Ψt)
having a marginal matrix normal, inverse Wishart form as in the IW-AR(1) model
of Section 2. Denote the hyperparameters of this IW-AR(1) by µ1 = {n, F, S}.

Now introduce Markovian dependence into the Ψt sequence while maintaining
the same conditional independence of (Υt|Ψt) on the history of the Σt process.
Specifically, take an IW-AR(1) model for Ψt so that for each t

(7.17) Ψt = Ξt + ΦtΨt−1Φ′t,

with time t innovations {Φt,Ξt} having independent matrix normal, inverse Wishart
distributions with defining parameters µ2 = {n+q,H, V }, where V = S−FSF ′.

This induces a second-order Markov model

(7.18) Σt = ΥtΣt−1Υ′t + ΦtΣt−1Φ′t − ΦtΥt−1Σt−2Υ′t−1Φ′t + Ξt.

Stationarity of this IW-AR(2) process is implied by simply ensuring the station-
arity of the IW-AR(1) Σt process and the embedded IW-AR(1) Ψt process: each of
S, V and now W = V −HVH ′ must be positive definite.

Conditional on ∆t−1 earlier defined, we have

(7.19) E[Σt | ∆t−1] = FΣt−1F
′+{

HΨt−1H
′ + cn,2qW + cn,2qW tr(Ψt−1(nV )−1)

} (
1 + tr(Σt−1(nS)−1)

)
,
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where cn,2q = n/(n + 2q) and Ψt−1 = Σt−1 − Υt−1Σt−2Υ′t−1 is a deterministic
function of the elements of ∆t−1. In the limit as n→∞,

E[Σt | ∆t−1] = W + FΣt−1F
′ +HΨt−1H

′

= S + F (Σt−1 − S)F ′+

H((Σt−1 − S)− (Υt−1Σt−2Υ′t−1 − FSF ′))H ′.

Derivations of these conditional moments are provided in the Appendix.
The new structure of joint distributions of the innovations {Υt,Ψt} is to be

explored, as are extensions of the MCMC for model fitting.

8. Related Models.

A Markov Latent Variable Construction. As discussed in Section 2.3, our IW-
AR(1) model in q = 1 dimensions relates closely to the univariate model arising
via a latent variable construction introduced by Pitt and Walker (2005); Pitt et al.
(2002). We can extend the univariate model of that reference to the multivariate
case, as follows. The Σ1:T process is coupled with a latent q × q variance matrix
process Λ1:T via time t conditionals: (Σt|Λt) ∼ IWq(n+2+a, nS+aBΛtB

′) with
(Λt|Σt−1) ∼ Wq(a,AΣt−1A

′/a) a Wishart conditional for some a > 0 and non-
singular q×q matrixA = B−1. It can be shown that this latent variable construction
defines a valid joint distribution with margin Σt ∼ IWq(n + 2, nS) for all t. This
leads to an AR(1) transition model p(Σt|Σt−1) in closed form and appears to be the
most general AR(1) construction based on the latent variable/process idea of Pitt
and Walker (2005).

Although producing identical margins to the IW-AR(1), the proposed multivari-
ate extension of the Pitt and Walker (2005) construction is limited. Such mod-
els are always reversible. Most critically, the construction implies E(Σt|Σt−1) =
S + w(Σt−1 − S), where w = a/(n+ a) is scalar. So, in contrast to the F matrix
of the IW-AR(1), there is no notion of multiple autoregressive coefficients for flex-
ible autocorrelation structures on the elements of Σt. Finally, it is not clear how to
extend to higher-order autoregressive models.

