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Summary. Although there is a rich literature on methods for allowing the variance in a univari-
ate regression model to vary with predictors, time and other factors, relatively little has been
done in the multivariate case. Our focus is on developing a class of nonparametric covariance
regression models, which allow an unknown p × p covariance matrix to change flexibly with
predictors. The proposed modeling framework induces a prior on a collection of covariance
matrices indexed by predictors through priors for predictor-dependent loadings matrices in a
factor model. In particular, the predictor-dependent loadings are characterized as a sparse
combination of a collection of unknown dictionary functions (e.g, Gaussian process random
functions). The induced covariance is then a regularized quadratic function of these dictionary
elements. Our proposed framework leads to a highly-flexible, but computationally tractable
formulation with simple conjugate posterior updates that can readily handle missing data. The-
oretical properties are discussed and the methods are illustrated through simulations studies
and an application to the Google Flu Trends data.

Keywords: covariance estimation; Gaussian process; heteroscedastic regression;

nonparametric Bayes; stochastic process.

1. Introduction

Spurred by the increasing prevalence of high-dimensional datasets and the computational
capacity to analyze them, capturing heteroscedasticity in multivariate processes has become
a growing focus in many applied domains. For example, within the field of financial time
series modeling, capturing the time-varying volatility and co-volatility of a collection of risky
assets is key in devising a portfolio management scheme. Likewise, the spatial statistics
community is often faced with multivariate measurements (e.g., temperature, precipitation,
etc.) recorded at a large collection of locations, necessitating methodology to model the
strong spatial (and spatio-temporal) variations in correlations. More generally, imagine
that one has some arbitrary, potentially multivariate predictor space X and a collection of
multivariate response vectors y. The problem of mean regression (i.e., µ(x) = E(y | x)) has
been well studied in both the univariate and multivariate settings. Although there is a rich
literature on methods for allowing the variance in a univariate regression model to vary with
predictors, there is a dearth of methodologies for the general case of multivariate covariance
regression (i.e., Σ(x) = cov(y | x)). The covariance matrix captures key correlations between
the elements of the response vector, and the typical assumption of a homoscedastic model
can have significant impact on inferences.

Historically, the problem of multivariate covariance regression has typically been ad-
dressed by standard regression operations on the unconstrained elements of the log or
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Cholesky decomposition of the covariance (or precision) matrix. For example, Pourahmadi
[1999] proposes to model elements of chol(Σ(x)−1) as a linear function of the predictors.
The weights associated with the ith row have a nice interpretation in terms of the con-
ditional distribution of yi given y1, y2, . . . , yi−1; however, the model is not invariant to
permutations of the elements of y which is problematic in applications where there does not
exist a natural ordering. Alternatively, Chiu et al. [1996] consider modeling each element
of log(Σ(x)) as a linear function of the predictor. An issue with this formulation is in the
interpretability of the model: a submatrix of Σ(x) does not necessarily coincide with a sub-
matrix of the matrix logarithm. Additionally, both the models of Pourahmadi [1999] and
Chiu et al. [1996] involve a large number of parameters (specifically, d×p(p+1)/2 assuming
x ∈ ℜd.) More recently, Hoff and Niu [2010] propose a covariance regression model in which
Σ(x) = A + Bxx′B′ with A positive definite and B real. This model has interpretable
parameters and may be equated with a latent factor model, leading to computational ad-
vantages. However, the model still has key limitations in (i) scaling to large p domains,
and (ii) flexibility based on the parametric approach. Specifically, the model restricts the
difference between Σ(x) and the baseline matrix A to be rank 1. Higher rank models can
be considered via extensions such as Σ(x) = A + Bxx′B′ + Cxx′C′, but this dramatically
increases the parameterization and requires definition of the maximal rank difference.

For volatility modeling where the covariate space is typically taken to be discrete time,
heteroscedasticity has classically been captured via either variants of ARCH [Engle, 2002] or
stochastic volatility models [Harvey et al., 1994]. The former directly specifies the volatility
matrix as a linear combination of lagged volatilities and squared returns, which suffers from
curse of dimensionality, and is typically limited to datasets with 5 or fewer dimensions.
Alternatively, multivariate stochastic volatility models assume Σ(t) = AΓ(t)A′, with A real,
Γ(t) = diag(exph1t, . . . , exphpt), and hit independent autoregressive processes. See Chib
et al. [2009] for a survey of such approaches. More recently, a number of papers have
examined inducing covariance processes through variants of a Wishart process. Philipov
and Glickman [2006a] take Σ(t)−1 | Σ(t − 1) ∼ W (n, St−1) with St−1 = 1/n(A1/2)(Σ(t −
1)−1)ν(A1/2)′†. Alternatively, a conditionally non-central Wishart distribution is induced
on the precision matrix in Gouriéroux et al. [2009] by taking Σ(t) =

∑p
k=1 xktx

′
kt, with

each xk independently a first order Gaussian autoregressive process. Key limitations of
these types of Wishart processes are that posterior computations are extremely challenging,
theory is lacking (e.g., simple descriptions of marginal distributions), and single parameters
(e.g., n and ν) control the inter- and intra-temporal covariance relationships. Prado and
West [2010] review alternative models of time-varying covariance matrices for dynamic
linear models via discounting methods that maintain conjugacy. Central to all of the cited
volatility models is the assumption of Markov dynamics, limiting the ability to capture long-
range dependencies and often leading to spiky trajectories. Additionally, these methods
assume a regular grid of observations that cannot easily accommodate missing values.

Within the spatial statistics community, the term Wishart process is typically used to
specify a different formulation than those described herein for volatility modeling. Specif-
ically, letting Σ(s) denote the covariance of a p-dimensional observation at geographic lo-
cation s ∈ R2, Gelfand et al. [2004] assume that Σ(s) = A(s)A(s)′ + Σ0 with Σ0 diagonal
and T (s) = A(s)A(s)′ following a matric-variate Wishart process. This Wishart process
is such that T (s)−1 = Θξ(s)ξ(s)′Θ′ with ξℓj ∼ GP(0, cj) independently for each ℓ, j and

†Extending to higher dimensions, Philipov and Glickman [2006b] apply this model to the covari-
ance of a lower-dimensional latent factor in a standard latent factor model.
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Θ typically taken to be diagonal. The induced distribution on T (s) is then marginally in-
verse Wishart‡. Posterior computations in this model rely on Metropolis-Hastings proposals
that do not scale well to dimensions p larger than 2-3 and cannot naturally accommodate
missing data. In terms of spatio-temporal processes, Lopes et al. [2008] build upon a stan-
dard dynamic factor model to develop nonseparable and nonstationary space-time models.
Specifically, the vector yt of univariate observations yst at spatial locations s is modeled
as yt = µt + βft + ǫt with the components of the latent factors ft independently evolving
according to a first-order autoregressive process and columns of the factor loadings matrix
β independently drawn from Markov random fields. Key assumptions of this formulation
are that the observations evolve in discrete time on a regular grid, and that the dynamics of
the spatio-temporal process are captured by independent random walks on the components
of the latent factors.

In this paper, we present a Bayesian nonparametric approach to multivariate covariance
regression that allows the covariance matrix to change flexibly with predictors and readily
scales to high-dimensional datasets. The proposed modeling framework induces a prior
on a collection of covariance matrices ΣX = {Σ(x), x ∈ X} through specification of a
prior on a predictor-dependent latent factor model. In particular, the predictor-dependent
loadings are characterized as a sparse combination of a collection of unknown dictionary
functions (e.g, Gaussian process random functions). The induced covariance is then a
regularized quadratic function of these dictionary elements. The proposed methodology
has numerous advantages over previous approaches. By employing collections of continuous
random functions, we allow for an irregular grid of observations. Similarly, we can easily
cope with missing data within our framework without relying on imputing the missing
values. Another fundamental property of the proposed methodology is the fact that our
combined use of a shrinkage prior with a latent factor model enables us (in theory) to handle
high-dimensional datasets (e.g., on the order of hundreds of dimensions) in the presence of
a limited number of observations. Essential in being able to cope with such large datasets in
practice is the fact that our computations are tractable, based on simple conjugate posterior
updates. Finally, we are able to state theoretical properties of our proposed prior, such as
large support.

The paper is organized as follows. In Section 2, we describe our proposed Bayesian
nonparametric covariance regression model in addition to analyzing the theoretical prop-
erties of the model. Section 3 details the Gibbs sampling steps involved in our posterior
computations. Finally, a number of simulation studies are examined in Section 4, with an
application to the Google Trends flu dataset presented in Section 5.

2. Covariance Regression Priors

2.1. Notation and Motivation
Let Σ(x) denote the p × p covariance matrix at “location” x ∈ X . In general, x is an
arbitrary, possibly multivariate predictor value. In dynamical modeling, x may simply
represent a discrete time index (i.e., X = {1, . . . , T }) or, in spatial modeling, a geographical
location (i.e., X = ℜ2). Another simple, tractable case is when x represents an ordered

‡More generally, Gelfand et al. [2004] develop a spatial coregionalization model such that
cov(y(s1), y(s2)) = ρ(s1 − s2)A(s1)A(s2)

′ + Σ0 (i.e., a model with spatial dependencies arising
in both the covariance and cross covariance).



4 Fox and Dunson

categorical predictor (i.e., X = {1, . . . , N}). We seek a prior for ΣX = {Σ(x), x ∈ X}, the
collection of covariance matrices over the space of predictor values.

Letting ΣX ∼ ΠΣ our goal is to choose a prior ΠΣ for the collection of covariance
matrices that has large support and leads to good performance in large p settings. By
“good” we mean accurate estimation in small samples, taking advantage of shrinkage priors
and efficient computation that scales well as p increases. We initially focus on the relatively
simple setting in which

yi ∼ Np(µ(xi),Σ(xi)) (1)

independently for each i. Such a formulation could be extended to settings in which data
are collected at repeated times for different subjects, as in multivariate longitudinal data
analysis, by embedding the proposed model within a hierarchical framework. See Section 6
for a discussion.

2.2. Proposed Latent Factor Model
In large p settings, modeling a p×p covariance matrix Σ(x) over an arbitrary predictor space
X represents an enormous dimensional regression problem; we aim to reduce dimensional-
ity for tractability in building a flexible nonparametric model for the predictor-dependent
covariances. A popular approach for coping with such high dimensional (non-predictor-
dependent) covariance matrices Σ in the presence of limited data is to assume that the
covariance has a decomposition as ΛΛ′ +Σ0 where Λ is a p× k factor loadings matrix with
k << p and Σ0 is a p× p diagonal matrix with non-negative entries. To build in predictor
dependence, we assume a decomposition

Σ(x) = Λ(x)Λ(x)′ +Σ0, (2)

where Λ(x) is a p × k factor loadings matrix that is indexed by predictors x and where
Σ0 = diag(σ2

1 , . . . , σ
2
p). Assuming initially for simplicity that µ(x) = 0, such a decomposition

is induced by marginalizing out a set of latent factors ηi from the following latent factor
model:

yi = Λ(xi)ηi + ǫi

ηi ∼ Nk(0, Ik), ǫi ∼ Np(0,Σ0).
(3)

Here, xi = (xi1, . . . , xiq)
′ is the predictor associated with the ith observation yi.