Direct Specification of Transition Distributions. The interesting class of models
of Philipov and Glickman (2006a) specifies the transition distribution for Σt given
Σt−1 as inverse Wishart, discounting information from the previous matrix. Specif-
ically, the conditional mean is given by cFΣd

t−1F
′ for some c, d > 0 and matrix

F . The Markov construction generates models with stationary structure. Scaling
to higher dimensions, the authors apply the proposed stationary Wishart models to
the variance matrix of a lower-dimensional latent factor in a latent factor volatility
model (Philipov and Glickman, 2006b), extending prior approaches based on dy-
namic latent factor models (Aguilar and West, 2000; Aguilar et al., 1999). Based on
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the specification of Wishart Markov transition kernels, the proposed models do not
yield a clear marginal structure and extensions to higher dimensions appear chal-
lenging. Furthermore, the proposed sampling-based model fitting strategy yields
low acceptance rates in moderate dimensions (e.g., q = 12).

Related approaches in Gouriéroux et al. (2009) define Wishart (and non-central
Wishart) processes via functions of sample variance matrices of a collection of
latent vector autoregressive processes. Specifically, when the degree of freedom
n is integer, Σt =

∑n
k=1 xktx

′
kt, with each xk independently defined via xk,t =

Mxk,t−1 + ek,t and ek,t ∼ N(0,Σ0). For stationary autoregressions, one can ana-
lyze the marginal distribution of Σt. Extensions to higher order processes are also
presented. For model fitting, the authors rely on a (non-asymptotically efficient)
method of moments assuming that a sequence of observed volatility/co-volatility
matrices are available. Extensions to embedding the proposed Wishart autoregres-
sive process within a standard stochastic volatility framework is computationally
complicated: a mean model can be estimated based on nonlinear filtering approx-
imations of latent volatilities. Within Bayesian analysis of such a setup, the non-
central Wishart does not yield an analytic posterior distribution and is challenging
to sample. One might be able to exploit latent process constructions, but the anal-
ysis is not straightforward.

AR models for Cholesky elements. Several recent works use linear, normal AR(1)
models for off-diagonal elements of the Cholesky of Σt and for the log-diagonal el-
ements (Cogley and Sargent, 2005; Lopes et al., 2010b; Nakajima and West, 2011;
Primiceri, 2005), building on the Cholesky-based heteroscedastic model of Pourah-
madi (1999), and a natural parallel of Bayesian factor models for multivariate
volatility (Aguilar and West, 2000; Aguilar et al., 1999). However, each autore-
gression has an interpretation as the time-varying regression parameters in a model
in which the ordering of the elements of the observation vector is required and
plays a key role in model formulation. For models in which this is not the case, the
parameters employed in the autoregressions are less interpretable. We can cast our
IW-AR within a similar framework. The inverse Wishart margins for Σt and Σt−1

translate to Wishart margins for the precision matrices Σ−1
t and Σ−1

t−1. Since each
q×q Wishart matrix can be equivalently described via an outer product of a collec-
tion of q×q identically distributed normal random variables, our IW-AR implicitly
arises from a first-order Markov process on the normal random variables and thus
defines a Gaussian autoregression, though possibly of a nonlinear form. Note that
there are a few key differences between the IW-AR induced element-wise autore-
gressions and the Cholesky component AR models: (i) the IW-AR autoregressions
are on elements of the precision matrix and (ii) these elements comprise a matrix
square root, but not the Cholesky square root. The issue of implicitly defining an
ordering of observations when using a Cholesky decomposition is not present in
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the matrix square root considered in the IW-AR case.

9. Final Comments. The structure of the proposed IW-AR processes imme-
diately open possibilities for examining alternative computational methods and ex-
tensions to parsimonious modeling of higher-dimensional time series.

The inherent state-space structure of the IW-AR also suggests opportunity to
develop more effective computational methods using some variant of particle fil-
tering and particle learning (Carvalho et al., 2010; Lopes et al., 2010a). Among
the main challenges here is that of including the fixed parameters – or expanded
state variables that include approximate sufficient statistics for these parameters –
in particulate representations of filtering distributions (Liu and West, 2001). One
possible approach is to harness ideas from particle MCMC (Andrieu et al., 2010).
Otherwise, the new IW-AR model class is inherently well-suited to the most effec-
tive reweight/resample strategies of particle learning for sequential Monte Carlo.

The inverse Wishart distribution also has extensions to hyper-inverse Wishart
(HIW) distributions for variance matrices constrained by specified graphical mod-
els (Carvalho et al., 2007; Dawid and Lauritzen, 1993). Graphical models provide
scalable structuring for higher-dimensional problems, and it would be interesting
to consider extensions of the IW-AR to HIW-AR processes that evolve maintaining
the sparsity structure (of the precision matrix) specified by a graphical model.

APPENDIX A: PROOFS OF THEORETICAL PROPERTIES

A.1. Proof of Theorem 3.3. Let υtk denote the kth row of Υt and fk the kth
column of F . Then, for the IW-AR(1) we can write the (i, j) element of Σt as

Σt,ij = Ψt,ij + υtiΣt−1υ
′
tj .(A.1)

Taking the expectation conditioned on Σt−1,

E [Σt,ij | Σt−1] =
nVij
n+ q

+

q∑
k=1

q∑
`=1

Σt−1,k`E[υtikυtj` ]

=
nVij
n+ q

+

q∑
k=1

q∑
`=1

Σt−1,k`

{[
nVij
n+ q

(nS)−1

]
k`

+ FikFj`

}
=

nVij
n+ q

+ tr
(

Σt−1
nVij
n+ q

(nS)−1

)
+ fiΣt−1f

′
j(A.2)

where we have used the fact that E[Ψt] = nV/(n+ q). In matrix form, we have

E[Σt | Σt−1] =
(1 + tr(Σt−1(nS)−1))

n+ q
nV + FΣt−1F

′.(A.3)
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A.2. Proof of Theorem 3.4. For the case of F = ERE′ and S = EQE′, we
can write eqn. (2.3) as

(
Σt−1 Σt−1Υ′t

ΥtΣt−1 Σt

)
∼ IW2q

(
n+ 2, n

(
E 0
0 E

)(
Q QR
QR Q

)(
E′ 0
0 E′

))
.

(A.4)

Standard theory implies that

(
E′ 0
0 E′

)(
Σt−1 Σt−1Υ′t

ΥtΣt−1 Σt

)(
E 0
0 E

)
∼ IW2q

(
n+ 2, n

(
Q QR
QR Q

))
.

(A.5)

The derivation of the conditional mean is exactly as in the general IW-AR case,
noting that tr(Σ̂t−1(nQ)−1) =

∑
i Σ̂t−1,ii/(nξi).

A.3. Proof of Theorem 3.5. Assume that ||S||∞ ≤ λ, ||S−1||∞ ≤ λ, ||F ||∞ ≤
λ, ||Σ0||∞ ≤ λ, and for some t− 1

E[Σt−1 | Σ0] = F t−1Σ0F
t−1′ +

n

n+ q

(
S − F t−1SF t−1′

)
+O

(
1 · 1′

n

)
.

(A.6)

To prove that eqn. (A.6) holds for general t, we apply iterated expectations to the
conditional expectation of eqn. (3.5):

E[Σt | Σ0] = FE[Σt−1 | Σ0]F ′ +
n

n+ q
V +

V

n+ q
tr
(
E[Σt−1 | Σ0]S−1

)(A.7)

= F tΣ0F
′t +

n

n+ q

(
S − F tSF ′t

)
+

V

n+ q
tr
(
E[Σt−1 | Σ0]S−1

)
,(A.8)

where we have used the definition V = S − FSF ′. Since

(A.9)
V

n+ q
tr
(
E[Σt−1 | Σ0]S−1

)
≤ V

n+ q
tr
{(

λ41 · 1′ + n

n+ q
(1 + λ4)1 · 1′ + λO

(
1 · 1′

n

))
1 · 1′

}
= O

(
1 · 1′

n

)
,

we conclude that, indeed,

E[Σt | Σ0] = F tΣ0F
′t +

n

n+ q

(
S − F tSF ′t

)
+O

(
1 · 1′

n

)
.(A.10)