Despite the dimensionality reduction introduced by the latent factor model of Eq. (3),
modeling a p×k dimensional predictor-dependent factor loadings matrix Λ(x) still represents
a significant challenge for large p domains. To further reduce dimensionality, and following
the strategy of building a flexible high-dimensional model from simple low-dimensional
pieces, we assume that each element of Λ(x) is a linear combination of a much smaller
number of unknown dictionary functions ξℓk : X → ℜ. That is, we propose to let

Λ(xi) = Θξ(xi), (4)

where Θ ∈ ℜp×L is the matrix of coefficients relating the predictor-dependent factor loadings
matrix to the set of dictionary functions comprising the L × k dimensional matrix ξ(x).
Typically, k << p and L << p. Since we can write

[Λ(·)]rs =
L
∑

ℓ=1

θrℓξℓs(·), (5)
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we see that the weighted sum of the sth column of dictionary functions ξ·s(·), with weights
specified by the rth row of Θ, characterizes the impact of the sth latent factor on yir, the rth
component of the response at predictor location xi. By characterizing the elements of Λ(xi)
as a linear combination of these flexible dictionary functions, we obtain a highly-flexible
but computationally tractable formulation.

In marginalizing out the latent factors, we now obtain the following induced covariance
structure

cov(yi |xi = x) = Σ(x) = Θξ(x)ξ(x)′Θ′ +Σ0. (6)

Note that the above decomposition of Σ(x) is not unique and there are actually infinitely
many such equivalent decompositions. For example, take Θ1 = cΘ and ξ1(·) = (1/c)ξ(·).
Alternatively, consider ξ1(·) = ξ(·)P for any orthogonal matrix P or Θ1 = [Θ 0p×d] and
ξ1 = [ξ; ξ0] for any d×k matrix of dictionary functions ξ0. One can also increase the dimen-
sion of the latent factors and take ξ1 = [ξ 0L×d]. In standard (non-predictor-dependent)
latent factor modeling, a common approach to ensure identifiability is to constrain the
factor loadings matrix to be block lower triangular with strictly positive diagonal ele-
ments [Geweke and Zhou, 1996], though such a constraint induces order dependence among
the responses [Aguilar and West, 2000, West, 2003, Lopes and West, 2004, Carvalho et al.,
2008]. However, for tasks such as inference on the covariance matrix and prediction, iden-
tifiability of a unique decomposition is not necessary. Thus, we do not restrict ourselves
to a unique decomposition of Σ(x), allowing us to define priors with better computational
properties.

Although we are not interested in identifying a unique decomposition of Σ(x), we are
interested in characterizing the class of covariance regressions Σ(x) that can be decomposed
as in Eq. (6). Lemma 2.1 states that for L and k sufficiently large, any covariance regression
has such a decomposition. For L, k ≥ p, let Xξ denote the space of all L × k dimensional
matrices of arbitrarily complex dictionary functions mapping from X → ℜ, XΣ0

be the
space of all p × p diagonal matrices with non-negative entries, and XΘ be the space of all
p× L dimensional matrices Θ such that ΘΘ′ has finite elements.

Lemma 2.1. Given a symmetric positive semidefinite matrix Σ(x) ≻ 0, ∀x ∈ X , there
exists {ξ(·),Θ,Σ0} ∈ Xξ ⊗XΘ ⊗XΣ0

such that

Σ(x) = Θξ(x)ξ(x)′Θ′ +Σ0, ∀x ∈ X . (7)

Proof. Assume without loss of generality that Σ0 = 0p×p and take k, L ≥ p. Consider

Θ = [Ip 0p×L−p] ξ(x) =

[

chol(Σ(x)) 0p×k−p
0L−p×p 0L−p×k−p

]

. (8)

Then, Σ(x) = Θξ(x)ξ(x)′Θ′, ∀x ∈ X .

Now that we have established that there exist decompositions of Σ(x) into the form specified
by Equation (6), the question is whether we can specify a prior on the elements ξ(·), Θ, and
Σ0 that provides large support on such decompositions. This is explored in Section 2.3.
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In order to generalize the model to also allow the mean µ(x) to vary flexibly with
predictors, we can follow a nonparametric latent factor regression approach and let

ηi = ψ(xi) + νi, νi ∼ Nk(0, Ik), (9)

where ψ(xi) = [ψ1(xi), . . . , ψk(xi)]
′, and ψj : X → ℜ is an unknown function relating

the predictors to the mean of the jth factor, for j = 1, . . . , k. These ψj(·) functions can be
modeled in a related manner to the ξℓk(·) functions described above. The induced mean of yi
conditionally on xi = x and marginalizing out the latent factors is then µ(x) = Θξ(x)ψ(x).
For simplicity, however, we focus our discussions on the case where µ(x) = 0.

2.3. Prior Specification
Working within a Bayesian framework, we place independent priors on ξ(·), Θ, and Σ0 in
Eq. (6) to induce a prior on ΣX . Let Πξ, ΠΘ, and ΠΣ0

denote each of these independent
priors, respectively. Recall that ΠΣ denotes the induced prior on ΣX .

Aiming to capture covariances that vary continuously over X combined with the goal of
maintaining simple computations for inference, we specify the dictionary functions as

ξℓk(·) ∼ GP(0, c) (10)

independently for all ℓ, k, with c a squared exponential correlation function having c(ξ, ξ′) =
exp(−κ||ξ − ξ′||22).

To cope with the fact that the number of latent dictionary functions is a model choice
we are required to make, we seek a prior ΠΘ that favors many values of Θ being close to
zero so that we may choose L larger than the expected number of dictionary functions (also
controlled by the latent factor dimension k). As proposed in Bhattacharya and Dunson
[2010], we use the following shrinkage prior:

θjℓ | φjℓ, τℓ ∼ N (0, φ−1
jℓ τ

−1
ℓ ) φjℓ ∼ Ga(3/2, 3/2)

δ1 ∼ Ga(a1, 1), δh ∼ Ga(a2, 1), h ≥ 2, τℓ =
ℓ
∏

h=1

δh.
(11)

Choosing a2 > 1 implies that δh is greater than 1 in expectation so that τℓ tends stochas-
tically towards infinity as ℓ goes to infinity, thus shrinking the elements θjℓ toward zero
increasingly as ℓ grows. The φjℓ precision parameters allow for flexibility in how the ele-
ments of Θ are shrunk towards zero by incorporating local shrinkage specific to each element
of Θ, while τℓ provides a global column-wise shrinkage factor.

Finally, we specify ΠΣ0
via the usual inverse gamma priors on the diagonal elements of

Σ0. That is,

σ−2
j ∼ Ga(aσ, bσ) (12)

independently for each j = 1, . . . , p.

2.4. Theoretical Properties
In this section, we explore the theoretical properties of the proposed Bayesian nonparametric
covariance regression model. In particular, we focus on the support of the induced prior
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ΠΣ based on the priors Πξ, ΠΘ, and ΠΣ0
defined in Section 2.3. Large support implies

that the prior can generate covariance regressions that are arbitrarily close to any function
{Σ(x), x ∈ X} in a large class. Such a support property is the defining feature of a Bayesian
nonparametric approach and cannot simply be assumed. Often, seemingly flexible models
can have quite restricted support due to hidden constraints in the model and not to real prior
knowledge that certain values are implausible. Although we have chosen a specific form for
a shrinkage prior ΠΘ, we aim to make our statement of prior support as general as possible
and thus simply assume that ΠΘ satisfies a set of two conditions given by Assumption 2.1
and Assumption 2.2. In Lemma 2.2, we show that the ΠΘ specified in Eq. (11) satisfies these
assumptions. The proofs associated with the theoretical statements made in this section
can be found in the Appendix.

Assumption 2.1. ΠΘ is such that
∑

ℓE[|θjℓ|] < ∞. This property ensures that the
prior on the rows of Θ shrinks the elements towards zero fast enough as ℓ→ ∞.

Assumption 2.2. ΠΘ is such that ΠΘ (rank(Θ) = p) > 0. That is, there is positive
prior probability of Θ being full rank.

The following theorem shows that, for k ≥ p and as L→ ∞, the induced prior ΠΣ places
positive probability on the space of all covariance functions Σ∗(x) that are continuous on
X .

Theorem 2.1. Let ΠΣ denote the induced prior on {Σ(x), x ∈ X} based on the specified
prior Πξ ⊗ ΠΘ ⊗ ΠΣ0

on Xξ ⊗ XΘ ⊗ XΣ0
. Assuming X compact, for all continuous Σ∗(x)

and for all ǫ > 0,

ΠΣ

(

sup
x∈X

||Σ(x) − Σ∗(x)||2 < ǫ

)

> 0. (13)

Intuitively, the support on continuous covariance functions Σ∗(x) arises from the continuity
of the Gaussian process dictionary functions. However, since we are mixing over infinitely
many such dictionary functions, we need the mixing weights specified by Θ to tend towards
zero, and to do so “fast enough”—this is where Assumption 2.1 becomes important. See
Theorem 2.2. The proof of Theorem 2.1 relies on the large support of ΠΣ at any point
x0 ∈ X . Since each ξℓk(x0) is independently Gaussian distributed (based on properties
of the Gaussian process prior), ξ(x0)ξ(x0)

′ is Wishart distributed. Conditioned on Θ,
Θξ(x0)ξ(x0)

′Θ′ is also Wishart distributed. More generally, for fixed Θ, Θξ(x)ξ(x)′Θ′

follows the matric-variate Wishart process of Gelfand et al. [2004]. Combining the large
support of the Wishart distribution with that of the gamma distribution on the inverse
elements of Σ0 provides the desired large support of the induced prior ΠΣ at each predictor
location x0.

Theorem 2.2. For every finite k and L → ∞ (or L finite), Λ(·) = Θξ(·) is almost
surely continuous on X .

Lemma 2.2 specifies the conditions under which the prior ΠΘ specified in Eq. (11)
satisfies Assumption 2.1, which provides a sufficient condition used in the proof of prior
support.
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Lemma 2.2. Based on the prior specified in Eq. (11) and choosing a2 > 2, Assump-
tion 2.1 is satisfied. That is,

∑

ℓE[|θjℓ|] <∞.

It is also of interest to analyze the moments associated with the proposed prior. As
detailed in the Appendix, the first moment can be derived based on the implied inverse
gamma prior on the σ2

j combined with the fact that Θξ(x)ξ(x)′Θ′ is marginally Wishart
distributed at every location x, with the prior on Θ specified in Equation (11).

Lemma 2.3. Let µσ denote the mean of σ2
j , j = 1, . . . , p. Then,

E[Σ(x)] = diag

(

k
∑

ℓ

φ−1
1ℓ τ

−1
ℓ + µσ, . . . , k

∑

ℓ

φ−1
pℓ τ

−1
ℓ + µσ

)

. (14)

Since our goal is to develop a covariance regression model, it is natural to consider
the correlation induced between an element of the covariance matrix at different predictor
locations x and x′.