Then also

lim
n→∞

E[Σt | Σ0] = S + F t(Σ0 − S)F
′t.(A.11)
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A.4. Proof of Theorem 3.6. Let Λ = Q(I − R2) such that V = EΛE′.
According to eqn. (3.5), E[Σ1 | Σ0] then shares the same eigenspace as Σ0 (i.e.,
the eigenvectors are given byE), and by induction, so doesE[Σt | Σ0] for all t. Let
Θt|0 denote the diagonal matrix of eigenvalues of E[Σt | Σ0]. Since tr(ΣS−1) =
tr(ΘQ−1), eqn. (3.5) can be rewritten solely in terms of the eigenvalues:

Θt|0 =
Λ

n+ q
tr
(
Θt−1|0Q

−1
)

+
n

n+ q
Λ +RΘt−1|0R

′.(A.12)

In terms of the vectors of eigenvalues θt|0 = diag
(
Θt|0

)
, ξ = diag(Q) and ξ−1 =

diag
(
Q−1

)
we have

θt|0 =
n

n+ q
(I −R2)ξ +

[
1

n+ q
(I −R2)ξξ′−1 +R2

]
θt−1|0.(A.13)

Letting α = n
n+q (I −R2)ξ and B = 1

n+q (I −R2)ξξ′−1 +R2, we conclude that

θt|0 = Btθ0 +

t−1∑
τ=0

Bτα.(A.14)

Since B represents a matrix (strictly) convex combination of
ξξ′−1

n+q and I , the max-
imum eigenvalue of B is bounded by∣∣∣∣∣∣∣∣(I −R2) max

{
eig
(
ξξ′−1

n+ q

)}
· 1 +R2 · 1

∣∣∣∣∣∣∣∣
0

.(A.15)

Here, max{eig(A)} denotes the maximum eigenvalue of A. The term ξξ′−1 is a
rank 1 matrix implying that the only non-zero eigenvalue is equal to tr(ξξ′−1) = q.
Thus, regardless of n, B has eigenvalues with modulus strictly less than 1 since
ξξ′−1

n+q has q − 1 eigenvalues equal to 0 and one equal to q
n+q < 1. This implies that

the conditional mean of the process forgets the initial condition Σ0 exponentially
fast regardless of n. Furthermore, since the eigenvalues of B have modulus less
than 1,

θt|0 = Btθ0 + (I −B)−1(I −Bt)α,(A.16)
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implying that, as expected, the eigenvalues of the limiting conditional mean are
exactly those of the marginal mean S:

lim
t→∞

θt|0 = (I −B)−1α(A.17)

=

[(
I −

ξξ′−1

n+ q

)−1

(I −R2)−1

]
n

n+ q
(I −R2)ξ(A.18)

=
n

n+ q

(
I −

ξξ′−1

n+ q

)−1

ξ(A.19)

= ξ.(A.20)

The last equality follows from matrix inversion and the fact that ξ′−1ξ = q.

APPENDIX B: DERIVATION OF FORWARD FILTERING BACKWARD
SAMPLING ALGORITHM

B.1. Approximate Forward Filtering. The inverse Wishart prior on ∆1 can
be analytically updated to an inverse Wishart posterior conditioned on y1:

p(∆1 | y1) = IW2q

(
n+ 3, n

(
S SF ′

FS S

)
+ y1y

′
1

)
.(B.1)

To propagate to t = 2, we use the Chapman-Kolmogorov equation, integrating
over ∆1:

p(∆2 | y1) ∝
∫
p(∆2 | ∆1)p(∆1 | y1)d∆1

∝
∫
δΣ1=Ψ1+Υ1Σ0Υ′1

p(Ψ2)p(Υ2 | Ψ2)p(∆1 | y1)dΥ1dΨ1dΣ0

∝ IWq(Ψ2 | n+ q + 2, nṼ )N(Υ2 | F̃ , Ψ̃2, (nS)−1)

IWq(Σ1 | n+ 3, nS + x1x
′
1).(B.2)

Here, we have used the fact that the transition kernel p(∆2 | ∆1) simply involves
independent innovations {Υ2,Ψ2} and deterministically computing Σ1. Integrat-
ing the elements used to compute Σ1 (a component of ∆2), the marginal posterior
can be derived from the joint posterior of the augmented variance matrix at time t
given in eqn. (B.1). Although an independent normal-inverse Wishart set of random
variables can be combined with a q-dimensional inverse Wishart matrix to form a
2q-dimensional inverse Wishart, as discussed in Section 2, there are restrictions
on the parameterizations of these respective distributions. The set of distributions
specified in eqn. (B.2) do not satisfy these constraints, and thus do not combine to
form a 2q-dimensional inverse Wishart distribution on ∆2. Namely, the Ψ2 prior
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and Σ1 posterior degrees of freedom do not match, nor do the Σ1 posterior scale
matrix and the Υ2 prior variance term (nS)−1.

Since exact, analytic forward filtering is not possible, we instead approximate
the propagate step with a moment-matched inverse Wishart distribution. That is,

p(∆2 | y1) ≈ IW(n+ 2, nE[∆2 | y1])

, g2|1(∆2 | y1).(B.3)

Based on the approximations made in propagating, the subsequent update step is
exact due to the conjugacy of the Gaussian observation and inverse Wishart predic-
tive distribution.

In general, we can choose an arbitrary degree of freedom parameter in our ap-
proximate forward filtering. Assume that at time t we use rt degrees of freedom
for the moment-matched approximation gt|t−1(∆t | y1:t−1) to the predictive distri-
bution p(∆t | y1:t−1). We use gt|t(∆t | y1:t) to denote the resulting approximation
to the updated posterior p(∆t | y1:t).

We initialize at t = 1 with r1 = n+ 2 and
(B.4)

g1|0(∆1) = p(∆1) = IW(r1, (r1 − 2)E[∆1]), E[∆1] =

(
S SF ′

FS S

)
,

g1|1(∆1 | y1) = p(∆1 | y1) = IW(r1 + 1, (r1 − 2)E[∆1] + y1y
′
1).

Propagating forward,

(B.5)
g2|1(∆2 | y1) = IW(r2, (r2 − 2)Eg1|1 [∆2 | y1]),

g2|2(∆2 | y1:2) = IW(r2 + 1, (r2 − 2)Eg1|1 [∆2 | y1] + y2y
′
2).

Here, the predictive mean is derived as

Eg1|1 [∆2 | y1] =

(
S1 S1F

′

FS1 FS1F
′ + nV

n+q (1 + tr(S1(nS)−1))

)
,(B.6)

with S1 = Eg1|1 [Σ1 | y1] =
(r1−2)S+x1x′1

r1−1 . The term Eg1|1 [Σ2 | y1] is derived
via iterated expectations, namely Eg1|1 [E[Σ2 | Σ1, y1]], and employing eqn. (3.5)
noting that Σ2 is conditionally independent of y1 given Σ1.