Lemma 2.4. Let σ2
σ denote the variance of σ2

j , j = 1, . . . , p. Then,

cov(Σij(x),Σij(x
′)) =

{

kc(x, x′)
(

5
∑

ℓ φ
−2
iℓ τ

−2
ℓ + (

∑

ℓ φ
−1
iℓ τ

−1
ℓ )2

)

+ σ2
σ i = j,

kc(x, x′)
(

∑

ℓ φ
−1
iℓ φ

−1
jℓ τ

−2
ℓ +

∑

ℓ φ
−1
iℓ τ

−1
ℓ

∑

ℓ′ φ
−1
jℓ′ τ

−1
ℓ′

)

i 6= j.

(15)

For any two elements Σij(x) and Σuv(x
′) with i 6= u or j 6= v,

cov(Σij(x),Σuv(x
′)) = 0. (16)

We can thus conclude that in the limit as the distance between the predictors tends
towards infinity, the correlation decays at a rate defined by the Gaussian process kernel
c(x, x′) with a limit:

lim
||x−x′||→∞

cov(Σij(x),Σuv(x
′)) =

{

σ2
σ i = j = u = v,
0 otherwise.

(17)

It is perhaps counterintuitive that the correlation between Σii(x) and Σii(x
′) does not go

to zero as the distance between the predictors x and x′ tends to infinity. However, although
the correlation between ξ(x) and ξ(x′) goes to zero, the diagonal matrix Σ0 does not depend
on x or x′ and thus retains the correlation between the diagonal elements of Σ(x) and Σ(x′).

Equation (15) implies that the autocorrelation ACF (x) = corr(Σij(0),Σij(x)) is simply
specified by c(0, x). When we choose a Gaussian process kernel c(x, x′) = exp(−κ||x−x′||22),
we have

ACF (x) = exp(−κ||x||22). (18)

Thus, we see that the length-scale parameter κ directly determines the shape of the auto-
correlation function.

Finally, one can analyze the stationarity properties of the proposed covariance regression
prior.
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Lemma 2.5. Our proposed covariance regression model defines a first-order stationary
process in that ΠΣ(Σ(x)) = ΠΣ(Σ(x

′)), ∀x, x′ ∈ X . Furthermore, the process is wide sense
stationary: cov(Σij(x),Σuv(x

′)) solely depends upon ||x− x′||.

Proof. The first-order stationarity follows immediately from the stationarity of the
Gaussian process dictionary elements ξℓk(·) and recalling that Σ(x) = Θξ(x)ξ(x)′Θ′ + Σ0.
Assuming a Gaussian process kernel c(x, x′) that solely depends upon the distance between
x and x′ (as in Section 2.3), Equations (15)- (16) imply that the defined process is wide
sense stationary.

3. Posterior Computation

3.1. Gibbs Sampling with a Fixed Truncation Level
Based on a fixed truncation level L∗ and a latent factor dimension k∗, we propose a Gibbs
sampler for posterior computation. The derivation of Step 1 is provided in the Appendix.

Step 1 Update each dictionary function ξℓm(·) from the conditional posterior given {yi},
Θ, {ηi}, Σ0. We can rewrite the observation model for the jth component of the ith response
as

yij =
k∗
∑

m=1

ηim

L∗

∑

ℓ=1

θjℓξℓm(xi) + ǫij . (19)

Conditioning on ξ(·)−ℓm = {ξrs(·), r 6= ℓ, s 6= m}, our Gaussian process prior on the dictio-
nary functions implies the following conditional posterior











ξℓm(x1)
ξℓm(x2)

...
ξℓm(xn)











| {yi},Θ, η, ξ(·)−ℓm,Σ0 ∼ Nn






Σ̃ξ







η1m
∑p

j=1 θjℓσ
−2
j ỹ1j

...
ηnm

∑p
j=1 θjℓσ

−2
j ỹnj






, Σ̃ξ






, (20)

where ỹij = yij−
∑

(r,s) 6=(ℓ,m) θjrξrs(xi) and, takingK to be the Gaussian process covariance

matrix with Kij = c(xi, xj),

Σ̃−1
ξ = K−1 + diag



η21m

p
∑

j=1

θ2jℓσ
−2
j , . . . , η2nm

p
∑

j=1

θ2jℓσ
−2
j



 . (21)

Step 2 Next we sample each latent factor ηi given yi, ξ(·), Θ, Σ0. Recalling Eq. (3) and
the fact that ηi ∼ Nk∗(0, Ik∗),

ηi | yi,Θ, ξ(xi),Σ0

∼ Nk∗

(

(

I + ξ(xi)
′Θ′Σ−1

0 Θξ(xi)
)−1

ξ(xi)
′Θ′Σ−1

0 yi,
(

I + ξ(xi)
′Θ′Σ−1

0 Θξ(xi)
)−1
)

. (22)
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Step 3 Let θj· =
[

θj1 . . . θjL∗

]

. Recalling the Ga(aσ, bσ) prior on each precision pa-

rameter σ−2
j associated with the diagonal noise covariance matrix Σ0, standard conjugate

posterior analysis yields the posterior

σ−2
j | {yi},Θ, η, ξ(·) ∼ Ga

(

aσ +
n

2
, bσ +

1

2

n
∑

i=1

(yij − θj·ξ(xi)ηi)
2

)

. (23)

Step 4 Conditioned on the hyperparameters φ and τ , the Gaussian prior on the elements of
Θ specified in Eq. (11) combined with the likelihood defined by Eq. (3) imply the following
posterior for each row of Θ:

θj· | {yi}, η, ξ(·), φ, τ ∼ NL∗






Σ̃θ η̃

′σ−2
j







y1j
...
ynj






, Σ̃θ






, (24)

where η̃′ =
[

ξ(x1)η1 ξ(x2)η2 . . . ξ(xn)ηn
]

and

Σ̃−1
θ = σ−2

j η̃′η̃ + diag(φj1τ1, . . . , φjL∗τL∗). (25)

Step 5 Examining Eq. (11) and using standard conjugate analysis results in the following
posterior for each local shrinkage hyperparameter φjℓ given θjℓ and τℓ:

φjℓ | θjℓ, τℓ ∼ Ga

(

2,
3 + τℓθ

2
jℓ

2

)

. (26)

Step 6 As in Bhattacharya and Dunson [2010], the global shrinkage hyperparameters are
updated as

δ1 | Θ, τ (−1) ∼ Ga



a1 +
pL∗

2
, 1 +

1

2

L∗

∑

ℓ=1

τ
(−1)
ℓ

p
∑

j=1

φjℓθ
2
jℓ





δh | Θ, τ (−h) ∼ Ga



a2 +
p(L∗ − h+ 1)

2
, 1 +

1

2

L∗

∑

ℓ=1

τ
(−h)
ℓ

p
∑

j=1

φjℓθ
2
jℓ



 ,

(27)

where τ
(−h)
ℓ =

∏ℓ
t=1,t6=h δt for h = 1, . . . , p.

3.2. Incorporating nonparametric mean µ(x)
If one wishes to incorporate a latent factor regression model such as in Eq. (9) to induce
a predictor-dependent mean µ(x), the MCMC sampling is modified as follows. Steps 1, 3,
4, 5, and 6 are exactly as before. Now, however, the sampling of ηi of Step 2 is replaced
by a block sampling of ψ(xi) and νi. Specifically, let Ωi = Θξ(xi). We can rewrite the
observation model as yi = Ωiψ(xi) + Ωiνi + ǫi. Marginalizing out νi, yi = Ωiψ(xi) + ωi
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with ωi ∼ N (0, Σ̃i , ΩiΩ
′
i + Σ0). Assuming nonparametric mean vector components

ψℓ(·) ∼ GP(0, c), the posterior of ψℓ(·) follows analogously to that of ξ(·) resulting in











ψℓ(x1)
ψℓ(x2)

...
ψℓ(xn)











| {yi}, ψ(·)−ℓ,Θ, η, ξ(·),Σ0 ∼ Nn






Σ̃ψ







[Ω1]
′
·ℓΣ̃

−1
1 ỹ−ℓ1
...

[Ωn]
′
·ℓΣ̃

−1
n ỹ−ℓn






, Σ̃ψ






, (28)

where ỹ−ℓi = yi −
∑

(r 6=ℓ)[Ωi]·rψr(xi). Once again taking K to be the Gaussian process
covariance matrix,

Σ̃−1
ξ = K−1 + diag

(

[Ω1]
′
·ℓΣ̃

−1
1 [Ω1]·ℓ, . . . , [Ωn]

′
·ℓΣ̃

−1
n [Ωn]·ℓ

)

. (29)

Conditioned on ψ(xi), we consider ỹi = yi − Ωiψ(xi) = Ωiνi + ǫi. Then, using the fact
that νi ∼ N (0, Ik∗),

νi | ỹi, ψ(xi),Θ, ξ(xi),Σ0

∼ Nk∗

(

(

I + ξ(xi)
′Θ′Σ−1

0 Θξ(xi)
)−1

ξ(xi)
′Θ′Σ−1

0 ỹi,
(

I + ξ(xi)
′Θ′Σ−1

0 Θξ(xi)
)−1
)

. (30)

3.3. Hyperparameter Sampling
One can also consider sampling the Gaussian process length-scale hyperparameter κ. Due
to the linear-Gaussianity of the proposed covariance regression model, we can analytically
marginalize the latent Gaussian process random functions in considering the posterior of
κ. Once again taking µ(x) = 0 for simplicity, our posterior is based on marginalizing the
Gaussian process random vectors ξℓm = [ξℓm(x1) . . . ξℓm(xn)]

′. Noting that

[

y′1 y′2 . . . y′n
]′
=
∑

ℓm

[diag(η·m)⊗ θ·ℓ] ξℓm +
[

ǫ′1 ǫ′2 . . . ǫ′n
]′
, (31)

and letting Kκ denote the Gaussian process covariance matrix based on a length-scale κ,










y1
y2
...
yn











| κ,Θ, η,Σ0 ∼ Nnp











∑

ℓ,m

[diag(η·m)⊗ θ·ℓ]Kκ [diag(η·m)⊗ θ·ℓ]
′
+











Σ0

Σ0

. . .

Σ0





















.

(32)

We can then Gibbs sample κ based on a fixed grid and prior p(κ) on this grid. Note,
however, that computation of the likelihood specified in Eq. (32) requires evaluation of
an np-dimensional Gaussian for each value κ specified in the grid. For large p scenarios,
or when there are many observations yi, this may be computationally infeasible. In such
cases, a naive alternative is to iterate between sampling ξ(·) given Kκ and Kκ given ξ(·).
However, this can lead to extremely slow mixing. Alternatively, one can consider employing
the recent Gaussian process hyperparameter slice sampler of Adams and Murray [2011].

In general, because of the quadratic mixing over Gaussian process dictionary elements,
our model is relatively robust to the choice of the length-scale parameter and the computa-
tional burden imposed by sampling κ is typically unwarranted. Instead, one can pre-select
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Table 1. Computations required at each Gibbs sampling step.
Gibbs Update Computation

Step 1 L∗ × k∗ draws from an n dimensional Gaussian
Step 2 n draws from a k∗ dimensional Gaussian
Step 3 p draws from a gamma distribution
Step 4 p draws from an L∗ dimensional Gaussian
Step 5 p× L∗ draws from a gamma distribution
Step 6 L∗ draws from a gamma distribution

a value for κ using a data-driven heuristic, which leads to a quasi-empirical Bayes approach.
Recalling Equation (18), we have

− log(ACF (x)) = κ||x||22. (33)

Thus, if one can devise a procedure for estimating the autocorrelation function from the
data, one can set κ accordingly. We propose the following.