The forward filter then recursively defines

(B.7)
gt|t−1(∆t | y1:t−1) = IW

(
rt, (rt − 2)Egt−1|t−1

[∆t | y1:t−1]
)
,

gt|t(∆t | y1:t) = IW
(
rt + 1, (rt − 2)Egt−1|t−1

[∆t | y1:t−1] + yty
′
t

)
,
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with

(B.8) Egt−1|t−1
[∆t | y1:t−1]

=

(
St−1 St−1F

′

FSt−1 FSt−1F
′ + nV

n+q (1 + tr(St−1(nS)−1))

)
and

St =
(rt − 2)

(
FSt−1F

′ + nV
n+q (1 + tr(St−1(nS)−1))

)
+ xtx

′
t

rt − 1
.(B.9)

B.2. Backward Sampling. The density required for backward sampling is the
posterior of {Σt−1,Υt,Ψt} conditioned on Σt and y1:T , which can be written as

p(Σt−1,Υt,Ψt | Σt, y1:T ) = p(Σt−1,Υt,Ψt | Σt, y1:t)(B.10)

∝ p(Σt−1,Υt,Ψt | y1:t)δΣt=Ψt+ΥtΣt−1Υ′t
(B.11)

∝ gt|t(∆t | y1:t)δΣt=Ψt+ΥtΣt−1Υ′t
.(B.12)

Thus, sampling {Σt−1,Υt,Ψt} from this conditional posterior is equivalent to fix-
ing Σt in the ∆t matrix and sampling a valid {Σt−1,Υt,Ψt} conditioned on Σt

based on the forward filtering distribution gt|t(∆t | y1:t). By valid, we mean a
value that corresponds to Σt = Ψt + ΥtΣt−1Υ′t.

Based on eqn. (5.5),

gt|t

((
Σt−1 Σt−1Υ′t

ΥtΣt−1 Σt

)∣∣∣∣ y1:t

)
= IW

(
rt + 1,

(
G11
t G21′

t

G21
t G22

t

))
,(B.13)

implying that

gt|t

((
Σt ΥtΣt−1

Σt−1Υ′t Σt−1

)∣∣∣∣ y1:t

)
= IW

(
rt + 1,

(
G22
t G21

t

G21′
t G11

t

))
.(B.14)

Here, Gt is the forward filtering term defined in eqn. (5.11), with G11
t , G21

t , G22
t

denoting the three unique q× q sub-blocks (G12
t = G21′

t ). The form of eqn. (B.14)
allows us to use the previously discussed properties of the inverse Wishart distribu-
tion to sample {Σt−1,Υt,Ψt} conditioned on Σt and y1:t. Specifically, as discussed
in Section 2, there exists a {Υ̃t, Ψ̃t} such that Υ̃tΣt = Σt−1Υ′t and

(B.15)
Ψ̃t | y1:t ∼ IW(rt + 1 + q,G11

t −G21′
t (G22

t )−1G21
t ),

Υ̃t | Ψ̃t, y1:t ∼ N(G21′
t (G22

t )−1, Ψ̃t, (G
22
t )−1)
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with

Σt−1 = Ψ̃t + Υ̃tΣtΥ̃
′
t.(B.16)

Thus, to sample Σt−1 conditioned on Σt from the approximation to p(Σt−1 |
Σt, y1:t), we first sample {Υ̃t, Ψ̃t} as specified in eqn. (B.15) and then compute
Σt−1 based on eqn. (B.16).

APPENDIX C: MULTIVARIATE T DISTRIBUTION

The q-dimensional multivariate t distribution with ν degrees of freedom and
parameters µ and Σ has density

tν(x | µ,Σ/ν) = aν,q|Σ|−1/2

(
1 +

1

ν
(x− µ)′Σ−1(x− µ)

)−(ν+q)/2

(C.1)

where

aq,ν =
Γ((ν + q)/2)

Γ(ν/2)νq/2πq/2
.

For the proposed IW-AR, since Υt | Ψt ∼ N(F,Ψt, (nS)−1) standard theory gives
Υtzt | Ψt, zt ∼ N(Fzt,Ψt(z

′
t(nS)−1zt)). Marginalizing over Υt in eqn. (4.1), we

have

p(xt | zt,Ψt) = N(Fzt,Ψt(1 + z′t(nS)−1zt)).(C.2)

Now, Ψt ∼ IW (n + q + 2, nV ) implies Ψt(1 + z′t(nS)−1zt) | zt ∼ IW (n +
q + 2, nV (1 + z′t(nS)−1zt)) Marginalizing Ψt from the distribution of eqn. (C.2)
yields the t distribution with density

p(xt | zt) = tn+q+2

(
Fzt, (1 + z′t(nS)−1zt)

nV

n+ q + 2

)
.(C.3)

The marginal likelihood of F and S given z1:T follows immediately.