1. For a set of evenly spaced knots xk ∈ X , compute the sample covariance Σ̂(xk) from
a local bin of data yk−k0:k+k0 with k0 > p/2.

2. Compute the Cholesky decomposition C(xk) = chol(Σ̂(xk)).

3. Fit a spline through the elements of the computed C(xk). Denote the spline fit of the
Cholesky by C̃(x) for each x ∈ X

4. For i = 1, . . . , n, compute a point-by-point estimate of Σ(xi) from the splines: Σ(xi) =
C̃(xi)C̃(xi)

′.

5. Compute the autocorrelation function of each element Σij(x) of this kernel-estimated
Σ(x).

6. According to Equation (33), choose κ to best fit the most correlated Σij(x) (since less
correlated components can be captured via weightings of dictionary elements with
stronger correlation.)

3.4. Computational Considerations
In choosing a truncation level L∗ and latent factor dimension k∗, there are a number of
computational considerations. The Gibbs sampler outlined in Section 3.1 involves a large
number of simulations from Gaussian distributions, each of which requires the inversion
of an m-dimensional covariance matrix, with m the dimension of the Gaussian. For large
m, this represents a large computational burden as the operation is, in general, O(m3).
The computations required at each stage of the Gibbs sampler are summarized in Table 1.
From this table we see that depending on the number of observations n and the dimension
of these observations p, various combinations of L∗ and k∗ lead to more or less efficient
computations.

In Bhattacharya and Dunson [2010], a method for adaptively choosing the number of
factors in a non-predictor dependent latent factor model was proposed. One could directly
apply such a methodology for adaptively selecting L∗. To handle the choice of k∗, one could
consider an augmented formulation in which

Λ(x) = Θξ(x)Γ, (34)
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where Γ = diag(γ1, . . . , γk) is a diagonal matrix of parameters that shrink the columns of
ξ(x) towards zero. One can take these shrinkage parameters to be distributed as

γi ∼ N (0, ω−1
i ), ωi =

i
∏

h=1

ζh

ζ1 ∼ Ga(a3, 1), ζh ∼ Ga(a4, 1) h = 2, . . . , k.

(35)

For a4 > 1, such a model shrinks the γi values towards zero for large indices i just as
in the shrinkage prior on Θ. The γi close to zero provide insight into redundant latent
factor dimensions. Computations in this augmented model are a straightforward extension
of the Gibbs sampler presented in Section 3.1. Based on the inferred values of the latent γi
parameters, one can design an adaptive strategy similar to that for L∗.

Note that in Step 1, the n-dimensional inverse covariance matrix Σ̃−1
ξ which needs to

be inverted in order to sample ξℓm is a composition of a diagonal matrix and an inverse
covariance matrix K−1 that has entries that tend towards zero as ||xi − xj ||2 becomes

large (i.e., for distant pairs of predictors.) That is, K−1 (and thus Σ̃−1
ξ ) is nearly band-

limited, with a bandwidth dependent upon the Gaussian process parameter κ. Inverting
a given n × n band-limited matrix with bandwidth d << n can be efficiently computed in
O(m2d) [Kavcic and Moura, 2000] (versus the naive O(m3)). Issues related to tapering the
elements of K−1 to zero while maintaining positive-semidefiniteness are discussed in Zhang
and Du [2008].

4. Simulation Example

In the following simulation examples, we aim to analyze the performance of the proposed
Bayesian nonparametric covariance regression model relative to competing alternatives in
terms of both covariance estimation and predictive performance. We initially consider the
case in which Σ(x) is generated from the assumed nonparametric Bayes model in Section 4.1
and 4.2, while in Section 4.3 we simulate from a parametric model and compare to a Wishart
matrix discounting method [Prado and West, 2010] over a set of replicates.

4.1. Estimation Performance
We simulated a dataset from the model as follows. The set of predictors is a discrete set
X = {1, . . . , 100}, with a 10-dimensional observation yi generated for each xi ∈ X . The
generating mechanism was based on weightings of a latent 5 × 4 dimensional matrix ξ(·)
of Gaussian process dictionary functions (i.e, L = 5, k = 4), with length-scale κ = 10 and
an additional nugget effect adding 1e−5In to K. Here, we first scale the predictor space to
(0, 1]. The additional latent mean dictionary elements ψ(·) were similarly distributed. The
weights Θ were simulated as specified in Eq. (11) choosing a1 = a2 = 10. The precision
parameters σ−2

j were each drawn independently from a Ga(1, 0.1) distribution with mean
10. Figure 1 displays the resulting values of the elements of µ(x) and Σ(x).

For inference, we set the hyperparameters as follows. We use truncation levels k∗ =
L∗ = 10, which we found to be sufficiently large from the fact that the last few columns of
the posterior samples of Θ were consistently shrunk close to 0. We set a1 = a2 = 2 and
placed a Ga(1, 0.1) prior on the precision parameters σ−2

j . The length-scale parameter κ
was set from the data according to the heuristic described in Section 3.3 using 20 knots
evenly spaced in X = {1, . . . , 100}, and was determined to be 10 (after rounding).
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Fig. 1. Plot of each component of the (a) true mean vector µ(x) and (b) true covariance matrix Σ(x)
over the predictor space X = {1, . . . , 100}, taken here to represent a time index.
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Fig. 2. Residuals between each component of the true and posterior mean of (a) the mean µ(x),
and (b) covariance Σ(x). The scaling of the axes matches that of Figure 1. (c) Box plot of posterior
samples of the noise covariance terms σ2

j for j = 1, . . . , p compared to the true value (green).

Although experimentally we found that our sampler was insensitive to initialization
in lower-dimensional examples such as the one analyzed here, we use the following more
intricate initialization for consistency with later experiments on larger datasets in which
mixing becomes more problematic. The predictor-independent parameters Θ and Σ0 are
sampled from their respective priors (first sampling the shrinkage parameters φjℓ and δh
from their priors). The variables ηi and ξ(xi) are set via a data-driven initialization scheme
in which an estimate of Σ(xi) for i = 1, . . . , n is formed using Steps 1-4 of Section 3.3.
Then, Θξ(xi) is taken to be a k∗-dimensional low-rank approximation to the Cholesky
of the estimates of Σ(xi). The latent factors ηi are sampled from the posterior given in
Equation (22) using this data-driven estimate of Θξ(xi). Similarly, the ξ(xi) are initially
taken to be spline fits of the pseudo-inverse of the low-rank Cholesky at the knot locations
and the sampled Θ. We then iterate a couple of times between sampling: (i) ξ(·) given
{yi}, Θ, Σ0, and the data-driven estimates of η, ξ(·); (ii) Θ given {yi}, Σ0, η, and the
sampled ξ(·); (iii) Σ0 given {yi}, Θ, η, and ξ(·); and (iv) determining a new data-driven
approximation to ξ(·) based on the newly sampled Θ. Results indistinguishable from those
presented here were achieved (after a short burn-in period) by simply initializing each of Θ,
ξ(·), Σ0, ηi, and the shrinkage parameters φjℓ and δh from their respective priors.

We ran 10,000 Gibbs iterations and discarded the first 5,000 iterations. We then thinned
the chain every 10 samples. The residuals between the true and posterior mean over all
components are displayed in Figure 2(a) and (b). Figure 2(c) compares the posterior samples
of the elements σ2

j of the noise covariance Σ0 to the true values. Finally, in Figure 3 we
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Fig. 3. Plots of truth (red) and posterior mean (green) for select components of the mean µp(x) (left),
variances Σpp(x) (middle), and covariances Σpq(x) (right). The point-wise 95% highest posterior
density intervals are shown in blue. The top row represents the component with the lowest L2 error
between the truth and posterior mean. Likewise, the middle row represents median L2 error and
the bottom row the worst L2 error. The size of the box indicates the relative magnitudes of each
component.

display a select set of plots of the true and posterior mean of components of µ(x) and Σ(x),
along with the 95% highest posterior density intervals computed at each predictor value
x = 1, . . . , 100.

From the plots of Figures 2 and 3, we see that we are clearly able to capture het-
eroscedasticity in combination with a nonparametric mean regression. The true values of
the mean and covariance components are (even in the worst case) contained within the 95%
highest posterior density intervals, with these intervals typically small such that the overall
interval bands are representative of the shape of the given component being modeled.

4.2. Predictive Performance
Capturing heteroscedasticity can significantly improve estimates of the predictive distri-
bution of new observations or missing data. To explore these gains within our proposed
Bayesian nonparametric covariance regression framework, we compare against two possi-
ble homoscedastic formulations that each assume y ∼ N (µ(x),Σ). The first is a standard
Gaussian process mean regression model with each element of µ(x) an independent draw
from GP(0, c). The second builds on our proposed regularized latent factor regression model
and takes µ(x) = Θξ(x)ψ(x), with {Θ, ξ(x), ψ(x)} as defined in the heteroscedastic case.
However, instead of having a predictor-dependent covariance Σ(x) = Θξ(x)ξ(x)′Θ′ + Σ0,
the homoscedastic model assumes that Σ is an arbitrary covariance matrix constant over
predictors. By comparing to this latter homoscedastic model, we can directly analyze the
benefits of our heteroscedastic model since both share exactly the same mean regression
formulation. For each of the homoscedastic models, we place an inverse Wishart prior on
the covariance Σ.

We analyze the same simulation dataset as described in Section 4.1, but randomly remove
approximately 5% of the observations. Specifically, independently for each element yij (i.e.,
the jth response component at predictor xi) we decide whether to remove the observation
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Table 2. Average Kullback-Leibler divergence DKL(Pi,m||Qi), i = 1, . . . , 100, where Pi,m and Qi

are the predictive distributions of all missing elements yij given the observed elements of yi based
on the mth posterior sample of and true parameters µ(xi) and Σ(xi), respectively. We compare the
predictive performance for two homoscedastic models to our covariance regression framework.

Model Average Posterior Predictive KL Divergence

Homoscedastic Mean Regression 0.3409
Homoscedastic Latent Factor Mean Regression 0.2909

Heteroscedastic Mean Regression 0.1216

based on a Bernoulli(pi) draw. We chose pi to be a function of the matrix norm of the
true covariance at xi to slightly bias towards removing values from predictor regions with a
tighter distribution. This procedure resulted in removing 48 of the 1000 response elements.

Table 2 compares the averageKullback-Leibler divergenceDKL(Pi,m||Qi), i = 1, . . . , 100,
for the following definitions of Pi,m and Qi. The distribution Qi is the predictive distribu-
tion of all missing elements yij given the observed elements of yi under the true parameters
µ(xi) and Σ(xi). Likewise, Pi,m is taken to be the predictive distribution based on the
mth posterior sample of µ(xi) and Σ(xi). In this scenario, the missing observations yij are
imputed as an additional step in the MCMC computations§. The results, once again based
on 10,000 Gibbs iterations and discarding the first 5,000 samples, clearly indicate that our
Bayesian nonparametric covariance regression model provides more accurate predictive dis-
tributions. We additionally note that using a regularized latent factor approach to mean
regression improves on the naive homoscedastic model in high dimensional datasets in the
presence of limited data. Not depicted in this paper due to space constraints is the fact
that the proposed covariance regression model also leads to improved estimates of the mean
µ(x) in addition to capturing heteroscedasticity.

4.3. Model Mismatch
We now examine our performance over a set of replicates from a 30-dimensional parametric
heteroscedastic model. To generate the covariance Σ(x) over X = {1, . . . , 500}, we chose a
set of 5 evenly spaced knots xk = 1, 125, 250, 375, 500 and generated

S(xk) ∼ N (0,Σs) (36)

with Σs =
∑30
j=1 sjs

′
j and sj ∼ N ([−29 − 28 . . . 28 29]′, I30). This construction implies

that S(xk) and S(x
′
k) are correlated. We then fit a spline S̃ij(·) independently through each

element Sij(xk) and evaluate this spline fit at x = 1, . . . , 500. The covariance is constructed
as

Σ(x) = αS̃(x)S̃(x)′ +Σ0, (37)

where Σ0 is a diagonal matrix with a truncated-normal prior, T N (0, 1), on its diagonal
elements. The constant α is chosen to scale the maximum value of αS̃(x)S̃(x)′ to 1. The
resulting covariance is shown in Figure 4(a).

§Note that it is not necessary to impute the missing yij within our proposed Bayesian covariance
regression model because of the conditional independencies at each Gibbs step. In Section 5, we
simply sample based only on actual observations. Here, however, we impute in order to directly
compare our performance to the homoscedastic models.
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Fig. 4. (a) Plot of each component of the true covariance matrix Σ(x) over the predictor space
X = {1, . . . , 500}, taken to represent a time index. Analogous plot for the mean estimate of Σ(x) are
shown for (b) our proposed Bayesian nonparametric covariance regression model based on Gibbs
iterations 5000 to 10000, and (c) a Wishart matrix discounting model over 100 independent FFBS
samples. Both mean estimates of Σ(x) are for a single replicate {y

(1)
i }. Note that the scaling of (c)

crops the large estimates of Σ(x) for x near 500.

Each replicate m = 1, . . . , 30 of this parametric heteroscedastic model is generated as

y
(m)
i ∼ N (0,Σ(xi)). (38)

Our hyperparameters and initialization scheme are exactly as in Section 4. The only
difference is that we use truncation levels k∗ = L∗ = 5 based on an initial analysis with
k∗ = L∗ = 17. For each replicate, we once again run 10,000 Gibbs iterations and thin the
chain by examining every 10th sample. A mean estimate of Σ(x) is displayed in Figure 4(b).
In Figure 5, we plot the mean and 95% highest posterior density intervals of the Frobenius
norm ||Σ(τ,m)(x) − Σ(x)||2 aggregated over iterations τ = 9, 000, . . . , 10, 000 and replicates
m = 1, . . . , 30. The average norm error over X is around 3, which is equivalent to each
element of the inferred Σ(τ,m)(x) deviating from the true Σ(x) by 0.1. Since the covariance
elements are approximately in the range of [−1, 1] and the variances in [0, 3], these norm
error values indicate very good estimation performance.

We compare our performance to that of the Wishart matrix discounting model (see
Section 10.4.2 of Prado and West [2010]), which is commonly used in stochastic volatility
modeling of financial time series. Let Φt = Σ−1

t . The Wishart matrix discounting model
is a discrete-time covariance evolution model that accounts for the slowly changing covari-
ance by discounting the cumulated information. Specifically, assume Φt−1 | y1:t−1, β ∼
W (ht−1, D

−1
t−1), with Dt = βDt−1 + yty

′
t and ht = βht−1 + 1. The discounting model then

specifies

Φt | y1:t−1, β ∼W (βht−1, (βDt−1)
−1) (39)

such that E[Φt | y1:t−1] = E[Φt−1 | y1:t−1] = ht−1D
−1
t−1, but with certainty discounted

by a factor determined by β. The update with observation yt is conjugate, maintaining a
Wishart posterior on Φt. A limitation of this construction is that it constrains ht > p−1 (or
ht integral) implying that β > (p− 2)/(p− 1). We set h0 = 40 and β = 1− 1/h0 such that
ht = 40 for all t and ran the forward filtering backward sampling (FFBS) algorithm outlined
in Prado and West [2010], generating 100 independent samples. A mean estimate of Σ(x)
is displayed in Figure 4(c) and the Frobenius norm error results are depicted in Figure 5.
Within the region x = 1, . . . , 400, we see that the error of the Wishart matrix discounting
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Fig. 5. (a) Plot of the mean and 95% highest posterior density intervals of the Frobenius norm
||Σ(τ,m)(x) − Σ(x)||2 for the proposed Bayesian nonparametric covariance regression model (blue
and green) and the Wishart matrix discounting model (red and green). The results are aggregated
over 100 posterior samples and replicates m = 1, . . . , 30. For the Bayesian nonparametric covari-
ance regression model, these samples are taken at iterations τ = [9000 : 10 : 10000]. (b) Analogous
plot, but zoomed in to more clearly see the differences over the range of x = 1, . . . , 400.

method is approximately twice that of our proposed methodology. Furthermore, towards the
end of the time series (interpreting X as representing a batch of time), the estimation error
is especially poor due to errors accumulated in forward filtering. Increasing ht mitigates
this problem, but shrinks the model towards homoscedasticity. In general, the formulation
is sensitive to the choice of ht, and in high-dimensional problems this degree of freedom is
forced to take large (or integral) values.

5. Applications

We applied our Bayesian nonparametric covariance regression model to the problem of cap-
turing spatio-temporal structure in influenza rates in the United States (US). Surveillance
of influenza has been of growing interest following a series of pandemic scares (e.g., SARS
and avian flu) and the 2009 H1N1 pandemic, previously known as “swine flu”. Although
influenza pandemics have a long history, such as the 1918-1919 “Spanish flu”, 1957-1958
“Asian flu”, and 1968-1969 “Hong Kong flu”, a convergence of factors are increasing the
current public interest in influenza surveillance. These include both practical reasons such
as the rapid rate by which geographically distant cases of influenza can spread worldwide,
along with other driving factors such as an increased media coverage.

5.1. CDC Influenza Monitoring
The surveillance of influenza within the US is coordinated by the Centers for Disease Con-
trol and Prevention (CDC), which collects data from a large network of diagnostic labora-
tories, hospitals, clinics, individual healthcare providers, and state health departments (see
http://www.cdc.gov/flu/weekly/). The approximately 3,000 participating outpatient sites,
collectively referred to as the US Outpatient Influenza-Like Illness Surveillance Network
(ILINet), provide the CDC with key information about rates of influenza-like illness (ILI)¶.
The CDC consolidates the ILINet observed cases and produces reports for 10 geographic
regions in addition to a US aggregate rate based on a population-based weighted average of

¶An influenza-like illness (ILI) is defined as any case of a person having over 100 degrees Fahren-
heit fever along with a cough and/or sore throat in absence of any other known cause.
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Fig. 6. (a) Plot of the number of isolates tested positive by the WHO and NREVSS over the period
of September 29, 2003 to May 23, 2010. The isolates are divided into virus subtypes, specifically
influenza A (H3N2, H1 = {H1N2 and H1N1}, 2009 H1N1) and influenza B. The isolates where
subtyping was not performed or was not possible are also indicated. (b) Plot of posterior means of
the nonparametric mean function µj(x) for each of the 183 states and regions in the Google Trends
Flu dataset. The thick yellow line indicates the Google Flu Trends estimate of the United States
influenza rates. (c) For New York, the 25th, 50th, and 75th quantiles of correlation with the 182 other
states and regions based on the posterior mean Σ̂(x) of the covariance function. The black line is a
scaled version of the United States influenza rates, as in (b), shown for easy comparison. The green
line shown in plots (a)-(c) indicates the time periods determined to flu events. Specifically, Event A
corresponds to the 2003-2004 flu season (flu shot shortage), Event B the 2004-2005 season, Event
C the 2005-2006 season (avian flu scare), Event D the 2006-2007 season, Event E the 2007-2008
season (severe), and Event F the 2009-2010 season (2009 H1N1 or “swine flu”).

state-level rates. The CDC weekly flu reports are typically released after a 1-2 week delay
and are subject to retroactive adjustments based on corrected ILINet reports.

A plot of the number of isolates tested positive by the WHO and NREVSS from 2003-
2010 is shown in Figure 6(a). From these data and the CDC weekly flu reports, we defined
a set of six events (Events A-F) corresponding to the 2003-2004, 2004-2005, 2005-2006,
2006-2007, 2007-2008, and 2009-2010 flu seasons, respectively. The 2003-2004 flu season
began earlier than normal, and coincided with a flu vaccination shortage in many states.
For the vaccination that was available, the CDC found that it was “not effective or had very
low effectiveness” (http://www.cdc.gov/media/pressrel/fs040115.htm). The 2004-2005 and
2007-2008 flu seasons were more severe than the 2005-2006 and 2006-2007 seasons. However,
the 2005-2006 season coincided with an avian flu (H5N1) scare in which Dr. David Narbarro,
Senior United Nations System Coordinator for Avian and Human Influenza, was famously
quoted as predicting that an avian flu pandemic would lead to 5 million to 150 million
deaths. Finally, the 2009-2010 flu season coincides with the emergence of the 2009 H1N1
(“swine flu”) subtype‖ in the United States.

5.2. Google Flu Trends Dataset
To aid in a more rapid response to influenza activity, a team of researchers at Google devised
a model based on Google user search queries that is predictive of CDC ILI rates [Ginsberg
et al., 2008]—that is, the probability that a random physician visit is related to an influenza-

‖According to the CDC, “Antigenic characterization of 2009 influenza A (H1N1) viruses indicates
that these viruses are only distantly related antigenically and genetically to seasonal influenza A
(H1N1) viruses”. See http://www.cdc.gov/flu/weekly/weeklyarchives2009-2010/weekly20.htm.
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like illness. The Google Flu Trends methodology was devised as follows. From the hundreds
of billions of individual searches from 2003-2008, time series of state-based weekly query
rates were created for the 50 million most common search terms. The predictive performance
of a regression on the logit-transformed query rates was examined for each of the 50 million
candidates and a ranked list was produced that rewarded terms predictive of rates exhibiting
similar regional variations to that of the CDC data. A massive variable selection procedure
was then performed to find the optimal combination of query words (based on best fit
against out-of-sample ILI data), resulting in a final set of 45 ILI-related queries. Using the
45 ILI-related queries as the explanatory variable, a region-independent univariate linear
model was fit to the weekly CDC ILI rates from 2003-2007. This model is used for making
estimates in any region based on the ILI-related query rates from that region. The results
were validated against the CDC data both on training and test data, with the Google
reported US and regional rates closely tracking the actual reported rates.

A key advantage of the Google data (available at http://www.google.org/flutrends/) is
that the ILI rate predictions are available 1 to 2 weeks before the CDC weekly reports are
published. Additionally, a user’s IP address is typically connected with a specific geographic
area and can thus provide information at a finer scale than the 10-regional and US aggregate
reporting provided by the CDC. Finally, the Google reports are not subject to revisions.
One important note is that the Google Flu Trends methodology aims to hone in on searches
and rates of such searches that are indicative of influenza activity. A methodology based
directly on raw search queries might instead track general interest in influenza, waxing and
waning quickly with various media events.