APPENDIX D: CONDITIONAL MEAN OF IW-AR(2) MODEL

For the IW-AR(2) process in Section 7.2 we have

E[Ψt | Ψt−1] = HΨt−1H
′ +

nW

n+ 2q

(
1 + tr(Ψt−1(nV )−1)

)
.(D.1)
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Since E[Σt | ∆t−1] = E[Ψt | ∆t−1] + E[ΥtΣt−1Υ′t | ∆t−1], in deriving the
conditional mean of Σt given ∆t−1 we first need
(D.2)
E[[ΥtΣt−1Υ′t]ij | ∆t−1] = E[E[[ΥtΣt−1Υ′t]ij | Ψt] | ∆t−1]

= E[
∑
k,`

Σt−1,k`E[Υt,ikΥt,j` | Ψt] | ∆t−1]

= E[
∑
k,`

Σt−1,k`

(
[Ψt,ij(nS)−1]k` + FikFj`

)
| ∆t−1]

= E[tr(Σt−1(nS)−1)Ψt,ij + Fi·Σt−1F
′
j· | ∆t−1]

= tr(Σt−1(nS)−1)E[Ψt,ij | ∆t−1] + Fi·Σt−1F
′
j·,

implying

E[ΥtΣt−1Υ′t | ∆t−1] = tr(Σt−1(nS)−1)E[Ψt | ∆t−1] + FΣt−1F
′.(D.3)

Noting that E[Ψt | ∆t−1] = E[E[Ψt | Ψt−1] | ∆t−1] and E[Ψt−1 | ∆t−1] =
Ψt−1 since Ψt−1 is a deterministic function of the elements of ∆t−1, eqn. (7.19)
follows directly. That is,

E[Σt | ∆t−1] = FΣt−1F
′ + E[Ψt | Ψt−1](1 + tr(Σt−1(nS)−1))

with E[Ψt | Ψt−1] as in eqn. (D.1).
In the limit as n→∞, we have

E[Σt | ∆t−1] = W + FΣt−1F
′ +HΨt−1H

′

= V −HVH ′ + FΣt−1F
′ +H(Σt−1 −HΥt−1Σt−2Υ′t−1)H ′

= S − FSF ′ + FΣt−1F
′

+H((Σt−1 −Υt−1Σt−2Υ′t−1)− (S − FSF ′))H ′

= S + F (Σt−1 − S)F ′

+H((Σt−1 − S)− (Υt−1Σt−2Υ′t−1 − FSF ′))H ′.

APPENDIX E: SAMPLING FOR STOCHASTIC VOLATILITY IN TIME
SERIES MODELS WITH IW-AR(1) COMPONENTS

In eqn. (6.1), the conditional posterior of the autoregressive parameters A (i.e.,
Step 0 of the sampler) is given as follows.

Step 0. Sample the observation autoregressive parameterA given ∆1:T and ξ1−r:T .
Assume Ai diagonal defined by the q-vector ai = diag(Ai). The autoregressive
process of eqn. (6.1) can be equivalently represented as

(E.1) ξt =
[
diag(ξt−1) · · · diag(ξt−r)

] [
a′1 · · · a′r

]′
+ xt.
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Under a prior
[
a′1 · · · a′r

]′ ∼ N(µa,Σa), standard theory yields the conditional
for
[
a′1 · · · a′r

]′ | Σ0:T , ξ1−r:T as multivariate normal with easily computed
moments. For t = 1, . . . , T , set xt = ξt −

∑r
i=1Aiξt−i.
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