We analyze the Google Flu Trends data from the week of September 28, 2003 through
the week of October 24, 2010, providing 370 observation vectors yi. Each observation vector
is 183-dimensional with elements consisting of Google estimated ILI rates at the US national
level, the 50 states, 10 U.S. Department of Health & Human Services surveillance regions,
and 122 cities. It is important to note, however, that there is substantial missing data with
entire blocks of observations unavailable (as opposed to certain weeks sporadically being
omitted). At the beginning of the examined time frame only 114 of the 183 regions were
reporting. By the end of Year 1, there were 130 regions. These numbers increased to 173,
178, 180, and 183 by the end of Years 2, 3, 4, and 5, respectively. The high-dimensionality
and missing data structure make the Google Flu Trends dataset challenging to analyze in
its entirety with existing heteroscedastic models. As part of an exploratory data analysis,
in Figure 7 we plot sample estimates of the geographic correlation structure between the
states during an event period for four representative states. Specifically, we first subtract
a moving average estimate of the mean (window size 10) and then aggregate the data
over Events B-F, omitting Event A due to the quantity of missing data. Because of the
dimensionality of the data (183 dimensions) and the fact that there are only 157 event
observations, we simply consider the state-level observations (plus District of Columbia),
reducing the dimensionality to 51. The limited data also impedes our ability to perform
time-specific sample estimates of geographic correlations.

5.3. Heteroscedastic Modeling of Google Flu Trends
Our proposed heteroscedastic model allows one to capture both spatial and temporal
changes in correlation structure, providing an important additional tool in predicting in-
fluenza rates. We specifically consider yi ∼ N (µ(xi),Σ(xi)) with the nonparametric func-
tion µ(xi) = Θξ(xi)ψ(xi) defining the mean of the ILI rates in each of the 183 regions. For
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Fig. 7. For each of four geographically distinct states (New York, California, Georgia, and South
Dakota), plots of correlations between the state and all other states based on the sample covariance
estimate from aggregating the state-level data during the event periods B-F after subtracting a moving
average estimate of the mean. Event A was omitted due to an insufficient number of states reporting.
Note that South Dakota is missing 58 of the 157 Event B-F observations.

a given week xi, the spatial correlation structure is captured by the covariance Σ(xi) =
Θξ(xi)ξ(xi)

′Θ′ + Σ0. Temporal changes are implicitly modeled through the proposed co-
variance regression framework that allows for continuous variations in Σ(xi). Dukić et al.
[2009] also examine portions of the Google Flu Trends data, but with the goal of on-line
tracking of influenza rates on either a national, state, or regional level. Specifically, they
employ a state-space model with particle learning. Our goal differs considerably. We aim to
jointly analyze the full 183-dimensional data, as opposed to univariate modeling. Through
such joint modeling, we can uncover important spatial dependencies lost when analyzing
components of the data individually. Such spatial information can be key in predicting in-
fluenza rates based on partial observations from select regions or in retrospectively imputing
missing data.

There are a few crucial points to note. The first is that no geographic information is
provided to our model. Instead, the spatial structure is uncovered simply from analyzing the
raw 183-dimensional time series and patterns therein. Second, because of the substantial
quantity of missing data, imputing the missing values as in Section 4.2 is less ideal than
simply updating our posterior based solely on the data that is available. The latter is how
we chose to analyze the Google Flu Trends data—our ability to do so without introducing
any approximations is a key advantage of our proposed methodology.

The results presented in Figures 6 and 8 clearly demonstrate that we are able to capture
both spatial and temporal changes in correlations in the Google Flu Trends data, even in the
presence of substantial missing information. We preprocessed the data by scaling the entire
dataset by one over the largest variance of any of the 183 time series. The hyperparameters
were set as in the simulation study of Section 4, except with larger truncation levels L∗ = 10
and k∗ = 20 and with the Gaussian process length-scale hyperparameter set to κ = 100
to account for the time scale (weeks) and the rate at which ILI incidences change. Once
again, by examining posterior samples of Θ, we found that the chosen truncation level
was sufficiently large. We ran 10 chains each for 10,000 MCMC iterations, discarded the
first 5,000 for burn-in, and then thinned the chains by examining every 10 samples. Each
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Fig. 8. For each of four geographically distinct states (New York, California, Georgia, and South
Dakota) and each of three key dates (February 2006 of Event C, February 2008 of Event E, and
November 2009 of Event F), plots of correlations between the state and all other states based on the
posterior mean Σ̂(x) of the covariance function. The plots clearly indicate spatial structure captured
by Σ(x), and that these spatial dependencies change over time. Note that no geographic information
was included in our model. Compare to the maps of Figure 7.

chain was initialized with parameters sampled from the prior. To assess convergence, we
performed the modified Gelman-Rubin diagnostic of Brooks and Gelman [1998] on the
MCMC samples of the variance terms Σjj(xi) for j corresponding to the state indices of
New York, California, Georgia, and South Dakota, and xi corresponding to the midpoint
of each of the 12 event and non-event time windows∗∗. These elements are spatially and
geographically disparate, with South Dakota corresponding to an element with substantial
missing data. Of the 48 resulting variables examined (4 states and 12 time points), 40 had
potential scale reduction factors R1/2 < 1.2 and most R1/2 < 1.1. The variables with larger
R1/2 (all less than 1.4) corresponded to two non-event time periods. We also performed
hyperparameter sensitivity, doubling the length-scale parameter to κ = 200 (implying less

∗∗Our tests used the code provided at http://www.lce.hut.fi/research/mm/mcmcdiag/.
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temporal correlation) and using a larger truncation level of L∗ = k∗ = 20 with less stringent
shrinkage hyperparameters a1 = a2 = 2 (instead of a1 = a2 = 10). The results were very
similar to those presented in this section, with all conclusions remaining the same.

In Figure 6(b), we plot the posterior mean of the 183 components of µ(x), showing
trends that follow the Google estimated US national ILI rate. For New York, in Figure 6(c)
we plot the 25th, 50th, and 75th quantiles of correlation with the 182 other states and
regions based on the posterior mean Σ̂(x) of the covariance function. From this plot, we
immediately notice that regions become more correlated during flu seasons, as we would
expect. The specific geographic structure of these correlations is displayed in Figure 8,
where we see key changes with the specific flu event. In the more mild 2005-2006 season,
we see much more local correlation structure than the more severe 2007-2008 season (which
still maintains stronger regional than distant correlations.) The November 2009 H1N1 event
displays overall regional correlation structure and values similar to the 2007-2008 season, but
with key geographic areas that are less correlated. Note that some geographically distant
states, such as New York and California, are often highly correlated as we might expect
based on their demographic similarities and high rates of travel between them. Interestingly,
the strong local spatial correlation structure for South Dakota in February 2006 has been
inferred before any data are available for that state. Actually, no data are available for South
Dakota from September 2003 to November 2006. Despite this missing data, the inferred
correlation structures over these years are fairly consistent with those of neighboring states
and change in manners similar to the flu-to-non-flu changes inferred after data for South
Dakota are available.

Comparing the maps of Figure 8 to those of the sample-based estimates in Figure 7, we
see much of the same correlation structure, which at a high level validates our findings. Since
the sample-based estimates aggregate data over Events B-F (containing those displayed in
Figure 8), they tend to represent a time-average of the event-specific correlation structure we
uncovered. Note that due to the dimensionality of the dataset, the sample-based estimates
are based solely on state-level measurements and thus are unable to harness the richness (and
crucial redundancy) provided by the other regional reporting agencies. Furthermore, since
there are a limited number of per-event observations, the naive approach of forming sample
covariances based on local bins of data is infeasible. The high-dimensionality and missing
data structure of this dataset also limit our ability to compare to alternative methods such as
those cited in Section 1—none yield results directly comparable to the full analysis we have
provided here. Instead, they are either limited to examination of the small subset of data for
which all observations are present and/or a lower-dimensional selection (or projection) of
observations. On the other hand, our proposed algorithm can readily utilize all information
available to model the heteroscedasticity present here. (Compare to the common GARCH
models, which cannot handle missing data and are limited to typically no more than 5
dimensions.) In terms of computational complexity, each of our chains of 10,000 Gibbs
iterations based on a naive implementation in MATLAB (R2010b) took approximately 12
hours on a machine with four Intel Xeon X5550 Quad-Core 2.67GHz processors and 48 GB
of RAM.

6. Discussion

In this paper, we have presented a Bayesian nonparametric approach to covariance regres-
sion which allows an unknown p × p dimensional covariance matrix Σ(x) to vary flexibly
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over x ∈ X , where X is some arbitrary (potentially multivariate) predictor space. Foun-
dational to our formulation is quadratic mixing over a collection of dictionary elements,
assumed herein to be Gaussian process random functions, defined over X . By inducing a
prior on ΣX = {Σ(x), x ∈ X} through a shrinkage prior on a predictor-dependent latent
factor model, we are able to scale to the large p domain. Our proposed methodology also
yields computationally tractable algorithms for posterior inference via fully conjugate Gibbs
updates—this is crucial in our being able to analyze high-dimensional multivariate datasets.
We demonstrated the utility of our Bayesian covariance regression framework through both
simulated studies and analysis of the Google Trends flu dataset, the latter having nearly
200 dimensions.

There are many possible interesting and relatively direct extensions of the proposed
covariance regression framework. The most immediate are those that fall into the categories
of (i) addressing the limitations of our current assumption of Gaussian marginals, and (ii)
scaling to datasets with large numbers of observations.

In longitudinal studies or spatio-temporal datasets, one is faced with repeated collections
of observations over the predictor space. These collections are clearly not independent. To
cope with such data, one could envision embedding the current framework within a hier-
archical model (e.g., to model random effects on a mean), or otherwise use the proposed
methodology as a building block in more complicated models. Additionally, it would be
trivial to extend our framework to accommodate multivariate categorical responses, or joint
categorical and continuous responses, by employing the latent variable probit model of Al-
bert and Chib [1993]. This would lead, for example, to a more flexible class of multivariate
probit models in which the correlation between variables can change with time and other
factors. For computation, the use of parameter expansion allows us to simply modify our
current MCMC algorithm to include a data augmentation step for imputing the underlying
continuous variables. Imposing the constraints on the covariance could be deferred to a
post-processing stage. Another interesting direction for future research is to consider em-
bedding our covariance regression model in a Gaussian copula model. One possible means
of accomplishing this is through a variant of the approach proposed by Hoff [2007], which
avoids having to completely specify the marginal distributions.

As discussed in Section 3.4, our sampler relies on L ∗×k∗ draws from an n-dimensional
Gaussian (i.e., posterior draws of our Gaussian process random dictionary functions). For
very large n, this becomes infeasible in practice since computations are, in general, O(n3).
Standard tools for scaling up Gaussian process computation to large datasets, such as co-
variance tapering [Kaufman et al., 2008, Du et al., 2009] and the predictive process [Banerjee
et al., 2008], can be applied directly in our context. Additionally, one might consider using
the integrated nested Laplace approximations of Rue et al. [2009] for computations. The
size of the dataset (both in terms of n and p) also dramatically affects our ability to sample
the Gaussian process length-scale hyperparameter κ since our proposed method relies on
samples from an np-dimensional Gaussian. See Section 3.3 for details and possible methods
of addressing this issue. If it is feasible to perform inference over the length-scale parameter,
one can consider implicitly including a test for homoscedasticity by considering κ taking
values in the extended reals (i.e., ℜ⋃{∞}) and thus allowing our formulation to collapse
on the simpler model if κ = ∞.

Finally, we note that there are scenarios in which the functional data itself is covariance-
valued, such as in diffusion tensor imaging. In this case, each voxel in an image consists
of a 3× 3 covariance matrix that has potential spatio-temporal dependencies. Specifically,
take Σij(t) to represent the observed covariance matrix for subject i at pixel j and time t.
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Here, one could imagine replacing the Gaussian process dictionary elements with splines and
embedding this model within a hierarchical structure to allow variability among subjects
while borrowing information.

As we readily see, the presented Bayesian nonparametric covariance regression frame-
work easily lends itself to many interesting directions for future research with the potential
for dramatic impact in many applied domains.
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A. Proofs of Theorems and Lemmas

Proof (Proof of Theorem 2.1). Since X is compact, for every ǫ0 > 0 there exists
an open covering of ǫ0-balls Bǫ0(x0) = {x : ||x−x0||2 < ǫ0} with a finite subcover such that
⋃

x0∈X0
Bǫ0(x0) ⊃ X , where |X0| = n. Then,

ΠΣ

(

sup
x∈X

||Σ(x) − Σ∗(x)||2 < ǫ

)

= ΠΣ

(

max
x0∈X0

sup
x∈Bǫ0

(x0)

||Σ(x) − Σ∗(x)||2 < ǫ

)

. (40)

Define Z(x0) = supx∈Bǫ0
(x0) ||Σ(x) − Σ∗(x)||2. Since

ΠΣ

(

max
x0∈X′

Z(x0) < ǫ

)

> 0 ⇐⇒ ΠΣ (Z(x0) < ǫ) > 0, ∀x0 ∈ X0, (41)

we only need to look at each ǫ0-ball independently, which we do as follows.

ΠΣ

(

sup
x∈Bǫ0

(x0)

||Σ(x)− Σ∗(x)||2 < ǫ

)

≥ ΠΣ

(

||Σ(x0)− Σ∗(x0)||2 + sup
x∈Bǫ0

(x0)

||Σ∗(x0)− Σ∗(x)||2 + sup
x∈Bǫ0

(x0)

||Σ(x0)− Σ(x)||2 < ǫ

)

≥ ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ǫ/3)

· ΠΣ

(

sup
x∈Bǫ0

(x0)

||Σ∗(x0)− Σ∗(x)||2 < ǫ/3

)

·ΠΣ

(

sup
x∈Bǫ0

(x0)

||Σ(x0)− Σ(x)||2 < ǫ/3

)

,

(42)

where the first inequality comes from repeated uses of the triangle inequality, and the second
inequality follows from the fact that each of these terms is an independent event. We
evaluate each of these terms in turn. The first follows directly from the assumed continuity
of Σ∗(·). The second will follow from a statement of (almost sure) continuity of Σ(·) that
arises from the (almost sure) continuity of the ξℓk(·) ∼ GP(0, c) and the shrinkage prior on
θℓk (i.e., θℓk → 0 almost surely as ℓ→ ∞, and does so “fast enough”.) Finally, the third will
follow from the support of the conditionally Wishart prior on Σ(x0) at every fixed x0 ∈ X .

Based on the continuity of Σ∗(·), for all ǫ/3 > 0 there exists an ǫ0,1 > 0 such that

||Σ∗(x0)− Σ∗(x)||2 < ǫ/3, ∀||x− x0||2 < ǫ0,1. (43)
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Therefore, ΠΣ

(

supx∈Bǫ0,1
(x0) ||Σ∗(x0)− Σ∗(x)||2 < ǫ/3

)

= 1.

Based on Theorem 2.2, each element of Λ(·) , Θξ(·) is almost surely continuous on X
assuming k finite. Letting gjk(x) = [Λ(x)]jk ,

[Λ(x)Λ(x)′]ij =

k
∑

m=1

gim(x)gjm(x), ∀x ∈ X . (44)

Eq. (44) represents a finite sum over pairwise products of almost surely continuous functions,
and thus results in a matrix Λ(x)Λ(x)′ with elements that are almost surely continuous on
X . Therefore, Σ(x) = Λ(x)Λ(x)′ +Σ0 = Θξ(x)ξ(x)′Θ′ +Σ0 is almost surely continuous on
X . We can then conclude that for all ǫ/3 > 0 there exists an ǫ0,2 > 0 such that

ΠΣ

(

sup
x∈Bǫ0,2

(x0)

||Σ(x0)− Σ(x)||2 < ǫ/3

)

= 1. (45)

To examine the third term, we first note that

ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ǫ/3)

= ΠΣ

(

||Θξ(x0)ξ(x0)′Θ′ +Σ0 −Θ∗ξ∗(x0)ξ
∗(x0)

′Θ∗′

+Σ∗
0||2 < ǫ/3

)

, (46)

where {ξ∗(x0),Θ∗,Σ∗
0} is any element ofXξ⊗XΘ⊗XΣ0

such that Σ∗(x0) = Θ∗ξ∗(x0)ξ
∗(x0)

′Θ∗′

+
Σ∗

0. Such a factorization exists by Lemma 2.1. We can then bound this prior probability by

ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ǫ/3)

≥ ΠΣ

(

||Θξ(x0)ξ(x0)′Θ′ −Θ∗ξ∗(x0)ξ
∗(x0)

′Θ∗′ ||2 < ǫ/6
)

ΠΣ0
(||Σ0 − Σ∗

0||2 < ǫ/6)

≥ ΠΣ

(

||Θξ(x0)ξ(x0)′Θ′ −Θ∗ξ∗(x0)ξ
∗(x0)

′Θ∗′ ||2 < ǫ/6
)

ΠΣ0

(

||Σ0 − Σ∗
0||∞ < ǫ/(6

√
π)
)

,

(47)

where the first inequality follows from the triangle inequality, and the second from the
fact that for all A ∈ ℜp×p, ||A||2 ≤ √

p||A||∞, with the sup-norm defined as ||A||∞ =

max1≤i≤p
∑p
i=1 |aij |. Since Σ0 = diag(σ2

1 , . . . , σ
2
p) with σ2

i
i.i.d.∼ Ga(aσ, bσ), the support of

the gamma prior implies that

ΠΣ0

(

||Σ0 − Σ∗
0||∞ < ǫ/(6

√
π)
)

= ΠΣ0

(

max
1≤i≤p

|σ2
i − σ∗2

i | < ǫ/(6
√
π)

)

> 0. (48)

Recalling that [ξ(x0)]ℓk = ξℓk(x0) with ξℓk(x0)
i.i.d.∼ N (0, 1) and taking Θ ∈ ℜp×L with

rank(Θ) = p,

Θξ(x0)ξ(x0)
′Θ′ | Θ ∼ W(k,ΘΘ′). (49)

When k ≥ p, Θξ(x0)ξ(x0)
′Θ′ is invertible (i.e., full rank) with probability 1.

By Assumption 2.2, there is positive probability under ΠΘ on the set of Θ such that
rank(Θ) = p. Since Θ∗ξ∗(x0)ξ

∗(x0)
′Θ∗′

is an arbitrary symmetric positive semidefinite
matrix in ℜp×p, and based on the support of the Wishart distribution,

ΠΣ

(

||Θξ(x0)ξ(x0)′Θ′ −Θ∗ξ∗(x0)ξ
∗(x0)

′Θ∗′ ||2 < ǫ/6
)

> 0. (50)
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We thus conclude that ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ǫ/3) > 0.
For every Σ∗(·) and ǫ > 0, let ǫ0 = min(ǫ0,1, ǫ0,2) with ǫ0,1 and ǫ0,2 defined as above.

Then, combining the positivity results of each of the three terms in Eq. (42) completes the
proof.

Proof (Proof of Theorem 2.2). We can represent each element of Λ(·) as follows:

[Λ(·)]jk = lim
L→∞





















θ11 θ12 . . . θ1L
θ21 θ22 . . . θ2L
...

...
. . .

...
θp1 θp2 . . . θpL





















ξ11(·) ξ12(·) . . . ξ1k(·)
ξ21(·) ξ22(·) . . . ξ2k(·)

...
...

. . .
...

ξL1(·) ξL2(·) . . . ξLk(·)





















jk

=

∞
∑

ℓ=1

θjℓξℓk(·).

(51)

If ξℓk(x) is continuous for all ℓ, k and sn(x) =
∑∞

ℓ=1 θjℓξℓk(x) uniformly converges almost
surely to some gjk(x), then gjk(x) is almost surely continuous. That is, if for all ǫ > 0 there
exists an N such that for all n ≥ N

Pr

(

sup
x∈X

|gjk(x) − sn(x)| < ǫ

)

= 1, (52)

then sn(x) converges uniformly almost surely to gjk(x) and we can conclude that gjk(x) is
continuous based on the definition of sn(x). To show almost sure uniform convergence, it
is sufficient to show that there exists an Mn with

∑∞
n=1Mn almost surely convergent and

sup
x∈X

|θjnξnk(x)| ≤Mn. (53)

Let cnk = supx∈X |ξnk(x)|. Then,
sup
x∈X

|θjnξnk(x)| ≤ |θjn|cnk. (54)

Since ξnk(·) i.i.d.∼ GP(0, c) and X is compact, cnk <∞ and E[cnk] = c̄ with c̄ finite. Defining
Mn = |θjn|cnk,

EΘ,c

[

∞
∑

n=1

Mn

]

= EΘ

[

Ec|Θ

[

∞
∑

n=1

|θjn|cnk | Θ
]]

= EΘ

[

∞
∑

n=1

|θjn|c̄
]

= c̄

∞
∑

n=1

EΘ [|θjn|] , (55)

where the last equality follows from Fubini’s theorem. Based on Assumption 2.1, we con-
clude that E[

∑∞
n=1Mn] <∞ which implies that

∑∞
n=1Mn converges almost surely.

Proof (Proof of Lemma 2.2). Recall that θjℓ ∼ N (0, φ−1
jℓ τ

−1
ℓ ) with φjℓ ∼ Ga(3/2, 3/2)

and τℓ =
∏ℓ
h=1 δh for δ1 ∼ Ga(a1, 1), δh ∼ Ga(a2, 1). Using the fact that if x ∼ N (0, σ) then

E[|x|] = σ
√

2/π and if y ∼ Ga(a, b) then 1/y ∼ Inv-Ga(a, 1/b) with E[1/y] = 1/(b · (a−1)),
we derive that
∞
∑

ℓ=1

Eθ[|θjℓ|] =
∞
∑

ℓ=1

Eφ,τ [Eθ|φ,τ [|θjℓ| | φjℓ, τℓ]] =
√

2

π

∞
∑

ℓ=1

Eφ,τ [φ
−1
jℓ τ

−1
ℓ ]

=

√

2

π

∞
∑

ℓ=1

Eφ[φ
−1
jℓ ]Eτ [τ

−1
ℓ ] =

4

3

√

2

π

∞
∑

ℓ=1

Eδ

[

ℓ
∏

h=1

1

δh

]

=
1

a1 − 1

4

3

√

2

π

∞
∑

ℓ=1

1

a2 − 1

ℓ−1

.

(56)

When a2 > 2, we conclude that
∑

ℓE[|θjℓ|] <∞.
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Proof (Proof of Lemma 2.3). Recall that Σ(x) = Θξ(x)ξ(x)′Θ′ + Σ0 with Σ0 =
diag(σ2

1 , . . . , σ
2
p). The elements of the respective matrices are independently distributed as

θiℓ ∼ N (0, φ−1
iℓ τ

−1
ℓ ), ξℓk(·) ∼ GP(0, c), and σ−2

i ∼ Gamma(aσ, bσ). Let µσ and σ2
σ represent

the mean and variance of the implied inverse gamma prior on σ2
i , respectively. In all of the

following, we first condition on Θ and then use iterated expectations to find the marginal
moments.

The expected covariance matrix at any predictor location x is simply derived as

E[Σ(x)] = E[E[Σ(x) | Θ]] = E[E[Θξ(x)ξ(x)′Θ′ | Θ]] + µσIp

= kE[ΘΘ′] + µσIp

= diag(k
∑

ℓ

φ−1
1ℓ τ

−1
ℓ + µσ, . . . , k

∑

ℓ

φ−1
pℓ τ

−1
ℓ + µσ).

Here, we have used the fact that conditioned on Θ, Θξ(x)ξ(x)′Θ′ is Wishart distributed
with mean kΘΘ′ and

E[ΘΘ′]ij =
∑

ℓ

∑

ℓ′

E[θiℓθjℓ′ ] =
∑

ℓ

E[θ2iℓ]δij

=
∑

ℓ

var(θiℓ)δij =

(

∑

ℓ

φ−1
iℓ τ

−1
ℓ

)

δij .

Proof (Proof of Lemma 2.4). One can use the conditionally Wishart distribution
of Θξ(x)ξ(x)′Θ′ to derive cov(Σij(x),Σuv(x)). Specifically, let S = Θξ(x)ξ(x)′Θ′. Then

S =
∑k

n=1 z
(n)z(n)

′

with z(n) | Θ ∼ N (0,ΘΘ′) independently for each n. Then, using
standard Gaussian second and fourth moment results,

cov(Σij(x),Σuv(x) | Θ) = cov(Sij , Suv | Θ) + σ2
σδijuv

=
k
∑

n=1

E[z
(n)
i z

(n)
j z(n)u z(n)v | Θ]− E[z

(n)
i z

(n)
j | Θ]E[z(n)u z(n)v | Θ] + σ2

σδijuv

= k((ΘΘ′)iu(ΘΘ′)jv + (ΘΘ′)iv(ΘΘ′)ju) + σ2
σδijuv .

Here, δijuv = 1 if i = j = u = v and is 0 otherwise. Taking the expectation with respect to
Θ yields cov(Σij(x),Σuv(x)). However, instead of looking at one slice of the predictor space,
what we are really interested in is how the correlation between elements of the covariance
matrix changes with predictors. Thus, we work directly with the latent Gaussian processes
to derive cov(Σij(x),Σuv(x

′)). Let

gin(x) =
∑

ℓ

θiℓξℓn(x), (57)

implying that gin(x) is independent of all gim(x′) for any m 6= n and all x′ ∈ X . Since
each ξℓn(·) is distributed according to a zero mean Gaussian process, gin(x) is zero mean.
Using this definition, we condition on Θ (which is dropped in the derivations for notational
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simplicity) and write

cov(Σij(x),Σuv(x
′) | Θ) =

k
∑

n=1

cov(gin(x)gjn(x), gun(x
′), gvn(x

′)) + σ2
σδijuv

=

k
∑

n=1

E[gin(x)gjn(x)gun(x
′), gvn(x

′)]− E[gin(x)gjn(x)]E[gun(x
′), gvn(x

′)] + σ2
σδijuv

We replace each gkn(x) by the form in Equation (57), summing over different dummy indices
for each. Using the fact that ξℓn(x) is independent of ξℓ′n(x

′) for any ℓ 6= ℓ′ and that each
ξℓn(x) is zero mean, all cross terms in the resulting products cancel if a ξℓn(x) arising from
one gkn(x) does not share an index ℓ with at least one other ξℓn(x) arising from another
gpn(x). Thus,

cov(Σij(x),Σuv(x
′) | Θ) =

k
∑

n=1

∑

ℓ

θiℓθjℓθuℓθvℓE[ξ2ℓn(x)ξ
2
ℓn(x

′)]

+
∑

ℓ

θiℓθuℓE[ξℓn(x)ξℓn(x
′)]
∑

ℓ′ 6=ℓ

θjℓ′θvℓ′E[ξℓ′n(x)ξℓ′n(x
′)]

+
∑

ℓ

θiℓθjℓE[ξ2ℓn(x)]
∑

ℓ′ 6=ℓ

θuℓ′θvℓ′E[ξ2ℓ′n(x
′)]

−
∑

ℓ

θiℓθjℓE[ξ2ℓn(x)]
∑

ℓ′

θuℓ′θvℓ′E[ξ2ℓ′n(x
′)] + σ2

σδijuv

The Gaussian process moments are given by

E[ξ2ℓn(x)] = 1

E[ξℓn(x)ξℓn(x
′)] = E[E[ξℓn(x) | ξℓn(x′)]ξℓn(x′)] = c(x, x′)E[ξ2ℓn(x

′)] = c(x, x′)

E[ξ2ℓn(x)ξ
2
ℓn(x

′)] = E[E[ξ2ℓn(x) | ξℓn(x′)]ξ2ℓn(x′)]
= E[{(E[ξℓn(x) | ξℓn(x′)])2 + var(ξℓn(x) | ξℓn(x′))}ξ2ℓn(x′)]
= c2(x, x′)E[ξ4ℓn(x

′)] + (1 − c2(x, x′))E[ξ2ℓn(x
′)] = 2c2(x, x′) + 1,

from which we derive that

cov(Σij(x),Σuv(x
′) | Θ) = k

{

(2c2(x, x′) + 1)
∑

ℓ

θiℓθjℓθuℓθvℓ + c2(x, x′)
∑

ℓ

θiℓθuℓ
∑

ℓ′ 6=ℓ

θjℓ′θvℓ′

+
∑

ℓ

θiℓθjℓ
∑

ℓ′ 6=ℓ

θuℓ′θvℓ′ −
∑

ℓ

θiℓθjℓ
∑

ℓ′

θuℓ′θvℓ′

}

+ σ2
σδijuv

= kc2(x, x′)

{

∑

ℓ

θiℓθjℓθuℓθvℓ +
∑

ℓ

θiℓθuℓ
∑

ℓ′

θjℓ′θvℓ′

}

+ σ2
σδijuv .

An iterated expectation with respect to Θ yields the following results. When i 6= u
or j 6= v, the independence between θiℓ (or θjℓ) and the set of other θkℓ implies that
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cov(Σij(x),Σuv(x
′)) = 0. When i = u and j = v, but i 6= j,

cov(Σij(x),Σij(x
′)) = kc2(x, x′)

{

∑

ℓ

E[θ2iℓ]E[θ2jℓ] +
∑

ℓ

E[θ2iℓ]
∑

ℓ′

E[θ2jℓ′ ]

}

= kc2(x, x′)

{

∑

ℓ

φ−1
iℓ φ

−1
jℓ τ

−2
ℓ +

∑

ℓ

φ−1
iℓ τ

−1
ℓ

∑

ℓ′

φ−1
jℓ′ τ

−1
ℓ′

}

.

Finally, when i = j = u = v,

cov(Σii(x),Σii(x
′)) = kc2(x, x′)







2
∑

ℓ

E[θ4iℓ] +
∑

ℓ

E[θ2iℓ]
∑

ℓ′ 6=ℓ

E[θ2iℓ′ ]







+ σ2
σ

= kc2(x, x′)







6
∑

ℓ

φ−2
iℓ τ

−2
ℓ +

∑

ℓ

φ−1
iℓ τ

−1
ℓ

∑

ℓ′ 6=ℓ

φ−1
iℓ′ τ

−1
ℓ′







+ σ2
σ

= kc2(x, x′)

{

5
∑

ℓ

φ−2
iℓ τ

−2
ℓ + (

∑

ℓ

φ−1
iℓ τ

−1
ℓ )2

}

+ σ2
σ.

B. Derivation of Gibbs Sampler

In this Appendix, we derive the conditional distribution for sampling the Gaussian process
dictionary elements. Combining Eq. (3) and Eq. (4), we have that

yi = Θ











ξ11(xi) ξ12(xi) . . . ξ1k(xi)
ξ21(xi) ξ22(xi) . . . ξ2k(xi)

...
...

. . .
...

ξL1(xi) ξL2(xi) . . . ξLk(xi)











ηi + ǫi = Θ







∑k
m=1 ξ1m(xi)ηim

...
∑k

m=1 ξLm(xi)ηLm






+ ǫi (58)

implying that

yij =
L
∑

ℓ=1

k
∑

m=1

θjℓηimξℓm(xi) + ǫij . (59)

Conditioning on ξ(·)−ℓm, we rewrite Eq. (58) as

yi = ηim







θ1ℓ
...
θpℓ






ξℓm(xi) + ǫ̃i, ǫ̃i ∼ N






µℓm(xi) ,







∑

(r,s) 6=(ℓ,m) θ1rηisξrs(xi)
...

∑

(r,s) 6=(ℓ,m) θprξrs(xi)






,Σ0






.

(60)

Let θ·ℓ =
[

θ1ℓ . . . θpℓ
]′
. Then,







y1
...
yn






=











η1mθ·ℓ 0 . . . 0
0 η2mθ·ℓ . . . 0
...

...
. . .

...
0 0 . . . ηnmθ·ℓ





















ξℓm(x1)
ξℓm(x2)

...
ξℓm(xn)











+











ǫ̃1
ǫ̃2
...
ǫ̃n











(61)
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Defining Aℓm = diag(η1mθ·ℓ, . . . , ηnmθ·ℓ), our Gaussian process prior on the dictionary
elements ξℓm(·) implies the following conditional posterior











ξℓm(x1)
ξℓm(x2)

...
ξℓm(xn)











| {yi},Θ, η, ξ(·),Σ0 ∼ N






Σ̃A′

ℓm







Σ−1
0

. . .

Σ−1
0













ỹ1
...
ỹn






, Σ̃







= N






Σ̃







η1m
∑p

j=1 θjℓσ
−2
j ỹ1j

...
ηnm

∑p
j=1 θjℓσ

−2
j ỹnj






, Σ̃






, (62)

where ỹi = yi − µℓm(xi) and, taking K to be the matrix of correlations Kij = c(xi, xj)
defined by the Gaussian process parameter κ,

Σ̃−1 = K−1 +A′
ℓm







Σ−1
0

. . .

Σ−1
0






Aℓm = K−1 + diag



η21m

p
∑

j=1

θ2jℓσ
−2
j , . . . , η2nm

p
∑

j=1

θ2jℓσ
−2
j



 .

(63)
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